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Suppose we have data x ∈ Rd sampled from a mixture of K Gaussians with unknown parameters
(µk,Σk) and mixing weights πk. Formally, we can express the Gaussian mixture model (GMM)
with the following generative process:

1. z ∼ Categoricalπ(K),

2. x ∼ N (µz,Σz).

The mixture distribution is given by a density

p(x) =

∫
Z
p(x, z) dz =

∫
Z
p(x|z)p(z) dz =

K∑
k=1

πkp(x|z = k) =
K∑
k=1

πkN (x;µk,Σk).

Given i.i.d. observations xi ∼ p, i = 1, . . . , n, we want to estimate the distribution p.
How do we measure success? In machine learning, we usually care about predictive accuracy,

i.e. we want to maximize the expected likelihood that our model p̂ assigns to new observations
from the distribution:

E
x∼p

log p̂(x). (1)

Information theorists refer to the negation of Equation (1) as the cross-entropy. Crucially, when
we measure error via cross-entropy, we approximate the expectation using fresh samples x ∼ p
and not the samples that we used to fit the model p̂. The machine learning community refers to
this separation of samples for training and evaluation as a train/test split. We are interested in
measuring the generalization error of our model (i.e. its performance on test).

The overfitting story for generative models is different than the standard story for classification
problems. In the machine learning community, we are used to training large over-parameterized
models for supervised learning problems that send the classification error to zero on the training
data. The cross-entropy cannot be sent to zero, even with a perfect model

E
x∼p
− log p̂(x) = E

x∼p
− log

p̂(x)

p(x)
p(x) = H(p) +D(p ‖ p̂) ≥ H(p). (2)

For a finite-sample training set of size n, assuming the density p(x) is continuous and therefore the
training set almost surely contains no duplicate elements, the empirical cross-entropy is maximized
by setting p(xi) = 1/n. Therefore, even overfitting to the training set at most achieves log n
empirical cross-entropy. In practice, overfitting the training data to this degree is inadvisable for
generative modeling and will result in massive or even infinite generalization error.
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Gradient Descent and SGD

The most direct way to achieve small cross-entropy error in Equation 1 is to maximize the likelihood
of our observed data x1, . . . , xn ∼ p. Let θ denote the collective parameters of a K-GMM. The
maximum likelihood estimator (MLE) p̂mle is given by pθ̂mle

where

θ̂mle = arg min
θ

E
x∼p
− log pθ(x) ≈ arg min

θ

n∑
i=1

− log pθ(xi). (3)

How do we optimize Equation (3)? One option is gradient descent:

θ(k) = θ(k−1) + η∇θ
1

n

n∑
i=1

log pθ(xi). (4)

Or we could use the stochastic variant of gradient descent (SGD):

θ(k) = θ(k−1) + η∇θ log pθ(xk (mod n)). (5)

The point of SGD is that log pθ(xi) is an unbiased estimator of Equation 1. While the SGD
updates have a lot of variance compared to the batch estimator 1

n

∑n
i=1 log pθ(xi), the cost of

computing Equation 5 is O(1) whereas the cost of Equation 4 is O(n). For practical large-scale
optimizations, we typically work with a tradefoff between GD and SGD known as minibatch SGD.
The idea is to use more than one sample, but less than the full dataset, to construct an estimate
of Equation (1). This tradeoff is analyzed in detail by Jain et al. [2017].

The Evidence Lower-Bound

The SGD algorithm depended on our ability to evaluate the marginal probability of a sample pθ(x).
This is relatively easy for GMMs, but for many latent variable models, the integral over the latent
state is intractable. In such cases, we can approximate the integral by importance-sampling with
a proposal distribution q(z|x):

log pθ(x) = log E
z∼q(·|x)

[
pθ(x, z)

q(z|x)

]
(6)

= E
z∼q(·|x)

[
log

pθ(x, z)

q(z|x)

]
+D(q(z|x) ‖ pθ(z|x)). (7)

Dropping the divergence term gives us a lower bound on the likelihood:

log pθ(x) ≥ E
z∼q(·|x)

[
log

pθ(x, z)

q(z|x)

]
(8)

= E
z∼q(·|x)

[
log pθ(x|z)

]
−D(q(z|x) ‖ p(z)). (9)

Equality holds exactly when q(z|x) equals the posterior pθ(z|x). Equation (8) is sometimes called
the “evidence lower-bound” [Kingma and Welling, 2013]. Another way to look at this bound is
that we have applied Jensen’s inequality to (6).
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Expectation-Maximization

We can find the MLE by jointly optimizing the lower bound given by Equation (8) over q and θ:

θ̂mle = arg max
θ

max
q

E
x∼p

z∼q(·|x)

[
log pθ(x|z)

]
−D(q(z|x) ‖ pθ(z)). (10)

A natural algorithm for optimizing an objective like (10) is alternating maximization, which is
referred to in this setting as Expectation-Maximization (EM). The idea is to repeatedly apply the
following two-step update:

1. (E-step) Fixing parameters θ, optimize the proposal distribution q to maximize (10).

2. (M-step) Fixing the proposal distribution q, optimize the parameters θ to maximize (10).

A version of this algorithm was first proposed by Hartley [1958]. It was generalized and given
the name EM by Dempster et al. [1977]. The alternating-maximization perspective is discussed
in Csiszár and Tusnády [1984], along with an information-theoretic perspective and convergence
results.

For some families of latent-variable models, including GMM’s and other classical models like
HMM’s, it is possible to analytically compute the maximizer in the E-step. By observing equation
(7), we see that the E-step is maximized by setting q(z|x) to be the posterior pθ(z|x). For GMM’s,
this posterior distribution can be computed by Bayes’ rule:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
=

πzN (x;µz,Σz)∑K
k=1 πkN (x;µk,Σk)

. (11)

And for GMM’s, we can also analytically compute the M -step to find updated parameters θ′.
Replacing the expectation over x in (10) with a finite sum over observed data x1, . . . , xn ∼ p, we
can show that the maximum over the parameters θ′ = (π′, µ′,Σ′) is given by

π′k =
1

n

n∑
i=1

pθ(zk|xi), µ′k =
1

nπ′k

n∑
i=1

pθ(zk|xi)xi, Σ′k =
1

nπ′k

n∑
i=1

pθ(zk|xi)(xi − µ′k)⊗2. (12)

From a slightly different perspective, we can view EM as an instance of the Minorization-
Maximization (MM) algorithmic template [Hunter and Lange, 2004]. For any fixed posterior dis-
tribution pθ(z|x), the objective (10) is a global lower bound on the likelihood. However, this bound
is only tight at θ; EM makes progress on the objective by iteratively maximizing these global
lower bounds. A rough analogy can be drawn to methods like Newton, that iteratively maximize a
second-order Taylor expansion of the objective. However, the quadratic auxiliary objectives used
in Newton’s method are not guaranteed to be global lower bounds on the original objective (a valid
lower bound can be constructed by cubic regularization [Nesterov and Polyak, 2006], leading to an
MM algorithm).
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