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Introduction

Previously, we looked at Regret Minimization for the multi-armed bandit problem, where the goal is to
minimize the expected regret of a player. In contrast, we now consider the pure exploration, best-arm
identification problem where the goal is to identify the best arm in as few samples as possible. We will focus
on the fixed-confidence setting where the goal is to identify the best arm with high probability (1− δ) in as
few samples as possible. Algorithms for Pure Exploration in the fixed-confidence setting have the following
format: A player is given n arms. At each timestep t, the player selects an arm to pull (It), and they observe
some reward (XIt,t) for that sample. At any timestep, once the player is confident that they have identified
the best arm, they may decide to stop.

Algorithm 1 Pure Exploration

1: procedure Pure Exploration({1, 2, . . . , n}) . Arms 1 through n
2: for 1 ≤ t ≤ ∞ do
3: Choose It ∈ {1, 2, . . . , n} . Player selects an arm
4: Observe XIt,t . Player observes a reward for arm It (w/ E = µIt)
5: Player may decide to STOP . Player stops if they have identified the best arm
6: end for
7: Return best arm
8: end procedure

Goal: w.p. ≥ 1− δ, the player

1. Identifies arg maxi µi

2. STOPs before M samples, where M is as small as possible

Notations:

• It: The arm chosen at round t

• Xi,t: reward observed for arm i at round t. For simplicity, we assume Xi,t is bounded within [0, 1]

• µi: The expected reward for arm i

• µ∗ = max
j

µj

• ∆i = µ∗ − µi

Successive Elimination

We now describe an algorithm for the fixed-confidence Pure Exploration setting known as Successive Elimina-
tion. This algorithm was first proposed by Even-dar et al. (2006) [1]. The Successive Elimination algorithm
proceeds as follows: The player maintains a set of active arms S. At every round, the player first samples

1



Lecture 4: Stochastic Multi-Armed Bandits, Pure Exploration 2

from the rewards of every arm in the active set. The player then removes all arms in the active set with
estimated rewards that are outside an any-time confidence interval around the biggest estimated reward
in the active set. When the active set has only one arm, the player identifies this arm with high probability
as the best arm.

Algorithm 2 Successive Elimination

1: procedure Successive Elimination({1, 2, . . . , n}, δ) . n arms, parameter δ in (0, 1)
2: S ← {1, · · · , n} . Initialize the set of active arms
3: for 1 ≤ t ≤ ∞ do
4: Pull all arms in S
5: S ← S − {i ∈ S : ∃j ∈ S : µ̂j,t − U(t, δ/n) ≥ µ̂i,t + U(t, δ/n)} . Drop bad arms
6: STOP when |S| = 1
7: end for
8: return S
9: end procedure

Additional Notation:

• S: The active set of arms

• µ̂i,t = 1
t

∑t
j=1Xi,j : Estimated mean reward for Arm i after t pulls

• U(t, δ) may be any function that satisfies the any-time confidence bound, such that for any arm i:

P

( ∞⋃
t=1

{|µ̂i,t − µi| > U(t, δ)}

)
≤ δ

Importantly, with high probability these bounds hold for all time, rather than independently holding with
high probability at each timestep individually.

Law of Iterated Logarithms and Any-time Confidence Bounds

When proving the correctness of best-arm identification algorithms, we rely on confidence intervals around
estimated means that must hold with high probability for all time. The Law of Iterated Logaritms [2]
and any-time confidence bounds give us those confidence intervals. More specifically, the Law of Iterated
Logarithms bounds how much the observed average of random variable deviates from its expected value with
high probability as the number of observations goes to infinity.

Theorem 1. (Law of Iterated Logarithms) If Zt ∼ N (µ, 1) for t=1,2,. . . , then

lim sup
t→∞

∑t
s=1(Zs − µ)√
2t log log t

= 1 with probability 1

However, the Law of Iterated Logarithms as-is only holds in the limit as t → ∞. Successive Elimination
requires any-time confidence bounds that hold for finite numbers of samples. One such example interval that
satisfies an any-time confidence bound is as follows:

Theorem 2. (Anytime Confidence Interval) If Xt is within [0, 1] and 0 < δ < 1, then

P

( ∞⋃
t=1

{∣∣∣∣∣1t
t∑

s=1

Xs − E[Xs]

∣∣∣∣∣ ≥
√

log(4t2/δ)

2t

})
≤ δ
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Proof.

P

( ∞⋃
t=1

{∣∣∣∣∣1t
t∑

s=1

Xs − E[Xs]

∣∣∣∣∣ ≥
√

log(4t2/δ)

2t

})
union bound

≤
∞∑
t=1

P

(∣∣∣∣∣1t
t∑

s=1

Xs − E[Xs]

∣∣∣∣∣ ≥
√

log(4t2/δ)

2t

)

Using Hoeffding’s inequality (via the knowledge that rewards are bounded within [0, 1]), we get:

P

(∣∣∣∣∣1t
t∑

s=1

Xs − E[Xs]

∣∣∣∣∣ ≥
√

log(4t2/δ)

2t

)
≤ 2e−

2

(√
log(4t2/δ)

2t

)2

t2

t

≤ 2e− log(4t2/δ)

≤ 2 · δ
4t2

≤ δ

2t2

Plugging this back into the initial summation, we find:

∞∑
t=1

P

(∣∣∣∣∣1t
t∑

s=1

Xs − E[Xs]

∣∣∣∣∣ ≥
√

log(4t2/δ)

2t

)
≤
∞∑
t=1

δ

2t2

≤ δ

2

∞∑
t=1

1

t2

≤ δ

2
· 2

≤ δ

This bound is a baseline that could be used in Successive Elimination by setting:

U(t, δ) =

√
log(4t2/δ)

2t

The current state of the art for any-time confidence bounds (Kaufmann et al. 2016 [3]) is:

P

( ∞⋃
t=1

{∣∣∣∣∣1t
t∑

s=1

Xs − E[Xs]

∣∣∣∣∣ ≥
√

2 log(1/δ) + 6 log log(1/δ) + 3 log log(et)

t

})
≤ δ (?)

These any-time confidence bounds are the correct way to avoid “p-hacking” when evaluating the statistical
significance of results in settings where confidence interval tests are sequentially being applied to incoming
data, and users are continously monitoring the results of the significance tests to decide when a result has
been found. For example, many A/B testing frameworks can continously monitor p-values that specify if
option A is better than B (by applying a statistical test on the data after every new user that interacts
with the framework). Johari et al. (2015) [4] show that if an A/B testing framework does not use any-time
bounds, continuous monitoring will eventually detect statistical significance by mistake after enough time
has passed. By using statistical significance tests that rely on any-time confidence intervals that hold with
high probability for all time, users of the A/B testing framework could safely monitor continuously without
accidentally discovering erroneous results.
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Proof of Successive Elimination

We will now prove that w.p. ≥ 1−δ Successive Elimination identifies the best arm inO
(∑n

i6=i∗ ∆−2
i log

(
n log(∆−2

i )
))

samples. We can prove this by showing that w.p ≥ 1− δ:
1. The arm with the biggest expected reward µ∗ will always remain in the active set S

2. All non-optimal arms i with reward µi ≤ µ∗ will be dropped from S afterO
(∑n

i6=i∗ ∆−2
i log

(
n log(∆−2

i )
))

samples

Lemma 1. Let event E be the case that for any arm at any time t, the estimated reward µ̂i,t is outside of
the confidence bound around the true mean µi.

E =

n⋃
i=1

∞⋃
t=1

{|µ̂i,t − µi| > U(t, δ/n)}

The event holds with P(E) ≤ δ
Proof. By the Union bound,

P(E) ≤
n∑
i=1

P

( ∞⋃
t=1

{|µ̂i,t − µi| > U(t, δ/n)}

)
And, by the any-time confidence bound:

n∑
i=1

P

( ∞⋃
t=1

{|µ̂i,t − µi| > U(t, δ/n)}

)
≤

n∑
i=1

δ

n

≤ n δ
n

≤ δ

Theorem 3. With probability ≥ 1− δ, the best arm remains in the active set S until termination.

Proof. Arm i will only be dropped from set S if ∃j such that

µ̂j,t − U(t, δ/n) ≥ µ̂i,t + U(t, δ/n) (1)

Additionally, in the case where Ec holds, we know that the estimated rewards are always within a confidence
bound around the true mean, and so

µj + U(t, δ/n) ≥ µ̂j,t and µ̂i,t ≥ µi − U(t, δ/n)

Plugging the inequalities above into Equation (1), we can see that if Ec holds, dropping an arm implies that:

µj + U(t, δ/n)− U(t, δ/n) ≥ µi − U(t, δ/n) + U(t, δ/n)

Which in turn can only be true if

µj ≥ µi
This will never occur for the best arm, as no other arm will have a higher expected reward. So, the best
arm will always remain in the active set if Ec holds. Additionally, by Lemma 1, P(Ec) ≥ 1 − δ. Therefore,
with probability ≥ 1 − δ, the arm with the highest expected reward µ∗ is guaranteed to remain within the
active set S until termination.
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Next we must provide an upper bound for how long Successive Elimination takes to terminate (i.e., the
sampling complexity of Successive Elimination).

Theorem 4. In the case where Successive Elimination successfully identifies the best arm, it will terminate

after O
(∑n

i6=i∗ ∆−2
i log

(
n log(∆−2

i )
))

samples.

Proof. By the removal rules of Successive Elimination, one of the events that will remove arm i from S is if:

µ̂∗t − U(t, δ/n) ≥ µ̂i,t + U(t, δ/n) (2)

(Where µ̂∗t is the estimated reward of the arm with the largest expected reward, µ∗)

Additionally, in the case where Ec holds, we know that the estimated rewards are always within a confidence
bound around the true mean, and so

µ̂∗t ≥ µ∗ − U(t, δ/n) and µ̂i,t ≤ µi,t + U(t, δ/n)

Therefore, in the case of event Ec, the event from Equation 2 is guaranteed to occur (and arm i will be
dropped) as long as:

µ∗ − 2U(t, δ/n) ≥ µi + 2U(t, δ/n)

Which we can rearrange as

∆i ≥ 4U(t, δ/n)

Where ∆i = µ∗ − µi

By solving for the minimum value of t for which ∆i ≥ 4U(t, δ/n), we can upper bound how long it takes for
arm i to be removed from S. It can be shown that the miniminum Ti such that ∆i ≥ 4U(Ti, δ/n) satisfies:

Ti ≤ c∆−2
i log

(
n log(∆−2

i )

δ

)
(Using the confidence bound from (?), where c is a constant)

Each non-optimal arm i will have been removed from S after it has been sampled at most Ti times. So,
summing up the upper bounds on the samples of each arm, we find that all non-optimal arms will have been
removed from S within

O

 n∑
i 6=i∗

∆−2
i log

(
n log(∆−2

i )
)

samples. At this point Successive Elimination will terminate.

In 2004, Mannor et al. [5] showed that the lower bound on the sampling complexity of pure exploration
algorithms is O(

∑
i 6=i∗ ∆−2

i ). The upper bound on the sample complexity of Successive Elimination misses

this lower bound by a factor of log
(
n log(∆−2

i )
)
. Improvements on Successive Elimination have better

sampling complexity, and more closely approach the known lower bound.

Improvements on Successive Elimination

We now describe three algorithms which improve on the sample complexity of successive elimination. All
have the same high level idea of repeatedly sampling some arms, estimating an upper bound on their reward,
and eliminating arms that cannot possibly be the best.
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Exponential-Gap Elimination [6]

Exponential-Gap Elimination eliminates low reward arms over multiple rounds, only keeping arms close to
an arm that is approximately the best. As more rounds are played, arms must be exponentially closer to
the estimated best arm to be kept for the next round.

Algorithm 3 Exponential-Gap Elimination

1: procedure Exponential-Gap Elimination(S, δ) . S, set of n arms, parameter δ in (0, 1)
2: S1 ← [n], k ← 1
3: while |Sk| > 1 do
4: εk ← 2−k/4, δk ← δ/(50k3)
5: Sample each arm i ∈ Sk tk ← (2/ε2k) log(2/δk) times
6: Let p̂ki be the average reward of arm i in round k
7: ik ←Median Elimination(Sk, εk/2, δk) and p̂k∗ ← p̂ik∗
8: Sk+1 ← Sk \

{
i ∈ Sk : p̂ki < p̂k∗ − εk

}
9: k ← k + 1

10: end while
11: return Sk . Sk has only one arm
12: end procedure

Given a set S of n bandit arms and ε, δ > 0, the median elimination algorithm [1] is a (ε, δ)-PAC algo-
rithm outputs an arm within ε of optimal with probability at least 1 − δ with O((n ε2) log(1 δ)) samples.
Exponential-Gap Elimination uses median elimination as a sub-routine to efficiently provide a rough estimate
of the maximum expected reward over the arms exponential-gap elimination has not yet eliminate. This
rough estimate is then used to eliminate even more arms which cannot possibly be the best in step 5. While
the maximum expected reward could be estimated from the past pulls of arms, using the median elimination
sub-routine gives the same result in fewer additional samples, making the algorithm more efficient.

Algorithm 4 Median Elimination

1: procedure Median Elimination(S, ε, δ) . S, set of n arms, error ε in (0, 1), failure probability δ in
(0, 1)

2: ε1 ← ε/4, δ1 ← δ, k ← 1
3: repeat
4: Sample each arm i ∈ Sk 1/(εk/2)2 log(3/δk) times
5: Let p̂ki be the average reward of arm i in round k
6: Let mk be the median p̂ki over all i ∈ Sk
7: Sk+1 ← Sk \ {i : p̂ri < mk}
8: εk+1 ← 3

4εk, δk+1 ← δk/2, k ← k + 1
9: until |Sk| = 1

10: return Sk
11: end procedure

Exponential-Gap Elimination has a sample complexity O(
∑n
i=2 ∆−2

i log( 1
δ log 1

∆i
)), assuming that i1 is the

best arm without loss of generality.

lil’UCB [7]

lil’UCB is the current state of the art multiarmed bandit algorithm both in theory and practice.
Let

H1 =
∑
i 6=i∗

∆−2
i and H3 =

∑
i 6=i∗

log log+(1/∆2
i )

∆2
i
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Algorithm 5 lil’UCB

1: procedure lil’UCB(S, δ, ε, λ, β) . S, set of n arms, parameter δ in (0, 1), parameters ε, λ, β > 0
2: Ti(r)← 1 for each arm i
3: Sample each of the n arms once
4: while Ti(r) < 1 + λ

∑
i 6=j Tj(r) for all i do

5: Sample arm
Ir = arg max

i∈{1,...,n}

{
µ̂i,Ti(r) + (1 + β)U(t, δ)

}
6: Ti(r + 1)← Ti(r) + 1 if Ir = i, else Ti(r + 1)← Ti(r)
7: end while
8: return arg maxi∈{1,...,n} Ti(r)
9: end procedure

Let β ∈ (0, 3]. Then there exists an absolute constant λ > 0 such that with probability at least 1 − δ
lil’UCB terminates after at most c1H1 log(1/δ) + c3H3 samples and outputs the best arm. Lil’UCB has
many similarities to UCB1. UCB1 is an algorithm for optimal play, not best arm selection, but lil’UCB
easily converts this into outputting the best arm by outputting the most played arm, which will be the best
arm afer an appropriate number of plays. In addition, lil’UCB introduces and optimizes several parameters
to the UCB to achieve a tigher bound and better performance. Finally, lil’UCB uses an anytime confidence
bound that holds for all future samples w.hp., while UCB1 uses a normal confidence bound that does not
hold for all future samples w.h.p.

LUCB++ [8]

LUCB++ finds the top-K best arms, rather than just the best arm. Intuitively, finding the top-k arms
requires finding the k-th and k + 1-th best arms; that is, one must be confident that the worst arm in the
top-k set is better than the best arm in the set of remaining arms. LUCB++ follows this intuition: it
procedes by creating and refining estimates of the expected rewards of the k-th best and k+ 1-th best arms,
terminating once it has estimated that the worst arm in the top k set is better than the best arm in the set
of remaining arms with the desired confidence.

Algorithm 6 LUCB++

1: procedure LUCB++(S, δ, t) . S, set of n arms, parameter δ in (0, 1), top-k arms to find
2: Sample all arms once
3: for rounds t = n+ 1, n+ 2, . . . do
4: TOPk ← arg maxS⊂[n]:|S|=t

∑
i∈S µ̂a,Ta(k)

5: if min
a∈TOPk

µ̂a,Ta(k) − U(Na(k), δ
2(n−k) ) > max

a∈[n]−TOPk
µ̂a,Ta(k) − U(Na(k), δ2k ) then return TOPk

6: else
7: ht = µ̂a,Ta(t) − U(Na(t), δ

2(n−k) )

8: lt = max
a∈[n]\TOPt

µ̂a,Ta(t) + U(Na(t), δ2k )

9: Sample ht and lt
10: end if
11: end for
12: end procedure

This algorithm has a sample complexity that is O(
∑k
i=1 ∆−2

i log(
(n−k) log(∆−2

i )

δ +
∑n
j=k+1 ∆−2

j log(
k log(∆) )).
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Fixed Budget Setting

All of the previous algorithms attempt to find the best arm with confidence δ and the least samples. We
now consider an alternative setting where we try to find the best arm with the highest confidence given a
fixed budget of T samples. This setting is applicable in many real-world scenarios where an agent must make
descisions in real time, and therefore can only conduct a limited number of simulations or experiments, or
where the number of samples that may be taken is otherwise limited by factors like cost. In this setting, for
any bandit algorithm there is some problem such that the bandit algorithm will fail to output the best arm
with probability at least

exp

− T

log(n)
∑
i 6=i∗

∆−2
i


where T is the sample budget [9]. Or, put in terms of fixed confidence, for any bandit algorithm there is
some problem that requires at least

T = log(
n

δ
)
∑
i 6=i∗

∆−2
i

samples.

Sequential Halving [6]

Sequential Halving, as its name suggests, samples arms over multiple rounds, eliminating the worst half of
arms each round. In each round, every remaining arm is sampled the same number of times. When only
a few rounds have been played, arms have been sampled little, and thus the estimates of their values have
higher varience. However, only half of the arms are eliminated each round, so failure in the first few rounds
requires many arm value estimates to be incorrectly higher than the estimate of the best arm, which is
unlikely. As more rounds are played, the top arms are sampled more, giving more confident estimates of
their value.

Algorithm 7 Sequential Halving

1: procedure Sequential Halving(S, T ) . S, set of n arms, T , sample budget
2: for k = 0 to dlog2 ne do

3: Sample each arm i ∈ Sk tk =
⌊

T
|Sk|dlog2 ne

⌋
times

4: Let p̂ki be the average reward for arm i
5: Let Sk+1 be the set of dSk/2e arms in Sk with the highest observed average reward
6: end forreturn Sdlog2 ne
7: end procedure

This algorithm needs O(maxi 6=1
i

∆2
i

log n log logn
δ ) samples to identify the best arm with probability at least

1 − δ, where arm one is assumed to be the best without loss of generality. Note that maxi
i

∆2
i
≤
∑
i ∆−2

i

since the sequence (∆−2
1 ,∆−2

2 , . . . ,∆−2
n ) is decreasing, so for any ∆−2

i , there are at least i other elements in
the sequence at least as large as ∆−2

i .
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algorithm for multi-armed bandits. In Conference on Learning Theory, pages 423–439, 2014.

[8] Max Simchowitz, Kevin Jamieson, and Benjamin Recht. The simulator: Understanding adaptive sam-
pling in the moderate-confidence regime. arXiv preprint arXiv:1702.05186, 2017.

[9] Alexandra Carpentier and Andrea Locatelli. Tight (lower) bounds for the fixed budget best arm identi-
fication bandit problem. In Conference on Learning Theory, pages 590–604, 2016.


