
Sequence Models

John Thickstun

Suppose we have data x ∈ RT×d, which we will interpret as a sequence of d-dimensional vectors
xt indexed by a discrete temporal 0 ≤ t < T . As usual, we are interested in modeling the unknown
distribution p over a collection of observed sequences x1, . . . ,xn ∼ p (for time series, we will index
sequences with a superscript to distinguish this index from the temporal index). One way to
approach time series modeling is to ignore the temporal structure, and simply treat sequences as
vectors in RTd. This is technically valid, but there are a couple of reasons we might want to
incorporate temporal structure into our models:

1. The length of the sequences can be variable: each data point xi can have a unique length Ti.

2. The collapsed vectors in RTd can be very high dimensional, and we may want to exploit
temporal structure to simply our modeling task.

We can address both concerns with autoregressive modeling. The idea is to to model the
conditional distributions p(xt|x<t), i.e. the distributions over xt given preceding observations x<t =
{x0, . . . , xt−1}. The point is simply that we can use the chain rule for probabilities to factor the
joint distribution over x into conditional distributions:

p(x) =
T∏
t=1

p(xt|x<t).

Given a collection of learned conditional distributions p̂(xt|x<t), we can sample from model by
iteratively sampling x̂t ∼ p̂(·|x̂<t). We can control the length of an autoregressive model’s output
by choosing the number of sampling iterations. If we want to learn the distribution over sequence
lengths, we can train an additional family of conditional models p̂(stopt|x<t), where stop ∈ {0, 1}
and stop sampling when stop = 1. As we’ll see in the next two sections, we can control the
dimensionality of high-dimensional sequences by imposing structure on the conditional probability
distributions p(xt|x<t).

Linear Autoregressive Models

For a simple example of sequential data, let εt ∼ N (0, σ2) (i.i.d.) and consider a scalar sequence
of observations x ∈ RT×1 defined by the linear dynamics

xt = ρ(xt−1 − µ) + µ+ εt,

x1 = µ+ ε0.

These dynamics are referred to as a (linear) autoregressive process of order 1, or AR(1) process
[Rao, 2020]; order 1 refers to the fact that xt is a function of only one previous observation xt−1

1

(this is also known as the Markov property):

p(xt|x<t) = p(xt|xt−1) = N (ρ(xt−1 − µ) + µ, σ2).

By induction, we see that E[xt] = µ. Because the mean of the process is not a function of time, we
say that the mean is stationary.

Definition. A time series x has stationary p’th moment if E[xpt] is constant, for all t ∈ N.

To simplify things a lot, suppose we know ρ and σ2. Then to construct an estimator p̂, given a
sequence of observations x of length T , all we need is an estimate of the mean µ̂. It is tempting to
try the estimator µ̂ = 1

T

∑T
t=1 xt. This is an unbiased estimator of µ. However, our observations xt

are not i.i.d. so the law of large numbers does not ensure consistency of µ̂. If we examine the proof
of the (weak) law of large numbers, we can recover a result for time series. Chebyshev’s inequality
tells us that

P (|µ̂− µ| ≥ δ) ≤ Var(µ̂)

δ2
.

Unlike the i.i.d. case, we must track covariances when analyzing Var(µ̂):

Var(µ̂) =
1

T 2

 T∑
t=1

Var(xt) + 2
∑

1≤s<t≤T
Cov(xs, xt)

 .

And, again in contrast to the i.i.d. case, it is not at all clear that Var(µ̂)→ 0 as T →∞.

Definition. A time series X is wide-sense stationary if it has stationary mean and

Cov(xt, xt−k) = Cov(xs, xs−k), ∀s, t, k ∈ N.

In this case, we define the autocovariance function γ : N → R by

γ(k) = Cov(xk+1, x1).

Wide-sense stationarity allows us to complete our analysis of the sample mean:

Var(µ̂) =
1

T 2

(
Tγ(0) + 2

T∑
k=1

(T − k)γ(k)

)
=
γ(0)

T
+

2

T

T∑
k=1

(
1− k

T

)
γ(k) ≤ γ(0)

T
+

2

T

T∑
k=1

γ(k).

We must have γ(k)→ 0 as k →∞ and if it decays quickly enough then the estimator will converge
in probability. If γ is summable, i.e.

∑∞
k=1 γ(k) is finite, then Var(µ̂) = O(1/T). Intuitively, the

faster a process forgets its history–as measured by the rate at which the autocovariance function
decays–the faster the sample mean µ̂ converges to the distribution mean µ.

For an AR(1) process, Var[xt] = ρ2 Var[xt−1] + σ2, from which we deduce that x has stationary

variance iff |ρ| < 1 and in particular, Var[x] = σ2

1−ρ2 . A straightforward induction shows that an

AR(1) process is wide-sense stationary, and its autocovariance function1 is given by

γ(k) =
ρkσ2

1− ρ2
.

1The natural analog to a correlation coefficient for stochastic processes is the autocorrelation function defined by
f(k) = γ(k)/γ(0). In the case of an AR(1) process, f(k) = ρk and in particular f(1) = ρ, mirroring the Pearson
correlation coefficient and motivating the choice of the symbol ρ as a regression coefficient.

2

This function is clearly summable when |ρ| < 1, which justifies use of the estimator µ̂ = 1
T

∑T
t=1 xt.

All the preceding discussion of scalar time series generalizes to vector sequences x ∈ RT×d.
Another way to generalize the AR(1) model involves conditioning on more items in the history,
i.e. p > 1 items. Specifically, a vector-valued linear autoregressive process of order p, an AR(p)
process, is defined by the linear dynamics

xt =

p∑
k=1

ρk(xt−1 − µ) + µ+ εt,

x1 = µ+ ε0.

In this case ρ ∈ Rm, µ ∈ Rd, and εt ∼ N (0, σ2I). A similar analysis to the one we did for AR(1)
processes generalizes to AR(p) processes.

Previously, we focused on estimating the mean of an autoregressive process because it is easy to
analyze. A more interesting question is: how do we estimate the regression coefficients ρ? Drawing
inspiration from the i.i.d. setting, it is tempting to try the maximum likelihood estimator. There
is a little subtlety to learning the distribution over the first few steps of the process2 (before we’ve
observed p items) but ignoring that we can proceed exactly as we do in the i.i.d. setting to fit the
conditional maximum likelihood estimator of p(xt|xt−p, . . . , xt−1). In this case, the MLE is simply
the least squares estimator and can be solved in closed form.

Statisticians have thought deeply about how best to fit the regression coefficients of an AR(p)
model, and it is not clear that conditional maximum likelihood estimation is the best approach.
Other contenders include Yule-Walker estimation, based on the method of moments, and the Burg
Algorithm [Rao, 2020]. Nevertheless, when we generalize these autoregressive models to the neural
autoregressive setting, we will focus exclusively on the conditional maximum likelihood estimator.
It is unclear to me whether or not any empirical gains could be achieved by developing these
alternative parameter estimators in the neural setting, or if reasonable generalizations of these
estimators even exist.

n-gram Models

In the previous section, we considered estimation of the mean of scalar-valued process governed
by parametric dynamics. We now turn our attention to discrete-valued processes. We will use
language as a running example of such time series. By language, we mean sequences w ∈ VT (e.g.
sentences or documents) consisting of discrete tokens wt ∈ V (e.g. words or characters) taken from
some finite vocabulary V. The most direct way to estimate a finite distribution is to simply tabulate
the probability of each element of the space. But for sequence models, this is a difficult task. First,
there is the theoretical nuance that, although V is finite, the space of sequences may not be (this
isn’t a concern in practice of course). But even for modest and fixed sequence lengths T , the space
VT is far too large even to enumerate; constructing probability estimates with reasonable variance
is a hopeless task.

Autoregressive modeling can help us here. Unless |V| is very large, we can tabulate p(wt|w<t)
for a fixed history w<t (this is just a distribution over V). The catch is that there are O(VT)
conditional distributions to model: we need to construct a probability table of size V for each
possible history sequence w<t at each time index t. The n-gram model [Jurafsky and Martin, 2008]

2For details, see Section 1 of Chapter 9 in Rao [2020].

3

makes two simplifying assumptions that drastically reduce the number of conditional distributions
that we need to model.

Definition. A process is strictly stationary if its joint distribution is invariant to time shifts:

p(wt, . . . , wt+n) = p(ws, . . . , ws+n), for all s, t, n ∈ N.

Assuming that a process is stationarity means that we only have to construct one set of probability
tables, rather than a table at each time index. This is a much stronger stationarity assumption
than the moment conditions or wide-sense stationarity introduced in the previous section.

Definition. A process is n’th order Markov if it has limited-horizon temporal dependencies:

p(wt|w<t) = p(wt|wt−n+1, . . . , wt−1), for all t ∈ N.

Assuming that a process is Markov means that we only have to construct Vn of these tables, rather
than O(VT) tables.

These assumptions still don’t quite get us to where we need to be. A typical vocabulary might
consist of 50, 000 words, and for this vocabulary size there are about as many 5-grams as there
are stars in the universe. But we are saved by sparsity: most of these 5-grams will never occur in
real-world data. So instead of storing a full 5-gram table with O(V5) elements, we can use e.g. a
hash table of counts. While this sparsity saves us computationally, it should give you pause from a
learning perspective: if our observed data doesn’t come close to covering the space, how can trust
our probability estimates?

The final piece of the n-gram puzzle is smoothing [Chen and Goodman, 1999]. Instead of using
the MLE count statistics to fill in the n-gram table, we regularize the problem by stealing probability
mass from the observed n-grams and re-allocating it to the rest of the n-grams in some more-or-less
clever way. Abstractly, this smoothing is analogous to non-parametric methods like kernel density
estimation [Tsybakov, 2008] for continuous density estimation which perform a similar function by
reallocating probability mass away from the observations in order to better cover the space. This
is a preview of things to come, where we will continue to see the distinctions between continuous
and finite modeling blur as the size of our finite spaces become large.

References

Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for language
modeling. Computer Speech & Language, 1999. (document)

Daniel Jurafsky and James H Martin. Speech and language processing: An introduction to speech
recognition, computational linguistics and natural language processing. Upper Saddle River, NJ:
Prentice Hall, 2008. (document)

Suhasini Subba Rao. A course in time series analysis. Technical Report, Texas A&M University,
2020. (document), 2

Alexandre B Tsybakov. Introduction to nonparametric estimation. Springer Science & Business
Media, 2008. (document)

4

