Neural Autoregressive Distribution Estimation

John Thickstun

Recall that our goal is to learn a collection of conditional probability distributions p(x¢|z<).
We previously saw linear autoregressive models, where z; ~ N(f(x<¢),0?), where f(z;) is a
linear function of the past, for example f(x<;) = p(x¢t—1 — p) + p. The next step we will take
is to replace linear functions with more expressive non-linear functions, parameterized by neural
networks. While the history of this modeling strategy is older than most of the ideas we discuss in
this course, specialized and computationally-intensive neural parameterizations of autoregressive
models are directly responsible for the latest generative modeling results in NLP [Radford et al.,
2019, Brown et al., 2020] as well as modern work on audio modeling [Oord et al., 2016a]

Fully-Visible Sigmoid Belief Networks

Non-linear parameterizations f allow us to bridge the gap between continuous and discrete mod-
eling. The fully-visible sigmoid belief network [Neal, 1992] is a simple example of a non-linear
parameterization of models over binary sequences = € {0, 1}T, which can be loosly interpreted as
an extension of the linear autoregressive model. The idea is to predict z; € {0, 1} using a log-linear
combination of x.4. For now, we assume all our sequences have constant length 7. Recall that
sigmoid(u) = 1/(1 4+ e *).

Definition 1. Let P € RT and define f; : R = R by fi(x<s) = (Pey,x<;). The fully-visible
sigmoid belief network is given by

x¢ ~ Bernoulli (sigmoid(fi(z<))),
x1 ~ Bernoulli(Fy).

This setup is a little more sophisticated than the simplest possible parameterization: we share
the weights at each location in the history, versus simply parameterizing each conditional distri-
bution p(z¢|r<;) with its own set of t — 1 weights. Another way to think about this model (and
a convenient way to implement it) is that we mask the future z>; in the input sequence for our
prediction of z;. Formally, we introduce a mask m € {0,1}7*7 defined by m; s = 15, and it
follows (where ® denotes element-wise multiplication) that

ft(l’<t> = <P<t7$<t> = <P, my ® .Z'>

For discrete time series w € VT, we can replace the Bernoulli distribution with a Categorical
distribution and parameterize the model with a softmax activation

ell

softmax(u) = ————.
W Zi:l etk

We also need to encode the history w.; by embedding it in Euclidean space, in order to define a
log-linear model. A popular way to do this is one-hot encoding: we assign each item in V an index
0 <w < d=|V| and represent w as one-hot vector = € R? such that zj = 1p—y.

Definition 2. Let P € RT*%%4 gnd define f, : RUED*d 5 Rd py

ft(x<t> = Z Psa:s-

s<t

The fully-visible softmax belief network is given by

w; ~ Categorical (softmax (fi(z<¢))),

w; ~ Categorical(Pp).

These fully-visible sigmoid and softmax belief networks can be interpreted as sequential vari-
ants of logistic and multinomial logistic regression respectively. We can learn the weights P by
approximating the maximum likelihood estimator via optimization of the cross-entropy loss

n n T
S3 " —logp(w) = = 373" —logp(wilwl,).
i=1

i=1 t=1

Neural Autoregressive Distribution Estimation

Written this way, it becomes clear how to generalize to neural parameterizations: replace the log-
linear model with softmax(fp¢(x<;)), where the function fp; : R¢=D4 — R? is defined by a neural
network with weights #. This possibility was observed at least as early as Bengio and Bengio
[2000], and applied to language modeling in Bengio et al. [2003]. The modern version of this idea
is called the Neural Autoregressive Distribution Estimator (NADE) [Larochelle and Murray, 2011].
Specifically, Larochelle and Murray [2011] propose a fully connected parameterization with & hidden
nodes defined by

h; = sigmoid (ct + ZVSXS> , V e RTxFxd ¢ ¢ RTXF
s<t
f@,t(x<t) - bt + Zwshs, W (S RTXka,b S RTXd.
s<t

The weights 6 in this case consist of the quantities listed on the right-hand side of the equations.

Although we introduced this parameterization for discrete time-series, it can be directly ex-
tended to continuous time-series. All we need to do is, instead of using the outputs fp; to pa-
rameterize a categorical distribution, use them to parameterize a continuous distribution over the
conditionals p(x¢|x<¢), as we did using a Gaussian distribution in the linear autoregressive setting.
For more expressive models, we could use fy; to parameterize e.g. a mixture of Gaussians. This
idea is developed under the name real-valued NADE (RNADE) [Uria et al., 2013].

Parameterizing Your NADE

One potential modification of the NADE architecture weight-tying. Observe that the weight tensors
V and W have the same shape, simply transposing the second and third axes. Weight-tying uses

the same weights for both layers of the NADE, replacing V with (W,)?. This weight-tying idea
was proposed in the original NADE paper [Larochelle and Murray, 2011], and a generalization
of the idea has proven highly effective in NLP domain [Press and Wolf, 2017]. For a modern
implementation of NADE, we might also consider replace the hidden-state sigmoid activation with
a ReLU [Krizhevsky et al., 2012] or more sophisticated non-linearity.

Beyond these minor tweaks, more interesting extensions of NADE exploit the machinery of deep
learning to better fit the data distribution. One way to do this is to stack multiple hidden layers
between the inputs and outputs of the NADE. For example, an L-layer NADE with hidden layers
he (€ € {1,...,L}) using weight-tying and ReLU non-linearities could look like

hO,t e ReLU (CO,t + Z(WS)TX5> , W c RTXka,CO c RTXk,
s<t
hyy =ReLU | cp+ Y Vishey, |, V g RE-DXTxkxk o ¢ RUE-1)XTxk
s<t
Jo.(x<t) = by + ZWShL7s; b e RT*4,
s<t

This deep NADE is developed in detail by Uria et al. [2016]. Both Uria et al. [2016] and Oord
et al. [2016b] develop the idea of a convolutional NADE, which exploits the convolutional neural
network architecture [LeCun et al., 1989]. An efficient implementation of the partial sums s < ¢
using masks is developed in detail under the name MADE (masked autoregressive distribution
estimation) [Germain et al., 2015].

One downside of NADE (and deep NADE) is that the number of parameters in the model is a
(linear) function of the length T" of the sequences we are modeling. If our sequences have a variable
length, then the number of parameters will grow linearly in the length of the longest sequence. This
is undesirable from a learning perspective, because these models are likely to overfit. The recurrent
neural network (RNN) [Rumelhart et al., 1986] is a clever way to construct a neural architecture
with parameter counts that don’t scale with the length of the sequence. A simple variant of the
RNN is defined by

hy = Wipit, Winie € RF,
h; = sigmoid(c + Wphy_; + W,x;), W), € RM* W, € R¥4 ¢ € RF,
fot(x<t) =b+Wsh;_q, W, € R¥* p e RY

The idea is to maintain a running state hy; at every time step ¢, we construct the new state h as a
non-linear function of the previous state h;_; and the token x;. The particular non-linearity is non-
essential, and can be replaced with e.g. a ReLU (although if we use sigmoid, there is an interesting
interpretation of the hidden state as “bits”). And of course, analogous to the deep NADE, we can
stack multiple recurrent layers together to construct a deep RNN with hidden nodes hy;. These
ideas are explored in depth by Boulanger-Lewandowski et al. [2012], using the popular long short-
term memory (LSTM) variant [Hochreiter and Schmidhuber, 1997, Gers et al., 2002] of the RNN
architecture.

Exposure Bias

One prevalent concern about neural autoregressive models like NADE is a phenomenon known as
exposure bias. This refers to the fact that we train our models to fit the conditionals p(z¢|z<¢), but
we sample from p(z;|Z<;) where Z.; are samples from our estimated conditionals Zs ~ p(-|z<s),
not the true conditionals x5 ~ p(-|x<s). There is a line of work called scheduled sampling that
attempts to adjust for this discrepancy by replacing some of the tokens in the history with outputs
from the model during learning [Bengio et al., 2015, Ranzato et al., 2016, Zhang et al., 2019]. This
work borrows from intuitions developed in the reinforcement learning setting for robotics, notably
dataset aggregation (DAGGER) [Ross et al., 2011] and data as demonstrator (DaD) [Venkatraman
et al., 2015].

It remains unclear whether these techniques are promising. Exposure bias corrections typi-
cally lead to inconsistent estimators, and rely on careful tuning in the optimization process to
avoid degeneracy. One way to think about these techniques pragmatically is that they provide an-
other regularization knob (or data augmentation) that can be tuned via hyper-parameter search to
improve generalization, at increased computational cost. To some extent, it seems that these prob-
lems can be ignored simply by building better generative models; for a sufficiently strong generative
model, the mismatch between training sequences and generated sequences will become negligible
and can be ignored. These techniques are not used, for example, to train state of the art language
models [Radford et al., 2019, Brown et al., 2020]. Nevertheless, even these powerful models may
still be susceptible to exposure bias. Diagnostic work for modern language models that quantifies
a form of exposure bias using calibration statistics and suggests a way to correct it is presented in
Braverman et al. [2020]

References

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Sys-
tems, 2015. (document)

Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with multi-layer neural
networks. In Advances in Neural Information Processing Systems, 2000. (document)

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of Machine Learning Research, 2003. (document)

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling temporal depen-
dencies in high-dimensional sequences: Application to polyphonic music generation and tran-
scription. 2012. (document)

Mark Braverman, Xinyi Chen, Sham M Kakade, Karthik Narasimhan, Cyril Zhang, and Yi Zhang.
Calibration, entropy rates, and memory in language models. International Conference on Ma-
chine Learning, 2020. (document)

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020. (document)

Mathieu Germain, Karol Gregor, Tain Murray, and Hugo Larochelle. Made: Masked autoencoder
for distribution estimation. In International Conference on Machine Learning, pages 881-889,
2015. (document)

Felix A Gers, Nicol N Schraudolph, and Jiirgen Schmidhuber. Learning precise timing with lstm
recurrent networks. Journal of Machine Learning Research, 2002. (document)

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 1997.
(document)

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in Neural Information Processing Systems, 2012. (document)

Hugo Larochelle and Tain Murray. The neural autoregressive distribution estimator. In International
Conference on Artificial Intelligence and Statistics, 2011. (document)

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1989. (document)

Radford M Neal. Connectionist learning of belief networks. Artificial Intelligence, 1992. (document)

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016a. (document)

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
International Conference on Machine Learning, 2016b. (document)

Ofir Press and Lior Wolf. Using the output embedding to improve language models. Conference of
the European Chapter of the Association for Computational Linguistics, 2017. (document)

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 2019. (document)

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training
with recurrent neural networks. International Conference in Learning Representations, 2016.
(document)

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In International Conference on Artificial Intelli-
gence and Statistics, 2011. (document)

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 1986. (document)

Benigno Uria, Tain Murray, and Hugo Larochelle. Rnade: The real-valued neural autoregressive
density-estimator. In Advances in Neural Information Processing Systems, 2013. (document)

Benigno Uria, Marc-Alexandre Coté, Karol Gregor, Iain Murray, and Hugo Larochelle. Neural
autoregressive distribution estimation. The Journal of Machine Learning Research, 2016. (doc-
ument)

Arun Venkatraman, Martial Hebert, and J Andrew Bagnell. Improving multi-step prediction of
learned time series models. In AAAI Conference on Artificial Intelligence, 2015. (document)

Wen Zhang, Yang Feng, Fandong Meng, Di You, and Qun Liu. Bridging the gap between training
and inference for neural machine translation. Annual Meeting of the Association for Computa-
tional Linguistics, 2019. (document)

