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Recall that our goal is to learn a collection of conditional probability distributions p(xt|x<t).
We previously saw linear autoregressive models, where xt ∼ N (f(x<t), σ

2), where f(x<t) is a
linear function of the past, for example f(x<t) = ρ(xt−1 − µ) + µ. The next step we will take
is to replace linear functions with more expressive non-linear functions, parameterized by neural
networks. While the history of this modeling strategy is older than most of the ideas we discuss in
this course, specialized and computationally-intensive neural parameterizations of autoregressive
models are directly responsible for the latest generative modeling results in NLP [Radford et al.,
2019, Brown et al., 2020] as well as modern work on audio modeling [Oord et al., 2016a]

Fully-Visible Sigmoid Belief Networks

Non-linear parameterizations f allow us to bridge the gap between continuous and discrete mod-
eling. The fully-visible sigmoid belief network [Neal, 1992] is a simple example of a non-linear
parameterization of models over binary sequences x ∈ {0, 1}T , which can be loosly interpreted as
an extension of the linear autoregressive model. The idea is to predict xt ∈ {0, 1} using a log-linear
combination of x<t. For now, we assume all our sequences have constant length T . Recall that
sigmoid(u) = 1/(1 + e−u).

Definition 1. Let P ∈ RT and define ft : R(t−1) → R by ft(x<t) = 〈P<t, x<t〉. The fully-visible
sigmoid belief network is given by

xt ∼ Bernoulli (sigmoid(ft(x<t))) ,

x1 ∼ Bernoulli(P0).

This setup is a little more sophisticated than the simplest possible parameterization: we share
the weights at each location in the history, versus simply parameterizing each conditional distri-
bution p(xt|x<t) with its own set of t − 1 weights. Another way to think about this model (and
a convenient way to implement it) is that we mask the future x≥t in the input sequence for our
prediction of xt. Formally, we introduce a mask m ∈ {0, 1}T×T defined by mt,s = 1s<t, and it
follows (where � denotes element-wise multiplication) that

ft(x<t) ≡ 〈P<t, x<t〉 = 〈P,mt � x〉.

For discrete time series w ∈ VT , we can replace the Bernoulli distribution with a Categorical
distribution and parameterize the model with a softmax activation

softmax(u) =
eu∑d
k=1 e

uk

.
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We also need to encode the history w<t by embedding it in Euclidean space, in order to define a
log-linear model. A popular way to do this is one-hot encoding: we assign each item in V an index
0 ≤ w < d = |V| and represent w as one-hot vector x ∈ Rd such that xk = 1k=w.

Definition 2. Let P ∈ RT×d×d and define ft : R(t−1)×d → Rd by

ft(x<t) =
∑
s<t

Psxs.

The fully-visible softmax belief network is given by

wt ∼ Categorical (softmax (ft(x<t))) ,

w1 ∼ Categorical(P0,0).

These fully-visible sigmoid and softmax belief networks can be interpreted as sequential vari-
ants of logistic and multinomial logistic regression respectively. We can learn the weights P by
approximating the maximum likelihood estimator via optimization of the cross-entropy loss

1
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i=1

− log p(wi) =
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n
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t=1

− log p(wi
t|wi

<t).

Neural Autoregressive Distribution Estimation

Written this way, it becomes clear how to generalize to neural parameterizations: replace the log-
linear model with softmax(fθ,t(x<t)), where the function fθ,t : R(t−1)d → Rd is defined by a neural
network with weights θ. This possibility was observed at least as early as Bengio and Bengio
[2000], and applied to language modeling in Bengio et al. [2003]. The modern version of this idea
is called the Neural Autoregressive Distribution Estimator (NADE) [Larochelle and Murray, 2011].
Specifically, Larochelle and Murray [2011] propose a fully connected parameterization with k hidden
nodes defined by

ht = sigmoid

(
ct +

∑
s<t

Vsxs

)
, V ∈ RT×k×d, c ∈ RT×k,

fθ,t(x<t) = bt +
∑
s≤t

Wshs, W ∈ RT×d×k,b ∈ RT×d.

The weights θ in this case consist of the quantities listed on the right-hand side of the equations.
Although we introduced this parameterization for discrete time-series, it can be directly ex-

tended to continuous time-series. All we need to do is, instead of using the outputs fθ,t to pa-
rameterize a categorical distribution, use them to parameterize a continuous distribution over the
conditionals p(xt|x<t), as we did using a Gaussian distribution in the linear autoregressive setting.
For more expressive models, we could use fθ,t to parameterize e.g. a mixture of Gaussians. This
idea is developed under the name real-valued NADE (RNADE) [Uria et al., 2013].

Parameterizing Your NADE

One potential modification of the NADE architecture weight-tying. Observe that the weight tensors
V and W have the same shape, simply transposing the second and third axes. Weight-tying uses
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the same weights for both layers of the NADE, replacing Vs with (Ws)
T . This weight-tying idea

was proposed in the original NADE paper [Larochelle and Murray, 2011], and a generalization
of the idea has proven highly effective in NLP domain [Press and Wolf, 2017]. For a modern
implementation of NADE, we might also consider replace the hidden-state sigmoid activation with
a ReLU [Krizhevsky et al., 2012] or more sophisticated non-linearity.

Beyond these minor tweaks, more interesting extensions of NADE exploit the machinery of deep
learning to better fit the data distribution. One way to do this is to stack multiple hidden layers
between the inputs and outputs of the NADE. For example, an L-layer NADE with hidden layers
h` (` ∈ {1, . . . , L}) using weight-tying and ReLU non-linearities could look like

h0,t = ReLU

(
c0,t +

∑
s<t

(Ws)
Txs

)
, W ∈ RT×d×k, c0 ∈ RT×k,

h`,t = ReLU

c`,t +
∑
s≤t

V`,sh`−1,s

 , V ∈ R(L−1)×T×k×k, c ∈ R(L−1)×T×k,

fθ,t(x<t) = bt +
∑
s≤t

WshL,s, b ∈ RT×d.

This deep NADE is developed in detail by Uria et al. [2016]. Both Uria et al. [2016] and Oord
et al. [2016b] develop the idea of a convolutional NADE, which exploits the convolutional neural
network architecture [LeCun et al., 1989]. An efficient implementation of the partial sums s ≤ t
using masks is developed in detail under the name MADE (masked autoregressive distribution
estimation) [Germain et al., 2015].

One downside of NADE (and deep NADE) is that the number of parameters in the model is a
(linear) function of the length T of the sequences we are modeling. If our sequences have a variable
length, then the number of parameters will grow linearly in the length of the longest sequence. This
is undesirable from a learning perspective, because these models are likely to overfit. The recurrent
neural network (RNN) [Rumelhart et al., 1986] is a clever way to construct a neural architecture
with parameter counts that don’t scale with the length of the sequence. A simple variant of the
RNN is defined by

h0 = Winit, Winit ∈ Rk,
ht = sigmoid(c + Whht−1 + Wxxt), Wh ∈ Rk×k,Wx ∈ Rk×d, c ∈ Rk,

fθ,t(x<t) = b + Woht−1, Wo ∈ Rd×k,b ∈ Rd.

The idea is to maintain a running state ht; at every time step t, we construct the new state h as a
non-linear function of the previous state ht−1 and the token xt. The particular non-linearity is non-
essential, and can be replaced with e.g. a ReLU (although if we use sigmoid, there is an interesting
interpretation of the hidden state as “bits”). And of course, analogous to the deep NADE, we can
stack multiple recurrent layers together to construct a deep RNN with hidden nodes h`,t. These
ideas are explored in depth by Boulanger-Lewandowski et al. [2012], using the popular long short-
term memory (LSTM) variant [Hochreiter and Schmidhuber, 1997, Gers et al., 2002] of the RNN
architecture.
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Exposure Bias

One prevalent concern about neural autoregressive models like NADE is a phenomenon known as
exposure bias. This refers to the fact that we train our models to fit the conditionals p(xt|x<t), but
we sample from p(xt|x̃<t) where x̃<t are samples from our estimated conditionals x̃s ∼ p̂(·|x<s),
not the true conditionals xs ∼ p(·|x<s). There is a line of work called scheduled sampling that
attempts to adjust for this discrepancy by replacing some of the tokens in the history with outputs
from the model during learning [Bengio et al., 2015, Ranzato et al., 2016, Zhang et al., 2019]. This
work borrows from intuitions developed in the reinforcement learning setting for robotics, notably
dataset aggregation (DAGGER) [Ross et al., 2011] and data as demonstrator (DaD) [Venkatraman
et al., 2015].

It remains unclear whether these techniques are promising. Exposure bias corrections typi-
cally lead to inconsistent estimators, and rely on careful tuning in the optimization process to
avoid degeneracy. One way to think about these techniques pragmatically is that they provide an-
other regularization knob (or data augmentation) that can be tuned via hyper-parameter search to
improve generalization, at increased computational cost. To some extent, it seems that these prob-
lems can be ignored simply by building better generative models; for a sufficiently strong generative
model, the mismatch between training sequences and generated sequences will become negligible
and can be ignored. These techniques are not used, for example, to train state of the art language
models [Radford et al., 2019, Brown et al., 2020]. Nevertheless, even these powerful models may
still be susceptible to exposure bias. Diagnostic work for modern language models that quantifies
a form of exposure bias using calibration statistics and suggests a way to correct it is presented in
Braverman et al. [2020]
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