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We want to estimate an unknown distribution p(x) given i.i.d. samples xi ∈ X ∼ p. Given a
parameterized family of densities pθ, the maximum likelihood estimator is:

θ̂mle ≡ arg max
θ

E
x∼p

log pθ(x). (1)

One way to model the distribution p(x) is to introduce a latent variable z ∼ r on an auxiliary space
Z and a likelihood pθ(x|z). Together, r(z) and pθ(x|z) define a joint distribution over (x, z) ∈ X×Z.
The marginal distribution pθ(x) is given by

pθ(x) =

∫
Z
pθ(x|z)r(z) dz. (2)

Introducing a latent variable z can be convenient. We can sample from pθ(x) by first sampling
a latent z ∼ r, and then sampling x ∼ pθ(·|z). The idea is to use a simple prior distribution r(z),
e.g. N (0, I), and parameterize the conditional distribution pθ(x|z) with an expressive model. In
contrast to an autoregressive model, which requires d serial evaluations of the model to generate
a sample x ∈ Rd, a latent variable model can produce a sample with just one evaluation of the
model that parameterizes pθ(z|x). And whereas autoregressive models struggle to capture global
structure over high dimension dimensional spaces X , we hope that conditioning on a global code z
might help promote global coherence.

Training Latent Variable Models

How do we train the conditional model pθ(x|z) so that pθ(x) ≈ p(x)? Direct evaluation of the
marginal requires computation of the integral in Equation (2), which does not seem promising.
Recall from our discussion of EM that we can construct a variational lower bound on log pθ(x)
using a proposal distribution q(z|x) as an importance sampler. By Jensen’s inequality,

log pθ(x) = log E
z∼q(·|x)

[
pθ(x, z)

q(z|x)

]
≥ E

z∼q(·|x)

[
log

pθ(x, z)

q(z|x)

]
≡ E

z∼q(·|x)
L(x, z; θ, q). (3)

Equality holds exactly when q(z|x) equals the posterior pθ(z|x). The expectation on the right-hand
side is referred to as the evidence lower-bound (ELBO) on the marginal likelihood of x.

The ELBO can be sharpened by optimizing over a minibatch of samples [Burda et al., 2016]:

log pθ(x) = log E
zi∼q(·|x)

[
M∑
i=1

pθ(x, z)

q(z|x)

]
≥ E

zi∼q(·|x)

[
log

M∑
i=1

pθ(x, z)

q(z|x)

]
. (4)

The bound improves monotonically in M , and as M → ∞, the bound becomes tight. The choice
of M can represent a tradeoff between accuracy of the lower bound and the computational cost of
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evaluating it; see Cremer et al. [2017] for another interesting interpretation of Equation (4), and
Rainforth et al. [2018] for some cautionary discussion about using tighter bounds.

Using a variational lower bound like Equation (3), we can rephrase the maximum likelihood
objective (1) as

θ̂MLE = arg max
θ

sup
q

E
x∼p

z∼q(·|x)

L(x, z; θ, q). (5)

For simple latent variable models like GMM’s, we can directly solve the inner optimization problem
in Equation (5) by computing the posterior pθ(z|x) for fixed parameters θ. In such settings,
alternating maximization algorithms like EM are enticing. But in the present setting, we are
interested in modeling rich distributions p(x); modeling these distributions requires an expressive
likelihood pθ(x|z), and this comes at the expense of an analytically tractable posterior pθ(z|x).

Instead, we estimate the posterior using another expressive, parameterized model qϕ(z|x) and
our optimization problem becomes [Kingma and Welling, 2014]

θ̂MLE = arg max
θ

sup
ϕ

E
x∼p

z∼qϕ(·|x)

L(x, z; θ, ϕ). (6)

This approach is sometimes called “amortized inference,” because we replace an expensive com-
putation of the posterior at each value of x with a function that is learned to approximate the
posterior across all values of x. While this emphasizes the computational advantages of amortized
inference, there is also evidence that amortization can have a positive regularizing effect on the
maximum likelihood objective [Shu et al., 2018].

The parameterizations θ and ϕ are typically high-dimensional (e.g. the parameter spaces of
large neural networks) and we are therefore interested in first-order optimization techniques for
jointly optimizing Equation (6). We can directly compute gradients of the objective with respect
to θ but, due to the expectation, gradients with respect to ϕ require more care.

Monte Carlo Gradient Estimators

Optimizing Equation (6) requires estimation of gradients with respect to ϕ. For a comprehensive
survey of approaches to problems of this form, see Mohamed et al. [2019]. One generic approach
to constructing these estimates uses the score function estimator [Rubinstein and Kreimer, 1983]
a.k.a. REINFORCE [Williams, 1992]:

∇ϕ E
z∼qϕ(·|x)

[
h(z)

]
= E

z∼qϕ(·|x)

[
h(z)∇ϕ log qϕ(z|x)

]
. (7)

Taking h(z) = log pθ(x, z)− log qϕ(z|x) in Equation (7) and replacing the expectation with a finite
sum over samples yields an unbiased monte carlo estimate of the ELBO (3). In practice, the score
function estimator exhibits prohibitively high variance that prevents its use in this setting.

We can construct an estimator with much lower variance by exploiting structure of the dis-
tribution qϕ(z|x). When the parameterization of the density qϕ(z|x) is given by a pushforward
distribution fϕ(x, ε), we can rewrite the expectation over z as an expectation over ε. Because
ε isn’t a function of ϕ, the derivative passes through the expectation, allowing us to construct
straightforward monte carlo estimates of the gradient:

∇ϕ E
z∼qϕ(·|x)

[
h(z)

]
= E

ε

[
∇ϕh(fϕ(x, ε))

]
. (8)
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This simple change of variables goes by many names, in the recent literature it is commonly
referred to as the pathwise estimator [Glasserman, 2013], the “re-parameterization trick” [Kingma
and Welling, 2014], and stochastic backpropagation [Rezende et al., 2014].

The Gaussian VAE

The Gaussian Variational Autoencoder (VAE) proposed in Kingma and Welling [2014] sets a Gaus-
sian prior r(z) = N (z; 0, I) and an additive Gaussian likelihood model pθ(x|z) = N (x; gθ(z), σ

2
θ(z)I),

where gθ : Z → X and σ2θ : Z → R are expressive (typically neural) parameterizations. You can
think of this parameterization using Gaussians as an infinite Gaussian mixture model [Rasmussen,
2000], where the categorical class probabilities πi are replaced with a continuous density p(z), and
the Gaussian at index z is parameterized by µ = gθ(z) and σ2 = σ2θ(z). If σ = σ2θ(z) is constant in z,
then the Gaussian VAE is reminiscent of a kernel density estimator with bandwidth σ [Rosenblatt
et al., 1956, Parzen, 1962]; this should provide some intuition that the Gaussian VAE is sufficiently
expressive to model richly structured distributions over data.

Unlike (finite) Gaussian mixture models, the posterior pθ(z|x) of the VAE is intractable. There-
fore, we will use a posterior estimate qϕ(z|x) and optimize the lower bound (3) as presented in
Equation (6). The Gaussian VAE uses qϕ(z|x) = N (z; fϕ(x),Σϕ(x)), where fϕ : X → Z and
Σϕ : X → Z⊗2 are expressive parameterizations of the conditional mean and variance of qϕ(z|x).
This is a simplifying assumption: there is no reason to suppose that the posterior pθ(z|x) is realiz-
able as a Gaussian, and this may contribute to common criticisms of VAE’s including “bluriness.”

Using Gaussian parameterizations r(z) = N (z; 0, I), likelihood pθ(x|z) = N (x; gθ(z), σ
2I), and

approximate posterior qϕ(z|x) = N (fϕ(x),Σϕ(x)), we can re-express the ELBO (3) in several ways:

L(x; θ, q) = E
z∼q(·|x)

[log pθ(x|z) + log p(z)− log qϕ(z|x)] (9)

= E
z∼qϕ(·|x)

[
log pθ(x|z)

]
−D(qϕ(z|x) ‖ r(z)) (10)

= −dim(X )

2
log(2πσ2)− 1

2σ2
E

z∼qϕ(·|x)
‖x− gθ(z)‖2 −D(qϕ(z|x) ‖ r(z)). (11)

And using the form given by Equation (11), we can re-express the optimization problem (6) as

θ̂mle = arg min
θ

inf
ϕ

E
x∼p

z∼qϕ(·|x)

[
1

2σ2
‖x− gθ(z)‖2 +D(qϕ(z|x) ‖ r(z))

]
. (12)

The two terms in Equation (12) are referred to as the “reconstruction” and “divergence” terms
respectively. In this form, there is a clear connection to auto-encoders [Vincent et al., 2010], where
fϕ(x) and gθ(z) take the roles of “encoder” and “decoder” networks and the KL-divergence term
acts as a regularizer. Conveniently, when both qϕ(z|x) and p(z) are parameterized by Gaussians,
the divergence term can be computed analytically, although Roeder et al. [2017] argue that the
monte carlo estimate used in Equation (9) could be better in some cases.

Evaluation

A direct way to evaluate a VAE is to report the lower bound:

E
z∼q(·|x)

L(x, z; θ, q) ≈
M∑
i=1

log
pθ(x, zi)

q(zi|x)
where zi ∼ q(z|x). (13)
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If q effectively approximates the posterior pθ(z|x) then Equation (13) will be a relatively accurate
estimate of the log-likelihood. But it is conservative metric, in the sense that it is a lower bound the
true log-likelihood, and will be an overly pessimistic evaluation of the quality of the model pθ(x).

We can build a monte carlo estimate of the marginal likelihood (2) by importance sampling:

log pθ(x) = log E
z∼q(·|x)

[
pθ(x, z)

q(z|x)

]
≈ log

1

M

M∑
i=1

pθ(x|zi)r(zi)
q(zi|x)

, where zi ∼ q(z|x). (14)

Note that this is the same approach as (4), using the one-point empirical estimate of the expectation.
If M = 1 then (14) equals the one-point empirical estimate of the evidence lower bound (3) that
we use to optimize the VAE. For any finite M (14) is an unbiased estimate of an upper bound on
the log-likelihood. As M →∞, (14) converges to log pθ(x). How large does M need to be to get a
good estimate? Somewhere around M = 5, 000 is common, although this may be model-dependent
Burda et al. [2016], Tomczak and Welling [2018].

In practice, the sum (14) is numerically unstable because the probabilities are all vanishingly
small. To handle the instability, we replace the terms with their log, and evaluate the resulting
stable log-sum-exp:

log pθ(x) ≈ log
M∑
i=1

exp (log pθ(x|zi) + log r(zi)− log qϕ(zi|x))− logM.
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