
CSE599i: Online and Adaptive Machine Learning Winter 2018

Lecture 5: Non-Stochastic Bandits
Lecturer: Kevin Jamieson Scribes: Anran Wang, Beibin Li, Brian Chan, Shiqing Yu, Zhijin Zhou

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Notation

The following notations are widely used in this manuscript for the discussion of multiarmed bandit (MAB)
game:

1. In a bandits machine, t represents time point t. T represents the total play time.

2. It represent the arm pulled at time t. When n represents the number of arms in a bandit machine,
then It ∈ [n] = {1, 2, ..., n}.

3. `i,t ∈ [0, 1] represents the lose of pulling arm i at time t.

4. ∆(i, t) = `i,t represents the gap of benefits if the player pull arm i at time t.

5. gi,t = 1− `i,t represents the gain of pulling arm i at time t.

6. 1{It = i} is an indicator function. When It = i (i.e. i-th arm is pulled at time t), 1{It = i} equals to
one; otherwise, it equals to zero.

7. Total regret the player received in the whole game is R(T) = max
i

T∑
t=1

`It,t −
T∑
t=1

`i,t.

The following definitions are helpful in the manuscript.

Definition 1. Expected regret: E[R(T)] = E
[
max
i

T∑
t=1

`i,t −
T∑
t=1

`It,t

]

Definition 2. Pseudo-regret: R̃(T) = max
i

E
[
T∑
t=1

`i,t −
T∑
t=1

`It,t

]

1 Problem Definition

All the previous bandits problems we analyzed were stochastic, which means the rewards are determined
before the game. However, in the real world, the distribution of the reward Xt usually depends on previous
actions/rewards. For instance, if an online advertisement system (e.g. Google Ads) shows the same type of
ads for a customer (i.e. the system is choosing the same “arm” constantly), then the customer would click
the advertisement less and less often. The definition of non-stochastic bandits is shown below.

1

Lecture 5: Non-Stochastic Bandits 2

Bandit 1: Non-Stochastic Multi-Arm Bandits
Input : number of trials T , and the non-stochastic n-arm bandit machine
Output: Player’s choices I1, I2, · · · , IT , and the regret R(T).

(Ii represents the arm the player has chosen at time i)
for t = 1, 2, · · · , T do

Player chooses an arm It ∈ [n]
Adversary simultaneously chooses losses for each arm (`1,t, `2,t, . . . , `n,t) ∈ [0, 1]n.
Player receives and observes loss `It,t.

end

Total regret R(T) = max
i

T∑
t=1

`It,t −
T∑
t=1

`i,t.

Non-stochastic bandits are sometimes referred to as adversarial bandits, where an adversary is changing
the future rewards for arms. It’s easy to see no matter what deterministic algorithm the player chooses, the
adversary can always design a game to defeat the player such that the player’s algorithm suffers R(T) ≥ T

2 .
For instance, in a two-arm bandit case, the adversary can learn the player’s deterministic algorithm and
predict the player’s choice, and then the adversary can set the rewards of the chosen arm to zero and the
reward of the unchosen arm to one; hence, the total rewards received by the player will be less than or equal
to T/2, but the maximum possible reward is T . A generalized proof for n-arm bandit machine is shown
below.

Theorem 1. A game exists s.t. any deterministic algorithm suffers R(T) ≥ T
2 in an adversarial bandit.

Proof. Because the player’s algorithm f is deterministic, It = f
(
{`Is,s, Is}t−1

s=1

)
, where s is a time point

before time t. This fact means player’s choice at time t depends on all his/her previous actions and observed
losses.

The adversary can choose the strategy for the n arms for each time t:

1. if player chooses It = 1, then the adversary could set `1,t = 0, and `i,t = 1 ∀i 6= 1.

2. if player chooses It 6= 1, then the adversary could set `1,t = 1, and `i,t = 0 ∀i 6= 1.

Because the best reward at each time is 1, the maximum possible losses for this game is
T∑
t=1

`It,t =

T∑
t=1

(1 − 0) = T . On the other hand, the player receive reward 0 at each time, and hence total reward the

player get is: min
i

T∑
t=1

`i,t = 0 ≤ T/2.

So, R(T) ≥
T∑
t=1

`It,t −min
i

T∑
t=1

`i,t = T − T/2 = T/2.

Because the adversary can design a game to make the player suffer at least T/2 regret after game, we have
to use a randomized strategy to surprise the adversary.

In the normal adversarial bandits, the pseudo-regret has no direct interpretation for an adapting adversary
who can change the future rewards for each arm during the game. However, the pseudo regret equals to true
expected regret in an oblivious adversary, where {`i,t}, does not depend on {Is}t−1

s=1. This fact means the
adversary can look at your algorithm but all the losses (lIt,t for ∀t,∀It) in the game must be picked before
the start of the game.

Before the game, the adversary filled out matrix L, where entry Li,t represents the distribution of lose
for arm i at time t. In the stochastic setting, the distribution of lose for each arm won’t change across time
(i.e. Li,t = Li,t′ for ∀i,t,t′); on the other hand, in oblivious adversary, the distribution of lose for each arm
would change over time (i.e. it’s possible Li,t 6= Li,t′). So, under the circumstance of oblivious adversary,
the player should modify its algorithm from stochastic bandit to adapt to the fact that the rewards/losses
from each arm can change.

Lecture 5: Non-Stochastic Bandits 3

2 EXP3 Algorithm

Exponential-weight algorithm for Exploration and Exploitation (EXP3) is then developed to solve the non-
stochastic problem with an oblivious adversary. The term “exponential” comes from the formula wi,t+1 =

exp
(
η
∑t
s=1

˜̀
i,s

)
= wi,t exp

(
−η ˜̀

i,t

)
, where the weight for an arm is updated by the exponential of its

losses. The concept of exponential-weight is widely used in computer science and well explained in [1].
In the following EXP3 algorithm, wi,t represents the weight of arm i at time t, which is used to calculate

and update exponential weights. For simplicity, assume the initial weight for every arm is the same and
wi,1 = 1 for ∀i ∈ {1, 2, ..., n}. Wt is the cumulative weights (i.e. total weight of all arms) at time t, and
pi,t =

wi,t

Wt
represents the percentage weight of arm i at time t for ∀i.

Player’s choice It (choice at time t) is randomly chosen from probability distribution pt of all arms,
and this step is the random component of the algorithm to surprise the adversarial. After each action, the

unbiased estimator for loss is calculated as ˜̀
i,t = 1{It=i}

pi,t
`i,t. It is an unbiased estimator because

E[˜̀i,t] =
n∑
j=1

pj,t
1{j = i}
pi,t

`i,t = `i,t, (1)

where pj,t is the probability (i.e. percentage of weight) that arm i will be chosen at time t. In the algorithm,
p1 represents the probability distribution of arm choice before the game.

Bandit 2: EXP3 Algorithm

Input : a non-increasing sequence of real numbers (ηt)t∈N, an n-arm non-stochastic bandit
Initialize wi,1 = 1 for every arm i.
for t = 1, 2, · · · , T do

Update Wt =
n∑
i=1

wi,t, pi,t =
wi,t

Wt
.

Player chooses an arm It ∈ [n] from the probability distribution pt
for each arm i = 1, · · · , n do

Compute the estimated loss ˜̀
i,t = 1{It=i}

pi,t
`i,t

Update wi,t+1 = exp
(
ηt
∑t
s=1

˜̀
i,s

)
= wi,t exp

(
−ηt ˜̀i,t

)
.

end

end

The pseudo-regret of EXP3 algorithm, R̃(T), is bounded by
√

2nT log(n), and consider using log(WT+1

W1
)

for mathematical convenience. The proof is shown below, which contains three steps: 1. get lower bound
for log(WT+1

W1
); 2. get upper bound for log(WT+1

W1
); 3. combine the lower bound and upper bound to bound

the regret of EXP3 algorithm. The formal proof is shown below.

Theorem 2. The pseudo-regret of EXP3 algorithm is bounded, and R̃(T) ≤
√

2nT log(n).

Proof. For the EXP3 algorithm, assume ηt = η as a constant number for ∀t ∈ [T].

Note E[˜̀2i,t] =
`2i,t
pi,t

and E[`It,t] =
n∑
j=1

pj,t`j,t =
n∑
j=1

pj,tE[˜̀i,t].

Then, for the loss of i-th arm, we have

E
[(

˜̀
i,t − E[˜̀i,t]

)2
]
≤ E[˜̀2i,t]− E[˜̀i,t]

2 =
`2i,t
pi,t
− `2i,t = `2i,t

(
1
pi,t
− 1
)

By dividing WT+1 with W1 and then take a log, we can get

log

(
WT+1

W1

)
=

T∑
t=1

log

(
Wt+1

Wt

)
(*)

Lecture 5: Non-Stochastic Bandits 4

First, the lower bound on left hand side of equation (*) is

log

(
WT+1

W1

)
= log

(∑n
i=1 wi,t+1

n

)
(because W1 = n)

= − log(n) + log

(
n∑
i=1

wi,t+1

)
(take n out of log)

= − log(n) + log

(
n∑
i=1

exp

(
−η

T∑
t=1

˜̀
i,t

))
(expand wi,t+1 by definition)

≥ − log(n) + log

(
exp

(
−η

T∑
t=1

˜̀
j,t

))
(use one term to lowerbound sum)

= − log(n)− η
T∑
t=1

˜̀
j,t (combine log and exp) (2)

where the last inequality holds for any fixed j ∈ [n]. Second, the upper bound on right hand side of equation
(*) is

log

(
Wt+1

Wt

)
= log

(
n∑
i=1

wi,t
Wt

exp(−η ˜̀
i,t)

)
(by definition of cumulative weight W) (3)

= log

(
n∑
i=1

pi,t exp(−η ˜̀
i,t)

)
(by definition of percentage weight pi,t)

(4)

≤ log

(
n∑
i=1

pi,t − η
n∑
i=1

pi,t ˜̀i,t +
η2

2

n∑
i=1

pi,t ˜̀
2
i,t

)
(from Taylor series: ∀x ≤ 0, there is ex ≤ 1 + x+

x2

2
)

(5)

≤ −η
n∑
i=1

pi,t ˜̀i,t +
η2

2

n∑
i=1

pi,t ˜̀
2
i,t. (because

∑
i

pi,t = 1, ex ≥ 1 + x) (6)

At last, we combine the lower bound (2) and upper bound (6) for (*) together to obtain, for any j ∈ [n]:

− log(n)− η
T∑
t=1

˜̀
j,t ≤ −η

T∑
t=1

n∑
i=1

pi,t ˜̀i,t +
η2

2

T∑
t=1

n∑
i=1

pi,t ˜̀
2
i,t

Rearranging the terms, we get

T∑
t=1

n∑
i=1

pi,t ˜̀i,t −
T∑
t=1

˜̀
j,t ≤

log(n)

η
+
η

2

T∑
t=1

n∑
i=1

pi,t ˜̀
2
i,t.

By incorporating the identity E
[
T∑
t=1

n∑
i=1

pi,t ˜̀i,t −
T∑
t=1

˜̀
j,t

]
= E

[
T∑
t=1

`It,t −
T∑
t=1

`j,t

]
(for a given arm j ∈ [n]),

Lecture 5: Non-Stochastic Bandits 5

the pseudo regret can be bounded by

R̃(T) = max
j∈[n]

E

[
T∑
t=1

`It,t −
T∑
t=1

`j,t

]

≤ max
j∈[n]

E

[
T∑
t=1

n∑
i=1

pi,t ˜̀i,t −
T∑
t=1

˜̀
j,t

]

≤ log(n)

η
+
η

2

T∑
t=1

n∑
i=1

pi,t E[˜`2i,t]︸ ︷︷ ︸
`2i,t/pi,t

≤ log(n)

η
+
ηnT

2
.

We minimize the right-hand side of the last display by choosing η =
√

2 log(n)
nT , which gives the desired

bound on the pseudo-regret R̃(T) ≤
√

2nT log(n).

The non-stochastic bandits problem is at least as hard as stochastic bandits, because the stochastic
bandits is a special case of non-stochastic bandits, where the distribution of rewards for a given arm is
defined and wouldn’t change overtime. We also showed the pseudo-regret for EXP3 algorithm, bounded by√

2nT log(T), is comparable to the result for the stochastic multi-arm bandit problem, where the expected

regret for UCB algorithm for stochastic bandits is bounded by O(
√
nT log(T)) [2]. It’s nice that algorithm

can solve the non-stochastic bandits problem as well as the stochastic bandits problem.
EXP3 algorithm can be used for both stochastic and non-stochastic bandits. However, UCB is better for

stochastic bandits, because its expected regret transitions from
√
nT log(T) into O(∆−1 log(T)) for large T

(∆, a constant, is the maximum possible regret for a time), while EXP3 is still in O(
√
nT log(T)). Loss for

UCB and EXP3 is shown in Figure 1, where x-axis is the time played in game, and y-axis is the total regret
to time t.

The variance of EXP3 is high, which means there is large probability that player gets a much large
regret than the expected one. In order to resolve the deficiencies in EXP3, a new algorithm, EXP3.P, is
introduced.

3 EXP3.P Algorithm

The problem of the above EXP3 algorithm is, although the pseudo regret R̃(T) can be bounded by
√

2nT log(n)
given Theorem 2, the actual regret has a large variance since the loss `i,t is inverse-proportional to pi,t. Hence,
if at some time t, the probability of choosing some It is too small, the resulting reward would have a large
fluctuation.

One idea is to never let pi,t be too small. To achieve this, we can mix the pi,t with uniform distribution
to smooth the probability distribution.

Specifically, suppose pt is the probability distribution of choosing some It before mixing, and ut is the
uniform distribution. We mix them linearly: p′t = pt(1−γ)+utγ where γ ∈ [0, 1] is a constant. The intuition
behind this is obvious: we increase the randomness of the selection and hence we do more exploration than
exploitation.

The essential step when doing the mixing is how to choose the mixing parameter γ. If we set it too low,
we cannot avoid the large variance problem. If we set it too high, too much smoothing would increase the
total regret. We address this dilemma by introducing a biased gain instead of the loss metric in the EXP3
algorithm:

g̃i,t =
gi,t1{It = i}+ β

pi,t

Lecture 5: Non-Stochastic Bandits 6

Figure 1: Regret for UCB and EXP3

where gi,t is the gain of pushing arm i at time t and can be represented as 1− `i,t. In particular, as we will
see in the following proof, the biased gain introduces guaranteed probabilistic bound on the regret R.

EXP3.P algorithm is proposed to achieve an upper-bound of the total regrets R(T) at time T , by taking
the above intuitions.

Bandit 3: EXP3.P Algorithm

Input : η > 0, γ, β ∈ [0, 1]
Initially at time t = 1, let p1 be the uniform distribution over {1, . . . , n}
for t = 1, 2, · · · , T do

Player chooses an arm It ∈ [n] from the probability distribution pt
For each arm i = 1, · · · , n compute the estimated biased gain

g̃i,t =
gi,t1{It = i}+ β

pi,t
(7)

and update the estimated cumulative gain G̃i,t =
t∑

s=1
g̃i,s.

Compute the new probability distribution over arms pt+1:

pi,t+1 = (1− γ)
exp(ηG̃i,t)
n∑
k=1

exp(ηG̃k,t)
+
γ

n

end

By specifically choosing the parameters η, β, γ, we can achieve a high probability bound for the total
regret at time T . The following are two different choices of the parameters.

Theorem 3. For the EXP3.P algorithm, for any given confidence δ ∈ (0, 1), we set

β =

√
log(nδ−1)

nT
, η = 0.95

√
log(n)

nT
, γ = 1.05

√
n log(n)

T
.

Lecture 5: Non-Stochastic Bandits 7

Then
R(T) ≤ 5.15

√
nT log(nδ−1)

with probability at least 1− δ.

Proof. Let Et[X] be the expectation of random variable X conditioned on I1, · · · , It−1. We can easily

calculate that Et
[
β
gi,t1{It=i}

pi,t

]
= βgi,t. Using Taylor expansion we know exp(x) ≤ 1 + x+ x2 and exp(x) ≥

1 + x for x ≤ 1. Hence,

Et [exp((βgi,t − βg̃i,t))]

= Et
[
exp

(
βgi,t − β

gi,t1{It = i}+ β

pi,t

)]
≤

(
1 + Et

[
βgi,t − β

gi,t1{It = i}
pi,t

]
+ Et

[
βgi,t − β

gi,t1{It = i}
pi,t

]2
)

exp

(
− β

2

pi,t

)
(exp(x) ≤ 1 + x+ x2)

≤

(
1 + 0 + Et

[
β
gi,t1{It = i}

pi,t

]2
)

exp

(
− β

2

pi,t

) (
Et
[
β
gi,t1{It = i}

pi,t

]
= βgi,t

)

≤

(
1 + β2

g2
i,t

pi,t

)
exp

(
− β

2

pi,t

)
(definition)

≤ exp

(
β2g2

i,t

pi,t

)
exp

(
− β

2

pi,t

)
(exp(x) ≥ 1 + x)

≤ 1

Adding all time t ≤ T together (multiplying the Et for t = 1, · · · , T)

E

[
exp

(
β

T∑
t=1

gi,t − β
T∑
t=1

gi,t1{It = i}+ β

pi,t

)]
≤ 1

Then we apply Markov’s inequality P(X > log(δ−1)) ≤ δE[eX]

β

T∑
t=1

gi,t − β
T∑
t=1

gi,t1{It = i}+ β

pi,t
≤ log(δ−1) (8)

with probability at least 1− δ. Recall that the total regret at time T is defined as

R(T) = max
i

T∑
t=1

gi,t −
T∑
t=1

gIt,t

To simplify, we assign k = arg maxi
∑T
t=1 gi,t. Given Equation 7, we know

Ei∼pt [g̃i,t] = gIt,t + βn

Hence,

R(T) = βnT +

T∑
t=1

gk,t −
T∑
t=1

Ei∼pt [g̃i,t]

Lecture 5: Non-Stochastic Bandits 8

Now we focus on the last term−Ei∼pt [g̃i,t]. We let u be an independent random variable uniformly distributed
over the n arms and ωt = pt−uγ

1−γ , the distribution induced by EXP3.P at time t without the mixing1. Hence
ωt

pt−uγ = 1
1−γ .

−Ei∼pt [g̃i,t] = −(1− γ)Ei∼ωt [g̃i,t]− γEi∼u[g̃i,t]

= (1− γ)

(
1

η
logEi∼ωt

[exp(η(g̃i,t − Ek∼ωt
[g̃k,t]))]−

1

η
logEi∼ωt

[exp(ηg̃i,t)]

)
− γEi∼u[g̃i,t]

Given log(x) ≤ x− 1, exp(x) ≤ 1 + x+ x2 for all x ≤ 1, and (1 + β)ηn ≤ γ, we have

logEi∼ωt
[exp(η(g̃i,t − Ek∼pt [g̃k,t]))] = logEi∼ωt

[exp(ηg̃i,t)]− ηEk∼pt [g̃i,t]
≤ Ei∼ωt

[exp(ηg̃i,t)− 1− ηg̃i,t]
≤ Ei∼ωt [η

2g̃2
i,t]

≤ 1

1− γ
η2

n∑
i=1

pi,tg̃
2
i,t

(
ωi,t
pi,t
≤ ωi,t
pi,t − uγ

=
1

1− γ

)

≤
max
i
gi,t1{It = i}+ β

1− γ
η2

n∑
i−1

g̃i,t

(
g̃i,t =

gi,t1{It = i}+ β

pi,t

)

≤ 1 + β

1− γ
η2

n∑
i=1

g̃i,t (gi,t ∈ [0, 1])

Finally, we combine the above two inequalities and sum up Ei∼ωt
[g̃i,t] for each t < T

−
T∑
t=1

Ei∼pt [g̃i,t] ≤ (1 + β)η

T∑
t=1

n∑
i=1

g̃i,t −
1− γ
η

T∑
t=1

log

(
n∑
i=1

ωi,t exp(ηg̃i,t)

)

Recall that2

ωi,t =
exp(ηG̃i,t−1)∑n
k=1 exp(ηG̃k,t−1)

,

G̃i,0 = 0 from EXP3,

−
T∑
t=1

Ei∼pt [g̃i,t] ≤ (1 + β)η

T∑
t=1

n∑
i=1

g̃i,t −
1− γ
η

log

(
T∏
t=1

∑n
i=1 exp(ηG̃i,t)∑n
i=1 exp(ηG̃i,t−1)

)

= (1 + β)η

T∑
t=1

n∑
i=1

g̃i,t −
1− γ
η

log

(∑n
i=1 exp(ηG̃i,T)∑n
i=1 exp(ηG̃i,0)

)

≤ (1 + β)ηnmax
j
G̃j,T +

log(n)

η
− 1− γ

η
log

(
n∑
i=1

exp(ηG̃i,T)

)

≤ (1 + β)ηnmax
j
G̃j,T +

log(n)

η
− (1− γ) max

j
G̃i,T (9)

≤ −(1− γ − (1 + β)ηn) max
j

T∑
t=1

gj,t +
log(nδ−1)

β
+

log(n)

η
,

1The equation for ωt in [2] is wrong.
2The corresponding equation in [2] is wrong.

Lecture 5: Non-Stochastic Bandits 9

where in (9) we used the fact that for any real numbers a1, . . . , an,

log

(
n∑
i=1

exp(ai)

)
= log

(
n∑
i=1

exp(ai −max
j
aj)

)
+max

j
aj ≥ log

(
exp(max

j
aj −max

j
aj)

)
+max

j
aj ≥ max

j
aj .

3 We combine Equation 8 with this, resulting in

R(T) ≤ βnT + γT + (1 + β)ηnT +
log(nδ−1)

β
+

log(n)

η
(10)

with probability at least 1− δ.
We put

β =

√
log(nδ−1)

nT
, η = 0.95

√
log(n)

nT
, γ = 1.05

√
n log(n)

T

into Equation 10 and yield the claimed bound.

One problem of this is that we have to know the confidence δ before choosing the parameters. This makes
it difficult to compute the expectation of regret. Here, we set a different set of parameters to address this
problem.

Theorem 4. For

β =

√
log(n)

nT
, η = 0.95

√
log(n)

nT
, γ = 1.05

√
n log(n)

T
,

then

R(T) ≤

√
nT

log(n)
log(δ−1) + 5.15

√
nT log(n) (11)

with probability at least 1− δ.

Proof. Similarly using Equation 10 we yield this claim.

Intuitively, if we use EXP3.P algorithm rather than the EXP3 algorithm, we might have a higher expected
regret since we are trading exploitation with exploration. We extend Theorem 4 and have the following
theorem

Theorem 5. For

β =

√
log(n)

nT
, η = 0.95

√
log(n)

nT
, γ = 1.05

√
n log(n)

T
,

the expected regret of EXP3.P algorithm is

E[R(T)] ≤ 5.15
√
nT log(n) +

√
n log(n)

T

Proof. We can integrate the Equation 11 over δ to calculate the expectation. Specifically, let

W =

√
log(n)

nT
(R(T)− 5.15

√
nT log(n))

We have

3In [2], the last term of the second line, log(
∑n

i=1 exp(ηG̃i,T)), is mistakenly written as log(
∑T

i=1 exp(ηG̃i,n)).

Lecture 5: Non-Stochastic Bandits 10

E[W] ≤
∫ 1

0

1

δ
P(W > log(

1

δ
))dδ ≤ 1

Then we get

E[R(T)] ≤ 5.15
√
nT log(n) +

√
n log(n)

T

Hence, we got a slightly higher expected regret using EXP3.P algorithm than using EXP3 algorithm.

4 Adaptive Bounds

The bound we have derived so far has its weakness: it holds over all possible adversarial assignments of gains
to arms. Thus, it is natural for us to ask if it is possible to have strategies with minimax optimal regret, but
also with much smaller regret when the loss sequence is not the worst case.

The first adaptive bound in this direction was proven by [3]. He showed that for the gain version
(compare to losses) of the problem and against an oblivious adversary, EXP3 algorithm has a pseudo-regret
of O

(√
nG∗T

)
, where n is the number of arms, and G∗T ≤ T is the maximal cumulative reward of the optimal

arm after T rounds. This result was further improved by Audibert and Bubeck [4]. Denote by gi,t the reward
(or gain) of arm i at time step t. He shows that by using the gain estimate:

g̃i,t = −1{It = i}
β

log

(
1− βgi,t

pi,t

)
One can bound the regret with high probability again any adversary.
Hazan and Kale[5] proved from another direction that one can attain regret of O(

√∑n
i=1 Vi,T) in the full

information setting, where

Vi,T =

T∑
t=1

(
`i,t −

1

T

T∑
s=1

`i,s

)2

is the total variation of the loss for arm i. The main ingredient of this analysis is that they used the
“reservoir sampling” procedure. Reservoir sampling is a family of randomized algorithms for randomly
choosing a sample of k items from a list S containing n items, where either n � k or n is an unknown
number. Typically n is large enough that the list doesn’t fit into main memory. For example, if we are
given a big array of numbers, and we need to write an efficient function to randomly select k numbers where
1 � k � n. A simple solution is to create a reservoir (i.e., an array) of maximum size k and randomly
select an item from stream {0, . . . , n− 1}. If the selected item is not previously selected, then put it in the
reservoir. The time complexity of this algorithm is O(k2). Readers may refer to [5] for more details.

5 EXP3++ Algorithm

Seldin and Slivkins [6] present an algorithm, EXP3++ that is applicable to both stochastic and non-stochastic
multi-armed bandit problems without distinguishing between them. This algorithm is proved to achieve
almost optimal regret in both setting, without the knowledge of the environment setting in advance: if the
enviroment happens to be adversarial, the proposed algorithm is just a factor of 2 worse than the performance
of the EXP3 algorithm which we will show later; if the enviroment happens to be stochastic, the performance
of the algorithm is comparable to UCB1 proposed by [3].

The EXP3++ algorithm is based on augmentation of the EXP3 algorithm with a new control lever in
the form of exploration parameters that are tailored individually for each arm. This algorithm combines

Lecture 5: Non-Stochastic Bandits 11

two independent mechanisms. The first mechanism controls the performance of the algorithm in adversarial
environments through a standard EXP3-like playing strategy in the form of a Gibbs distribution over actions.
The second mechanism exploits the residual degree of exploration freedom for detection and exploitation of
suboptimality gaps.

To be more specific, this proposed algorithm has two control levers: the learning rate ηt and the explo-
ration parameter ξt(i). In each round t of the game, the algorithm chooses one action It among n possible
arms according to probability ρ̃t(i), which is updated everyone based on the observed cumulative losses
L̃i,t−1, the learning rate ηt, as well as the exploration parameter ξt(i). The algorithm proceeds as the fol-
lowing.

Bandit 4: EXP3++ Algorithm

∀i : L0(i) = 0
for t = 1, 2, . . . T do

βt = 1
2

√
logn
tn

∀i : εt(i) = min
{

1
2n , βt, ξt(i)

}
∀i : ρt(i) = e−ηtL̃i,t−1

/∑
i′ e
−ηtL̃i′,t−1

∀i : ρ̃t(i) =
∑
i′ (1− εt(i′))ρt(i) + εt(i)

Draw action It according to ρ̃t and play it.
Observe and suffer the loss `It,t.

∀i : ˜̀
i,t =

`It,t
ρ̃t(i)

1{It = i}.
∀i : L̃i,t = L̃i,t−1 + ˜̀

i,t

end

Note that the EXP3 algorithm is a special case of EXP3++ with ηt = 2βt and ξt(i) = 0. The main
innovation of this algorithm is the introduction of the exploration parameter ηt. This parameter is tuned
individually for each arm based on its past performance. This algorithm can be proved to have the following
properties under adversarial regime and stochastic regime:

Adversarial Regime By tunning only ηt, it is sufficient to bound regret in adversarial setting. Specifically,
we have:

Theorem 6. For any ηt = βt and any ξt(i) ≥ 0 the regret of EXP3++ for any t satisfies:

R(t) ≤ 4
√
nT log n

This regret is just a factor of 2 worse than the regret of EXP3 (i.e., 2
√
nT log n)

Stochastic Regime To control the regret of the algorithm in the stochastic regime, it suffices to tune the
exploration parameters ηt ≥ βt.

Adversarial regime with a gap An adversarial regime is named by an adversarial regime with a gap if
there exists a round τ and an arm i∗τ that persists to be the best arm in hindsight for all rounds τ ′ > τ . If
we define a deterministic gap ∆(t, i) for arm i at round τ as:

∆(τ, i) = min
t≥τ

{
1

t
(λt(i)− λt(i∗τ))

}
where λt(i) is the cumulative loss of arm i, we have the following theorem.

Theorem 7. For each arm i, we define the gap ∆(i) = µ(i)− µ(i∗). Assume that the gaps ∆(i) are known.

For any choice of ηt ≥ βt and any c ≥ 18,the regret of EXP3++ with ξt(i) = c log (t∆(i))2

t∆(i)2
in the stochastic

Lecture 5: Non-Stochastic Bandits 12

regime satisfies:

R(t) ≤
∑
i

O

(
log (t)

2

∆(i)

)
+
∑
i

Õ

(
n

∆(i)
3

)
For the proof of the above theorem, readers may refer to [6] for more details.

6 Switching Adversaries

Generally, we expect to obtain a sublinear regret, implying that the per-round expected regret, E[R(T)]/T
tends to zero. But arbitrary adaptive adversaries can easily force the regret to grow linearly. In order to
obtain a sublinear regret, we need to focus on reasonably weaker adversaries, which have constraints on the
loss functions they can generate.

The weakest version is oblivious adversary, which determines the loss on round t based only on the current
action It. A stronger version is the oblivious adversary with switching costs. This adversary is similar to
the oblivious adversary defined above, but charges the player an additional switching cost of 1 whenever
It 6= It−1. This setting of considering switching cost among arms is very natural in many settings. Consider
a single-stock investor, who faces a commission cost at every trade. If the investor keeps his position in a
stock for multiple trading days, he is exempt from any additional fees, but when he sells one stock and buys
another, he incurs a fixed commission. More generally, this setting allows us to capture any situation where
choosing a different action involves a costly change of state.

This setting can be formulized as the following. This adversary defines his sequence of loss functions in
two steps: first he chooses an oblivious sequence of loss functions, `1, `2, Then, he sets switching cost
f1(x) = `1(x), and

∀t ≥ 2, ft(I1:t) = `t(It) + 1 {It 6= It−1} .

The switching cost ft above is defined as a function of It and It−1. A more general case, called an adaptive
adversary with a memory of 1 whose loss functions can depend on the previous action in an arbitrary way.

This adversary can also be further strengthened to bounded memory adaptive adversary [7], which has a
bounded memory of an arbitrary size. Compared to adaptive adversary with a memory of 1, this adversary
is allowed to set his loss function based on the players m most recent past actions, where m is a predefined
parameter.

The above adversaries have been studied, some of the current state-of-the-art results are as the following.
FLL algorithm proposed by [8] designed for the switching costs setting guarantees that under full-information
feedback the oblivious component of the player’s expected regret (without the switching costs), as well as the
expected number of switches, is upper bounded by O(T). The work in [9] focuses on the bounded memory
adversary with bandit feedback and guarantees an expected regret of O(T 2/3). This bound naturally extends
to the full-information setting.

The work by [10], studied the problem of prediction with expert advice against different types of adver-
saries, ranging from the oblivious adversary to the general adaptive adversary, as mentioned above. They
proved a upper bound of:

• O(
√
T) for an oblivious adversary with switching costs, with full-information feedback;

• O(
√
T) for an oblivious adversary with bandit feedback;

• O(T 2/3)for a bounded memory adversary with bandit feedback.

They also proved a lower bound of:

• Ω(T 2/3) with switching costs and bandit feedback;

• Ω(T 2/3) with bounded memory and full-information feedback.

Lecture 5: Non-Stochastic Bandits 13

The above bounds suggest that predicting with bandit feedback is strictly more difficult than predicting
with full-information feedback even in terms of the dependence on T , and even on small finite action sets.
Also, in the full-information setting, predicting against a switching-cost adversary is strictly easier than
predicting against an arbitrary adversary with a bounded memory.

References

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

[2] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends R© in Machine Learning, 5(1):1–122, 2012.

[3] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

[4] Jean-Yves Audibert and Sébastien Bubeck. Regret bounds and minimax policies under partial moni-
toring. Journal of Machine Learning Research, 11(Oct):2785–2836, 2010.

[5] Elad Hazan and Satyen Kale. Better algorithms for benign bandits. Journal of Machine Learning
Research, 12(Apr):1287–1311, 2011.

[6] Yevgeny Seldin and Aleksandrs Slivkins. One practical algorithm for both stochastic and adversarial
bandits. In International Conference on Machine Learning, pages 1287–1295, 2014.

[7] Chris Mesterharm. On-line learning with delayed label feedback. In International Conference on Algo-
rithmic Learning Theory, pages 399–413. Springer, 2005.

[8] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of Com-
puter and System Sciences, 71(3):291–307, 2005.

[9] Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an adaptive adversary:
from regret to policy regret. arXiv preprint arXiv:1206.6400, 2012.

[10] Nicolo Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. Online learning with switching costs and other
adaptive adversaries. In Advances in Neural Information Processing Systems, pages 1160–1168, 2013.

