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1 Introduction

We begin these notes by giving an overview on the background of the linear bandit problem and specify the
learning model for the problem.

1.1 Linear Bandit Background

In the linear bandit problem a learning agent chooses an arm at each round and receives a stochastic reward.
The expected value of this stochastic reward is an unknown linear function of the arm choice. As is standard
in bandit problems, a learning agent seeks to maximize the cumulative reward over an n round horizon. The
stochastic bandit problem can be seen as a special case of the linear bandit problem when the set of available
arms at each round is the standard basis ei for the Euclidean space Rd, i.e. the vector ei is a vector with all
0s except for a 1 in the ith coordinate. As a result each arm is independent of the others and the reward
associated with each arm depends only on a single parameter as is the case in stochastic bandits.

The underlying algorithmic approach to solve this problem uses the optimism in the face of uncertainty
(OFU) principle. The OFU principle solves the exploration-exploitation tradeoff in the linear bandit problem
by maintaining a confidence set for the vector of coefficients of the linear function that governs rewards. In
each round the algorithm chooses an estimate of the coefficients of the linear function from the confidence set
and then takes an action so that the predicted reward is maximized. The problem reduces to constructing
confidence sets for the vector of coefficients of the linear function based on the action-reward pairs observed
in the past time steps.

The linear bandit problem was first studied by Auer et al. (2002) [1] under the name of linear reinforce-
ment learning. Since the introduction of the problem, several works have improved the analysis and explored
variants of the problem. The most influential works include Dani et al. (2008) [2], Rusmevichientong et al.
(2010) [3], and Abbasi et al. (2011) [4]. In each of these works the set of available arms remains constant,
but the set is only restricted to being a bounded subset of a finite-dimensional vector space. Variants of the
problem formulation have also been widely applied to recommendation systems following the work of Li et
al. (2010) [5] within the context of web advertisement.

An important property of this problem is that the arms are not independent because future arm choices
depend on the confidence sets constructed from past choices. In the literature, several works including [5]
have failed to recognize this property leading to faulty analysis. This fine detail requires special care which
we explore in depth in Section 2.

1.2 Learning Model

In each round t, an agent chooses an arm Xt from a decision set D = Dt ⊆ Rd and receives a reward given by
Yt = 〈Xt, θ∗〉+ηt (e.g., with θ∗ ∈ Rd, an unknown parameter to the agent, and ηt, a random noise parameter
satisfying E[ηt|X1:t, η1:t−1] = 0 with tail constraints). The agent seeks to maximize the expected cumulative
reward over n rounds given by

∑n
t=1〈Xt, θ∗〉. The optimal strategy is then to select the arm at each round t

that maximizes the expected immediate reward such as x∗t = arg maxx∈Dt〈x, θ∗〉. The expected cumulative
reward of the optimal strategy is therefore given by

∑n
t=1〈x∗t , θ∗〉.

1
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We now introduce the notion of regret in the linear bandit setting. In general the notion of regret is used
to compare the performance of the optimal strategy with a bandit strategy. In stochastic problems we often
consider two notions of averaged regret: expected regret and the pseudo regret. The expected regret is the
expectation of the regret with respect to the action that is optimal on the sequence of reward realizations.
Formally we can denote this as follows:

Rn = E
[

max
xt∈Dt

n∑
t=1

(〈xt, θ∗〉+ ηt)−
n∑
t=1

(〈Xt, θ∗〉+ ηt)

]

= E
[

max
xt∈Dt

n∑
t=1

〈xt, θ∗〉 −
n∑
t=1

〈Xt, θ∗〉
]

= E
[

max
xt∈Dt

n∑
t=1

〈xt −Xt, θ∗〉
]
.

The pseudo-regret is a weaker notion of regret in which the performance of a bandit strategy is compared
to the optimal strategy in expectation. We will consider the pseudo-regret exclusively from here on. The
pseudo-regret for the linear bandit is as follows:

Rn = max
xt∈Dt

E
[ n∑
t=1

(〈xt, θ∗〉+ ηt)−
n∑
t=1

(〈Xt, θ∗〉+ ηt)

]

= max
xt∈Dt

E
[ n∑
t=1

〈xt, θ∗〉+ ηt

]
− E

[ n∑
t=1

〈Xt, θ∗〉+ ηt

]

=

n∑
t=1

〈x∗t , θ∗〉 − E
[ n∑
t=1

〈Xt, θ∗〉
]

= E
[ n∑
t=1

〈x∗t −Xt, θ∗〉
]
.

In this case the pseudo-regret has the same expected value as the regret. Since the noise term is uncontrollable
there is little purpose to bound it, hence why often the pseudo-regret is considered instead of the regret.
From this point forward we will refer to the pseudo-regret simply as the regret.

In order to prove upper bounds on the regret we will make some assumptions. First, we assume that
{Dt}∞t=1 lies in a bounded set. We also assume that ηt is conditionally R-sub-Gaussian where R ≥ 0 is a fixed

constant. This assumption is equivalent to following condition: ∀ λ ∈ R,E[eληt |X1:t, η1:t−1] ≤ exp(λ
2R2

2 ).

2 Motivating Linear Bandits

A unique property of the linear bandit framework is the dependence between arm plays. Special attention
must be paid to this critical detail in order to develop proper analysis and algorithms for the linear bandit
problem. We devote this section to a motivating example that illustrates how the analysis for linear bandits
diverges from that of stochastic bandits. Specifically, this example demonstrates that blindly applying
techniques from stochastic bandits will lead to erroneous analysis for linear bandits.

2.1 Bounding stochastic processes with correlated stopping times

In this subsection we will give an example of bounding a stochastic process of i.i.d. random variables with
correlated stopping times. In the next subsection we will attempt to apply the same analysis to the linear
bandit problem in which the random variables are not i.i.d. to highlight why the standard analysis techniques
from stochastic bandits cannot be applied to linear bandits. To help clarify the analysis that follows we
provide definitions for a stochastic process and the stopping time of a stochastic process.
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Definition 1. Stochastic Process. Given a probability space (Ω,F , P ) where Ω is a sample space, F is a set
of events, and P is a mapping from an event to a probability, a stochastic process is a sequence of random
variables Z = {Zt : t ∈ T} where T is the index set.

Definition 2. Stopping Time. Given a stochastic process Z = {Zn : n ≥ 1}, a stopping time with respect to
Z is a random time τ such that for each n ≥ 1 the event {τ = n} is completely determined by at most the
total information known up to time n, i.e. {Z1, . . . , Zn}.

Consider a stochastic process Z = {Z1, . . . , Zn} of i.i.d. random variables defined as

Zi =

{
1, w.p. 1

2

−1, w.p. 1
2

.

Given a stopping time τ the empirical mean of the stochastic process is defined as 1
τ

∑τ
i=1 Zi. We will now

consider the expectation of the stochastic process when there exists a fixed stopping time and when the
stopping time is correlated with the stochastic process.

1. Considering a fixed stopping time τ = t ∈ n, where n is the index set of the stochastic process, the
expectation is trivial:

E[
1

t

t∑
i=1

Zi] = 0.

2. Considering a stopping time that is correlated with the stochastic process τ = min{t :
∑t
i=1 Zi = 1}:

E[
1

τ

τ∑
i=1

Zi] = E[
1

τ
] =

∞∑
t=1

1

t
P (τ = t) =

1

1
P (Z1 = 1) +

∞∑
2

1

t
P (τ = t) >

1

2
.

Also note that E[ 1
τ

∑τ
i=1 Zi] < 1. In fact, E[ 1

τ

∑τ
i=1 Zi] = E[ 1

τ ] ≈ 0.575, which indicates the empirical
mean is biased.

Now we consider bounding the stochastic process by first developing a bound for a fixed stopping time and
then extending the analysis to the correlated stopping time t. The analysis to bound the stochastic process
under a fixed stopping time is as follows:

P (
1

t

t∑
i=1

Zi > ε) = P (exp(λ

t∑
i=1

Zi) > exp(λtε)) for any λ > 0

≤ exp(−λtε)E[exp(λ

t∑
i=1

Zi)] Chernoff Bound

= exp(−λtε)
t∏
i=1

E[exp(λZi)] independence of Zi’s

≤ exp(−λtε)(exp(λ2/2))t Hoeffding’s Lemma

= exp(−λtε+ λ2t/2).

Letting λ = ε we get a bound on the stochastic process with a fixed stopping time

P (
1

t

t∑
i=1

Zi > ε) ≤ e−tε
2/2.
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Letting δ = e−tε
2/2 we get with probability at least 1− δ,

1

t

t∑
i=1

Zi ≤

√
2 log(1

δ )

t

We can now develop a bound for the stochastic process when the stopping time is correlated with the
stochastic process using the union bound. The intuition here is, as definition τ = min{t :

∑t
i=1 Zi = 1}, τ

is not deterministic. So we derive a bound holds for any arbitrary τ simultaneously.

P (

∞⋃
τ=1

{1

τ

τ∑
i=1

Zi > ετ}) ≤
∞∑
τ=1

P (
1

τ

τ∑
i=1

Zi > ετ )

≤
∞∑
τ=1

e−τε
2
τ/2

=

∞∑
τ=1

δ

2τ2

= δ
1

2

∞∑
τ=1

1

τ2

≤ δ.

Now letting ετ =
√

2 log(2τ2/δ)
τ we get with probability at least 1− δ

1

τ

τ∑
i=1

Zi ≤
√

2 log(2τ2/δ)

τ
.

As we presented above, we were able to bound the stochastic process with i.i.d. random variables with
correlated stopping times. Now, we will apply the same technique to the linear bandits, where arms are
correlated and show that it in fact the analysis method is not applicable demonstrating that new techniques
that must be developed for the problem.

2.2 Bounding linear bandits with correlated stopping times

We now apply the analysis of the previous section that was used to bound a stochastic process of i.i.d. random
variables to the linear bandit problem. In doing so, we elucidate the complications that arise in the linear
bandit framework due to the dependence between arm plays. We briefly review the linear bandit learning
model for clarity purposes.

In each round of the linear bandit problem, a learning agent plays an arm xi ∈ Rd and receives a re-
ward yi ∈ R that is a linear function of a parameter vector θ∗ ∈ Rd and a noise parameter ηi ∈ R. Formally,
the reward the learning agent receives from playing an arm is given by yi = xTi θ∗+ηi where ηi is drawn from

a zero-mean sub-Gaussian distribution meaning E[ηi] = 0 and E[eληi ] ≤ eλ2/2. Suppose each arm chosen at
specific round is independent of previous choices, meaning that the sequence of arm choices can be chosen
before the start of the game. Given a sequence of arm choices, observed rewards, and noise parameters
{xi, yi, ηi}ti=1 we denote the stacked sequences of each as X ∈ Rt×d, Y ∈ Rt, and η ∈ Rt respectively.

Using this information we can derive a least-squares estimate of θ∗ given as follows

θ̂ = (XTX)−1XTY = (XTX)−1XT (Xθ∗ + η) = θ∗ + (XTX)−1XT η.
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Thus the difference between the parameter estimate θ̂ and the true parameters θ∗ is

θ̂ − θ∗ = (XTX)−1XT η.

Now we will consider some fixed arm choice x ∈ Rd and denote wT = xT (XTX)−1XT . Note that for all

t, wt is a deterministic vector. In the linear bandit problem we are interested in bounding xT (θ̂ − θ∗) =
xT (XTX)−1XT η = wT η. In the analysis that follows we will apply the methods from the previous section
in an attempt to develop a bound, and most importantly we will identify where these methods fail for the
linear bandit problem. As in the previous analysis we begin with a fixed stopping time and derive a bound.
For an arbitrary constant µ,

P (xT (θ̂ − θ∗) > µ) = P (wT η > µ)

≤ exp(−λµ)E[exp(λwT η)], let λ > 0 Chernoff Bound

= exp(−λµ)E[exp(λ

t∑
i=1

wiηi)]

= exp(−λµ)

t∏
i=1

E[exp(λwiηi)] independence of wiηi (1)

≤ exp(−λµ)

t∏
i=1

exp(λ2w2
i /2) sub-Gaussian assumption

= exp(−λµ) exp(
λ2

2
||w||22)

≤ exp(− µ2

2||w||22
) λ =

µ

||w||22

= exp(− µ2

2xT (XTX)−1x
) = δ,

where in the final step we made use of the following equality

||w||22 = xT (XTX)−1XTX(XTX)−1x = xT (XTX)−1x.

Thus with probability at least 1− δ,

xT (θ̂ − θ∗) ≤
√

2xT (XTX)−1x log(
1

δ
). (2)

We now consider a bound when the stopping time is correlated with the process using the bound for a fixed
stopping time and applying the union bound:

P (

∞⋃
t=1

{xT (θ̂t − θ∗) > µt}) ≤
∞∑
t=1

P (xT (θ̂t − θ∗) > µt)

≤
∞∑
t=1

exp(− µ2
t

2xT (XT
t Xt)−1x

)

=

∞∑
t=1

δ

2t2
≤ δ

Now letting µt =
√

2xT (XT
t Xt)−1x log( 2t2

δ ) we get with probability at least 1− δ,

xT (θ̂t − θ∗) ≤
√

2xT (XT
t Xt)−1x log(

2t2

δ
). (3)
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Using the methods we developed for the stochastic process of i.i.d. random variables we developed a bound
for the linear bandit problem. When the sequence of arm choices {xi}ti=1 are selected before the start of
the game, this analysis is correct and (3) holds for correlated stopping times. However, when xt depends
on {xi, yi}t−1

i=1, which is usually the case in linear bandit, our claim is erroneous. We now detail where the
analysis breaks down before giving an explicit counterexample contradicting the preceding result.

Specifically the following step in our linear bandit analysis from (1) is not applicable.

exp(−λµ)E[exp(λ

t∑
i=1

wiηi)] = exp(−λµ)

t∏
i=1

E[exp(λwiηi)]

Before, when {xi}ti=1 were chosen prior to the start of the game, we had that wiηi are independent so
that Eη[

∏
i exp(wiηi)] =

∏
i Eη[exp(wiηi)] holds. This equality is correct when wi are constants. For ex-

ample, consider that we are doing batch learning and the data is fixed beforehand. We could then treat
wT = xT (XTX)−1XT as a constant and all of the analysis would be applicable. However, if we are sampling
and collecting data adaptively the choice of arms depends on previous choices. This is because each arm choice
provides information about θ∗ so with each arm choice we gain information about every other available arm
as well. It is clear that due to this each wiηi are simply not independent, leading to the problematic analysis.

We now present an explicit example to prove that the preceding analysis cannot be applied to the lin-
ear bandit problem. Consider that there are d identical arms (e1, . . . , ed) ∈ Rd, where d is still the dimension

of arms but since each arm is orthogonal to others, we have d arms. θ∗ = 0, ηi =

{
1, w.p. 0.5

−1, w.p. 0.5
and the

learning agent plays according to the procedure given in Algorithm 1.

Algorithm 1 Correlated stopping time

1: t = 1
2: for i = 1, 2, . . . , d do
3: while sum of rewards 6= 1 do keep sampling arm xt = ei
4: t← t+ 1
5: end while
6: end for
7: τ = t− 1

The least-squares estimate of the parameters at time s is then given by

θ̂i =

∑s
t=1 1{xt = ei}ηt∑s
t=1 1{xt = ei}

=
1

Ti

where Ti =
∑s
t=1 1{xt = ei}. Set x = 1, i.e. a d-dimensional vector of ones, so xT (θ̂τ − θ∗) =

∑d
i=1

1
Ti

, and

xT (XT
t Xt)

−1x = xT (

d∑
i=1

eie
T
i Ti)

−1x = xT (

d∑
i=1

eie
T
i

1

Ti
)x =

d∑
i=1

1

Ti

where Ti is defined as number of times the i-th arm being pulled according to Algorithm 1.

xT (θ̂τ − θ∗)√
xT (XT

t Xt)−1x
=

√√√√ d∑
i=1

1

Ti
'
√

0.575d
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Comparing with the previous analysis, specifically (2), we see that when the arm plays are correlated, the
right hand side of the above display scales like

√
d but no such factor is present in (2). Thus, we cannot

hope to achieve the same bound without a d dependence as in (2 when the arm plays are dependent. In the
next section, we present a bound that resolves this issue.

We have now shown the additional difficulties that arise in the analysis of linear bandits due to the de-
pendence between arms. In the sections that follow we present the novel techniques that are used to handle
the dependence in order to develop correct analysis and discuss and prove the best results for the problem
setting to date.

3 Linear Bandits

We will focus on the state-of-the-art methods for the linear bandit problem developed in Abbasi et al.
(2011) [4]. The results in this work improved the previously best regret bound give in Dani et al. (2008) [2]
by roughly a factor of

√
log(n), where n is the horizon, and experiments show that the empirical performance

gain is even greater. The improved analysis hinges on the construction of smaller confidence sets by handling
the dependence between arms through a novel tail inequality for vector-valued martingales which is proven
using the theory of self-normalized processes. The tail inequality enables bounds to be derived that hold
uniformly in time due the self-normalized form and the property that it holds for stopped martingales. This
immediately saves a factor of log(n) in the regret by avoiding a union bound. The generality of this allows
for improvements of any deviation bound that uses a union bound over time. We will elaborate further
on this key innovation in Section 3.3. Finally, the confidence sets constructed in [4] save some worst case
quantities from the bounds in [2] by replacing them with empirical quantities that are always smaller.

3.1 Main Results

The best results for the linear bandit problem at present come from [4]. We briefly outline the main results
in the paper and compare these results with prior work in this section. In the sections that follow we provide
more detail on the algorithmic approach as well as the anytime and problem dependent regret bounds.

As we noted previously, the stochastic bandit problem can be considered as a special case of the linear
bandit problem. Due to this, the methods developed for the linear bandit problem are general enough to
be applied to the stochastic bandit problem. The approach to constructing confidence bounds in [4] results
in a modification of the UCB algorithm for the d-armed bandit problem from Auer et al. (2002) [6]. The
modified UCB algorithm has regret of O(d log(1/δ)/∆) with probability 1− δ, where ∆ is the gap between
the expected rewards of the two best arms. This bound does not depend on n which seemingly contradicts
the seminal work of Lai and Robbins in [7], but since the algorithm takes δ as an input letting δ = 1/n the
expected regret bound yields the same result as in [6] of O((d log n)/∆). This results says that the modified
UCB algorithm achieves with high probability constant regret.

In the case of the linear bandit problem, [4] modifies the ConfidenceBall algorithm developed in [2] by
using the new approach to constructing confidence sets outlined in section 1.1. The resulting algorithm re-
duces the regret bound from at most O(d log(n)

√
n log(n/δ)) to at most O(d log(n)

√
n+

√
dn log(n/δ)) with

at least probability 1− δ. This is roughly an improvement of a multiplicative factor
√

log(n). Moreover, the

regret of the problem dependent bound from [2] is reduced from O(d
2

∆ log(nδ) log2(n)) to O( log(1/δ)
∆ (log(n) +

d log logn)2). Here ∆ is a generalized definition of the gap when the decision set is possibly infinite. Specif-
ically, ∆ can be interpreted as the gap between the values of the best and second best extremal points of
the decision set. In the case that the decision set is finite, ∆ is exactly the same as in the stochastic bandit
problem. It is worth noting that for some decision sets, e.g., a sphere, ∆ = 0 in which case the problem
dependent bound is not applicable.
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3.2 Algorithmic Approach

The approach to solving the linear bandit problem utilizes the OFU principle that is the standard ap-
proach in the stochastic bandit problem. The main idea of this approach in the linear bandit problem is
that at each time t a confidence set Ct−1 ⊆ Rd is maintained in which θ∗ lies with high probability us-
ing the history of arm choices and observed rewards up until time t given by the sequences Xt, . . . , Xt−1

and Yt, . . . , Yt−1 respectively. At time t the agent makes the most optimistic estimate of θ which is
θ̃t = arg maxθ∈Ct−1

(maxx∈Dt〈x, θ〉) in order to make an arm selection of Xt = arg maxx∈Dt〈x, θ̃t〉 that

maximizes the reward according to the optimistic estimate θ̃. The previous notation was used for clarity,
but we can more compactly consider the process of choosing an estimate of θ and an arm by considering the
joint optimization

(Xt, θ̃t) = arg max
(x,θ)∈Dt×Ct−1

〈x, θ〉.

This joint optimization forms the decision step of the algorithm used in the linear bandit problem. Following
the decision the agent plays the arm given by the strategy and observes a reward which is then used to
update the confidence sets before the end of the round. The complete algorithm is given in Algorithm 2
where for right now we have abstracted away how the confidence sets are constructed as that is the main
technical problem to solve.

Algorithm 2 OFUL Algorithm

1: for t := 1, 2, . . . do
2: (Xt, θ̃t) = arg max(x,θ)∈Dt×Ct−1

〈x, θ〉
3: Play Xt and observe reward Yt
4: Update Ct
5: end for

3.3 Self-Normalized Tail Inequality for Vector-Valued Martingales

In this section we will go through the methods used to develop the self-normalized tail inequality for vector-
valued martingales. This inequality is crucial to developing the confidence sets used in [4].

3.3.1 Preliminaries

Before we get delve into the theorem for the self-normalized tail inequality for vector valued martingales we
review some probability and measure theory for clarity purposes.

Definition 3. σ-algebra. Given a set X then the σ-algebra F is a nonempty collection of subsets of X such
that the following properties hold

1. X is in F .

2. If A ∈ F then Ac ∈ F . Equivalently, F is closed under complement.

3. If A1, A2, . . . is a countable collection of sets in F then their union ∪∞n=1An ∈ F . Equivalently, F is
closed under countable unions.

Note that several other properties of a σ-algebra immediately follow from these properties including ∅ ∈ F
and F is closed under countable intersections.

Definition 4. F-Measurable. Let the pair (X,F) where F is a σ-algebra of subsets of X denote a measurable
space. Then a map f : (X,F) → R is F-measurable if, and only if, f−1(B) ∈ F for all B ∈ B∗. Here we
are using B∗ to denote the the extended Borel sets of R∗ = {x ∈ R|x 6= 0} which is the set of unions of
sets from the Borel sets B with subsets of {−∞,∞}. Recall a Borel set is any set in a topological space that
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can be formed from open sets through the operations of countable union, countable intersection, and relative
complement.

Definition 5. Filtration. A family of σ-algebras Ft is defined to be a filtration if Ft1 ⊂ Ft2 whenever
t1 ≤ t2. A stochastic process {Xt} is said to be adapted to filtration {Ft} if Xt ∈ Ft for every t.

Definition 6. Martingale. A stochastic process {Xt} adapted to filtration {Ft} is defined to be a martingale
if

1. E[|Xt|] <∞ ∀ t.

2. E[Xt|Fs] = Xs ∀ s < t.

3.3.2 Assumptions

We assume the decision sets {Dt}∞t=1 can be arbitrary. As a result of this assumption, the sequence of actions
Xt ∈ Dt is also arbitrary. This creates complicated stochastic dependencies so we will drop any assumptions
on {Xt}∞t=1 and instead develop a more general result.

We consider the σ-algebra Ft = σ(X1, X2, . . . , Xt+1, η1, η2, . . . , ηt) so that Xt is Ft−1-measurable and
ηt is Ft-measurable. Relaxing this assumption we assume that {Ft}∞t=0 is any filtration of σ-algebras such
that for any t ≥ 1, Xt is Ft−1-measurable and ηt is Ft-measurable which means that Yt = 〈Xt, θ∗〉 + ηt
is Ft-measurable. Under these assumptions the sequence {St}∞t=0, St =

∑t
s=1 ηtXt, is a martingale with

respect to {Ft}∞t=0. This property is needed for the construction of the confidence sets for θ∗.

3.3.3 Result

Given the assumptions of section 3.3.2 we have the following result that is key in the construction of the
confidence sets.

Theorem 1. Self-Normalized Bound for Vector-Valued Martingales. Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=1

be a real-valued stochastic process such that ηt is Ft-measurable and ηt is conditionally R-sub-Gaussian for
some R > 0 i.e.

∀ λ ∈ R E[eληt |X1:t, η1:t−1] ≤ exp(
λ2R2

2
).

Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is Ft−1-measurable. Assume that V is a d× d
positive definite matrix. For any t ≥ 0 define

V t = V +

t∑
s=1

XsX
T
s St =

t∑
s=1

ηsXs.

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0

‖St‖2V −1
t

≤ 2R2 log(
det(V t)

1/2det(Vt)
1/2

δ
).

Here we are using the notation ‖St‖V −1
t

to denote the weighted norm

√
STt V

−1

t St. The name self-normalized

bound comes about because this norm is the deviation of the martingale and it is weighted by the matrix V
−1

t

which is also derived from the martingale.

We omit the proof of this theorem in these notes, but we refer the interested reader to Appendix A of [4]
for the complete proof. We also refer the reader to Pena et al. (2004) [8] and Pena et al. (2008) [9] where
much of the theory from self-normalized processes is contained that builds the bulk of the proof. The outline
of the proof is that a supermartingale is defined which allows for a self-normalized bound for vector-valued
martingales to be developed using the method of mixtures technique which then enables a stopping time
construction that leads to the theorem.
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3.4 Construction of Confidence Sets

In this section we will examine the method of constructing confidence sets developed in [4] as well as compare
the results with those from [2] and [3]. The construction of confidence sets is the crux of any upper confidence
based algorithm because the regret of an algorithm is directly tied to the size of the confidence sets. The
reduction in the confidence set provided in [4] is primarily due to the inequality provided in Theorem 1.

3.4.1 Results

Let θ̂t be the `2-regularized least-squares estimate of θ∗ with regularization parameter λ > 0 given by

θ̂t = arg min
θ
‖X1:tθ −Y1:t‖+ λ‖θ‖22 = (XT

1:tX1:t + λI)−1XT
1:tY1:t

where we are denoting X1:t as a matrix with rows XT
1 , X

T
2 , . . . , X

T
t and Y1:t as the vector (Y1, . . . , Yt)

T . The
following theorem says that with high probability θ∗ lies with high probability in an ellipsoid with center at
θ̂t.

Theorem 2. Confidence Ellipsoid. Assume the same as in Theorem 1, let V = Iλ, λ > 0, define Yt =
〈Xt, θt〉+ ηt and assume that ‖θ∗‖ ≤ S. Then for any δ > 0, with probability at least 1− δ, for all t ≥ 0, θ∗
lies in the set

Ct =

θ ∈ Rd : ‖θ̂ − θ‖V t ≤ R

√
2 log(

det(V t)1/2) det(λI)−1/2

δ
) + λ1/2S

 .

Furthermore, if for all t ≥ 1, ‖Xt‖2 ≤ L then with probability at least 1− δ, for all t ≥ 0, θ∗ lies in the set

C ′t =

{
θ ∈ Rd : ‖θ̂ − θ‖V t ≤ R

√
d log(

1 + tL2/λ

δ
) + λ1/2S

}
.

It is important to note that the
√
d term is necessary in the bound above. Concretely, this factor is the

cost of selecting plays adaptively—which in turn creates a dependence between arm choices—as opposed
to selecting plays independently according to a fixed sequence chosen a priori. To see this recall that in
Section 2 we showed that if X1:t is chosen adaptively we have xT (θ̂ − θ∗) ≥

√
d‖x‖(XT

1:tX1:t)−1 . However, if

Z1:t is chosen independently we have xT (θ̂ − θ∗) ≤ c‖x‖(ZT1:tZ1:t)−1 where c is independent of d. This fact is
especially key in pure exploration bandits. For more discussion on this topic we refer the interested reader
to Soare et al. [10].

The bounds given above from [4] can be compared with those from [2] and [3]. In [4] under the same
conditions with probability at least 1− δ the bound is

for all t large enough ‖θ̂t − θ∗‖V t ≤ Rmax

{√
128d log(t) log(

t2

δ
),

8

3
log(

t2

δ
)

}
,

where large enough means that t satisfies 0 < δ < t2e−1/16. In [3] the bound says that for any 0 < δ < 1,
with probability at least 1− δ,

∀ t ≥ 2, ‖θ̂t − θ∗‖V t ≤ 2κ2R
√

log t
√
d log(t) + log t2/δ + λ1/2S.

This bound is improvement over [2] but is still not as tight as that from [4]. It is worth noting that the
bound in Theorem 2 seems to require computing the determinant of a matrix, which can be computationally
expensive. However, this operation can be sped up using the matrix determinant lemma, which exploits that
the matrix whose determinant is needed can be obtained via a rank one update, allowing for the determinant
to be updated in linear time.

We do not include the proof of this theorem in these notes, but refer the reader to Appendix B of [4] for
the complete proof. The proof primarily relies on a Determinant-Trace-Inequality and the Self-Normalized
Bound for Vector-Valued Martingales from Theorem 1.



Lecture 9: Linear Bandits and Thompson Sampling 11

3.5 Regret Analysis of the OFUL Algorithm

In this section we will give a bound on the regret of the OFUL algorithm using the confidence sets constructed
in Theorem 2. We will assume that the expected rewards are bounded, which can be viewed as a bound on
θ∗ as well as a bound on the decision set Dt.

3.5.1 Results

Theorem 3. Regret of the OFUL algorithm. Assume that for all t and all x ∈ Dt, 〈x, θ∗〉 ∈ [−1, 1]. Then
with probability at least 1− δ, the regret of the OFUL algorithm satisfies

∀ n ≥ 0, Rn ≤ 2
√

2dn log(1 + nL2/λd)(λ1/2S +R

√
d log(

1 + nL2/λ

δ
)).

As we have stated before this bound from [4] is an improvement of approximately a factor of
√

log(n) over
that provided in [2]. The improvement comes from the construction of a tighter confidence set as discussed
in Section 3.4 that was enabled by the inequality in Theorem 1.

Proof.

Lemma 1. Let {Xt}∞t=1 be a sequence in Rd, V a d×d positive definite matrix and define V t = V +
∑t
s=1XsX

T
s .

Then we have

log(
det(V n)

det(V )
) ≤

n∑
t=1

‖Xt‖2V −1
t−1

.

Further, if ‖Xt‖2 ≤ L for all t then

n∑
t=1

min{1, ‖Xt‖2V −1
t−1

} ≤ 2(log det(V n)− log detV ) ≤ 2(d log((trace(V )) + nL2)/d)− log detV ),

and if λmin(V ) ≥ max(1, L2) then

n∑
i=1

‖Xt‖2V −1
t−1

≤ 2 log(
det(V n)

det(V )
).

Proof. We first prove the first inequality by decomposing det(V ). From the definition of V we have

det (V n) = det (V n−1 +XnX
T
n ).

A consequence of Sylvester’s determinant theorem gives

det (V n−1 +XnX
T
n ) = det (V n−1)(1 +XT

n V
−1

n−1Xn).

Now we can use the same techniques to decompose det(V n−1) as follows

det (V n−1) = det (V n−2 +Xn−1X
T
n−1) = det (V n−2)(1 +XT

n−1V
−1

n−2Xn−1).

Thus we have a recursive relationship that will terminate when V 0 = V which gives us the result

det (V n) = det (V )

n∏
t=1

(1 +XtV
−1

t−1X
T
t )

= det (V )

n∏
t=1

(1 + ‖Xt‖2V −1
t−1

).
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We can bound log(det(V t)) by making use of the inequality log(1 + t) ≤ t.

log(det(V t)) = log(det(V )) + log(

t∑
t=1

1 + ‖Xt‖2V −1
t−1

))

≤ log(det(V )) +

t∑
t=1

‖Xt‖2V −1
t−1

Now the inequality x ≤ 2 log(1 + x), which holds when x ∈ [0, 1], can be combined with the result
det (V n) = det (V )

∏n
t=1(1 + ‖Xt‖2

V
−1
t−1

) to get

n∑
t=1

min{1, ‖Xt‖2V −1
t−1

} ≤ 2

n∑
t=1

log(1 + ‖Xt‖2V −1
t−1

) = 2(log(det(V t))− log(det(V ))).

Now note that the trace of V n is bounded by trace(V ) +nL2 if ‖Xt‖2 ≤ L which follows by simply applying
the trace operator to the definition of V n. The inequality det(A)1/n ≤ 1

n tr(A) represents the fact that the
geometric mean is less than the arithmetic mean. Applying this inequality we can give the following upper
bound on det(V n).

det(V n) =

d∏
i=1

λi ≤ (
trace(V ) + tL2

d
)d.

It immediately follows that
log(det(V n)) ≤ d log((trace(V ) + tL2)/d),

which completes the proof of the second inequality in the Lemma. We can also bound the sum
∑n
t=1 ‖Xt‖2

V
−1
t−1

as a function of log det(V t) given that λmin(V ) is large enough. From the inequality

‖Xt‖2V −1
t−1

≤ λ−1
min(V t−1)‖Xt−1‖2 ≤ L2/λmin(V ),

we can observe that if λmin(V ) ≥ max(1, L2), then

log(
det(V n)

det(V )
) ≤

n∑
t=1

‖Xt‖2V −1
t−1

≤ 2 log(
det(V n)

det(V )
).

This proves the first and third inequalities in the Lemma.

We can now make use of the Lemma in order to bound the instantaneous regret.

rt = 〈θ∗, x∗〉 − 〈θ∗, Xt〉.

Because we choose (Xt, θ̃t) optimistically according to

(Xt, θ̃t) = arg max
(x,θ)∈Dt×Ct−1

〈x, θ〉.

we have
rt ≤ 〈θ̃t, Xt〉 − 〈θ∗, Xt〉.

Using the linearity of the inner product as well as adding and subtracting 〈θ̂t−1, Xt〉 we get

rt = 〈θ̃t − θ∗, Xt〉

= 〈θ̃t − θ̂t−1, Xt〉+ 〈θ̂t−1 − θ∗, Xt〉.
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Now we work towards a form of the regret that will allow us to make use of Theorem 2 regarding the
confidence ellipsoid with several algebraic manipulations.

rt = (θ̃t − θ̂t−1)TV
1/2

t−1V
−1/2

t−1 Xt + (θ̂t−1 − θ∗)TV
1/2

t−1V
−1/2

t−1 Xt

= (V
1/2

t−1(θ̃t − θ̂t−1))T (V
−1/2

t−1 Xt) + (V
1/2

t−1(θ̂t−1 − θ∗))T (V
−1/2

t−1 Xt)

≤ ‖V 1/2

t−1(θ̃t − θ̂t−1)‖2‖V
−1/2

t−1 Xt‖2 + ‖V 1/2

t−1(θ̂t−1 − θ∗)‖2‖V
−1/2

t−1 Xt‖2 (Cauchy-Schwarz Inequality)

= ‖θ̃t − θ̂t−1‖V t−1
‖Xt‖V −1

t−1
+ ‖θ̂t−1 − θ∗‖V t−1

‖Xt‖V −1
t−1
.

Recall Theorem 2 for the confidence ellipsoid which states the following: If for all t ≥ 1 we have ‖Xt‖2 ≤ L
then with probability at least 1− δ, for all t ≥ 0, θ∗ lies in the set

C ′t =

{
θ ∈ Rd : ‖θ̂ − θ‖V t ≤ R

√
d log(

1 + tL2/λ

δ
) + λ1/2S

}
,

and equivalently

C ′t =
{
θ ∈ Rd : ‖θ̂ − θ‖V t ≤

√
βt + λ1/2S

}
.

Applying Theorem 2 to the instantaneous regret gives

rt ≤ 2(
√
βt−1 + λ1/2S)‖Xt‖V −1

t−1
.

Using this result along with the assumed fact that rt ≤ 2 we get

rt ≤ 2 min{(
√
βt−1 + λ1/2S)‖Xt‖V −1

t−1
, 1} ≤ 2(

√
βt−1 + λ1/2S) min{‖Xt‖V −1

t−1
, 1}.

By Jensen’s inequality, for any positive numbers a1, . . . , an we have
∑n
a=1 ai ≤

√
n
∑n
i=1 a

2
i , thus we have

Rn =

n∑
t=1

rt ≤

√√√√n

n∑
t=1

r2
t .

Now plugging in our last inequality for the instantaneous regret we get

Rn ≤

√√√√n

n∑
t=1

4(
√
βn−1 + λ1/2S)2 min{‖Xt‖2

V
−1
t−1

, 1},

≤ 2(
√
βn−1 + λ1/2S)

√√√√n

n∑
t=1

min{‖Xt‖2
V

−1
t−1

, 1}.

(4)

Now from Lemma 1 we had
n∑
t=1

min{‖Xt‖V t−1
, 1} ≤ 2(log det(V n)− log detV ) ≤ 2(d log((trace(V ) + nL2)/d)− log detV ) (5)

and with V = λI we can substitute trace(V ) = λd as well as log detV = d log λ to get

n∑
t=1

min{‖Xt‖V t−1
, 1} ≤ 2(d log((λd+ nL2)/d)− d log λ) = 2d log(1 + nL2/λd). (6)

Plugging this into the regret we get the final result

Rn ≤ 2
√

2dn log(1 + nL2/λd)(λ1/2S +R

√
d log(

1 + nL2/λ

δ
)). (7)
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3.6 Problem Dependent Bound

Many bandit papers develop problem dependent bounds, where the regret includes a term ∆ defined to be
the gap between the two best arms. In the case of the linear bandit problem we can consider the gap at time
t given by ∆t as the difference between the rewards of the best and second best actions in the decision set
Dt. Define the set of suboptimal extremal points as Dt− = {Xt ∈ Dt : 〈Xt, θ∗〉 < 〈x∗t , θ∗〉} and define the
gap ∆t = supXt∈Dt−〈x

∗
t , θ∗〉 − 〈Xt, θ∗〉 [2]. We will consider the smallest gap ∆ = min1≤t≤n ∆t.

3.6.1 Results

Theorem 4. Assume that λ ≥ 1 and ‖θ∗‖ ≤ S where S ≥ 1. With probability at least 1− δ, for all n ≥ 1,
the regret of the OFUL algorithm satisfies

Rn ≤
8d

∆
log(1 + nL2/λd)(λ

1
2S +R

√
d log(

1 + nL2/λ

d
))2

This bound from [4] scales like O(d
2

∆ log2 n) where the bound from [2] scales like O(d
2

∆ log3 n).

Proof. According to the prove in the Theorem 3, we have that

n∑
t=1

r2
t ≤ 8d log(1 + nL2/λd)(λ

1
2S +R

√
d log(

1 + nL2/λ

d
))2

and

Rn =

n∑
t=1

rt ≤
n∑
t=1

r2
t

∆
≤ 8d

∆
log(1 + nL2/λd)(λ

1
2S +R

√
d log(

1 + nL2/λ

d
))2

where the first inequality follows from the fact that either rt = 0 or ∆ ≤ rt.

3.7 Applications of Linear Bandits

The most prominent applications of linear bandits are in path routing and recommendation systems. In
the literature several works have considered a linear bandit approach to path routing including with various
information feedback structures including [11], [12], [13]. The general setup described in [14] considers a
graph G = (V,E) with n vertices and d edges. An arm x ∈ Rd is an incidence vector of a path, i.e. xe = 1
if edge e belongs to the path and xe = 0 otherwise and D ⊂ Rd is the collection of all incidence vectors of
path on the graph. The parameter vector θ∗ ∈ Rd is designed such that θe∗ is the delay on edge e. The delay
of a path with incidence vector x is then given by 〈x, θ∗〉. The problem then becomes to minimize the delay
using the standard linear bandit framework.

Linear bandits have been widely applied to recommendation systems. In this application context is often
considered as well to create a contextual linear bandit problem. The most significant work in this regard
is [5]. However, the standard linear bandit framework that we have presented applies as well. Consider the
setting of movie recommendations, an arm x ∈ Rd can be represented as characteristics of a movie that comes
from a set D ⊂ Rd and the parameter vector θ∗ ∈ Rd can represent a users preferences for characteristics of
a movie.

4 Sampling Methods

Here we will discuss another method that can be used to solve linear bandits. Thompson sampling (also
called posterior sampling) is an algorithmic technique that is commonly used in linear bandit problems,
but can also be applied to more general problems in sequential decision-making. We will first discuss its
application to simple bandit problems, and then discuss its application to linear bandits and other problems.
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4.1 Background

The basic idea behind Thompson sampling [15] (TS) is to assume a simple prior distribution on the pa-
rameters of the reward distribution of every arm, and choose arms based on samples from that distribution.
At each time step, the algorithm draws a sample from the posterior distribution of each arm, selects the
best arm according to the samples, and updates the distribution based on the observed reward. TS is a
randomized probability matching algorithm, making it robust to being trapped in an early bad decision,
and is empirically proven to be effective in many problems. It can be directly applied to solve linear bandit
problems.

4.2 Special Case: Bernoulli Bandits

We start with the Beta-Bernoulli Bandit problem. Let’s assume there are K arms, each with a reward of
1 with a probability of θk, and a reward of 0 with a probability of 1 − θk when played. Thus θk can be
interpreted as a mean reward, which is unknown but fixed over time.

Here we review briefly of the beta distribution. The pdf the beta distribution with parameters α >

0, β > 0 is p(θk) = Γ(α+β)
Γ(α)Γ(β)θ

α−1
k (1 − θk)β−1 where Γ denotes the gamma function. It’s convenient to work

with this distribution because of its conjugacy properties, i.e., each arm’s posterior distribution is also beta
distribution that can be updated according to a simple rule.

(αk, βk) =

{
(αk, βk) if xi 6= k,

(αk, βk) + (rt, 1− rt) else

Algorithm 3 Beta Bernoulli Thompson Algorithm (K,α, β) [16]

procedure BetaBernoulli-ThompsonSampling(K,α0, β0)
for t = 1,2,3,4,... do

Sample model.
for k = 1,2,..., K do

Sample θ̂k ∼ beta(αk, βk)
end for
Select and apply action:
xt ← argmaxkθ̂k
Apply xt and observe rt
Update distribution:
(αxt , βxt)← (αxt , βyt) + (rt, 1− rt)

end for
end procedure

The important thing here is that the reward estimate θ̂k is randomly sampled from the posterior distri-
bution, rather than the expectation αk/(αk + βk). To restate this, it does not sample θ̂k according to the

distribution of yt if kth arm is selected. Instead, θ̂k represents a probable success probability, not a probable
observation.

In this setting, Thompson sampling generally performs better than the ε-greedy algorithm (the algorithm
which applies the greedy action with probability 1 ε and otherwise selects an action uniformly at random)
[16]. This is because Thomson sampling prioritizes exploration of the arms that are more likely to be
optimal, and avoids arms that are known to have poor performance, unlike ε-greedy which has no bias in its
exploration.
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4.3 General Case: General Thomson Sampling

Here we move to a more general case. At each time step from 1, ..., T , the agent applies an action xt ∈ χ.
After applying the action xt, the agent receives an observation yt ∈ Y , which is generated from a conditional
probability measure qθ(·|xt). This is a distribution that is parameterized by θ ∈ Θ, an unknown variable
associated with the instance of the bandit problem. The reward will be rt = r(yt), where r is a function
from Y to R. The agent does not know θ, but does have a prior distribution p over Θ.

Thompson sampling starts by drawing a random sample from p (unlike the greedy algorithm, which will

take θ̂ to be the expected value of θ). Then, it will select the action that maximizes the expected reward,
which, given a finite set of observations Y , is Eqθ̂ [r(yt)|xt = x] =

∑
o∈Y qθ̂(o|x)r(o). Then the distribution

p is updated by conditioning on the observation ŷt. If Θ is a finite set, then this conditional distribution can
be written by Bayes rule as:

Pp,q(θ = u|xt, yt) =
p(u)qu(yt|xt)∑
v∈Θ p(v)qv(yt|xt)

Algorithm 4 General Thomson Sampling (χ, p, q, r) [16]

procedure ThompsonSampling(χ, p, q, r)
for t = 1,2,3,4,... do

Sample model.
Sample θ̂ ∼ p
Select and apply action:
xt ← argmaxx∈χEqθ̂ [r(yt)|xt = x]
Apply xt and observe yt
Update distribution:
p← Pp,q(θ ∈ ·|xt, yt)

end for
end procedure

In the simplified Beta Bernoulli bandit problem, simple and efficient Bayesian inference was feasible be-
cause of its conjugacy property. However, many practical applications do not allow exact Bayesian inference
to be tractable.

4.3.1 Regret bounds

The theoretical bounds for Thompson sampling has been given in recent studies [17]. The randomized
setting of Thompson sampling, which differs from the UCB algorithm, that achieves exploration by adding
a deterministic, non-negative bias inversely proportional to the number of plays to the observed empirical
means.

Consider the N -armed stochastic bandit problem, where arm i has expected reward µi, and say that the
arm with highest reward is arm 1. Here, the expected regret is defined as E[R(T )] = E[

∑T
t=1(µ1−µxt)]. For

details on the proof, see [17].

Theorem 5. (Two-armed stochastic bandit regret bound for Thompson sampling)

E[R(T )] = O

(
ln(T )

∆
+

1

∆3

)
where ∆ = µ1 − µ2

More generally,
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Theorem 6. (N-armed stochastic bandit regret bound for Thompson sampling)

E[R(T )] ≤ O

((
N∑
a=2

1

42
a

)
lnT

)

where ∆i = µ1 − µi

4.4 Linear Bandits with Thompson Sampling

Let θ ∈ Rm be drawn from a normal distribution. N(µ0,
∑

0). There is a set of actions X , where X ∈ Rm.
At each time step t=1,...T , an action xt ∈ X is selected, and a reward yt = θTxt +wt is observed, where wt,
the random noise, is sampled from a zero-mean sub-Gaussian distribution. We can use Thompson Sampling
for linear bandits by keeping a distribution on θ, and updating based on each observation.

• Prior distribution: This is a multivariate Gaussian with parameters µ0 and Σ0.

• Updates: say that we choose action xt and observe a reward yt. Then we update the mean and variance
by:

Σt+1 = (Σ−1
t + xtx

T
t /σ

2
w)−1

and
µt+1 = Σt+1(Σ−1

t µt + xt(yt + w̃nt /σ
2
w))

These equations come from the Bayesian updates for a Gaussian distribution.

• Sampling: we sample θ̂ from N(µt,Σt), and choose action xt that maximizes θ̂Txt. Depending on
the nature of the set of actions X , this can be done by linear programming or searching through the
possibilities (if X is finite).

• Ensemble model: We keep N means and update them at each iteration: θ1
t , ..., θ

N
t , while keeping one

covariance matrix Σt. At each step we find the xt and n that maximizes θnTt xt.

4.5 Regret Bounds

When working with Thompson sampling, we often use the Bayes regret rather than the standard notion of
regret. The Bayes regret is defined as the expected regret, where the expectation is defined with respect to a
prior distribution on the reward functions. Any asymptotic bound on Bayesian regret is also an asymptotic
bound on regret, even if the prior is misspecified. A formal definition is given below.

Definitions

fθ(a) = 〈φ(a), θ〉 is the reward function for action a, given the linear bandit parameter θ.
At is the action selected by the algorithm at time t.
π is a distribution over the action space generated by the Thompson sampling algorithm, from which

actions are selected.
T is the number of iterations.
Then, the Bayes regret is defined as:

BayesRegret(T, π) =

T∑
t=1

Eθ
[
max
a

fθ(a)− fθ(At)
]
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Bayesian regret bounds for linear bandits The Bayes regret bound for Thompson sampling on linear
bandits was proved in [18] to be the following:

Proposition 1. BayesRegret(T, πTS) = O(d log T
√
T ).

d here is the dimensionality of θ. For details of the proof, see [18].

4.5.1 Connections with UCB

UCB and Thompson sampling both have similar regret bounds. For details on the regret bounds of Thompson
sampling in the linear bandits case, see [18]. An advantage of UCB compared to the Thompson sampling
is that UCB can be applied to any function, while Thompson sampling requires it to be sub-Gaussian
distribution. On the other hand, the Thompson Sampling algorithms does not require an upper confidence
bound function, and the action selection might be more computationally tractable.

Here we briefly review the regret bound for linear bandits of UCB algorithm (LinUCB) presented in

Section 3.1. The resulting bound for linear bandit problem is O( log(1/δ)
∆ (log(T ) + d log log T )2) [4], where T

is the time horizon.

4.5.2 Approximations

In many cases, the distributions do not have conjugate priors and thus cannot be easily updated with
closed-form updates.

In these cases, approximate posterior sampling mechanisms (such as Gibbs sampling, sampling from a
Laplace approximation and the bootstrap) are used. For details, please refer to [16].

4.6 Information-Directed Sampling

Upper confidence bound algorithms (UCB) and Thompson sampling are very effective in many applications.
However, these methods can fail when faced with more complex information structure, such as a sparase
linear model, and Russo and Van Roy [19] suggest the Information-Directed Sampling (IDS) method to
address this. Here, each action is sampled to minimize the ratio between squared expected single-period
regret (4t(π)2) and a measure of information gain: the mutual information between the optimal action and
the next observation. First I will introduce some notation, and define the objective. The agent chooses from
a set of actions (At)t∈N from a finite action set A and observes outcomes (Yt,At)t∈N. A random outcome
Yt,a ∈ Y associated with each action a ∈ A and time t ∈ N. A random variable θ such that, conditioned
on it, (Yt)t ∈ N is an iid. We denote the set of probability distributions over A by D(A). There’s a
reward R(y) with each outcome from a fixed and known function. We study the expected regret over the
time up to T, which is, Over all action sampling distributions π ∈ D(A), the ratio between the square of
expected regret and information gain about the optimal action A∗. In particular, the policy πIDS is defined
by E[Regret(T )] = E[

∑T
t=1(Rt,A∗ −Rt,At)]. This is called as Bayesian regret or Bayes risk .

Information directed sampling balances two terms: gt(π): information gain and 4t(π)2: the expected
instantaneous regret of action a at time t. gt(a) equals the expected reduction in entropy of the posterior
distribution of A∗, and detail on more precise definition of both gt(a) and 4t(π)2 can be found in [19].

Then IDS is defined as πIDSt ∈ argminπ∈D(A)ΨIDS = 4t(π)2

gt(π) . Then the optimization is to minimize

Ψ(π) = (πT4)2/πT g, subject to πT e = 1, π ≥ 0.

Ψt(π) is the information ratio of sampling distribution π, which roughly measures the “cost” paid for
information. For more details, see [19].
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4.7 Conclusion

Most popular approaches to linear bandit problems are to extend upper-confidence bound (UCB) algorithms
and Thompson sampling, as both can give a strong performance guarantees. For some problem cases,
however, both do not actively seek for information that can lead to poor performance. For specific examples
on where UCB and Thompson sampling fails but IDS can successfully reach optimal solution, such as sparse
linear bandit problems, look at [19]. Even in cases such as Bernouilli bandits where Thompson sampling is
known to be very effective, [19] shows IDS can outperform UCB and linear bandit methods.
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