
CSE599i: Online and Adaptive Machine Learning Winter 2018

Lecture 8: Regression
Lecturer: Kevin Jamieson Scribes: Behnoosh Parsa, Kuikui Liu

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

To answer many questions in science we need to understand the relationship between variables defined
in an experimental setup and the outputs (or observations) of the experiment. Regression analysis has been
one of the main methods used for this purpose, which includes many techniques for modeling and analyzing
several variables.

1 Introduction

Let’s first introduce the problem generally. Typically in science, we encounter some phenomenon that can
be described via the following relation: y = f(x; θ), where the symbols are typically interpreted as follows:

• y is the observable response of an experiment; typically represented via some vector in Rm for some
m ≥ 1

• x are the “conditions under which the experiment is conducted”, which are freely chosen at the
experimenter’s discretion prior to conducting the experiment; typically range over some
experimental domain Ω such as (a subset of) Rd

• θ is the vector of parameters that influence the experiment’s outcome but are unknown to the ex-
perimenter, and are typically attributed to nature; typically range over some unknown parameter
domain Θ such as (a convex subset of) Rd′ but are not random

• f is the function that maps the inputs of nature θ and the experimenter’s setup x to the results, and
describes patterns observed in the phenomenon being studied; typically ranges over some known set of
functions F

To capture the noise or stochasticity of the process it is common to introduce a random variable ε ∼ N (0, σ2)
into the model: y = f(x; θ) + ε. In this model y has mean f(x; θ), and the variance σ2.

There are two common scenarios under which these problems are introduced in the literature.

(1) Parametric Estimation: f is parameterized by θ in a way such that knowing θ completely deter-
mines f . One can think of the linear regression setting, where f(x) = θ>x. Here, it suffices to devise
methods to estimate θ.

(2) Nonparametric Estimation: It is known that f falls in some large class of functions (such as the
class of Lipschitz functions) but we may not know the form of f explicitly. Here, learning θ no longer
suffices to estimate f everywhere so we will need methods to estimate f directly without knowing θ.
In this case, the role of θ will be suppressed.

1.1 The Process of Experimental Design

Experimental Design is the process by which the experimenter chooses points x1, . . . , xn (corresponding to
various conditions under which to run experiments) which give responses y1, . . . , yn. The goal is to choose
the x1, . . . , xn so as to maximize the information gained, which then allows for the most accurate estimate
of f . Another way of thinking about experimental design is as a learning process under noise.
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Definition 1 (Estimation Strategy). An estimation strategy scheme {f̂i, Si}ni=1 for f is a sequence of

pairs f̂i, Si, referred to as estimation strategies for f , where

• each Si specifies a distribution over the domain Ω of the x independently from f , from which we draw
the next experiment point xi, and is known as a sampling strategy

• each f̂i is some estimator of f that may depend on x1, . . . , xi−1, y1, . . . , yi−1

Remark 1. We will want to harness randomness when choosing experiment points xi, which is why we’ve
defined a sampling strategy as a distribution Si over Ω. Furthermore, this definition encompasses determin-
istic sampling strategies, which is when Si places probability 1 at a single point xi ∈ Ω.

There are two types of learning one typically considers:

• Passive Learning: Each xi is chosen independently of x1, . . . , xi−1, y1, . . . , yi−1. One can think of
the experimenter a priori fixing all x1, . . . , xn testing environments and then afterwards, running all of
the experiments.

• Active Learning: Each xi may be drawn from a distribution that depends on x1, . . . , xi−1, y1, . . . , yi−1

(it is adaptive). In particular, Si may depend on x1, . . . , xi−1, y1, . . . , yi−1. One can think of the
experimenter trying one experiment, and then based on the entire history of experiments run so far
and their results, decide on what the next most useful experiment to run is.

Typical questions include the following:

• What are the tradeoffs between the following quantities: the number of samples n, the variance of the
noise σ2, the dimensionality d of the input space Ω ⊂ Rd, the amount of tolerable error η > 0, and the
probability of exceeding the tolerable error δ > 0?

• How much more power does adaptivity provide you? More precisely, when can active learning surpass
the proven limits of passive learning?

1.2 Preliminaries

Here, we gather some necessary preliminary definitions and theorems. For convenience, whenever we write
“pdf”, we mean a “probabilistic density function”.

Definition 2 (Jacobian Matrix). Let f : Rd → Rm be a continuously differentiable function. The Jacobian
∂f(x)/∂x of f is the m× d matrix [

∂

∂x1
f, . . . ,

∂

∂xd
f

]
where each ∂

∂xi
f is an m-dimensional vector with each entry j corresponding ∂

∂xi
fj(x).

Definition 3 (Kullback-Liebler Divergence). For two pdfs p, q, we define the Kullback-Liebler Divergence
(or relative entropy) of p w.r.t. q as

KL(p, q) = Ey∼p
[
log

p(y)

q(y)

]
Remark 2. We will show later in the notes that this quantity is nonnegative and zero only if p, q are equal
almost everywhere. However, we note that KL(p, q) is not symmetric in general and does not satisfy the
Triangle Inequality. Hence, while it can be thought of as a metric between probability distributions, one
should take great care not to use the symmetry and Triangle Inequality axioms of metrics when working
with this quantity.

Theorem 1 (Jensen’s Inequality). Let f : Ω→ R be a convex function on a convex subset Ω ⊂ Rn, and let
µ be a probability measure on Ω. Then f(Ex∼µ[x]) ≤ Ex∼µ[f(x)]. Furthermore, if f is strictly convex, we
have strict inequality, i.e. f(Ex∼µ[x]) < Ex∼µ[f(x)].
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2 Fisher Information

We begin by studying parametric estimation. Recall that now, estimating θ allows one to estimate f(x; θ)
for all x ∈ Ω.

Definition 4 (Fisher Information Matrix). Let X be a random variable with pdf p(x; θ) that depends on θ
and has continuous first-order partial derivatives in x, θ. Then the Fisher Information Matrix IX(θ) of
θ w.r.t. X is the d× d matrix with entries given by

IX(θ)ij = Ex∼p(x;θ)

[(
∂

∂θi
log p(x; θ)

)(
∂

∂θj
log p(x; θ)

)]
As the subscript X can be inferred from the context, we will drop the subscript and write I(θ).

Remark 3. The intuition here is that I(θ) measures the amount of information X contains about θ (see
below). Let’s make a few observations about the Fisher Information.

• IX(θ) is symmetric.

• IX(θ) is positive semidefinite, which may be proven via the following observation: if one defines

u(x; θ)
def
= ∇θ log p(x; θ) =

(
∂

∂θ1
log p(x; θ), . . . ,

∂

∂θd
log p(x; θ)

)T

∈ Rd

then IX(θ) is precisely Ex∼p(x;θ)[u(x; θ)u(x; θ)>]. Thus, if y ∈ Rd is any vector, we have by linearity
of expectation that

y>IX(θ)y = y>Ex∼p(x;θ)[u(x; θ)u(x; θ)>]y = Ex∼p(x;θ)[〈u(x; θ), y〉2] ≥ 0

• If p has continuous second order partial derivatives, then may in fact rewrite the Fisher Information as

IX(θ)ij = −Ex∼p(x;θ)

[
∂2

∂θi∂θj
log p(x; θ)

]
= − ∂2

∂θi∂θj
Ex∼p(x;θ) [log p(x; θ)]

which is simply the Hessian of what is essentially the relative entropy/Kullback-Leibler diver-
gence of X w.r.t. θ. In fact, this connection can be made formal, as we shall see in the following
lemma.

We now formalize the relation between the Hessian of the likelihood function log p(x; θ) with the Fisher
Information. For convenience and cleanliness of notation, we write it out in the 1-dimensional case, where
all the main ideas are already captured; the generalization to higher dimensions is obvious (just change the
second-order one-dimensional derivative to a partial w.r.t. θi and the other to a partial w.r.t. θj).

Lemma 1.

E
[
∂2 log p(x; θ)

∂θ2

]
= −I(θ)

Proof. First, observe that

∂ log (p(x; θ))

∂θ
=

1

p(x; θ)

∂p(x; θ)

∂θ
(1)
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Expanding the second order derivative and then applying linearity of expectation, we have

E
[
∂2 log (p(x; θ))

∂θ2

]
= E

[
∂

∂θ

∂ log (p(x; θ))

∂θ

]
= E

[
∂

∂θ

(
1

p(x; θ)

∂p(x; θ)

∂θ

)]
= E

[
−1

p(x; θ)2

(
∂

∂θ
p(x; θ)

)2

+
1

p(x; θ)

∂2

∂θ2
p(x; θ)

]

= −E

[(
1

p(x; θ)

∂

∂θ
p(x; θ)

)2
]

+ E
[

1

p(x; θ)

∂2

∂θ2
p(x; θ)

]
Observe the first term on the right-hand side is precisely

−E

[(
∂

∂θ
log p(x; θ)

)2
]

= −I(θ)

and hence, it suffices to show the second term on the right-hand side is zero. This can be done via the
following trick.

E
[

1

p(x; θ)

∂2

∂θ2
p(x; θ)

]
=

∫ (
∂2

∂θ2
p(x; θ)

)
1

p(x; θ)
p(x; θ) dx =

∫ (
∂2

∂θ2
p(x; θ)

)
dx

=
∂2

∂θ2

∫
p(x; θ) dx =

∂2

∂θ2
1 = 0

Let us look at some examples for computing the Fisher Information.

Example 1 (Linear Regression with Gaussian Noise). Consider yi ∼ N (θ>xi, σ
2) and recall that the pdf of

yi is given by p(yi | xi, θ) = 1√
2πσ2

e
−(yi−x

>
i θ)

2

2σ2 , where the xi are fixed deterministic vectors in Rd.

∂ log (p(yi | xi, θ))
∂θ

=
1

σ2
(yi − x>i θ)xi (2)

∂2 log (p(yi | xi, θ))
∂θ2

= − 1

σ2
xix
>
i = Eyi

[
∂2 log (p(yi | xi, θ))

∂θ2

]
(3)

Eyi

[(
∂ log(p(yi|xi, θ))

∂θ

)(
∂ log(p(yi|xi, θ))

∂θ

)>]
=

1

σ4
E
[
xix
>
i (yi − x>i θ)2

]
=

1

σ4
xix
>
i Eyi [(yi − x>i θ)2] (4)

=
1

σ4
xix
>
i σ

2 =
1

σ2
xix
>
i (5)

Note we have written down the expressions for both

Eyi
[
∂2 log (p(yi | xi, θ))

∂θ2

]
and Eyi

[(
∂ log(p(yi|xi, θ))

∂θ

)(
∂ log(p(yi|xi, θ))

∂θ

)>]

just to work explicitly through both definitions of the Fisher Information for twice continuously differentiable
pdfs. With these facts, we see that the Fisher Information in this case is I(θ) = 1

σn

∑n
i=1 xix

>
i . Note that

it is independent of θ.

Furthermore, it is inversely dependent on σ2. This intuitively makes sense since the higher the variance, the
more noisy each yi is and hence, the less the information each yi has about the parameter θ.
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Example 2 (Logistic Regression). Let’s consider a logistic regression problem with observations yi ∈ {−1, 1}.
Since these observations are independent Bernoulli random variables, the likelihood for the logistic regression
model is given by

l(θ) =

n∏
i=1

pyii (1− pi)(1−yi) =

n∏
i=1

(1− pi)
(

pi
1− pi

)yi
(6)

where pi = p(yi = 1 | xi, θ) =
exp(

∑p
j=1 θjxij)

1+exp(
∑p
j=1 θjxij)

.

Then, introducing for convenience a covariate xi0 ≡ 1 for all i that captures the intercept term, the
log-likelihood is

l(θ0, . . . , θp) =

n∑
i=1

yi log

(
pi

1− pi

)
+ log(1− pi) (7)

=

n∑
i=1

yi p∑
j=1

θjxij − log

1 + exp(

p∑
j=1

θjxij)

 (8)

Then the first and second derivative of the likelihood function is

∂l(θ)

∂θm
=

n∑
i=1

xim

(
yi −

exp(
∑p
j=1 θjxij)

1 + exp(
∑p
j=1 θjxij)

)
(9)

∂2l(θ)

∂θm∂θl
= −

n∑
i=1

ximxil
exp(

∑p
j=1 θjxij)

(1 + exp(
∑p
j=1 θjxij))

2
= −X>mWXl (10)

where we have set Xj = (x1,j , . . . , xn,j) as the jth column of the matrix of covariates, and defined the n× n
diagonal matrix W as

W := W (θ) = diag

(
exp(

∑p
j=1 θjx1j)

(1 + exp(
∑p
j=1 θjx1j))2

, . . . ,
exp(

∑p
j=1 θjxnj)

(1 + exp(
∑p
j=1 θjxnj))

2

)
(11)

Therefore, the Fisher information matrix for the logistic regression is IY (θ) = X>WX .Note that the Fisher
information is a function of θ.

2.1 The Cramér-Rao Lower Bound

A common strategy in statistics is to develop a random quantity X that is an unbiased estimator for the
parameter θ of interest. For example, when trying to estimate the probability p of a coin landing on heads,
one can flip the coin n times and look at the proportion of tosses that landed on heads. This is an unbiased
estimator for p.

When pursuing this strategy, one needs to bound the variance of the estimator, as the estimator may
be very poor on any given instantiation. For example, in the coin example we just discussed, if we only used
a single flip, then our estimator would be 0 or 1 depending on the outcome of the single flip. If p = 1/2, this
estimator would always be 1/2 far away from the true value of p.

In this section, we consider a strong lower bound on the variance of any unbiased estimator. Later, we
will see an example of this lower bound applied to Linear Regression and compare the variance achieved
via maximum likelihood estimation to this lower bound. This example will show you how you can use the
CRLB to certify the (asymptotic) optimality of an estimator that you’ve devised for your task.

Because we are working in high dimensions, we will work with the covariance matrix of an estimator.
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Theorem 2 (Cramér-Rao Lower Bound (CRLB)). Let X be a random variable with pdf p(x; θ) which depends
on θ and is continuously differentiable in x, θ. Let T, ψ : Rd → Rm be continuously differentiable functions
such that T (X) be an unbiased estimator of ψ(θ), which only depends on x ∼ p(x; θ), for every θ. Then

covX∼p(x;θ)[T (X)] � ∂ψ(θ)

∂θ
· IX(θ)−1 ·

(
∂ψ(θ)

∂θ

)>
In particular, if ψ(θ) = θ, i.e. that T (X) is an unbiased estimator for θ, then covX∼p(x;θ)(T (X)) � IX(θ)−1.

We give an easy proof in one dimension. The full proof is given in Appendix A.

Proof. (Proof for single parameter)
Let T (X) be a an unbiased estimator of ψ(θ), that is, E[T (X)] = ψ(θ). The goal is to prove that, for all

θ,

Var(T (x)) ≥ [ψ′(θ)]2

IX(θ)

where ψ′(θ) = ∂
∂θψ(θ).

Let x be a random variable with probability density function p(x; θ). Define the score function V =
∂
∂θ log p(x; θ) which equals 1

p(x;θ)
∂
∂θp(x; θ) by the Chain Rule. Then E[V ] = 0 because

E[V ] =

∫
p(x; θ)

[
1

p(x; θ)

∂

∂θ
p(x; θ)

]
dx =

∂

∂θ

∫
p(x; θ)dx = 0

where the integral and partial derivative have been interchanged.
If we consider covariance cov(V, T ) of V and T , we have cov(V, T ) = E[(V −E[V ])(T −E[T ])] = E[V (T −

T)] = E[V T ]− E[V ]E[T ] = E[V T ] (since E[V ] = 0), then by expanding this expression, we have

cov(V, T ) = E
(
T

[
1

p(x; θ)

∂

∂θ
p(x; θ)

])
=

∫
T (x)

[
1

p(x; θ)

∂

∂θ
p(x; θ)

]
p(x; θ)dx

=
∂

∂θ

[∫
T (x)p(x; θ)dx

]
= ψ′(θ)

where again, the continuous differentiability allows us to exchange the order of integration and differentiation.
The Cauchy-Schwarz inequality shows that:

√
Var(T ) Var(V ) ≥ | cov(V, T )| = |ψ′(θ)|

therefore,

Var(T ) ≥ |cov(V, T )|= [ψ′(θ)]2

Var(V )
=

[ψ′(θ)]2

IX(θ)

which proves the proposition.

Remark 4. We will write T (X) instead of Tθ(X) for convenience. However, note that the distribution of
T (X) implicitly depends on θ, as X is distributed according to p(x; θ).
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3 Maximum Likelihood Estimators, Fisher Information, and Ex-
perimental Design

In this section, we will consider maximum likelihood estimation (MLE) as a method of devising estimators
for experimental design.

Assumption 1. The observations {yi}ni=1 are given by:

yi = xTi θ∗ + εi, i ∈ {1, . . . , n} (12)

where the εi ∼ N (0, σ2) are i.i.d., and θ∗ is unknown.

Definition 5. Maximum likelihood estimate (MLE):

θ̂MLE = arg max
θ

n∏
i=1

p(yi|θ) = arg max
θ

n∑
i=1

log(p(yi|θ)) (13)

Example 3. Normally distributed observations: Let {yi}ni=1
i.i.d∼ N (µ, σ2) where µ ∈ R is an arbitrary

number (one dimension). In other words:

p(y;µ, σ2) =
1√

2πσ2
exp

(
− (y − µ)2

2σ2

)
then the maximum likelihood estimate for the mean µ is:

µ̂MLE = arg max
µ̂

n∑
i=1

− (yi − µ̂)2

2

Therefore, by computing the gradient and setting to zero, the MLE estimate would be:

µ̂MLE =
1

n

n∑
i=1

yi

In the context of linear regression, we would have that yi = x>i θ∗ + εi ∼ N (x>i θ∗, σ
2) since x>i θ∗ is a

deterministic (but unknown) quantity. For example, we were allowed to choose any vector in Rd for xi (which
may not be possible in general due to physical constraints of the experiments you can design), one could just
choose xi = ei, the ith standard basis vector, for i = 1, . . . , n, in which case we would have x>i θ∗ = θ∗(i)
and yi ∼ N (θ∗(i), σ

2). In this case, the yi themselves would be estimators for the components of θ∗, and by
repeating each experiment sufficiently many times, the variance of the yi would drop.

3.1 Consistency of MLE in General

In this subsection, we will show that the MLE θ̂MLE converges asymptotically to the true parameter value
θ∗. In particular, this guarantees that after sufficiently many samples are drawn, the θ̂MLE will be a good
estimator for θ∗, and hence justifies why the MLE can be useful at all. We say an estimator θ̂ is consistent
if it converges in probability to θ∗ as the number of samples increases.

Lemma 2. Fix any estimator θ. As n goes to infinity, the log-likelihood of Y w.r.t. θ converges almost
surely to the true parameter of the distribution:

1

n

n∑
i=1

log (p(yi|θ))
a.s.→ Ey∼p(Y |θ∗) [log p(Y |θ)]
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Similarly,

1

n

n∑
i=1

∂

∂θ
log (p(yi|θ))

a.s.→ ∂

∂θ
Ey∼p(Y |θ∗) [log p(Y |θ)]

1

n

n∑
i=1

∂2

∂θ2
log (p(yi|θ))

a.s.→ ∂2

∂θ2
Ey∼p(Y |θ∗) [log p(Y |θ)]

In particular, this holds for the maximum likelihood estimator θ̂MLE.

Proof. The first convergence is an immediate consequence of the Law of Large Numbers (LLN). The
remaining two convergence claims follow from the first convergence claim, and linearity of expectation and
partial differentiation. We suppress technical regularity conditions such as differentiation under the integral.

In the following we prove that the KL divergence between two probability distributions p, q is a nonneg-
ative quantity and that it is zero only if the two distributions are equal almost everywhere. Crucially, we
will use it to show that θ∗ is a (the) parameter θ that maximizes Ey∼p(Y |θ∗)[log p(y | θ)], which intuitively
is the case; the best “estimator” for θ∗ asymptotically is θ∗ is itself. We want this because we already have
the corresponding fact that the MLE maximizes the empirical log-likelihood 1

n

∑n
i=1 log p(yi | θ) (which by

the above, converges to Ey∼p(Y |θ∗)[log p(y | θ)]).

Lemma 3. KL(p, q) ≥ 0 for every pair of distributions p, q. Furthermore, KL(p, q) = 0 only if {x : p(x) 6=
q(x)} has 0 Lebesgue measure.

Proof. We will show −KL(p, q) ≤ 0.

−KL (p, q) = Ey∼p
[
log

(
q(y)

p(y)

)]
≤ log

(
Ey∼p

[
q(y)

p(y)

])
by Jensen’s inequality and concavity of logarithm

= log

(∫ (
q(y)

p(y)

)
p(y) dy

)
= log

(∫
q(y) dy

)
= log(1) = 0

Now, if {x : p(x) 6= q(x)} = {x : log(q(x)/p(x)) 6= 0} has nonzero Lebesgue measure1, then since log(x) is
strictly concave, Jensen’s Inequality is a strict inequality, whence −KL(p, q) < 0.

Corollary 1. θ∗ maximizes Ey∼p(Y |θ∗)[log p(y | θ)] over all choices of θ, for any θ∗. Furthermore, if
{y : p(y | θ∗) 6= p(y | θ)} has nonzero Lebesgue measure for every choice of θ 6= θ∗, then θ∗ is the unique
maximizer of Ey∼p(Y |θ∗)[log p(y | θ)] over all choices of θ.

1We will not give a precise definition of the Lebesgue measure, as throughout this note, we will only need to distinguish
between sets with zero or nonzero Lebesgue measure. One should think of a set having zero Lebesgue measure as a set on
which the integral of any function is always zero; from the perspective of taking integrals (in particular, expectations), sets of
zero Lebesgue measure might as well be empty sets. More generally, given a function f : Rn → R, one can modify the function
arbitrarily on a set of zero Lebesgue measure without changing

∫
Rn f(x) dx.

All countable sets (including Qn) in Rn have zero Lebesgue measure. Any set which has nonempty interior (contains
an open ball of positive radius) has nonzero Lebesgue measure. One can also think of the Lebesgue measure of a set as its
volume.

Functions f, g which differ on a set of nonzero Lebesgue measure are “nontrivially different”. For example, if f, g are
continuous functions which differ at a single point x, then f, g differ on a set of nonzero Lebesgue measure (not because {x}
has nonzero Lebesgue measure but because continuity of f, g forces them to differ on an ε-radius ball around x for sufficiently
small ε).
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Proof. Let θ be any parameter. For convenience, set p = p(.|θ∗) and q = p(.|θ). Hence, we may rewrite
the expectations of interest as Ey∼p(Y |θ∗)[log p(y | θ)] = Ey∼p[log q(y)] and Ey∼p(Y |θ∗)[log p(y | θ∗)] =
Ey∼p[log p(y)]. Now, observe that by Lemma 2

Ey∼p[log p(y)]− Ey∼p[log q(y)] = Ey∼p
[
log

p(y)

q(y)

]
= KL(p, q) ≥ 0

The uniqueness claim follows from the fact that by Lemma 2, we have strict inequality KL(p, q) > 0 if
{y : p(y) 6= q(y)} has nonzero Lebesgue measure.

With all of these tools, we can now prove the following theorem, which justifies why the MLE is a
commonly used estimator.

Theorem 3. Let θ̂MLE(n) denote the maximum likelihood estimator obtained from samples y1, . . . , yn. Then

θ̂MLE(n)→ θ∗ as n→∞ almost surely. In particular, the MLE is (asymptotically) consistent.

Proof. For convenience, we will assume p(y | θ) varies jointly smoothly in y, θ and that {y : p(y | θ∗) 6= p(y |
θ)} has nonzero Lebesgue measure for every choice of θ 6= θ∗. By Lemma 1, we have 1

n

∑n
i=1 log p(yi | θ)

converges to Ey∼p(Y |θ∗)[log p(y | θ)] as n → ∞ almost surely (recall this was due to the Law of Large

Numbers). Since θ̂MLE(n) maximizes 1
n

∑n
i=1 log p(yi | θ) (by definition), θ∗ maximizes Ey∼p(Y |θ∗)[log p(y |

θ)] by Corollary 1, and p(y | θ) varies jointly smoothly in y, θ, we must have θ̂MLE(n) → θ∗ as n → ∞
almost surely.

3.2 Adding in the CLT

We’ve now shown that the MLE is consistent. However, we can use even stronger theorems than the LLN.
In particular, we can now use the Central Limit Theorem (CLT) and obtain more quantitative results.

Before we begin, we remind the reader that here, the Fisher Information is with respect to the random
variable Y ∼ p(y; θ∗). The reason is that our estimator θ̂MLE is a function of samples yi of the random
variable Y . For convenience, we will however write I(θ∗) to mean IY (θ∗).

Now, let’s recall the CLT.

Theorem 4 (Central Limit Theorem). Suppose {X1, X2, . . . } is a sequence of i.i.d. random variables with
E[Xi] = µ and Var[Xi] = σ2 < ∞. For n ∈ N, define the random variables Sn = 1

n

∑n
i=1Xi. Then as n

approaches infinity, the random variables
√
n(Sn−µ) converge in distribution to a normal N (0, σ2), which

may be written as

√
n (Sn − µ)

D→ N (0, σ2)

We will use this theorem later to study the MLE asymptotically in a more quantitative fashion. But more
now, we leave it aside and begin by looking at the Taylor expansion of the log-likelihood function around θ∗

to get a better intuition:

log (p(y|θ)) = log (p(y|θ′))
∣∣∣∣
θ′=θ∗

+
∂ log (p(y|θ′))

∂θ′

∣∣∣∣
θ′=θ∗

(θ − θ∗) +
1

2

∂2 log (p(y|θ′))
∂θ′2

∣∣∣∣
θ′=θ∗

(θ − θ∗)2 +O((θ − θ∗)3)

where we use O to suppress terms of order 3 (which contain derivatives of order 3 and above) given by
Taylor’s Remainder Theorem (we will justify this very soon in the footnote; for now just take it as a
notational convenience). Taking the derivative with respect to θ will result in:

∂ log (p(y|θ))
∂θ

=
∂ log (p(y|θ′))

∂θ′

∣∣∣∣
θ′=θ∗

+
∂2 log (p(y|θ′))

∂θ′2

∣∣∣∣
θ′=θ∗

(θ − θ∗) +O((θ − θ∗)2)
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where, similarly, O is used to suppress terms of order 2 (which contain derivatives of order 3, not 2, due to
the differentiation). From (13) we know that the derivative of the objective function is zero at the optima

(θ̂MLE) so,

∂

∂θ

n∑
i=1

log (p(yi|θ))
∣∣∣∣
θ=θ̂MLE

= 0

Thus, combining this with the Taylor expansion, multiplying on both sides by 1/
√
n, and ignoring higher

order terms2, we obtain

0 =
1√
n

∂

∂θ

n∑
i=1

log (p(yi|θ))
∣∣∣∣
θ=θ̂MLE

=
1√
n

n∑
i=1

∂ log (p(yi|θ′))
∂θ′

∣∣∣∣
θ′=θ∗

+
1√
n

n∑
i=1

∂2 log (p(yi|θ′))
∂θ′2

∣∣∣∣
θ′=θ∗

(θ − θ∗)

=

√
n

n

n∑
i=1

∂ log (p(yi|θ′))
∂θ′

∣∣∣∣
θ′=θ∗

+

(
1

n

n∑
i=1

∂2 log (p(yi|θ′))
∂θ′2

∣∣∣∣
θ′=θ∗

)
·
√
n(θ̂MLE − θ∗)

Therefore, we have, using the almost sure convergence results stated above,

√
n(θ̂MLE − θ∗) =

√
n

(
1

n

n∑
i=1

∂ log (p(yi|θ′))
∂θ′

∣∣∣∣
θ′=θ∗

)(
− 1

n

n∑
i=1

∂2 log (p(yi|θ′))
∂θ′2

∣∣∣∣
θ′=θ∗

)−1

a.s.→
√
n

(
1

n

n∑
i=1

∂ log (p(yi|θ′))
∂θ′

∣∣∣∣
θ′=θ∗

)
Ey∼p(Y |θ∗)

[
−∂

2 log p(Y | θ∗)
∂θ2

]−1

With this, we have by combining Lemma 1 (equivalent definition of Fisher Information via second order
partials) and Lemma 2

Ey∼p(Y |θ∗)
[
−∂

2 log p(Y | θ)
∂θ2

]
a.s.→ I(θ∗)

and, combining Lemma 2 with the Central Limit Theorem,

√
n

(
1

n

n∑
i=1

∂ log (p(yi|θ′))
∂θ′

∣∣∣∣
θ′=θ∗

)
D→ N (0, I(θ∗))

Thus, we have
√
n(θ̂MLE−θ∗)

D→ I(θ∗))
−1N (0, I(θ∗)) = N (0, I(θ∗)

−1); therefore, θ̂MLE
D→ N (θ∗,

1
nI(θ∗)

−1).

3.2.1 Cramér Rao Lower Bound Comparison

Note in this setting, θ̂MLE is an unbiased estimator for θ∗. Hence, one can ask what the CRLB gives. It
turns out that the CRLB gives

E
[
(θ̂MLE − θ∗)(θ̂MLE − θ∗)T

]
� 1

n
I(θ∗)

−1 (14)

Since θ̂MLE
a.s.→ N (θ∗,

1
nI(θ∗)

−1), this shows that θ̂MLE is asymptotically efficient.

2We will assume for convenience that 1√
n
O(2)→ 0 a.s. as n→∞. Note that here, O(2) looks like 2

∑n
i=1

∂3 log(p(yi|θ′))
∂θ′3

(θ′−

θ∗)2
∣∣∣∣
θ′=θ̂MLE

since we’re summing the entire series over the n samples y1, . . . , yn so the O(2) implicitly depends on n. To

reemphasize, we are assuming this dependence on n has mild growth in that 1√
n
O(2)→ 0 a.s. as n→∞
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3.3 MLE and Two-Stage Active Learning for Nonlinear Regression

Now, we turn to how the MLE can be applied to the nonlinear setting. Specifically, we now consider the
problem is experimental design when f is nonlinear. This is work of Chaudhuri-Mykland [1]. We begin by
defining our “optimality” condition. This is how we will measure the quality of our experimental design.

Definition 6 (Locally D-Optimal Design). A locally D-optimal design at θ is a distribution ξ∗ on Ω
that maximizes

det

(∫
Ω

IX(θ) dξ∗(X)

)
or, equivalently, minimizes

det

(∫
Ω

IX(θ) dξ∗(X)

)−1

We will develop an estimation scheme whose Fisher Information estimates converge to the total Fisher
Information under a locally D-optimal design.

Before we proceed, let’s briefly mention why this might be a reasonable criterion for experimental design.
Based on the preceding lecture, we know that D-optimality is proportional to the volume of the confidence
ellipsoid. Furthermore, we know that the level sets of the Gaussian N (0, I(θ∗)), which by the above analy-

sis is the limiting distribution of
√
n(θ̂MLE−θ∗), are precisely scalings of the ellipsoid corresponding to I(θ∗).

Here, we will consider the following strategy:

Algorithm 1 MLE Active Learn

Input: number of experiments n, number of initial stage experiments n1, prior information
1: via prior information, select X1, . . . , Xn1

design points (say, uniformly distributed over Ω ⊂ Rd if there
is no prior information)

2: observe response Y1, . . . , Yn1

3: estimate θ via θ∗n1
based on X1, . . . , Xn1 , Y1, . . . , Yn1

4: for t = n1 + 1, . . . , n do // active learning phase

5: select design point Xt maximizing det
(∑t

τ=1 IXτ (θt−1)
)

(determinant of total Fisher Information)

6: observe response Yt
7: estimate θ via θ∗t dependent on X1, . . . , Xt, Y1, . . . , Yt
8: end for
9: return final estimate θ∗n

At this point, we still have not specified “how to use prior information to choose X1, . . . , Xn1
” and how

the estimators θ∗t are defined. Basically, the former can be answered by selecting an evenly distribution of
X1, . . . , Xn1

(i.e. a diverse set of points), which works for most situations encountered. For the latter, we
will essentially use maximum likelihood estimates.

In fact, one can prove that, under some technical conditions, 1
n

∑n
i=1 IXi(θ) converges to

∫
Ω
IX(θ) dξ∗(X)

in probability as n → ∞, where ξ∗ is a locally D-optimal design at θ. We refer the reader to Theorem 3.5
of [1] for the precise statement and proof.

4 Passive vs. Active Learning for Nonparametric Estimation

Here, we will study estimating f at all points x without estimating θ. For simplicity, we will assume f maps
Ω to R. Furthermore, we will restrict attention to when Ω = [0, 1]d. However, we will allow f to range over



Lecture 8: Regression 12

much larger classes of functions than, for example, linear functions. We will see that there are strong lower
bounds for convergence. This is work of Castro-Willett-Nowak [2].

Here, we will measure the strength of an estimator f̂ of f by how far f̂ is from f , which is measured
by

∣∣∣∣∣∣f̂ − f ∣∣∣∣∣∣
2

def
=

(∫
Rd
|f̂(x)− f(x)|2 dx

)1/2

Let’s first describe things at a high-level but with maximum generality. For this, we will fix a class of
functions F , the elements of which we will try to produce estimates for. We want to devise a scheme that
will give us a good estimation strategy for every f ∈ F .

Definition 7 (Risk). Let fn ∈ F . The L2
2 risk of the estimation strategy (f̂n, Sn) is the expected

distance between the produced estimator and f , that is

R(f̂n, Sn, f)
def
= Ef̂n,Sn [

∣∣∣∣∣∣f̂ − f ∣∣∣∣∣∣2
2
]

where the expectation is taken over possible estimators f̂n that can result from first randomly sampling
Xn ∼ Sn, and the history of samples X1, . . . , Xn−1, Y1, . . . , Yn−1. The maxima risk of (f̂n, Sn) is simply

supf∈F R(f̂n, Sn, f).

We are interested in asymptotically bounding

inf
(f̂n,Sn)∈Sn︸ ︷︷ ︸
best strategy

sup
f∈F︸︷︷︸

worst case

R(f̂n, Sn, f)

from below (to show that it is “difficult to estimate F” in the worst case) and from above (to show that
we “can estimate F” decently well); here Sn will denote the space of valid estimation strategies conditioned
on preceding output X1, . . . , Xn−1, Y1, . . . , Yn−1. Note Sn is small under passive learning because strategies
that depend on X1, . . . , Xn−1, Y1, . . . , Yn−1 are no longer valid. It will be clear from context whether this is
the space of passive or active estimation strategies.

4.1 Well-Studied Classes of Functions

Definition 8 (Locally Hölder Smooth). A function f : Ω → R is locally Hölder smooth at x with
constants L,α > 0 if

• it has continuous partial derivatives up to order k = bαc at x (k = bαc is the maximal integer such
that k < α)

• there exists ε > 0 such that for all y ∈ Rd satisfying ||x− y|| < ε, |f(y)− Px(y)| ≤ L ||x− y||α

where Px(·) is the degree-k Taylor polynomial of f expanded around x. f is Hölder smooth with constants
L,α > 0 if it is locally Hölder smooth with constants L,α > 0 for all x ∈ Rd. We denote the class of such
functions Σ(L,α).

Remark 5. The second condition says that the degree-k Taylor polynomial of f expanded around x gives
an additive ε error, i.e. |f(y)−Px(y)| ≤ ε, when ||x− y|| ≤ (ε/L)1/α. At a high level, this says that in order
for Px(y) to be a good approximation of f(y), then x (which can be thought of as a design point) only needs
to be polynomially close to y (which can be thought of as a point where we use our estimator to approximate
f because we have not sampled it).
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For more intuition, it may be helpful to consider the 1-dimensional case, and observe that

|f(y)− Px(y)| =

∣∣∣∣∣∣f(y)−
k∑
j=0

f (j)(x) · (y − x)j

j!

∣∣∣∣∣∣ ≤ |f(y)− f(x)|+
k∑
j=1

|f (j)(x)|
j!

· ||x− y||j

One can then think that if f and its derivatives up to kth order satisfy a Lipschitz continuity condition,
then the above is bounded by L · ||x− y||. Replacing ||x− y|| with ||x− y||α in some sense relaxes “how
continuous” we need f and its derivatives to be.

Theorem 5 (Theorem 1 from [2]). Under the requirements of the passive learning model, we have

inf
(f̂n,Sn)∈Sn

sup
f∈Σ(L,α)

R(f̂n, Sn, f) ≥ Ω
(
n−

2α
2α+d

)
where the constant hidden in Ω depends on L,α, σ2 > 0.

Theorem 6 (Theorem 3 from [2]). Under the requirements of the active learning model, we have

inf
(f̂n,Sn)∈Sn

sup
f∈Σ(L,α)

R(f̂n, Sn, f) ≥ Ω
(
n−

2α
2α+d

)
where the constant hidden in Ω depends on L,α, σ2 > 0.

We note that both theorems are tight in the sense that we have estimation schemes that attain these lower
bounds. This shows that active learning has no asymptotic advantage over passive learning
for functions ranging in the class Σ(L,α).

5 Appendix A: Proof of the Cramér-Rao Lower Bound

To prove this theorem, we will need a few lemmas. Before we begin, we remark that the continuously dif-
ferentiability assumption made is sufficient to permit the interchanging of order between differentiation and
integration; we will not belabor this point and assume all such manipulations as valid. Furthermore, we will
drop the x ∼ f(x; θ) notation when writing expectation and covariances; all integrals (and hence expecta-
tions and covariances) are taken to mean integrating over x ∼ f(x; θ) for a fixed θ. This is for convenience
and cleanliness of notation.

First, we write down two standard lemmas from statistics.

Lemma 4. Let X,Y be two scalar random variables. Then their correlation coefficient ρ(X,Y )
def
= cov(X,Y )

σ(X)σ(Y )

satisfies |ρ(X,Y )| ≤ 1.

Lemma 5. Let X,Y be two vector-valued random variables and a, b be any fixed vectors. Then cov(a>X, b>Y ) =
a> cov(X,Y )b.

Proof.

cov(a>X, b>Y ) = E[a>XY >b]− E[a>X]E[Y >b] = a>E[XY >]b− a>E[X]E[Y ]>b

= a>(E[XY >]− E[X]E[Y ]>)b = a> cov(X,Y )b

Lemma 6. Assume the same conditions on X, θ, T, ψ, f as above.
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(1) For every i = 1, . . . , d, ∂
∂θi

log f(X; θ) has mean 0 as a random variable (function of X).

(2) For every i = 1, . . . , d,

Ex∼f(x;θ)

[
T (x)

∂

∂θi
log f(x; θ)

]
=

∂

∂θi
ψ(θ)

where the differentiation and equality here are taken entrywise (recall that T, ψ : Rd → Rm).

Proof. Observe that via the Chain Rule,

∂

∂θi
log f(x; θ) =

1

f(x; θ)

∂

∂θi
f(x; θ)

whence

∂

∂θi
f(x; θ) = f(x; θ) · ∂

∂θi
log f(x; θ)

With this in hand, the remaining is done via computation.

1. For (1), we use a cute little trick where we know that probability densities integrate to 1 and the
derivative of a constant function is 0

Ex∼f(x;θ)

[
∂

∂θi
log f(x; θ)

]
=

∫
Rd

[
∂

∂θi
log f(x; θ)

]
· f(x; θ) dx =

∫
Rd

∂

∂θi
f(x; θ) dx

=
∂

∂θi

∫
Rd
f(x; θ) dx︸ ︷︷ ︸

=1 constant

= 0

(This is actually the exact same trick that allows you to prove that the Fisher information is the
Hessian of the relative entropy; out of laziness, we refer the interested reader here:
https://en.wikipedia.org/wiki/Fisher information#Relation to relative entropy)

2. For (2), additionally using the fact that T (x) is an unbiased estimator for ψ(θ),

Ex∼f(x;θ)

[
T (x)

∂

∂θi
log f(x; θ)

]
=

∫
Rd
T (x)

[
∂

∂θi
log f(x; θ)

]
f(x; θ) dx =

∫
Rd
T (x)

∂

∂θi
f(x; θ) dx

=
∂

∂θi

∫
Rd
T (x)f(x; θ) dx =

∂

∂θi
ψ(θ)

Corollary 2. Assume the same conditions on X, θ, T, ψ, f as above.

(1)

covx∼f(x;θ) [T (x),∇θ log f(x; θ)] =
∂ψ(θ)

∂θ

(2) covx∼f(x;θ)[(∇θ log f(x; θ))(∇θ log f(x; θ))>] = IX(θ)

Proof. We consider the matrix entrywise. Recall that the covariance satisfies

covx∼f(x;θ) [T (x),∇θ log f(x; θ)] = Ex∼f(x;θ)

[
T (x) (∇θ log f(x; θ))

>
]

− Ex∼f(x;θ)[T (x)] · Ex∼f(x;θ) [∇θ log f(x; θ)]
>
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Applying (1) from the previous lemma, we have that the second term immediately above is zero because
Ex∼f(x;θ) [∇θ log f(x; θ)] = 0. Thus, it suffices to show that the first term equals ∂ψ(θ)/∂θ. But

Ex∼f(x;θ)

[
T (x) (∇θ log f(x; θ))

>
]

= Ex∼f(x;θ)

[(
T (x)

∂

∂θ1
log f(x; θ), . . . , T (x)

∂

∂θd
log f(x; θ)

)]
where each entry in the parentheses is a column vector, which by (2) of the preceding lemma, equals(

∂

∂1
ψ(θ), . . . ,

∂

∂θd
ψ(θ)

)
=
∂ψ(θ)

∂θ

This proves (1). (2) follows immediately from the definition of IX(θ).

With all of these tools in hand, we ready to prove Cramér-Rao.

Proof of CRLB. Let a, b be any vectors and consider the correlation coefficient ρ of a>T (x) with b>∇θ log f(x; θ).
Using Lemma 2,

ρ =
a> cov[T (x),∇θ log f(x; θ)]b√

(a> cov[T (x), T (x)]a) · (b> cov[∇θ log f(x; θ),∇θ log f(x; θ)]b)

Using Corollary 1, cov[T (x),∇θ log f(x; θ)] = ∂ψ(θ)/∂θ and cov[∇θ log f(x; θ),∇θ log f(x; θ)] = IX(θ). With
this, we have that

ρ =
a>(∂ψ(θ)/∂θ)b√

(a> cov[T (x)]a)(b>IX(θ)b)
≤ 1

Now, we this bound holds for any choice of a, b. Specifically, choose x arbitrary and a = x, b = −IX(θ)−1 ·
(∂ψ(θ)/∂θ) · x. Then we have

− x>(∂ψ(θ)/∂θ)IX(θ)−1(∂ψ(θ)/∂θ)x√
(x> cov[T (x)]x)(x>(∂ψ(θ)/∂θ)IX(θ)−1(∂ψ(θ)/∂θ)x)

= −

√
x>(∂ψ(θ)/∂θ)IX(θ)−1(∂ψ(θ)/∂θ)x

x> cov[T (x)]x
≤ 1

Squaring both sides and moving things around, we have

x>

(
cov[T (x)]−

(
∂ψ(θ)

∂θ

)
IX(θ)−1

(
∂ψ(θ)

∂θ

)>)
x ≥ 0

Since x was arbitrary, we conclude that

cov[T (x)] �
(
∂ψ(θ)

∂θ

)
IX(θ)−1

(
∂ψ(θ)

∂θ

)>
as claimed.

5.1 Appendix B: A Theorem from Learning Theory for Lower Bounds

Theorem 7 (Main theorem of Risk Minimization; Theorem 13 from [2]). Let Θ be a class of models
(functions from Ω to R). Associated with each model θ ∈ Θ, we have a probability measure Pθ on Ω. Let
M ≥ 2 be an integer, let 0 < γ < 1/8 be a number, and let d(·, ·) : Θ×Θ→ R be a semimetric. Suppose we
have {θ0, . . . , θM} ∈ Θ such that

• d(θj , θk) ≥ 2s > 0 for all 0 ≤ j, k ≤M

• Pθj � Pθ0 for all 1 ≤ j ≤M
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• 1
M

∑M
j=1 KL(Pθj || Pθ0) ≤ γ logM

Then

inf
θ̂

sup
θ∈Θ

Pθ

[
d(θ̂, θ) ≥ s

]
≥

√
M

1 +
√
M

(
1− 2γ − 2

√
γ

logM

)
> 0

Remark 6. Let’s do some more hand-waving to understand this theorem.

• A semimetric is a notion of distance that satisfies all properties of regular metrics except perhaps the
Triangle Inequality; metrics are semimetrics. In place of d(·, ·), one should think of L2-distance (just
as what we are considering in this section).

• For two measures µ, ν, we write ν � µ to mean that µ(A) = 0 =⇒ ν(A) = 0 for every event A ⊂ Ω;
in English, we say that µ “dominates” ν. So when we write Pθj � Pθ0 , one can think of this informally
as saying that supp(pθj ) ⊂ supp(pθ0), where pθi is the density function of the measure Pθi for all i.

• Essentially, this is what the theorem is saying: “if your model class Θ contains some models θ0, . . . , θM
that are very different but the distributions associated with them are very similar, then this model
class has high risk”. The reason this is intuitively true is the following: Suppose you sampling points
from Pθi for i 6= 0 from which you construct your estimator θ̂. Since Pθi is “close” to Pθ0 , the points

you sample will “likely work” for estimating θ0 as well as for θi. Since your estimator θ̂ is based on
these sampled points, it will necessarily have difficulty distinguishing between θ0 and θi. But since
θ0, θi have large distance w.r.t. d, your estimate θ̂ will be poor for both θ0, θi.

• The power of this theorem is that we have not made any assumption on what probability
measures Pθ are assigned to each model θ. In particular, there can be arbitrarily complex
dependencies between the distributions Pθ, and so this theorem can be used for lower bounds for both
the passive setting and the active setting.

• The bigger M is, the greater the lower bound is. Typically, we will want M to be superpolynomially
large in the dimension (and this can be achieved for Θ = Σ(L,α)).

Corollary 3 (Corollary 2 from [2]). Under the assumptions of the preceding theorem,

inf
θ̂

sup
θ∈Θ

E[d(θ̂, θ)2] ≥ s2

√
M

1 +
√
M

(
1− 2γ − 2

√
γ

logM

)
> cs2

where c = c(γ,M) > 0 is a constant.

Proof. This follows via Markov’s Inequality. Specifically,

Pθ

[
d(θ̂, θ) ≥ s

]
= Pθ

[
d(θ̂, θ)2 ≥ s2

]
≤ E[d(θ̂, θ)2]

s2

Thus,

E[d(θ̂, θ)2] ≥ s2Pθ

[
d(θ̂, θ) ≥ s

]
and the result by taking inf θ̂ supθ∈Θ on both sides and applying the preceding theorem.

The way to prove lower bounds for passive and active learning is then to take Θ = Σ(L,α) and construct
many functions f0, . . . , fM ∈ Σ(L,α) that are separated by a large distance under the L2 metric and apply
the theorems above. We refer the reader to the paper for the construction.
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