
CSE599i: Online and Adaptive Machine Learning Winter 2018

Lecture 7: Regression
Lecturer: Kevin Jamieson Scribes: Omid Sadeghi, Johannes Linder, Felix Leeb, Sumit Mukherjee

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

This script reviews optimal design in linear experiments, where the goal is to pick a small number of design
points (input data points, or feature vectors) from the space of possible data points so that the underlying
model, which relates input variables to output responses, is estimated accurately. The chosen set of input
data points makes up one particular design, and the problem of finding an optimal (small) design is of interest
in many regression settings. For example, in an experiment there might be substantial cost associated with
measuring the response of each trial (input vector). The experimenter could then employ optimal design to
estimate the model using as few trials as possible. Another popular use case is in the big data domain, where
it might be computationally intractable to perform regression on the entire data set. Optimal design can be
used to select a subset of the data that estimates the model efficiently. Also, as is reviewed in the scribe,
optimal design has applications in bandit problems, especially linear bandits. This script aims to serve as
scribe notes for the seventh lecture of CSE 599, with extensions mainly based on the work of [1].

1 Linear Experimental Design

The section starts by defining Linear Regression, which in Linear experimental design we assume is an
accurate model for describing the relationship between the input features and corresponding output values.
After that, the Experimental design problem is stated and related to various criteria one typically evaluates a
chosen design by. Finally, we review the work of [1] on randomized sampling-based algorithms for achieving
provably bounded, and in some aspects optimal, designs.

1.1 Linear Model

Consider the problem of estimating a vector of unknown parameters β ∈ Rp from observed measurements
or experiments {xi, yi}ni=1, assuming a linear relationship between xi and yi:

yi = xTi β + εi i = 1, . . . , n

where xi ∈ Rp is the i-th input feature vector, yi ∈ R is its corresponding output response and εi ∼ N (0, σ2)
is zero-mean Gaussian noise. If we stack the feature vectors xi as rows in matrix X ∈ Rn×p and stack the
output responses yi as a column vector Y ∈ Rn, we can write the system of linear equations in matrix form:

Y = Xβ + ε

where ε ∈ Rn is a Gaussian noise vector with zero mean (E[ε] = 0) and a covariance matrix equal to a scaled
identity matrix (E[εεT] = σ2In×n). Throughout this script we assume X is full rank (rank(X) = p), which
ensures that the matrix XTX is invertible. The optimal solution to a linear regression problem is called the
Ordinary Least Squares (OLS) solution, which is stated in the following lemma:

Lemma 1. (Ordinary Least Squares) Given a matrix X ∈ Rn×p of input features and a vector Y ∈ Rn of
observed responses, the Ordinary Least Squares solution to the regression problem Y = Xβ + ε, where ε is a
vector of i.i.d. random variables εi (i = 1, . . . , n) with E[εi] = 0 and V ar(εi) = σ2, is defined as:

βOLS = arg min
β∈Rp

‖Y −Xβ‖22

1

Lecture 7: Regression 2

The above minimization problem has solution βOLS = (XTX)−1XTY . The estimator is unbiased, E[βOLS] =
β, and the Covariance matrix of the estimator is Σ−1 = E[(β − βOLS)(β − βOLS)T] = σ2(XTX)−1.
(Note: We choose symbol Σ−1 for the covariance matrix as we will soon define an entity called the Informa-
tion matrix with the symbol Σ, and we will show that for a linear model these two matrices are reciprocals.)

Proof. First we derive βOLS . The objective ‖Y −Xβ‖22 is convex and differentiable w.r.t. β, meaning that
we can find the minimizing βOLS by finding β s.t. ∇β‖Y −Xβ‖22 = 0:

∇β‖Y −Xβ‖22 = 2XT (Y −Xβ) = 0

→ XTXβOLS = XTY

→ βOLS = (XTX)−1XTY

Note that we assume X is full-rank (rank(X) = p) and thus, XTX is invertible.
Next, we prove that the estimator is unbiased, i.e. E[βOLS] = β:

E[βOLS] = E[(XTX)−1XTY]

= E[(XTX)−1XT (Xβ + ε)]

= E[(XTX)−1XTXβ + (XTX)−1XT ε]

= E[β] + E[(XTX)−1XT ε]

= β + (XTX)−1XTE[ε] (E[ε] = 0)

= β

Finally, we prove that the covariance matrix Σ−1 = σ2(XTX)−1. Starting from the definition of the
covariance matrix (Σ−1 = E[(β − βOLS)(β − βOLS)T]), we have:

Σ−1 = E[(βOLS − β)(βOLS − β)T]

= E[((XTX)−1XTY − β)((XTX)−1XTY − β)T]

= E[
(
(XTX)−1)(XTY −XTXβ)(XTY −XTXβ)T (XTX)−1

)
]

= E[
(
(XTX)−1)(XT ε)(XT ε)T (XTX)−1

)
]

= (XTX)−1XTE[εεT]X(XTX)−1

= (XTX)−1XTσ2IX(XTX)−1

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1

The linear regression model has the property that the covariance matrix depends on neither the true pa-
rameter vector β nor the observed responses Y . This suggests that we can “optimize” the covariance of the
estimator a priori, even before taking any measurements Y .

Next we define an entity closely related to the covariance matrix: Fisher Information (or Information Matrix).

Definition 1. (Fisher Information) The Fisher Information is a measure of the amount of information that
a vector of observable random variables X = (X1, ..., Xn) carries about an unknown parameter θ. Formally,
it is the variance of the gradient (w.r.t θ) of the log-likelihood of X and in the multivariate case (where θ is
a vector of parameters) the Information matrix I(θ) becomes:

I(θ)ij = E[
∂

∂θi
log f(X; θ)× ∂

∂θj
log f(X; θ)]

Lecture 7: Regression 3

Let us briefly derive the information matrix I(β) for the linear regression model Y = Xβ + ε. Since we
defined each random noise variable εi as Gaussian (εi ∼ N (0, σ2)), it follows that the response variable yi is
also Gaussian (yi ∼ N (xTi β, σ

2)). If {xi, yi}ni=1 are i.i.d, the log-likelihood log p(Y |X;β) can be written as:

log p(Y |X;β) = log

n∏
i=1

p(yi|xi, β) =

n∑
i=1

log(
1√

2πσ2
e−

(yi−xiβ)
2

2σ2)

= −1

2
log(2π)− 1

2
log(σ2)− 1

2σ2

n∑
i=1

(yi − xiβ)2

The gradient of the log-likelihood (in matrix form) is ∇β log p(Y |X;β) = 1
σ2X

T (Y −Xβ). Using Definition
1, we can derive the information matrix I(β) using the gradient ∇β log p(Y |X;β):

I(β) = E[∇β log p(Y |X;β)× (∇β log p(Y |X;β))T]

= E[
1

σ2
XT (Y −Xβ)(

1

σ2
XT (Y −Xβ))T]

= E[
1

σ4
XT ε(XT ε)T] (ε = Y −Xβ)

= E[
1

σ4
XT εεTX] =

1

σ2
XTX (E[εεT] = σ2In×n)

Hence, I(β) is exactly the inverse of the covariance matrix Σ−1. From now on, we denote the information
matrix Σ, and minimizing the covariance matrix Σ−1 is identical to maximizing Σ. Using the information
matrix Σ = 1

σ2X
TX, we can reason geometrically about how accurate the parameter vector βOLS is estimated

compared to the true (unknown) parameter vector β. The α-confidence level ellipsoid for β is defined as:

E = {z|(z − βOLS)TΣ(z − βOLS) ≤ κ}

where κ is a constant that depends on α. This p-dimensional ellipsoid encloses, with confidence α, all vectors
z that could be the true parameter vector β. As described in [2], the ellipsoid can be visualized by doing
Singular-value decomposition of X. If X = UΛV , where Λ is the matrix of singular values and U and V are
the left- and right singular vectors, the ellipsoid axis directions are given by V and the lengths are inversely
proportional to their respective singular values, as illustrated in Figure 1. It is easy to see that maximizing
the singular values λ1, λ2 minimizes the ellipsoid and thus constrains β to be close to βOLS .

Figure 1: Confidence ellipsoid around the estimated parameter vector βOLS (in two dimensions). The axis
directions are given by the right singular vectors v1, v2 of X and their lengths are inversely proportional to
the singular values λ1, λ2. With confidence level α (α determines K of the ellipsoid boundary condition),
the true parameter vector β resides inside the ellipsoid.

Lecture 7: Regression 4

1.2 Problem statement: Optimal Design

In linear experimental design, we assume a linear model Y = Xβ + ε (as defined in the previous section),
where X ∈ Rn×p is a matrix of n design points (the input feature vectors), Y ∈ Rn is the vector of observable
responses and ε ∈ Rn is an i.i.d Gaussian noise vector with zero mean and finite variance. The design problem
refers to selecting a small subset S ⊂ {1, ..., n} of r rows, XS , from X so that the precision of estimating β is
maximized on the selected design XS . In classical experimental design, we associate a cost with conducting
each experiment (row of X). By selecting r rows of X, where r << n, that are most statistically efficient for
estimating β, the total experimental cost is minimized. When n is very large, optimal design is a strategy for
doing regression efficiently, as it might be computationally intractable to perform OLS on the entire dataset.

Since we are looking for S such that XS is most statistically efficient, the optimal design problem reduces
to minimizing the covariance matrix Σ−1 = (XT

SXS)−1. A number of summary statistics, called Optimality
criteria, have been developed for measuring how well Σ−1 is minimized on a selected design XS . Usually,
an optimality criterion is a function f : S+

p → R (where S+
p is the set of p× p-dimensional positive-definite

matrices) that maps Σ−1 to a real number. The experimental design problem can then be formulated as the
following optimization problem (as defined in [3]):

S∗(r) = arg min
S

f(XT
SXS)

where S is a set or multi-set of size r, depending on how the the design problem is constrained:

1. With replacement: S is a multi-set of row subscripts of X such that |S| = r.
Under this setting, XS may contain duplicate rows of the matrix X.

2. Without replacement: S is a subset of row subscripts of X (S ⊂ [n]) such that |S| = r.
In this case, XS can only contain distinct rows of the matrix X.

By replicating each row of X r times, the “Without replacement” setting reduces to the “With replacement”
setting. As in [4], the “With replacement” optimization problem seeks Σ−1 where:

minimize (w.r.t S+
p) Σ−1 = (

n∑
j=1

mjxjx
T
j)−1

subject to mi ≥ 0, m1 + · · ·+mn = r, mi ∈ Z

The above optimization problem is NP-hard [3]. If we drop the condition that the relative frequency of a
certain measurement should be an integer multiple of 1

k , we arrive at the following relaxed problem:

minimize (w.r.t S+
p) Σ−1 =

1

r
(

n∑
j=1

λjxjx
T
j)−1

subject to λi ≥ 0,

n∑
j=1

λj = 1

Having expressed experimental design as a minimization problem of an optimality criterion f(Σ), we now
turn to defining some of the most widely used optimality criteria f , summarized from [5]. We also reason
about the intuition of some of these criteria graphically in the context of the confidence ellipsoid.

• A-optimality (Average): fA(Σ) = 1
pTr(Σ

−1)
The objective is simply the mean of the norm of the squared error:

E[||e||22] = E[Tr(eeT)] = Tr(E[eeT]) = Tr(Σ−1)

Lecture 7: Regression 5

It thus minimizes the average variance of the estimated regression coefficients β. It is computationally
very appealing since it only involves computing the diagonal of Σ−1. Figure 2 (left) illustrates the
effect of A-Optimality on the resulting confidence ellipsoid around βOLS . Minimizing the average
trace of (XTX)−1 is identical to minimizing the average of the inverse singular values 1

λi
of X. Thus,

A-optimality minimizes the average axis length of the ellipsoid.

• D-optimality (Determinant): fD(Σ) = (det|Σ|)−
1
p

This criterion minimizes the determinant of Σ−1, which according to [5] is proportional to the volume
of the confidence ellipsoid (for a fixed confidence level). Thus, as illustrated in Figure 2 (center),
D-optimality shrinks the ellipsoid in all directions in order to minimize total volume.

• T-optimality (Trace): fT (Σ) = p
Tr(Σ)

This criterion is similar to A-optimality, as it minimizes the sum of variances. Here, however, the trace
is applied to the information Σ instead of Σ−1. While T-optimality is suitable for some domains, [5]
shows that it behaves poorly in certain circumstances. For example, if all input vectors xi are of
constant squared norm, Tr(XTX) =

∑
i‖xi‖22 is a constant and hence useless for assessing designs.

• E-optimality (Eigenvalue): fE(Σ) = ||Σ−1||2
This criterion minimizes the maximum eigenvalue of Σ−1. Since the diameter (twice the longest
semi-axis) of the confidence ellipsoid is proportional to the square root of the maximum eigenvalue,
minimizing this quantity is geometrically interpreted as minimizing the diameter, as illustrated in
Figure 2 (right). Alternatively, E-optimal design can be interpreted as minimizing the maximum
variance of qT e over all q with unit norm, guarding against the worst possible variance.

• V-optimality (Variance): fV (Σ) = 1
nTr(XΣ−1XT)

The criterion can be re-formulated as:

1

n
Tr(XE[eeT]XT) =

1

n
E[Tr(eTXTXe)] =

1

n
E[||Xe||22]

Hence, it minimizes the average prediction variance, i.e. the variance of the prediction variable Y .

• G-optimality: fG(Σ) = max diag(XΣ−1XT)
G-optimality minimizes the largest diagonal entry of the projection matrix, which minimizes the worst
possible prediction variance (in contrast to V-optimality that minimizes average prediction variance).

Figure 2: The effects of the Optimality-criteria A, D, and E on the confidence ellipsoid around βOLS . The
arrows surrounding the gray area illustrate how the ellipsoid shrinks due to optimizing for a criterion.

Lecture 7: Regression 6

All criteria above are termed regular, which means they satisfy two conditions:
First, they are all convex:

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B), for all positive-definite matrices A, B and 0 ≤ λ ≤ 1

Second, they all satisfy reciprocal multiplicity:

f(tA) = t−1f(A), for all positive-definite matrices A and t > 0

1.3 Optimal Design via Randomized Sampling

We will now explore Linear experimental design in the context of Randomized sampling, as regarded in [1].
Consider a large-scale least-squares problem. Given the full dataset (X,Y) ∈ Rn×p×Rn, sketching algorithms
use a sketching matrix S ∈ Rr×n with r � n to construct a reduced, “sketched” version (SX, SY) of the
data (i.e. sketching algorithms project (X,Y) to lower-dimensional space by multiplication of S). A random
sampling sketch matrix S has exactly one non-zero entry at each row. Formally, sampling matrix S is formed
by the matrix product S̃W , where S̃ and W are defined as follows:

S̃ ∈ Rr×n is a non-scaled random sampling matrix, where S̃ij ∈ {0, 1} and

n∑
j=1

S̃ij = 1

W ∈ Rn×n is a diagonal matrix of scaling factors Wjj > 0, ∀j

Thus, a sketch constructed from a random sampling matrix S consists of r typically re-scaled rows of (X,Y).
Sketching algorithms, similar to optimal design, are concerned with assuring that the sketched estimator of
β is not much worse than the original Least-Squares (LS) estimator. The objective is to approximate the LS
solution of dataset (X,Y) by solving the LS problem of (SX, SY):

βS = arg min
β∈Rp

‖SY − SXβ‖22

Since r << n, solving the LS problem for the sketched data has computational complexity O(rp2), which is
significantly less compared to the original LS problem (O(np2)). This is the main motivation for studying
sketching methods in [1]. But we can also draw parallels to optimal design: The sampling-based sketching is
identical to picking r design points in a Linear experiment that are most statistically efficient for estimating
the parameters. Assuming that rank(X) = p, the OLS solution for β is (See Lemma 1):

βOLS = (XTX)−1XTY

Similarly, the solution βS of the sketched LS problem is:

βS = ((SX)TSX)−1(SX)TSY

As we did in Lemma 1 for OLS, we can derive the covariance matrix of the sketched estimator as:

Σ−1 = σ2((SX)TSX)−1

The optimality of sketching matrices is assessed in [1] using the two statistical criteria shown below.

Definition 2. (Criterion 1: Prediction Efficiency) The first criterion evaluates S according to

CPE(S) =
E[||X(β − βS)||22]

E[||X(β − βOLS)||22]

Definition 3. (Criterion 2: Residual Efficiency) The second criterion evaluates S according to

CRE(S) =
E[||Y −XβS ||22]

E[||Y −XβOLS ||22]

Lecture 7: Regression 7

The two criteria look similar, but there are important differences: CPE (Definition 2) measures the ratio be-
tween the expected true prediction error of βS and the expected true prediction error of βOLS . In contrast,
CRE (Definition 3) measures the ratio between the expected residual errors. The latter quantity should
intuitively be easier to minimize, as it compares the estimator to the trained-on, noisy, responses Y, while
CPE compares the estimator to the optimal solution derived from OLS on the full dataset.

The sampling-based sketching algorithms rely on entities called “Leverage scores”, which we define below [6]:

Definition 4. (Leverage Scores) For matrix X, the statistical leverage scores are defined as follows:
Let X = UΛV T be the singular value decomposition (SVD) for matrix X. Let U denote the n × p matrix
consisting of the p left singular vectors of X and let U(i) denote its i-th row as a row vector. Then, the
statistical leverage scores of the rows of X, for i = 1, . . . , n, are given by:

`i = ||U(i)||22

The coherence γ of the rows of X is defined as:

γ = max
i∈{1,...,n}

`i

If X = UΛV T is the SVD of X, we can express the projection matrix PX = X(XTX)−1XT (which projects
the observed response vector Y into the prediction vector Ŷ = X(XTX)−1XTY = XβOLS) as:

X(XTX)−1XT = UΛV T (V ΛUTUΛV T)−1V ΛUT

= UΛV TV Λ−2V TV ΛUT

= UΛ−1ΛUT

= UUT

Therefore, we can write the statistical leverage scores as follows:

`i = ||U(i)||22 = (UUT)ii = (X(XTX)−1XT)ii = (PX)ii

where PX is the projection matrix. Each leverage score corresponds to one row of X and the higher the
leverage score is, the more influence the data point has on the estimation. Also note that:

n∑
i=1

`i = Tr(UUT) = Tr(UTU) = Tr(Ip×p) = p

Now, we present two random sampling-based sketching algorithms from [1].

Algorithm 1. (Random Sampling with Rescaling)

1. Construct a random sampling matrix S̃ ∈ Rr×n s.t. S̃ij ∈ {0, 1} and
∑n
j=1 S̃ij = 1. Generate each row

of S̃ from an independent distribution (pi)
n
i=1, where

• pi = (1− θ) `ip + θqi and qi is an arbitrary probability distribution,

• `i = (UUT)ii denotes the leverage score of the i-th example (when X = UΛV T is the SVD of X),

• θ ∈ [0, 1] is the mixing weight of qi.

2. Construct a diagonal scaling matrix W ∈ Rn×n s.t. Wii =
√

1
rpi

.

3. Return the final sketching matrix SR = S̃W .

The next algorithm is a special case of Algorithm 1, where we do not re-scale the sampling matrix.

Lecture 7: Regression 8

Algorithm 2. (Random Sampling without Rescaling)

1. Construct the random sampling matrix S̃ ∈ Rr×n from Step 1 of Algorithm 1, setting θ = 0.

2. Return the sketching matrix SNR = S̃ (without re-scaling it, as was done in Step 2 of Algorithm 1).

Re-scaling of sketching matrices are done to ensure the estimator is unbiased, however we will see later in
this section that under certain assumptions, no rescaling can lead to even better bounds on estimator variance.

In order to show that sketching matrices constructed according to leverage scores of X result in an accurate
estimator, let us first examine the properties of the Prediction- and Residual efficiencies (Definition 2 & 3).

Lemma 2. (Structural properties of the Sketched estimator)
Given that sketching matrix S preserves rank, i.e. rank(SX) = rank(SU) = p, the following properties hold:

CPE(S) =
E[||X(β − βS)||22]

E[||X(β − βOLS)||22]
=
‖U((SU)TSU)−1(SU)TS‖2F

p

CRE(S) =
E[||Y −XβS ||22]

E[||Y −XβOLS ||22]
= 1 +

‖U((SU)TSU)−1(SU)TS‖2F − 1

n/p− 1

Proof. First, consider the expected prediction error E[‖X(βOLS−β)‖22] when solving OLS using the full data
set (X, Y). Given the SVD of X as X = UΛV T , the expectation can be re-formulated as:

E[‖X(βOLS − β)‖22] = E[‖XβOLS −Xβ‖22]

= E[‖XβOLS − UΛV Tβ‖22] (X = UΛV T)

= E[‖UUTY − UΛV Tβ‖22] (XβOLS = X(XTX)−1XTY = UUTY)

= E[‖UUTUΛV Tβ + UUT ε− UΛV Tβ‖22] (Linear model Y = UΛV Tβ + ε)

= E[‖UUT ε‖22] (UTU = Ip×p)

= σ2p (E[εεT] = σ2Ip x p and ‖UUT ‖22 = p)

Now, let us derive the Expected prediction error E[‖X(βS − β)‖22], having applied sketching matrix S to the
data before solving the LS problem (obtaining solution βS):

E[‖X(βS − β)‖22] = E[‖XβS −Xβ‖22]

= E[‖XβS − UΛV Tβ‖22] (X = UΛV T)

= E[‖U((SU)TSU)−1(SU)TSY − UΛV Tβ‖22] (XβS = U((SU)TSU)−1(SU)TSY)

= E[‖U((SU)TSU)−1(SU)TSε‖22] + E[‖(((SU)TSU)−1(SU)TSU − Ip x p)UΛV Tβ‖22] (Y = UΛV Tβ + ε)

= σ2‖U((SU)TSU)−1(SU)TS‖2F (Pulling out ε from the vector norm gives a ‖·‖F norm)

Finally, dividing E[‖X(βS − β)‖22] by E[‖X(βOLS − β)‖22] completes the proof of the lemma for CPE(S).
A similar derivation for CRE(S) proceeds below, keeping in mind that Y = UΛV Tβ+ε and XβOLS = UUTY :

E[‖Y −XβOLS‖22] = E[‖UΛV Tβ + ε− UUTUΛV Tβ − UUT ε‖22]

= E[‖(In x n − UUT)ε‖22]

= σ2‖(In x n − UUT)‖2F = σ2(n− p)

Lecture 7: Regression 9

Given that XβS = X((SX)T (SX))−1(SX)TY = U((SU)TSU)−1(SU)TSY , we have:

E[‖Y −XβS‖22] = E[‖UΛV Tβ + ε− U((SU)TSU)−1(SU)TSUΛV Tβ − U((SU)TSU)−1(SU)TSε‖22]

= E[‖ε− U((SU)TSU)−1(SU)TSε‖22]

= E[‖(In x n − U((SU)TSU)−1(SU)TS)ε‖22]

= σ2Tr((In x n − U((SU)TSU)−1(SU)TS)T (In x n − U((SU)TSU)−1(SU)TS))

= σ2(Tr(In x n)− 2Tr(U((SU)TSU)−1(SU)TS) + ‖U((SU)TSU)−1(SU)TS‖2F)

= (n− 2p+ ‖U((SU)TSU)−1(SU)TS‖2F)σ2

As before, dividing E[‖Y −XβS‖22] by E[‖Y −XβOLS‖22] concludes the proof of the lemma.

Clearly, we would like to bound E[‖X(βS−β)‖22] and E[||Y −XβS ||22] in such a way that they cannot be much
larger than E[‖X(βOLS −β)‖22] and E[||Y −XβOLS ||22]. Lemma 2 shows that in order to bound these terms,
we need to carefully choose sketching matrix S such that E[‖U((SU)TSU)−1(SU)TS‖2F] is minimal. Note
that this quantity looks very similar to the projection matrix X(XTX)−1XT . Indeed, using the identity
X = UΛV T , one can show that U((SU)TSU)−1(SU)TS = X((SX)TSX)−1(SX)TS. This is the projection
matrix, constructed from the sampled dataset (SX,SY), that projects the full response vector Y into the
prediction vector Ŷ (Ŷ = X((SX)TSX)−1(SX)TSY = XβS). Being a projection matrix, we could apply
the Optimal design criteria defined in Section 1.2 to minimize some statistical measure on it. Specifically,
recall the V-optimality criterion fV (XS) = 1

nTr(X(XT
SXS)−1XT) which minimizes (w.r.t the design matrix

XS) the average diagonal entry of the projection matrix. We argued that this is equivalent to minimizing
the average prediction variance. If we minimized the trace of the projection matrix U((SU)TSU)−1(SU)TS
(w.r.t S), by definition it is identical to minimizing the V-optimality criterion. Of course, this is an NP-hard
problem [3]. Instead, by sampling S according to leverage scores `i = (UUT)ii = (X(XTX)−1XT)ii (as in
Algorithm 1), one can achieve an upper bound with high probability, as is stated and proven in Theorem 2
below. First, we present an important auxiliary theorem required for the proof of Theorem 2. We will not
prove the theorem here, but the interested reader may find a detailed proof in [7] (Theorem 4).

Theorem 1. (Auxiliary theorem: Sampling matrix approximation error bound)
Let X = UΛV T be the SVD of matrix X, where U ∈ Rn×p is the matrix of left singular vectors. Construct
the scaled sampling matrix S ∈ Rr×n exactly according to Algorithm 1 (with X as input). Let ε ∈ (0, 1) be
an accuracy parameter and let θ ∈ [0, 1] be a hyper-parameter. If the number of sampled rows r satisfies

r ≥ 96p

(1− θ)ε2
log

(
96p

(1− θ)ε2
√
δ

)
then, with probability at least 1− δ,

‖UTU − (SU)TSU‖2 ≤ ε

Note that since UTU = Ip×p, the inequality can be written as ‖Ip×p − (SU)TSU‖2 ≤ ε.
Further note that E[STS] = In×n.

Intuitively, the theorem states that the approximation error of any sampled orthogonal matrix can be
bounded with high probability given that we sample enough rows. We are now ready to state Theorem
2, which bounds the statistical efficiency criteria (Definition 2 and 3) for Algorithm 1 with high probability.

Theorem 2. (Upper bound: Random Sampling with Rescaling)

If sampling matrix SR is constructed from Algorithm 1 with r ≥ Cp
1−θ log(C′p

(1−θ)
√
δ
), where C,C ′ > 0 are

constants, then with probability ≥ (1− δ)2:

Lecture 7: Regression 10

CPE(SR) ≤ 4

δ
(1 +

n

(1− θ)r
)

CRE(SR) ≤ 1 +
4

δ
(
p

n
+

p

(1− θ)r
)

Proof. First, define the SVD of SU = Ũ Λ̃Ṽ T , i.e., the singular-value decomposition of the sampled left
singular matrix of X. Now, begin by substituting this decomposition for certain terms in CPE :

E[||X(β − βS)||22]

E[||X(β − βOLS)||22]
=

1

p
‖U((SU)TSU)−1(SU)TS‖2F (From the proof of Lemma 2)

=
1

p
‖(UTSTSU)−1UTSTS‖2F

=
1

p
‖(Ṽ Λ̃ŨT Ũ Λ̃Ṽ T)−1UTSTS‖2F

=
1

p
‖Ṽ Λ̃−2Ṽ TUTSTS‖2F

Observe the term Ṽ Λ̃−2Ṽ T . It is a p × p matrix where every element is less than or equal to the squared
reciprocal of the smallest singular value α of the matrix SU . Hence, it follows that:

1

p
‖Ṽ Λ̃−2Ṽ TUTSTS‖2F ≤

1

p
||Ṽ Λ̃−2Ṽ T ||22||UTSTS||2F ≤

1

α4

1

p
‖UTSTS‖2F

First, to find an upper-bound for the quantity 1
α4 , we apply Theorem 1. The theorem states that if matrix S

is constructed by sampling and re-scaling from U according to Algorithm 1, then ‖UTU − (SU)TSU‖2 ≤ ε
with probability at least 1 − δ if the number of sampled rows r ≥ 96p

(1−θ)ε2 ln(96p

(1−θ)ε2
√
δ
). Now, the 2-norm is

defined as the maximum singular value of a matrix, and U is an orthonormal matrix, so its maximum singular
value is exactly 1. So by setting ε = 1√

2
, the squared maximum singular value 1

α4 ≤ 4 with probability 1− δ.
Let us now bound 1

pE[‖UTSTS‖2F] (in order to apply Markov’s inequality later):

1

p
E[‖UTSTS‖2F] =

1

p
E[Tr(UTSTS(UTSTS)H)] (‖A‖2F = Tr(AAH) where AH is the Hermitian transpose)

=
1

p
E[Tr(UTSTS(STS)H(UT)H)] (U and STS are unitary)

=
1

p
E[Tr(UT (STS)2U)]

=
1

p
E[

p∑
j=1

n∑
i=1

n∑
k=1

UijUkj(S
TS)2

ki] ((STS)ki = 0 if k 6= i)

=
1

p
E[

p∑
j=1

n∑
i=1

U2
ij(S

TS)2
ii] =

1

p
E[

n∑
i=1

`i(S
TS)2

ii] (

p∑
j=1

U2
ij = ‖ui‖22 = `i)

The term we want to bound is thus proportional to the leverage scores `i of X and the diagonal of squares
of our sketching matrix S. Remember that in Algorithm 1 we sample each element Ski of S according to
Ski = 1√

rpi
σki. Here the row index k ∈ {1, ..., r} denotes each independent sample in S and the column index

i ∈ {1, ..., n} denotes the sampled row from X and 1√
rpi

is a scaling factor. σki ∈ {0, 1} is a random variable

and σki = 1 means that for sample instance k, we selected row i from X. Also, remember that the sampling
probability for a single σki is P (σki = 1) = pi = (1− θ) `ip + θqi. Substituting these expressions, we get:

Lecture 7: Regression 11

1

p
E[

n∑
i=1

`i(S
TS)2

ii] =
1

r2p

n∑
i=1

`i
p2
i

r∑
m=1

r∑
l=1

E[σ2
miσ

2
li] (σ2

ab = σab ∈ {0, 1})

=
1

r2p

n∑
i=1

`i
p2
i

r∑
m=1

r∑
l=1

E[σmiσli]

To decompose this expression, observe the following: When constructing sampling matrix S, we create each
sample instance (i.e. row in S) independently. Then, for any two rows a and b of S where a 6= b, σai and
σbi are independent and identical (they have identical probabilities pi for sampling row i of X), which means
E[σaiσbi] = E[σai]E[σbi] = p2

i . In the sum over m = 1 to r and l = 1 to r, there are r2 − r such independent
elements (all except the diagonal). For the r elements where a = b, E[σaiσai] = E[σ2

ai] = E[σai] = pi. Hence:

1

r2p

n∑
i=1

`i
p2
i

r∑
m=1

r∑
l=1

E[σmiσli] =
1

r2p

n∑
i=1

`i
p2
i

((r2 − r)p2
i + rpi)

=
1

r2p

n∑
i=1

((`i(r
2 − r) + r

`i
pi

))

= 1− 1

r
+

1

rp

n∑
i=1

`i
pi

Even clearer now, we can bound this expectation by just sampling pi proportional to `i. Substituting
pi = (1− θ) `ip + θqi yields the final bound:

1− 1

r
+

1

rp

n∑
i=1

`i
pi

= 1− 1

r
+

1

rp

n∑
i=1

`i

(1− θ) `ip + θqi

≤ 1− 1

r
+

n

(1− θ)r

≤ 1 +
n

(1− θ)r

Which implies that:

1

p
E[‖UTSTS‖2F] ≤ 1 +

n

(1− θ)r

Markov’s Inequality states that if X ≥ 0 is a random variable, then for a > 0, P (X > a) ≤ E[X]
a . Hence, by

setting X = 1
p‖U

TSTS‖2F and a = 1
δ

1
pE[‖UTSTS‖2F], we get:

P

(
1

p
‖UTSTS‖2F >

1

δ

1

p
E[‖UTSTS‖2F]

)
≤ δ

Which implies that:

1

p
‖UTSTS‖2F ≤

1

δ
(1 +

n

(1− θ)r
) with probability ≥ 1− δ

Lecture 7: Regression 12

Putting it together, we need both 1
α4 ≤ 4 and 1

p‖U
TSTS‖2F ≤ 1

δ (1 + n
(1−θ)r) to hold (and each bound holds

with probability 1− δ). Hence:

CPE(SR) =
‖U((SU)TSU)−1(SU)TS‖2F

p

≤ 1

α4

1

p
‖UTSTS‖2F

≤ 4× 1

δ
(1 +

n

(1− θ)r
)

≤ 4

δ
(1 +

n

(1− θ)r
) with probability ≥ (1− δ)2

Because CRE contains the same terms as CPE , just scaled by a factor, its proof is identical, and we get:

CRE(SR) = 1 +
‖U((SU)TSU)−1(SU)TS‖2F − 1

n/p− 1

≤ 1 +
p

n
CPE(SR)

≤ 1 +
4

δ
(
p

n
+

p

(1− θ)r
) with probability ≥ (1− δ)2

To summarize the two bounds, the Residual Efficiency (CRE) scales as p
r , while the Prediction Efficiency

(CPE) scales as n
r . In other words, by setting the number of design points r to be proportional to p makes

the Sketching approximation bounded by a constant factor for CRE in comparison to solving Least-Squares
on the full data set, while r has to be proportional to n in order to get the same bound for CPE . [1] refers to a
theorem of another paper that contains a lower bound on CPE , showing that the bound of the sampling-based
sketching algorithm cannot be improved in the general case [8]. This theorem is stated below.

Theorem 3. (Lower bound on Prediction Efficiency) For any Sketching matrix satisfying E[‖ST (SST)−1S‖2] ≤
η rn , any estimator based on (SX, SY) satisfies the following lower bound with probability > 0.5:

CPE(S) ≥ n

128ηr

While this theorem holds in general for a dataset (X ,Y), [1] considers a special case where the leverage
scores of the data matrix X are highly skewed to only a small number of data points. First, let us define
this special-case assumption on X.

Definition 5. (K-heavy hitter leverage distribution) A sequence of leverage scores is a k-heavy hitter leverage
distribution if for 1 ≤ i ≤ k, C1×p

k ≤ `i ≤ C2×p
k and

∑n
i=k+1 `i ≤

3
4 , where p is the number of features in

data matrix X and C1, C2 > 0 are constants.

Intuitively, this means that just k data points in X have a high contributing factor to the prediction variance
and the rest of them are less significant and will not affect the regression very much.

Given the assumption of a k-heavy hitter distribution, [1] shows that Algorithm 2, i.e. sampling according
to leverage scores without rescaling, gives a tighter bound on CPE and CRE . The theorem is stated below,
and the interested reader can find a detailed proof in the appendix of their paper.

Theorem 4. (Upper bound: Random Sampling without Rescaling) For r ≥ c1p log(c2p), with θ = 0, and
assuming a k-heavy hitter leverage distribution, then with probability ≥ 0.6:

Lecture 7: Regression 13

CRE(SNR) ≤ 1 +
44C4

c2
pk

nr

CPE(SNR) ≤ 44C4

c2
k

r

Note that the bounds in Theorem 3 and 4 are stated with non-parameterized probabilities (0.5 and 0.6).
The parameterized bounds with variable confidence have a rather complex form and are less intuitive. The
authors of [1] thus instantiated the bounds with fixed confidence to improve readability. However, the bounds
are still useful. For example, for Theorem 4 we can run Algorithm 2 t times, and the probability that the
bound does not hold for any execution is less than (1− 0.6)t, which can be made arbitrarily small.

In conclusion, the Sampling-with-rescaling method (Algorithm 1) is a general-purpose sketching algorithm
that achieves optimal bounds on the sketched approximation of the Least Squares problem, where CRE
scales as p

r and CPE scales as n
r . However, in the non-scaled Sampling of Algorithm 2, where we assume the

leverage distribution is highly skewed to only k examples, a much tighter bound can be achieved for CPE that
scales as k

r (the assumptions violate the constraints of Theorem 2, whence the lower bound is not applicable).

2 Best-Arm Identification in Linear Bandits

In this section we study Linear Bandits (LB), which is an extension of the Multi-Armed Bandit (MAB)
problem. Common to both settings, the player pulls an arm and receives some (typically stochastic) reward.
In the case of best-arm identification, the goal is to identify, with as few pulls as possible, the arm associated
with the highest expected reward. In the classic MAB setting, the reward of each arm is independent of all
other arms (i.e. pulling an arm does not provide any information about the rewards of other arms). However,
in many real-world problems it is more interesting if the arms share a set of common attributes or features.
The reward of each arm is then modeled as a function of its specific attribute values. Of course, this function
is not known to us, and identifying the best arm requires us to estimate the function. Specifically, in Linear
Bandits each arm is associated with a vector of features and the reward function is simply a weighted linear
combination of these features. The set of (unknown) linear weights, called the parameter vector, remains
constant and is shared for all arms. For example, if each arm represents a distinct type of car, a reasonable
feature vector might encode the attributes of that car (e.g. top speed, acceleration, if it has four-wheel drive,
etc.). If the observable reward of the bandit game is the time it takes for a car to travel from location A
to B, the unknown parameter vector would encode the weighted relationship between each feature and the
total travel time. This class of problems can further be augmented by considering generalized linear bandits
(GLB) [9] which allow the rewards to be non-linear functions of the parameter vector and arm features,
such as a logistic curve for binary rewards. Also note that we can think of the original MAB problem as a
special case of the LB problem where each arm has a single unique feature equal to one and all other features
corresponding to different arms are zero. The weights are then the expected reward received from each arm.

A natural application of linear bandits is planning a route where we have several possible paths and there
is some unknown stochastic cost to each leg of the path, but we might only observe the total cost of
the journey. Similarly, we might want to identify customers’ preferences presented by a feature vector by
suggesting products and then observing which ones they click on, similar to Amazon’s Shop-by-look project
(https://shopbylook.amazon.com/). Just as with the MAB problem we could minimize overall regret using
an approach similar to UCB, which is called Optimism in the Face of Uncertainty (OFUL) for linear bandits
[10]. However, we will focus on the best arm identification problem where our goal is to identify the arm with
the highest expected reward within as few arm pulls as possible. Here we first introduce static allocation
strategies for the problem (strategies that decide which sequence of arms to pull before starting the bandit
game) and demonstrate how to relate this to G-optimality of linear experiment design. Then we show that

Lecture 7: Regression 14

a dynamic allocation, where the decision of which arm to pull changes adaptively based on previous arm
pulls, can reduce the sample complexity of the problem. These strategies are summarized mainly from [11].

2.1 Setting

In the Linear Bandit (LB) problem, there are K arms to play, and each arm is associated with a d-dimensional
feature vector x ∈ X, where X ⊂ Rd is the set of feature vectors corresponding to arms (|X| = K). The
feature vector x of an arm is fully observable (known). As the player plays an arm with feature vector x,
a random reward r(x) is received and observed. Reward r(x) is generated according to the linear model
r(x) = θT∗ x + ε, where θ∗ ∈ Rd is an unknown parameter vector and ε ∼ N (0, σ2) is zero-mean i.i.d
noise. That is, the expected reward is a linear combination of the features x of that arm, weighted by the
unobservable parameters of θ∗. In contrast to the classic Multi-Armed Bandit setting where the rewards of
different arms are independent, here the parameter vector θ∗ is shared between all arms i ∈ [K]. Because of
the linear structure of the reward r(x), by playing an arm the player can estimate the true value of θ∗ and,
indirectly, gain information about the expected reward of other arms (which is θT∗ x̃ for any other arm with
feature vector x̃). This in turn allows us to estimate the arm with the highest expected reward. The goal is
to identify the best arm with as few arm pulls as possible. The optimal arm is defined as:

x∗ = argmax
x∈X

θT∗ x (1)

Of course, since θ∗ is unknown, we are unable to solve this optimization problem directly. Instead, in the sec-
tions below we present strategies for estimating θ∗ and choosing a sequence of arms to play so that x∗, the op-
timal arm, is found within as few arm pulls as possible. To aid in notation, we define

∏
(θ) = argmaxx∈Xθ

Tx
as the best-arm corresponding to an arbitrary parameter θ. We also define ∆(x, x̃) = (x− x̃)T θ∗, measuring
the difference in reward between the feature vectors xi and xj of arms i and j.

Now, assume we have pulled arms for n time steps and denote xt and rt as the feature vector and reward of the
arm pulled at step t. Let xn = (x1, ..., xn) be the sequence (or allocation) of feature vectors corresponding
to the pulled arms and let rn = (r1, ..., rn) be the corresponding sequence of rewards. By treating the
sequence xn as input feature vectors and rn as output response variables, we can apply Ordinary Least
Squares (Lemma 1) to estimate the value of θ∗:

θ̂n = A−1
xn bxn (2)

Here Axn =
∑n
t=1 xtx

T
t ∈ Rd×d is simply the Information matrix of the linear system (XTX if we were to

stack the feature vectors xi as rows in matrix X), bxn =
∑n
t=1 xtrt ∈ Rd and θ̂n is the OLS estimate of θ∗

obtained after n arm pulls. Now, through Azuma’s inquality [12], the prediction error for this estimate can
be bounded in high probability by:

P(∀n ∈ N,∀x ∈ X, |xT (θ∗ − θ̂n)| ≤ c||x||A−1
xn

√
log(K2/δ)) ≥ 1− δ (3)

In the above probability bound, K is the number of different arms of the linear bandit problem, c is a constant
and n is the number of arms pulled (i.e. the number of data points used in the regression). δ ∈ (0, 1) is the
user-selected confidence parameter, and ||x||A−1

xn
is the induced vector norm in the matrix space A−1

xn (For a

positive semidefinite matrix A and vector x, ||x||A =
√
x′Ax). This bound on the estimation error of θ̂n will

be readily used in the following sections for the sample complexity required to identify the optimal arm.

2.2 Oracle strategy

In this section we present a strategy from Soare et al. [11] for selecting which arms of the linear bandit
to sample in order to identify the optimal arm (with high probability) in a bounded number of steps. In
this strategy, the sequence of which arms to sample is chosen a priori (before starting the bandit game, and

Lecture 7: Regression 15

before observing any rewards). The strategy, however, depends on the existence of an ”oracle” with access
to the true parameter vector θ∗ that we can query. As it turns out, the strategy developed here can instead
of θ∗ be used with parameter estimates θ̂n and still achieve a good upper bound on the sample complexity.

2.2.1 Stopping criterion

Let us define C(x) = ∩x̃∈X{θ ∈ Rd, (x− x̃)T θ ≥ 0} as the set of parameters θ for which the arm with feature
vector x is optimal. It is easy to see that this definition is correct by observing the condition (x− x̃)T θ ≥ 0,
which implies that given θ, feature vector x leads to higher reward than all other feature vectors x̃.

Now, suppose we had an oracle with access to C(x∗), which is the set of all parameters θ where the optimal
arm x∗ (for θ∗) is still optimal (θTx∗ ≥ θTx for ∀x). Also assume that we can build a confidence set S∗(xn) of
likely parameter choices θ around θ∗ such that with probability ≥ 1−δ, for any possible sequence of arm pulls
xn it includes our estimate θ̂n. We can use this confidence set together with C(x∗) to determine whether we
have identified the optimal arm x∗. Specifically, if the confidence set S∗(xn) is completely contained within
C(x∗) (i.e. S∗(xn) ⊆ C(x∗)), we have successfully identified the optimal arm and can hence stop. The

reason for this is that if all possible values of θ̂n (which is our confidence set S∗(xn)) lies completely within

the set of parameters where x∗ is optimal (C(x∗)), then clearly argmaxx∈Xθ̂
T
nx will return the optimal arm

x∗ for any θ̂n ∈ S∗(xn). Figure 3 further illustrates the intuition behind this stopping condition.

Figure 3: The three sets C(x1), C(x2) and C(x∗) corresponding to the arms x1, x2, x∗, which partition the
space of possible parameters θ. When the confidence set S∗(xn) around θ∗ (colored in pink) is completely
contained in C(x∗), there is no ambiguity regarding which arm is the optimal one, since all possible parameter

estimates θ̂n in the confidence set S∗(xn) agree it is x∗.

2.2.2 Arm selection strategy

From the previous section we found out that we want the confidence set S∗(xn) to become contained within
C(x∗), as this implies we have identified the optimal arm (the stopping condition). Then, clearly, our strategy
should be to shrink S∗(xn) into C(x∗) with as few arm pulls as possible. The condition S∗(xn) ⊆ C(x∗)
implies that for every possible θ in our confidence set S∗(xn), the reward θTx should be smaller than θTx∗

for all arms x. If we define Y∗ = {y = x∗ − x,∀x ∈ X} as the set of d-dimensional vectors pointing to the
optimal arm x∗ and ∆(y) = ∆(x∗, x) = (x∗−x)T θ∗ as the reward gap of x, the inequality can be written as:

θTx ≤ θTx∗, ∀x ∈ X,∀θ ∈ S∗(xn)

0 ≤ θT (x∗ − x)

θT∗ (x∗ − x) ≤ θT (x∗ − x) + θT∗ (x∗ − x)

θT∗ (x∗ − x)− θT (x∗ − x) ≤ θT∗ (x∗ − x)

yT (θ∗ − θ) ≤ ∆(y), ∀y ∈ Y,∀θ ∈ S∗(xn)

Lecture 7: Regression 16

Hence, if yT (θ∗ − θ) ≤ ∆(y) for all y and θ, we have identified the optimal arm x∗ = argmaxx∈Xθ
Tx for any

θ ∈ S∗(xn). We can take advantage of the upper bound on the estimation error defined in Equation 3 to
construct a confidence set that fulfills this inequality with high probability. Specifically, define S∗(xn) as:

S∗(xn) = {θ ∈ Rd,∀y ∈ Y∗, yT (θ∗ − θ) ≤ c||y||A−1
xn

√
log(K2/δ)} (4)

From Equation 3, with probability ≥ 1− δ, the inequality yT (θ∗ − θ) ≤ c||y||A−1
xn

√
log(K2/δ) holds. Hence,

our stopping condition is met once the upper bound c||y||A−1
xn

√
log(K2/δ) on our confidence set is smaller

than the RHS of the stopping condition (∆(y)):

c||y||A−1
xn

√
log(K2/δ) ≤ ∆(y) (5)

To make this condition hold as quickly as possible, the oracle strategy should simply select a sequence of
arm pulls xn that minimizes the ratio of the LHS and RHS. This can be simplified to:

x∗n = argmin
xn

max
y∈Y∗

||y||A−1
xn

∆(y)
(6)

Having defined an oracle strategy, we want to find out the minimum number of samples (or arm pulls) needed
to achieve the oracle stopping criterion defined previously. However, the discrete optimization problem in
Equation 6 is hard to solve and can instead be lower bounded by a ’soft-allocation’ formulation, defined as:

HLB = min
λ∈Dk

max
y∈Y∗

||y||2
Λ−1
λ

∆2(y)
(7)

Here, λ ∈ Dk denotes the proportions of pulls to an arm x, Dk denotes the simplex X and Λλ =
∑n
t=1 λItxtx

T
t

(It is the index of the arm pulled at time t). The sample complexity of the oracle strategy (denoted N∗) is

N∗ = c2HLBlog(K2/δ)

where K is the number of arms, c is a constant and δ is the confidence level that the best arm will be
identified. A more thorough derivation of this bound can be found in [11]. While it may currently seem
unnecessary to have an oracle strategy and an oracle lower bound for sample complexity, we will soon see
that this provides a good benchmark to compare the realistic algorithms against.

2.3 Static allocation strategies

While the oracle strategy provides a theoretical foundation for the complexity of best-arm identification in
Linear Bandits, it is in practice not applicable as an algorithm for solving the identification problem. This
is because the oracle strategy assumed we had access to the true (unknown) parameter vector θ∗ as well as
the set of direction vectors y = x∗ − x of Y∗ which point toward the optimal arm x∗. Hence, we first need
to re-define the stopping criteria (Equation 5) in terms of measurable quantities that we have access to.

In the static allocation setting, where our algorithm determines the most optimal sequence xn of arms to
pull a priori (before starting the bandit game), [11] defines the empirical stopping criteria as follows: Let

Ŝ(xn) be a high-confidence set around the parameter estimate θ̂n of possible choices for parameter values
where the true parameter vector θ∗ ∈ Ŝ(xn) with probability ≥ 1− δ. Furthermore, we re-use the definition
of C(x) as the set of possible parameters θ for which the arm with feature vector x is optimal. Now, if
there exists some arm x ∈ X such that Ŝ(xn) ⊆ C(x), the stopping condition is met, because all possible
parameter choices in our confidence set Ŝ(xn) all agree that x = x∗ is the optimal arm. Since we defined
Ŝ(xn) to contain the true parameter vector θ∗ with probability at least 1− δ, it implies that the probability

of our predicted optimal arm argmaxx∈Xθ̂n
T
x not being optimal is at most δ (P(argmaxx∈Xθ̂n

T
x 6= x∗) ≤ δ).

Lecture 7: Regression 17

Similar to how we re-wrote the stopping condition for the oracle strategy, let us formulate the stopping
condition Ŝ(xn) ⊆ C(x) as an inequality. First define the empirical reward gap between two arms as

∆̂n(x, x̃) = (x− x̃)T θ̂n. The empirical stopping criteria can then be re-written as:

∃x, ∀x̃ ∈ X,∀θ ∈ Ŝ(xn), (x− x̃)T θ ≥ 0 (8)

⇔ ∃x, ∀x̃ ∈ X,∀θ ∈ Ŝ(xn), (x− x̃)T (θ̂n − θ) ≤ ∆̂n(x, x̃) (9)

Equation 8 intuitively captures the stopping condition by stating that if there exists some arm x such that,
for all other arms x̃ and all possible choices of the parameter θ in our confidence set Ŝ(xn), x has the highest
expected reward, then x must be the optimal arm and we can successfully stop. Equation 9 is merely a
reformulation of Equation 8 that expresses the inequality in terms of the directions (x− x̃)T (θ̂n − θ) (where
x− x̃ is a direction vector) and the empirical reward gaps ∆̂n(x, x̃). Based on this inequality, we can again
take advantage of Azuma’s inequality (Equation 3) to construct our confidence set Ŝ(xn) of possible choices
for parameter θ:

Ŝ(xn) = {θ ∈ Rd,∀x ∈ X,∀x̃ ∈ X, (x− x̃)T (θ̂n − θ) ≤ c||x− x̃||A
x
−1
n

√
log(K2/δ)} (10)

This confidence set includes with probability ≥ 1 − δ the true parameter vector θ∗. Again similar to the
oracle strategy, we can now state that the stopping condition holds whenever c||x− x̃||A

x
−1
n

√
log(K2/δ) (the

upper bound on our confidence set Ŝ(xn)) is lesser than the empirical reward gaps ∆̂n(x, x̃) for some arm
x and all other arms x̃ (the reward gap was the upper bound on the stopping condition in Equation 9).
Written compactly, the empirical stopping condition becomes:

∃x, ∀x̃ ∈ X, c||x− x̃||A
x
−1
n

√
log(K2/δ) ≤ ∆̂n(x, x̃) (11)

2.3.1 G-allocation strategy

Recall the G-optimal design criterion defined for Linear experimental design in Section 1.2 of this script.
For this criterion, we minimized the function fG(X) = max diag(X(XTX)−1XT), which is the maximum
diagonal element of the Hat matrix X(XTX)−1XT , where X is our data matrix of input feature vectors and
the minimization is done over the possible rows to include inX. We motivated its usefulness by observing that
the criterion in fact minimizes the worst possible prediction variance. Now, we can easily relate this quantity
to our stopping condition of Equation 11, by remembering that matrix Axn is defined as Axn =

∑n
t=1 xtx

T
t

over the arms xt played in the sequence xn. That is, if we were to stack our played feature vectors xt in a
matrix X, Axn = XTX and ||x||A−1

xn
= diag(x(XTX)−1xT). Hence, we can formulate G-optimal design in

our linear bandit notation as the sequence xn of played arms which minimize the maximum value of ||x||A−1
xn

:

xGn = argmin
xn

max
x∈X
||x||A−1

xn
(12)

Returning to the problem of best-arm identification for linear bandits, we make two observations. First, we
note that the LHS of the stopping condition of Equation 11 depends on the term ||x − x̃||A

x
−1
n

. Second,

we note that for any pair of arms (x1, x2), it is always true that ||x1 − x2||A−1
xn
≤ 2 maxx∈X ||x||A−1

xn
. Hence,

minimizing maxx∈X ||x||A−1
xn

will help us achieve the stopping condition by minimizing an upper bound.

Upon further inspection, this is identical to the G-optimality criterion and hence methods used to solve the
G-optimal design problem can be directly used here. We call this strategy G-allocation.

Practical implementation of the G-allocation strategy

The G-allocation problem is a combinatorial optimization problem which we previously have argued is NP-
hard. There are however approximation methods for achieving G-optimal design. [11] mentions two particular
approaches, namely i) continuous relaxation strategy and ii) greedy incremental arm selection strategy.

Lecture 7: Regression 18

The continuous relaxation problem is defined as:

λG = arg min
λ∈Dk

max
x∈X
||x||Λ−1

λ
(13)

Having obtained the optimal λG, which is a K-dimensional vector (K is the number of arms) of proportions
of arm pulls, the sequence xn can be approximated by (roughly speaking) rounding the proportion vector
λG into a vector of integers denoting the number of times an arm should be pulled. For details of efficient
rounding procedures, we refer the reader to [11]. The next approximation method is the greedy incremental
arm selection strategy, which greedily chooses the next arm to include in the sequence of arms to play by
locally maximizing the G-optimality criterion only for the next arm, given the previous history of played
arms. The t-th iteration of this algorithm can be expressed as:

xt = argmin
x∈X

max
x̃∈X

x̃T (Axt−1
+ xxT)−1x̃ (14)

For both methods, the approximation is bounded by a factor (1 + β) from the optimal value, where β is a
constant. This leads to the following probabilistic claim about the sample complexity for the G-allocation
strategy (denoted NG):

P[NG ≤ 16c2d(1 + β)log(K2/δ)

∆2
min

∧ argmaxx∈X
(
θ̂TNGx

)
= x∗] ≥ 1− δ (15)

Here c is a constant, K is the number of arms, d is the feature vector dimensionality of the arms, θ̂NG
is the parameter vector estimate obtained through performing OLS on the arms (feature vector-reward
pairs) sampled by the G-allocation strategy, and δ is the user-supplied confidence level that the best arm
is identified. The left side of the intersection bound limits the sample complexity NG, while the right side
states that the predicted best arm argmaxx∈X(θ̂TNGx) is indeed the optimal arm x∗.

2.4 Dynamic allocation strategies

Using a dynamic allocation strategy, that is, a strategy which adapts to the observed rewards online, we
can significantly decrease the sample complexity to approach the oracle solution. The idea is to adapt the
allocation strategy to discard suboptimal arms online. Now we only keep track of the potentially optimal
arms X̂(xn) (where xn is the allocation sequence of arm pulls) and discard any others using the test below.

Here we use the empirical reward gap ∆̂n(x, x̃) = (x− x̃)T θ̂n, where θ̂n is our estimate for θ∗.
Arm x ∈ X is dominated (i.e. it is with probability ≥ 1− δ suboptimal compared to the other arms) when:

∃x̃ ∈ X s.t. c||x̃− x||A−1
xn

√
log(K2/δ) < ∆̂n(x̃, x) (16)

The condition states that when the upper confidence bound on the reward of arm x is strictly smaller than
the reward gap to some other arm x̃, x is suboptimal with high probability. This bound however, which is
derived from Equation 3 (see Proposition 1 in [11] for more details), is only valid when the sequence xn of
arms to pull is determined a priori (before pulling any arms). As soon as we start choosing (or discarding)
arms adaptively based on previous rewards, the bound does no longer hold. Consequently, [11] derives
the following adaptive upper bound on the prediction error with regularizer η and Ãηxn = ηId + Axn (see
Proposition 2 in [11] for more details). With probability ≥ 1− δ, the following bound holds:

|xT θ∗ − xT θ̂n| ≤ ||x||(Aηxn)−1

(
σ

√
d log

(
1 + nK2/η

δ

)
+ η1/2||θ∗||

)
(17)

Here d is the feature vector dimensionality of the arms, η is a regularizing constant, σ2 is the variance of the
noise observed in the rewards, n is the number of arms pulled and K is the number of arms. Finally, note
that this bound holds when xt, the arm sampled at time t, depends on (x1, r1, ..., xt−1, rt−1). Comparing

Lecture 7: Regression 19

Equation 17 to 3, with an adaptive strategy the sample complexity scales linearly with the dimensionality
d. This would suggest there is actually no advantage in using an adaptive strategy. The solution is to split
the algorithm into phases during which we do not change X̂(xn), the set of arms that we are still considering
after having sampled the arms in the sequence xn. This way we can treat the strategy as quasi-static (the

sequence xn of arms to sample is chosen statically between phases). Since X̂(xn) is only changing between
phases, it allows us to approach the oracle sample complexity of Equation 7. For the jth phase of length
nj (nj arms are sampled during this phase), given the set of remaining non-dominated arms X̂j after phase
j − 1, the allocation implemented at phase j is:

xjnj = argmin
xnj

max
x,x̃∈X̂j

||x− x̃||A−1
xnj

(18)

The motivation for this allocation rule is that if we minimize the maximum norm ||x− x̃||A−1
xnj

between any

pair of arms x, x̃, we are directly shrinking the upper bound in the stopping condition of Equation 17. At
the end of the phase, we re-estimate the parameter vector θ̂n based on the sequence of sampled arms and
use θ̂n together with Equation 16 to discard arms from X̂j .

Now we must choose a good phase length because if the phase is too short, the estimate of θ̂n will not be
good enough to discard an arm. On the other hand, if the phases are too long, we do not take advantage
of the adaptivity. We therefore choose a phase length nj such that the uncertainty of all the directions of
interest decrease by a factor α ∈ (0, 1). Using the objective ρj(λ) = maxx,x̃∈X̂j ||x− x̃||

2
Λ−1
λ

, [11] defines:

nj = min

{
n ∈ N :

ρj(λxjn)

n
≤ αρj−1(λj−1)

nj−1

}
(19)

where xjn is the allocation defined in Equation 18, λj−1 is the allocation performed at phase j−1 (i.e. xj−1
nj−1

),
nj−1 is the number of arms sampled at phase j−1 and N is the maximum number of arm pulls we consider.

At the beginning of the bandit game, θ̂n is very uncertain and as a result, a large portion of the sample
complexity will come from discarding sub-optimal arms. The remaining component of the complexity is
simply the same as for the oracle strategy. Performing the adaptive allocation strategy with a β-approximate
method (as defined in Section 2.3.1), the resulting overall sample complexity (denoted N) would be as follows:

P

[
{N ≤

(1 + β) max
{
M∗, 16

α N
∗}

log(1/α)
log

(
c
√

log(K2/δ)

∆min

)
} ∧ {argmaxx∈X̂n θ̂

T
nx = x∗}

]
≥ 1− δ (20)

Here N∗ is the oracle complexity, M∗ is a term originating from the arm elimination process that depends
on how distinguishable two arms are (in terms of their feature vectors), c, α, β are constants, ∆min is the
minimum reward gap between two arms, K is the number of arms and δ is the user-supplied confidence
level that the best arm is identified. The left side of the intersection bound limits the sample complexity
N , while the right side ensures that the predicted optimal arm argmaxx∈X̂n θ̂

T
nx is indeed optimal. Notice

that the sample complexity N for the adaptive allocation strategy does not depend on the feature vector
dimensionality d, which is a very powerful result as it allows us to handle arbitrarily high-dimensional Linear
Bandit problems with little to none added complexity.

In conclusion, we showed that in the static setting where we choose which arms to pull before starting the
bandit game, the best-arm identification problem in Linear bandits can be reduced to G-optimal design.
However, with such a strategy we incur a sample complexity that scales linearly with d, the feature vector
dimensionality. Instead, we should use an adaptive allocation strategy by iteratively discarding arms based
on previously observed rewards. With such a strategy, we showed that the sample complexity is independent
of the dimensionality of the feature vectors.

Lecture 7: Regression 20

References

[1] Garvesh Raskutti and Michael Mahoney. A statistical perspective on randomized sketching for ordinary
least-squares, 2014.

[2] Press H. William et. al. Numerical recipes in c: The art of scientific computing, 1992.

[3] Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal design of experiments via
regret minimization. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 126–
135, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[4] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, March
2004.

[5] Friedrich Pukelsheim. Optimal Design of Experiments (Classics in Applied Mathematics) (Classics in
Applied Mathematics, 50). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2006.

[6] Michael W. Mahoney. Randomized algorithms for matrices and data, 2011.

[7] Petros Drineas, Michael W. Mahoney, S. Muthukrishnan, and Sarl. Faster least squares approximation.
Numer. Math., 117(2):219–249, February 2011.

[8] Mert Pilanci and Martin J. Wainwright. Iterative hessian sketch: Fast and accurate solution approxi-
mation for constrained least-squares. J. Mach. Learn. Res., 17(1):1842–1879, January 2016.

[9] Sarah Filippi, Olivier Cappé, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The gener-
alized linear case. In Proceedings of the 23rd International Conference on Neural Information Processing
Systems - Volume 1, NIPS’10, pages 586–594, USA, 2010. Curran Associates Inc.

[10] Yasin Abbasi-Yadkori, Dvid Pl, and Csaba Szepesvri. Improved algorithms for linear stochastic bandits.
In Advances in Neural Information Processing Systems 24, pages 2312–2320, 2011.

[11] Marta Soare, Alessandro Lazaric, and Rémi Munos. Best-arm identification in linear bandits. In
Advances in Neural Information Processing Systems, pages 828–836, 2014.

[12] Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical Journal,
Second Series, 19(3):357–367, 1967.

