Generative Modeling

John Thickstun

Generative modeling ask the following question: how can we (approximately) sample from an unknown probability distribution p over a space \mathcal{X} , given observations $x_1, \ldots, x_n \sim p$? An answer to this question consists of procedure that, when followed, produces samples $\hat{x} \sim \hat{p}$ where \hat{p} approximately equals p. A deterministic procedure cannot produce randomness so our procedure will require a source of randomness as input. We won't worry about (pseudo-)random number generation in this course, and throughout we'll assume that we have access to samples from the simple distributions Uniform(0, 1) and $\mathcal{N}(0, 1)$. Formally, an answer to the generative modeling question consists of a function (a generator) $g: \mathcal{Z} \to \mathcal{X}$ that maps a source of simple randomness $z \sim q$ to outputs $\hat{x} = g(z) \sim \hat{p}$ such that $\hat{p} \approx p$.

Generative modeling is a statistical question, because we only observe p through samples $x_i \sim p$. As a warm-up, we can ask the same question in a simpler setting where p is known. In this setting, generative modeling becomes a probabilistic question: how can we draw samples from the (known) distribution p given samples from a simple distribution q? For example, suppose we want to sample from a Gaussian distribution $p(x) = \mathcal{N}(x; \mu, \sigma^2)$, given access to samples from $q(z) = \mathcal{N}(z; 0, 1)$. If we define $g : \mathbb{Z} \to \mathcal{X}$ by $z \mapsto \mu + \sigma z$, then $g(z) \sim \mathcal{N}(\mu, \sigma^2)$. This answers the generative modeling question: given a sample $z \sim \mathcal{N}(0, 1)$, I can evaluate g(z) to get a sample from $\mathcal{N}(\mu, \sigma^2)$. A useful perspective on this process is that the function g "pushes forward" the distribution $\mathcal{N}(0, 1)$ on the space \mathbb{Z} to the distribution $\mathcal{N}(\mu, \sigma^2)$ on \mathcal{X} .

Pushforward Distributions

The pushforward construction that we saw for normal distributions is a common construction in numerical computing. Low-level software provides a single, simple source of randomness; for our purposes we can assume that this primitive source of randomness is Uniform(0, 1). To generate randomness from other distributions, software relies on pushforward distributions.

Definition 1. Given a probability space (\mathcal{Z}, q) , a (measurable) function $g : \mathcal{Z} \to \mathcal{X}$ induces a **pushforward** distribution on \mathcal{X} defined, for any (measurable) set $A \subset \mathcal{X}$ by

$$\Pr(A) = \int_{g^{-1}(A)} q(z) \, dz.$$

Suppose we want to sample from a biased coin, i.e. $x \sim \text{Bernoulli}(p)$. Defining $g(z) = \mathbf{1}_{z < p}$ with $z \sim \text{Uniform}(0, 1)$ induces the desired pushforward distribution $g(z) \sim \text{Bernoulli}(p)$. A more interesting example is the Box-Muller transform [Box and Muller, 1958], which induces a $\mathcal{N}(0, 1)$ pushforward when applied to inputs $z \sim \text{Uniform}(0, 1)$. Generating samples $x \sim p$ using a pushforward of some generic source of randomness is sometimes called simulation of p in the statistics community. In the machine learning community, the function $g: \mathbb{Z} \to \mathcal{X}$ is often called a generator. **Example 1.** If we know the CDF of a distribution p is given by the function $F : \mathbb{R} \to [0, 1]$, then we can specify a pushforward distribution to sample from p. Define the inverse CDF by

$$g(z) = \inf\{x : F(x) \ge z\}.$$
(1)

Given $z \sim \text{Uniform}(0, 1)$, it follows that $g(z) \sim p$:

$$\Pr(g(z) \le x) = \Pr(z \le F(x)) = F(x).$$
(2)

This technique is called inverse transform sampling, or the quantile method, and is based on the observation that the pushforward of the uniform distribution through the inverse-CDF of p is the distribution p.

Example 2. If p is a discrete distribution on a finite space \mathcal{X} , then we can apply inverse transform to sample from p by fixing a (possibly arbitrary) ordering on the elements of \mathcal{X} and constructing a step-wise "CDF," extending the Bernoulli example that we saw before. Alternatively, we can use the Gumbel-Max generator [Gumbel, 1954] defined by

$$g(z) = \operatorname*{arg\,max}_{x} \left(\log p(x) - \log \log \frac{1}{z} \right).$$

If $z \sim \text{Uniform}(0, 1)$ then $g(z) \sim p$.

Finite Modeling

Previously, we saw two ways to sample from a known categorical distribution p(x) by constructing a generator that induces p as a pushforward distribution. Now we can begin to address the more interesting question: how do we sample from an unknown distribution p(x) after observing samples $x_1, \ldots, x_n \sim p$ (i.i.d.)? The most direct way to do this in the finite setting is to estimate a probability π_x of each element $x \in \mathcal{X}$. To be consistent, we should require that $\sum_x \pi_x = 1$, in which case the estimator \hat{p} defined by $\hat{p}(x) = \pi_x$ is a probability distribution; we can sample from $\hat{p}(x)$ by formulaically constructing the appropriate generator.

What constitute a good estimate of π_x ? A natural choice is the (normalized) empirical count of x in the observed data x_1, \ldots, x_n ; i.e.

$$\pi_x = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{x_i = x}$$

This intuitive estimator is an example of a maximum likelihood estimator (MLE); among all possible categorical distributions in the simplex over $|\mathcal{X}|$ elements, i.e. $\Delta^{|\mathcal{X}|-1}$, \hat{p} is the most likely explanation for the observed data. Formally,

$$\hat{p}(x) = \operatorname*{arg\,max}_{r \in \Delta^{|\mathcal{X}|-1}} r(x_1, \dots, x_n) = \operatorname*{arg\,max}_{r \in \Delta^{|\mathcal{X}|-1}} \frac{1}{n} \sum_{i=1}^n \log r(x_i).$$

This estimator enjoys many desirable properties, e.g. consistency: $\lim_{x \to \infty} \pi_x \to p(x)$ for all x.

But there are reasons to be suspicious of the MLE. For example, suppose an element x occurs zero times in our observations x_1, \ldots, x_n . The MLE assigns zero probability mass to x. This could

be quite undesirable! Quantitatively, if we measure the quality of our estimator \hat{p} by the KLdivergence $D(\hat{p} \parallel p)$, then this quantity is infinity if $\hat{p}(x) = 0$ and p(x) > 0. This motivates interest in regularization, e.g. "smoothing" estimators that hedge their bets by allocating at least a small amount of mass to every item in \mathcal{X} [Chen and Goodman, 1999]. This missing mass problem–where some elements of the distribution are never even observed–is particularly pernicious in domains like NLP, where vocabularies (i.e. $|\mathcal{X}|$) are large and the distribution over words (elements of \mathcal{X}) follow a power law: no matter how large n is, you are likely to miss something. For an introduction to missing mass estimation, see McAllester and Schapire [2000], and for a modern perspective on smoothing estimators, see Orlitsky and Suresh [2015].

Despite these caveats, the MLE is generally the first estimator we consider. Some of its most extreme failings can be muted by the implicit regularizing effects of a model. But the question of the right estimation objective for generative modeling is something that we will periodically revisit during this course.

Continuous Modeling

In contrast to finite modeling, we cannot tabulate the probability (density) at each point in a continuous space. The two traditional methods for simulating continuous distributions are parametric and non-parametric density estimation. The idea is to search for a density among a finite-dimensional (parametric) or infinite-dimensional (non-parametric) family of densities that best fits the observed data (according to, e.g., the MLE criterion). Given a density estimate $\hat{p}(x)$, we can formulaically construct a generator to sample from $\hat{p}(x)$ to sample from this distribution.

For an introduction to non-parametric density estimation, and in particular kernel density estimation, see the first few sections of [Tsybakov, 2008]. As a simple example of parametric estimation, suppose we observe samples $x_1, \ldots, x_n \sim \mathcal{N}(\mu, \sigma^2)$ where the parameters μ and σ^2 are unknown. The maximum likelihood estimator of this data is given by $\mathcal{N}(\hat{\mu}, \hat{\sigma}^2)$ where $\hat{\mu}$ is the sample mean and $\hat{\sigma}^2$ is the sample variance. And we can generate samples from this distribution using the generator $g(z) = \hat{\mu} + \hat{\sigma}z$, where $z \sim \mathcal{N}(0, 1)$.

Many of the methods we consider later in this course go beyond the traditional density estimation framework. Recall that our goal is to sample from $x \sim \hat{p}$, whereas density estimators provide us values $\hat{p}(x)$. It is usually a mechanical exercise to construct a generator that simulates samples from a given density $\hat{p}(x)$. But if all we want is sample, construction of a density estimator that allows us to infer $\hat{p}(x)$ may not be necessary. Later in the course, we will regularly see generative models that cannot do inference: these models allow us to sample $x \sim \hat{p}$, but the distribution \hat{p} itself is implicit, and inferring $\hat{p}(x)$ for a particular value of x may be quite difficult.

To see why this could be, suppose \hat{p} is defined implicitly as the pushforward of a density q by a generator $g: \mathbb{Z} \to \mathcal{X}$. Changing variables from z to x, we see that

$$\Pr(A) = \Pr(g^{-1}(A)) = \int_{g^{-1}(A)} q(z) \, dz = \int_A q(g^{-1}(x)) |\nabla_x g^{-1}(x)| \, dx. \tag{3}$$

Therefore, the density q(z) pushes forward to

$$\hat{p}(x) = q(g^{-1}(x)) |\nabla_x g^{-1}(x)|.$$
(4)

For simple generators g, when the inverse and Jacobian are easily computed, we can use Equation (4) to convert a generator into a density estimator. But we are interested in learning rich distributions

over highly structured data. A generator g that accurately models this distribution may not have an easily computable inverse or Jacobian. Nevertheless, the pushforward \hat{p} induced by g could be a very good estimate of p and it is easy to sample by sampling $z \sim q$ and evaluating $g(z) \sim \hat{p}$.

References

- G. E. P. Box and Mervin E. Muller. A note on the generation of random normal deviates. *The* Annals of Mathematical Statistics, 1958. (document)
- Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for language modeling. *Computer Speech & Language*, 1999. (document)
- E. J. Gumbel. Statistical theory of extreme values and some practical applications: a series of lectures. US Government Printing Office, 1954. (document)
- David A McAllester and Robert E Schapire. On the convergence rate of good-turing estimators. In *Conference on Learning Theory*, 2000. (document)
- Alon Orlitsky and Ananda Theertha Suresh. Competitive distribution estimation: Why is goodturing good. In Advances in Neural Information Processing Systems, pages 2143–2151, 2015. (document)
- Alexandre B Tsybakov. Introduction to nonparametric estimation. Springer Science & Business Media, 2008. (document)