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1 Motivation

Before we define the non-stochastic best arm identification problem, we will start with a couple of motivating
examples. Applications for this type of bandit problem often come with various assumptions that differ from
previous bandit problems we have encountered, so starting with the examples is the easiest way to point out
these differences.

1.1 Non-Convex Optimization

Non-convex optimization is one possible application for non-stochastic best arm identification. We begin by
explaining the problem:

Example 1. Imagine that we are solving a non-convex optimization problem on some (multivariate)
function f using gradient descent. Recall that gradient descent converges to local minima. Because
non-convex functions may have multiple minima, we cannot guarantee that gradient descent will
converge to the global minimum. To resolve this issue, we will use random restarts, the process of
starting multiple instances of gradient descent from random locations and outputting the least-valued
minimum found. If an instance of gradient descent is obviously not going to converge quickly to a
low-valued minimum, that instance should be stopped early in favor of other, more-promising ones.

We can pose this example as a non-stochastic pure exploration multi-armed problem: assume that we
will run n different instances of gradient descent, each with a different starting location xi,0 for i ∈ [n]. We
also define xi,ti to be the value of the i-th gradient descent instance after ti iterations. Now we can make a

bandit arm i for each instance and set its loss after being pulled ti times to be `i,ti , f(xi,ti).
We assume that arms are completely unrelated, so knowledge about one arm does not transfer at all to

other arms. Although this may not be entirely true, in practice it is often difficult to determine relationships
between arms (we wouldn’t need gradient descent if we could analytically determine such information).

This bandit problem is non-stochastic since there is no randomness when incurring the loss for each arm—
the loss function is deterministic. The process by which we choose arms (i.e. choosing starting locations for
gradient descent instances) is random, but this randomness is not relevant since it occurs before the problem
starts. Furthermore, our adversary is oblivious: the loss function does not depend on our previous sequence
of arm pulls. This is good—adaptive adversaries are very difficult to reason about; remember that we made
the same obliviousness assumption for the non-stochastic regret minimization.

In addition, the problem involves pure exploration because we just want to find the arm corresponding
to the gradient descent instance which converges to the global minimum (i.e., the arm whose loss converges
to the least value). We want to minimize the total number of arm pulls required to determine this best
arm, and do not need to minimize the losses incurred along the way as we would in a regret minimization
problem.

1.2 Hyperparameter Optimization

Best arm identification for non-stochastic infinitely-armed bandits can also be applied to hyperparameter
optimization, where we attempt to find the best hyperparameters for some supervised machine learning
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model on some training data.

Example 2. In supervised learning, we are essentially trying to model some unknown bivariate
distribution PX,Y representing real-world data. We will call the variables X and Y , and their sample
spaces X and Y. In particular, we want to find a mapping function f : X → Y that, given the X
value from a pair sampled from PX,Y , can predict the Y value. More formally, we want to find an f
that minimizes E(X,Y )∼PX,Y

[L(f(X), Y )] for some arbitrary loss function L : Y ×Y → R. Here Y ×Y
denotes the Cartesian product of Y with itself. Since we do not know PX,Y , we approximate this
expected loss by averaging the individual losses on a validation dataset (validation set) of k known
pairs of data V , {(xj , yj)}kj=1 sampled i.i.d. from the distribution. To help us find this mapping

function, we sample a training dataset (training set) of another m pairs T , {(xj , yj)}k+m
j=k+1 from

PX,Y . If the validation set is the data we will use to evaluate the mapping function, the training set
is the data used to find the function—we keep these separate because using the same data to both
create and evaluate a mapping function can result in a function with good performance (i.e., small
loss) on that dataset but poor performance on other data.

We consider mapping functions output by some chosen algorithm A : {(X ,Y)}×Θ×N→ {f : X →
Y}, which takes as input the training set T , some hyperparameters θ ∈ Θ, and a number of training it-
erations ti to output a mapping function. (The algorithm A may also be randomized.) Our task, then,

is to find the hyperparameters θ that minimize the mean validation loss: arg min
θ∈Θ

1
k

k∑
j=0

L(fθ,ti(xj), yj)

where fθ,ti , A(T , θ, ti) [1].

To frame this as a bandit problem, we create an arm i for each configuration of n algorithm hyper-
parameters θi ∈ Θ that we wish to explore and define its loss after ti training iterations to be `i,ti ,

1
k

k∑
j=1

L(fθi,ti(xj), yj) (i.e., the mean validation loss for the function output by A after ti iterations of train-

ing).
Note that most common algorithms A have infinitely many possible hyperparameter configurations, or

so many that we do not want to explore every single one, so we will only explore a subset of all possible
configurations. It is usually too difficult to determine a relationship between the hyperparameter configura-
tion of an arm and its losses, so we will again assume that the losses are independent of the configuration.
Combined with the fact that we only explore a subset of all possible arms, this means that we cannot find
the best possible configuration, and will have to settle for finding merely a very good one.

Generally, it is reasonable to assume that the loss for each arm will converge to some value over time,
which we will refer to as the limit loss. We just want to find the arm with the best limit loss, and do not
need to minimize losses incurred by other arms in the process, so this is again a pure exploration problem.

Again, the adversary is non-stochastic, since both the loss function L and the fθ,ti functions output by
A are deterministic. The adversary is also oblivious: neither the loss function L nor the fθ,ti functions use
any information about the player’s actions.

1.3 Problem Statement

Now that we have some concrete examples of non-stochastic best arm identification problems, we can identify
and justify the aforementioned differences from previous bandit problems we have encountered, and then we
can outline this type of bandit problem.

First, although both problems are non-stochastic, our notion of a “best” arm assumes that the loss of
each arm i converges to a limit loss value νi as it gets pulled more times (i.e., νi , limti→∞ `i,ti); this
means that the losses cannot be completely arbitrary as in previous non-stochastic bandit problems. This
assumption is logical in the context of non-convex optimization, since gradient descent will converge to a
local minimum; in hyperparameter learning, whether the losses converge will depend on the algorithm A
used, but it generally makes sense to assume convergence.

Second, in both applications, there may be an infinite number of possible arms. In convex optimization,
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the arms are defined by the gradient descent starting location; since the domain of our function f is presum-
ably continuous, there are an infinite number of possibilities. In hyperparameter optimization, the number
of possible hyperparameter configurations can also be infinite, depending on the algorithm A. Obviously, we
cannot actually explore an infinite number of arms in a finite amount of time, so we must choose some finite
subset of n arms to explore. The optimal number of arms is not known in general and is something we will
have to find. The method of choosing n is described in section 1.4; first we will focus on the finitely-armed
case, where we are given the n arms.

Additionally, there is a minor change that affects notation: losses for each arm are determined based on
the number of times that specific arm has been pulled ti, instead of the total number of arm pulls made t.
In both examples, the loss of each arm i is determined by a function of some state, which does not change
when other arms are pulled. For convex optimization, the function is f and the state is the current location
xi,ti . For hyperparameter optimization, the function is A(T , θ, ·) (i.e., a partial application of A) and the
state is simply ti. Compare this to another example such as regret minimization when choosing the most
accurate weather forecast. In that example, each weather forecast is a bandit arm, the loss is the difference
from the real weather, and each day is an iteration of the bandit. When we choose an arm whose loss to
observe and receive for one iteration, the losses for all arms change since both the weather and the weather
forecasts will be different for the next day.

Given these differences, here is the general structure of the non-stochastic finitely-armed best arm iden-
tification problem:

Non-Stochastic Finitely-Armed Best Arm Identification

Input:

total number of pulls allowed (i.e., budget) B

number of arms to explore n

losses `i,ti for each arm i ∈ [n] after ti ∈ N pulls, where losses converge to νi , lim
ti→∞

`i,ti

For t = 1, 2, · · · , B
Player chooses It ∈ [n]

Player observes loss `It,tIt , where tIt is the number of times It has been chosen.

Output: Player’s final choice IB and its final loss `IB ,tIB

1.4 Hyperband

Hyperband is an algorithm for solving the non-stochastic infinitely-armed best arm identification problem by
using an algorithm for the finitely-armed case as a subroutine [2]. The idea is to repeatedly solve the finite
case while doubling the budget B or number of arms n with each iteration, such that we will eventually find
a good combination without wasting too much effort.

The algorithm has no set stopping condition, since once again we can never be certain that we have found
the “best” arm. We might stop the algorithm at some point when the losses `̂

i,b 2k−1
l c converge as k and l

increase such that the arm it has found is “good enough” (k and l as in the Hyperband algorithm below), or
perhaps when the values of k and l cause the algorithm to exceed our limits for computing time and memory.

1.5 Finitely-Armed Best Arm Identification

We can also apply the Hyperband technique, created for infinitely-armed bandits, to finitely-armed bandits.
Hyperband involves choosing some subset of all possible arms to explore; this can be useful for finitely-armed
bandits if the number of arms is finite, but very large. By picking a subset, we can make progress on the
problem with a number of pulls independent of the number of arms. (Compare this to most multi-armed
bandit algorithms, such as UCB, which first pull each arm once.) Note that we can also use this process for
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Hyperband

Assume we have some algorithm Finite Case to solve the finitely-armed case of the
non-stochastic best arm identification problem.

Input: non-stochastic infinitely-armed best arm identification problem with predetermined
losses for each arm

For k = 1, 2, . . .

For l ∈ N s.t. k − l ≥ log2(l)

Set budget Bk,l = 2k

Set number of arms nk,l = 2l

Randomly choose nk,l arms and denote the losses `i,ti for the ith arm after ti pulls

îk,l, `
î,b 2

k−1
l
c
← Finite Case (Bk,l, nk,l, all `i,ti for i ∈ [n] and ti ∈ N)

Output: îk,l, `̂
i,b 2

k−1
l
c

for some k, l ∈ N s.t. k − l ≥ log2(l) as determined by the user

stochastic problems, since stochastic problems fit into the non-stochastic framework. (By definition, non-
stochastic problems are a superset of stochastic problems. We can imagine an oblivious adversary whose
choice of losses is equivalent to the values sampled from some random distribution.)

2 Successive Halving

To solve the finite-case problem, we will be using Successive Halving, an algorithm originally proposed for
the stochastic setting [3], which happens to generalize to the non-stochastic case. As its name suggests, the
algorithm functions by successively discarding the worst-performing half of arms, such that the set of arms
Sk being considered on each round k halves in size until only one arm is left. In the Hyperband paper [2],
the algorithm was refined to find merely an ε-good arm, as we will show and prove in Theorem 1. However,
the original proof is very complicated, so we give a much simpler proof focusing on the finitely-armed case
where the total budget B and number of arms n are given [1].

Successive Halving

Input:

total number of pulls allowed (i.e., budget) B

number of arms to explore n

losses `i,ti for each arm i ∈ [n] after ti ∈ N pulls, where losses converge to νi , lim
ti→∞

`i,ti

Initialize: S0 , [n] = {1, 2, . . . , n}.
For k = 0, 1, . . . , dlog2(n)e − 1

Pull each arm in Sk for rk = b B
|St|dlog2(n)ec times.

Keep the best b|Sk|/2c arms in terms of the rkth observed loss as Sk+1.

Output : î, `̂
i,b

B/2
dlog2(n)e c

where î = Sdlog2(n)e

Before we jump into the analysis of the algorithm, we will define a monotonically non-increasing envelope
function γ : N→ R that satisfies

γ(t) > |`i,t − νi| , ∀ i ∈ [n], t ∈ N . (1)

The function γ(t) is guaranteed to exist, since the losses must converge in order for the limit losses ν1, . . . , νn
to exist. We define γ(t) as a uniform measure of the behavior and rate of convergence of the sample losses
to the limit losses, and it bounds the deviation from the limit value as t increases.
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Note that although our notion of “best” is based on and thus requires the existence of limit losses, we
can extend the algorithm to other loss sequences by using a different metrics for “best.” In essence, this
involves mapping the original loss sequences {{`i,ti}ni=1}∞ti=1 to corresponding loss sequences {{`′i,ti}

n
i=1}∞ti=1

that do have limit losses. For example, if each arm has losses bounded from below, we can define the best
arm to be the one with the lowest lower bound and use new losses `′i,ti , inf1≤j≤ti `i,j in the algorithm.

To assess the theoretical guarantees of the proposed Successive Halving algorithm, the following theorem
guarantees that if the algorithm is given enough budget and if we know the limit losses of each arm, the
limit loss of the returned arm is at most ε away from the optimum.

Theorem 1. Assume without loss of generality that ν1 ≤ · · · ≤ νn. For any ε > 0 let the sufficient budget
for Successive Halving zSH be

zSH , 2dlog2(n)e max
i=2,...,n

i (1 + γ−1
(
max

{
ε
4 ,

νi−ν1
2

})
)

≤ 2dlog2(n)e
(
n+

∑
i=1,...,n

γ−1
(
max

{
ε
4 ,

νi−ν1
2

}) )
,

where γ−1(y) , min{t ∈ N : γ(t) ≤ y} is an inverse for the γ function.

If the Successive Halving algorithm is run with any budget B > zSH then an arm î is returned that
satisfies ν̂i − ν1 ≤ ε/2. Moreover, |`

î,b
B/2

dlog2(n)e c
− ν1| ≤ ε.

Proof. First assume ν1 < ν2 so that 1 is the single best arm; the case where ν1 = ν2 will be covered later.
We first find a lower bound for the number of pulls rk at each stage k as a function of γ−1. Then, we prove
that if r1 is sufficiently large at each stage, we never discard arm 1. Finally, we show that even if r1 is not
sufficiently large and we end up discarding arm 1, the lower bound guarantees that the arms remaining in
Sk+1 all have losses at most ε/2 away from ν1. Assume that B ≥ zSH . Then we have for each round k

rk =

⌊
B

|Sk|dlog2(n)e

⌋
≥ B

|Sk|dlog2(n)e
− 1

≥ zSH
|Sk|dlog2(n)e

− 1

≥ 2

|Sk|
max

i=2,...,n
i

(
1 + γ−1

(
max

{
ε

4
,
νi − ν1

2

}))
− 1

≥ 2

|Sk|
(b|Sk|/2c+ 1)

(
1 + γ−1

(
max

{
ε

4
,
νb|Sk|/2c+1 − ν1

2

}))
− 1

≥
(

1 + γ−1

(
max

{
ε

4
,
νb|Sk|/2c+1 − ν1

2

}))
− 1 (since b|Sk|/2c ≥ |Sk|/2− 1)

= γ−1

(
max

{
ε

4
,
νb|Sk|/2c+1 − ν1

2

})
.

First we show that `i,r− `1,r > 0 for i > 1 and any number of pulls number of pulls r ≥ τi , γ−1
(
νi−ν1

2

)
.

By the definition of γ, we have for all j ∈ [n] that |`j,tj − νj | < γ(tj) ≤ νj−ν1
2 where the last inequality holds

for tj ≥ τj . Thus, for r ≥ τi we have

`i,r − `1,r = `i,r − νi + νi − ν1 + ν1 − `1,r
= `i,r − νi − (`1,r − ν1) + νi − ν1

> −2γ(r) + νi − ν1

≥ −2
νi − ν1

2
+ νi − ν1

= 0.
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Note that by the assumption the νi limits are non-decreasing in i so that the τi values are non-increasing in
i.

Fix a round k and assume 1 ∈ Sk (note, 1 ∈ S0). The above calculation shows that

rk ≥ τi =⇒ `i,rk > `1,rk . (2)

This means that if we pull all arms enough times, the best arm will achieve the best loss. Consequently, if
the best arm is discarded in round k, we can draw the following conclusion (1{·} is the indicator function):

{1 ∈ Sk ∧ 1 /∈ Sk+1} ⇐⇒

{∑
i∈Sk

1{`i,rk < `1,rk} ≥ b|Sk|/2c

}
(by the definition of the algorithm)

=⇒

 ∑
i∈Sk\{1}

1{rk < τi} ≥ b|Sk|/2c

 (by Equation 2)

=⇒


b|Sk|/2c+1∑

i=2

1{rk < τi} ≥ b|Sk|/2c

 (for i < j, τi ≥ τj , so 1{rk < τi} ≥ 1{rk < τj})

⇐⇒
{
rk < τb|Sk|/2c+1

}
.

This implies

{1 ∈ Sk ∧ rk ≥ τb|Sk|/2c+1} =⇒ {1 ∈ Sk+1}. (3)

Recalling that rk ≥ γ−1
(

max
{
ε
4 ,

νb|Sk|/2c+1−ν1
2

})
and τb|Sk|/2c+1 = γ−1

(νb|Sk|/2c+1−ν1
2

)
, we examine the

following three exhaustive cases:

• Case 1: 1 ∈ Sk and
νb|Sk|/2c+1−ν1

2 ≥ ε
4 .

In this case, rk ≥ γ−1
(νb|Sk|/2c+1−ν1

2

)
= τb|Sk|/2c+1. By Equation 3 we have that 1 ∈ Sk+1 since 1 ∈ Sk.

• Case 2: 1 ∈ Sk and
νb|Sk|/2c+1−ν1

2 < ε
4 .

In this case rk ≥ γ−1
(
ε
4

)
but γ−1

(
ε
4

)
< τb|Sk|/2c+1. Equation 3 suggests that it may be possible for

1 ∈ Sk but 1 /∈ Sk+1. In the ideal case that 1 ∈ Sk+1, the algorithm continues, and on the next round
either case 1 or case 2 could be true.

Now consider when 1 /∈ Sk+1. Here we show that {1 ∈ Sk ∧ 1 /∈ Sk+1} =⇒ ∀i ∈ Sk+1, νi ≤ ν1 + ε/2.

Let p , min{i ∈ [n] : νi−ν12 ≥ ε
4} = min{i ∈ [n] : νi ≥ ν1 + ε/2}, so p is the arm with the least limit

loss that is not ε-good. Note that p > b|Sk|/2c+ 1 by the criteria of the case, and that

rk ≥ γ−1
( ε

4

)
≥ γ−1

(
νi − ν1

2

)
= τi, ∀i ≥ p.

Thus, by Equation 2 (rk ≥ τi =⇒ `i,rk > `1,rk) we have that arms i ≥ p would always have
`i,rk > `1,rk . We can see from the definition of the algorithm that if we discard an arm, we must also
discard all arms with greater losses. So, if we discard arm 1 in round k, we must also discard all arms
i ≥ p, meaning that only arms j < p can remain in Sk+1. Then, by the definition of p, for all remaining
arms i ∈ Sk+1, νi ≤ max

i∈Sk+1

νi ≤ max
j<p

νj < ν1 + ε/2.

• Case 3: 1 /∈ Sk
Since 1 ∈ S0, there exists some j < k such that 1 ∈ Sj and 1 /∈ Sj+1. For this j, only case 2 is possible
since case 1 would proliferate 1 ∈ Sj+1. However, for case 2, if 1 /∈ Sj+1 then ∀ i ∈ Sj+1, νi ≤ ν1+ε/2.



Lecture 6: Non-stochastic best arm identification 7

Because 1 ∈ S0, we either have that 1 remains in Sk (possibly alternating between cases 1 and 2) for
all k until the algorithm exits with the best arm 1, or there exists some k such that case 3 is true and the
algorithm exits with an arm î such that ν̂i ≤ ν1 + ε/2.

If ν1 < ν2 does not hold, i.e., if there are ties with the optimal loss, arbitrarily breaking the ties the proof
above would still go through with νî ≤ ν1 + ε/2 since the optimal loss itself is unique.

Thus we have shown that νî − ν1 ≤ ε/2. The proof is complete by noting that

|`
î,b

B/2
dlog2(n)e c

− ν1| ≤ |`
î,b

B/2
dlog2(n)e c

− ν̂i|+ |ν̂i − ν1| ≤ ε/4 + ε/2 ≤ ε

by the triangle inequality and because B ≥ 2dlog2(n)eγ−1(ε/4) by assumption.

Remark 1. It is apparent from the proof that in the case where ν1 < ν2, if we define zSH without the ε
4

then by definition we have rk ≥ γ−1
(νb|Sk|/2c+1−ν1

2

)
= τb|Sk|/2c+1 and we rule out Case 2 and thus Case 3,

so that B > zSH assures that î = 1.

In order to show the Successive Halving algorithm is competitive, we prove an analogous sufficient
condition for the budget for the näıve uniform budget allocation strategy, in which we pull each arm in
[n] for B/n times, assuming B/n is an integer for simplicity.

Theorem 2. Assume ν1 ≤ · · · ≤ νn. For any ε > 0, let the sufficient budget of uniform budget allocation
strategy be

zUB , max
i=2,...,n

nγ−1

(
max

{
ε

4
,
νi − ν1

2

})
= nγ−1

(
max

{
ε

4
,
ν2 − ν1

2

})
.

If the uniform budget strategy is run with budget B > zUB then an arm î is returned that satisfies νî−ν1 ≤ ε/2.
Moreover, |`î,B/n − ν1| ≤ ε.

Proof. Assume for simplicity that B is a multiple of n. We consider two cases as in the proof for Theorem
1, and similarly we consider the case where ν1 < ν2 without loss of generality.

• Case 1: 1 ∈ Sk and
νb|Sk|/2c+1−ν1

2 ≥ ε
4 .

In this case, B/n ≥ γ−1
(
ν2−ν1

2

)
= γ−1 max

i=2,...,n

(
νi−ν1

2

)
, then by Equation 2 we have `i,B/n ≥ `1,B/n for

all i = 2, . . . , n and we are done.

• Case 2: 1 ∈ Sk and
νb|Sk|/2c+1−ν1

2 < ε
4 .

In this case, define p , min{i ∈ [n] : νi−ν14 } = min{i ∈ [n] : νi − ν1 ≥ ε/2}, then

B/n ≥ γ−1
( ε

4

)
≥ γ−1

(
νi − ν1

2

)
, ∀i ≥ p.

Thus, by Equation 2 again we have that arms i ≥ p would always have `i,B/n ≥ `1,B/n. For i < p,
νi < ν1 + ε/2 by definition of p.

Thus we have shown that νî − ν1 ≤ ε/2. The rest of the proof is similar to that for Theorem 1.

Remark 2. Again, similar to Remark 1, in the case where ν1 < ν2 if we define zUB without the ε
4 term

then we can rule out Case 2, so that B > zUB assures that î = 1.

Since Theorem 2 a sufficiency statement, it is unclear how it actually compares to the performance of the
Successive Halving algorithm. We now prove a fact which shows that the above result is tight in a worst-case
sense, i.e., if the budget for uniform allocation is insufficient we can always find a setting where the arm
returned has limit loss more than ε/2 away from the optimum.
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Theorem 3. Let î be the arm returned by the uniform budget allocation strategy. Given {νi}ni=1 and
{{`i,ti}ni=1}∞ti=1, let γ0 : N → R+ be defined as γ0(t) , maxi |`i,t − νi|. Then for any ν1 ≤ ν2 ≤ . . . νn
there exist sequences of losses {{`i,ti}ni=1}∞ti=1 such that whenever

B < zUB = nγ−1
0

(
max

{
ε

4
,
ν2 − ν1

2

})
,

we always have lim
t→∞

`i,ti = νi and î 6= 1; furthermore, νî − ν1 > ε/2 if ε < 2(ν2 − ν1).

Proof. Let β(t) : N → R+ be an arbitrary monotonically decreasing function of t with lim
t→∞

β(t) = 0, and

define `1,t1 , ν1 + β(t1) and `i,ti , νi − β(ti) for all i = 2, . . . , n, so γ0(t) = β(t). Thus, for any ε > 0 we
have

î = 1 ⇔ `1,B/n < min
i=2,...,n

`i,B/n

⇔ ν1 + β(B/n) < min
i=2,...,n

νi − β(B/n)

⇔ ν1 + β(B/n) < ν2 − β(B/n)

⇔ β(B/n) <
ν2 − ν1

2

⇒ B ≥ nγ−1
0

(
ν2 − ν1

2

)
≥ nγ−1

0

(
max

{
ε

4
,
ν2 − ν1

2

})
= zUB . (4)

Since this contradicts the assumption, î 6= 1. Since at any time stamp t, for i = 2, . . . , n the loss `i,t is just

νi translated by a common constant, we always have `2,t ≤ · · · ≤ `n,t, and thus î ∈ {j : νj = ν2}. We then
have

νî − ν1 ≤ ε/2 ⇔ ν2 − ν1 ≤ ε/2.

For ε < 2(ν2 − ν1) the last display does not hold and the proof is complete.

Remark 3. By inverting (4) we see that under the same setting, we always have î 6= 1 whenever B <
nγ−1

0 ((ν2 − ν1)/2), as a partial inverse to Remark 2.

Remark 4. Here we proved the theorem using γ0; but by definition, γ(t) > maxi |`i,t − νi| while γ0(t) =
maxi |`i,t − νi|, so for any ε > 0 we can find some γ that is at most ε larger than γ0 at all t, making γ and
γ0 virtually no different in practice.

From the looser bound of zSH in Theorem 1 we see that the sufficient number of pulls for the Successive

Halving algorithm behaves roughly like (n − 1) log2(n) times the average 1
n−1

n∑
i=2

γ−1
(
νi−ν1

2

)
, while the

necessary condition in Theorem 3 behaves like n times the maximum max
i=2,...,n

γ−1
0

(
νi−ν1

2

)
. While γ and γ0

can be arbitrarily close as per Remark 4, the difference between this average and max can be very significant,
e.g. in the case of least squares problems solved with stochastic gradient descent.

In practice, it can be difficult to determine the γ function, and without knowledge of the νi’s, there is no
way to determine the sufficient budget in Theorem 1 a priori. But on the other hand, since the Successive
Halving algorithm is agnostic to the γ function, it is adaptive to it, in the sense that the best arm can be
discovered faster if the losses converge faster. It also has the advantage that γ is not explicitly needed as an
input to the algorithm.

Without knowledge of γ and the νi’s we cannot determine the relationship between νî − ν1 and B
beforehand, but the next Theorem guarantees that the Successive Halving algorithm is not much worse than
the uniform allocation strategy.
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Theorem 4. For a budget B and set of n arms, define îSH and îUB as the unique output arms of the
Successive Halving algorithm and the uniform strategy, respectively. Then

νîSH
− ν1 ≤ blog2(n)c2γ

(⌊
B

ndlog2(n)e

⌋)
,

νîUB
− ν1 ≤ `îUB ,B/n

− `1,B/n + 2γ(B/n) ≤ 2γ(B/n).

Proof. Since arg mini∈S0
νi = 1 and Sdlog2(n)e = {̂iSH} (since half of the arms are pruned in each round),

νîSH
− ν1 = min

i∈Sdlog2(n)e
νi −min

i∈S0

νi

=

dlog2(n)e−1∑
k=0

(
min
i∈Sk+1

νi − min
i∈Sk

νi

)

≤
dlog2(n)e−1∑

k=0

(
min
i∈Sk+1

`i,rk − min
i∈Sk

`i,rk + 2γ(rk)

)
(5)

=

dlog2(n)e−1∑
k=0

2γ(rk)

≤ dlog2(n)e2γ
(⌊

B

ndlog2(n)e

⌋)
. (6)

Note that (5) is obvious by definitions of ν and γ, and the fact that we always keep the arm with the smallest
current loss, and that (6) follows immediately from a trivial lower bound for rk in each step.

The above theorem is a fall-back guarantee for the Successive Halving algorithm and concludes our
analysis of its performance.
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