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1 Introduction

As an introduction to linear system dynamics and controls, we begin with a motivating example. Consider
a simple helicopter dynamics where the objective is to move the helicopter from current position h to hover
about a new height hD (see Fig. 1).

Figure 1: Helicopter motion dynamics

The dynamics for this case is governed by the equation of motion, which in discrete form is:

ht+1 = ht + ∆vt +
1

2
∆2(at − g) (1)

vt+1 = vt + ∆(at − g)

where ht is the position in meters (m), vt is the velocity in (m/s), at is the acceleration in (m/s2), g is the
gravity also in (m/s2), and ∆ is the time step in (s), all at time t.

The helicopter dynamics in (1) is called a linear system because it depends linearly on the state variables.
It can be re-written in a form called the state-space as:[

ht+1

vt+1

]
︸ ︷︷ ︸
xt+1

=

[
1 ∆
0 1

]
︸ ︷︷ ︸

A

[
ht
vt

]
︸︷︷︸
xt

+

[
1
2∆2

∆

]
︸ ︷︷ ︸

B

(at − g)︸ ︷︷ ︸
ut

. (2)

In general, the dynamics of a discrete linear time-invariant (LTI) system can be represented in a state-space
form [1]:

xt+1 = Axt +But (3)
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where xt is the system state at time t and it is considered to be the smallest subset of system variables from
which other system variables can be obtained. ut is the control input at time t which can be used in steering
the system to a desired state. The matrix A is the system matrix which governs the evolution of the states
from one time step to another and the matrix B is the control matrix which determines how the system
input affects the states. Equation (3) is known as the system state equation.

Going back to our example, the states of the helicopter dynamics can therefore be chosen as the position h
and the velocity v because the motion of the helicopter can be completely described in terms of these two
variables.

In most cases, simply achieving the desired objective of moving the helicopter to a desired height hD is
not sufficient. We often want to achieve this objective at the lowest cost possible while keeping the system
stable, where the cost in this case could be time, fuel, effort and so on. We therefore want to find the best
(optimal) control action/input ut that can achieve our stated goal at minimum cost. This requirement can
be captured mathematically as finding a control action sequence ut, t = 1, 2, ..., T , that minimizes over a
time horizon T , the following objective function:

J(u) =

T∑
t=1

xTt Qxt + utRut. (4)

For ease of computation of our example problem, the state of the system is redefined as the deviation from

the desired state, that is xt :=

([
ht
vt

]
− xD

)
where the desired state xD :=

[
hD
0

]
. The control action ut is

the force to be applied and has to be greater than gravity g for the helicopter to move. The matrix Q and R
in (4) are positive definite matrices which places weights on the competing objectives in (4), (that is, xTt Qxt
which captures the deviation from the desired state and utRut which captures the control effort to be used),
based on which of the objectives we care more about.

Representing the helicopter dynamics in the form (2) and its performance objective in the form (4) allows
us to make an interesting connection with the Markov Decision Process (MDP) from previous lectures. If
we let the control input ut at time t be drawn from a feasible action space, then the state equation in (3) is
a special case of the MDP. This is true because the state transition matrix in MDP gives the probabilities of
moving from one state to another. In this case, since we know the system dynamics, it becomes deterministic
which means that

p(x, u, y) = p(xt+1 = y|xt = x, ut = u) = 1 (5)

This implies that the theories developed in previous lectures for the probabilistic MDP cases can also be
extended to this deterministic case by replacing the state transition matrix with the system dynamics.

To find the sequence of control actions that minimizes the problem in (4) and also keeps the system stable,
we consider the form the control action has to take. A discrete system such as in (3) is said to be stable if all
the eigenvalues of the system matrix A are within the unit circle, that is, λi ≤ 1, i = 1, 2, . . . , n. The desired
form of the control action is a feedback form ut = f(xt), that is, to determine the next state of the system,
the control action will be a function of the current state of the system. The optimal control action to be
taken can be obtained by solving the Linear Quadratic Regulator (LQR) problem or the Linear Quadratic
Gaussian (LQG) problem which are introduced in the next section.
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2 Linear System Optimal Control

2.1 Linear quadratic regulator (LQR): Discrete-time finite horizon

As we have briefly talked about at the end of last section, the helicopter example actually represents a large
class of control problems which calls linear quadratic regulator (LQR), where the goal is to find the optimal
sequence of control that minimizes a quadratic cost function subject to the linear system dynamics.

Suppose the time horizon is finite and we define the system state xt with reference to xD, we have the
following optimization problem called “finite horizon LQR”,

min
u0,...,uN−1

J(u0, ..., uN−1, x0) =

N−1∑
t=0

(xTt Qxt + uTt Rut) + xTNQfxN (6a)

s.t. xt+1 = Axt +But, t = 0, 1, ..., N − 1 (6b)

where Q,R,Qf ≥ 0 are positive semi-definite matrices.

• N is called time horizon (we will consider N =∞ later);

• xTt Qxt measures the state deviation cost at time t;

• uTt Rut measures control input cost at time t;

• xTNQfxN measures the terminal state deviation cost.

In order to solve the above optimization problem in (6), we use dynamic programming method. The basic
idea of dynamic programming is that the optimal control sequence over the entire horizon remains optimal
at intermediate points in time. To begin this discussion, we will embed the optimization problem which we
are solving in (6) to a larger class of problems. More specifically, we will consider the original cost function
of equation (6a) from an arbitrary initial time t. Then the cost function from time t to N is written as,

J(ut, ..., uN , xt) =

N−1∑
τ=t

(xTτ Qxτ + uTτ Ruτ ) + xTNQfxN , (7)

Bellmans principle of optimality says that if we have found the optimal trajectory on the interval from
{0, 1, ..., N} by solving the optimal control problem in (6), the resulting trajectory is also optimal on all
subintervals of this interval of the form {t, t + 1, ..., N} with t > 0, provided that the initial condition xt at
time t was obtained from running the system forward along the optimal trajectory from time 0. This statement
is obvious since if the optimal overall trajectory is suboptimal for certain subinterval {t, t+1, ..., N}, we could
replace that subinterval trajectory with a better one to achieve better overall performance, which contradicts
the overall optimality assumption. Therefore, the optimal trajectory on the interval from {0, 1, ..., N} is also
optimal on all subintervals {t, t+ 1, ..., N} with t > 0.

Define the optimal value of J(ut, ..., uN , xt) starting from state xt as V ∗(xt), where V ∗(xt) is called the
optimal “cost-to-go” (or optimal value function) at state xt. The LQR objective function in (6a) is thus
equivalently to find V ∗(x0) since,

V ∗(x0) = min
u0,...,uN−1,x0

J(u0, ..., uN−1, x0) ,

Now suppose at time t, we know V ∗(xt+1) for all possible next step states xt+1 and we are interested in
finding the optimal ut (and hence V ∗(xt)). Bellman’s principle of optimality suggests,

u∗t = arg min
ut

 xTt Qxt + uTt Rut︸ ︷︷ ︸
instant reward at time t

+ V ∗(Axt +But)︸ ︷︷ ︸
next state cost-to-go

 , (8)
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and the optimal cost-to-go at time t is,

V ∗(xt) =
(
xTt Qxt + u∗t

TRu∗t + V ∗(Axt +But)
)
, (9)

Therefore, we can find the optimal control sequence by solving the above equations (8) and (9) backwards
starting at t = N , which leads to the following theorem.
Theorem 1. The optimal cost-to-go and the optimal control at time t are given by:

V ∗(xt) = xTt Ptxt , (10)

u∗t = −Ktxt , (11)

where t ∈ {0, 1, ..., N − 1} and,

Pt = Q+KT
t RKt + (A−BKt)

TPt+1(A−BKt), PN = Qf , (12)

Kt = (R+BTPt+1B)−1BTPt+1A , (13)

Proof. We will prove the theorem by induction. For the final time step i = N , the optimal cost-to-go is
trivially given by V ∗(xN ) = xTNQfxN from cost function definition in (7) since no action is performed at
time N . Thus, PN = Qf .

Now we assume the theorem hold for time i = t; our goal is to prove it holds for i = t− 1.

From Eq (9), we have

V ∗(xt−1) = min
ut−1

[xTt−1Qxt−1 + uTt−1Rut−1 + V ∗(Axt−1 +But−1)] ,

By induction hypothesis, V ∗(xt) = xTt Ptxt. Therefore,

V ∗(xt−1) = min
ut−1

(xTt−1Qxt−1 + uTt−1Rut−1 + (Axt−1 +But−1)TPt(Axt−1 +But−1)) , (14)

The optimal ut−1 can be derived by setting the derivative of the above equation to zero:

∇ut−1
V ∗(xt−1) = 2uTt−1R+ 2(Axt−1 +But−1)TPtB = 0 (15)

Hence the optimal control is,

u∗t−1 = −(R+BTPtB)−1BTPtAxt−1 = −Kt−1xt−1 (16)

To get the optimal value function, we can substitute optimal control in Eq. (16) in equation Eq.(14):

V ∗(xt−1) = xTt−1Qxt−1 + u∗t−1
TRu∗t−1 + (Axt−1 +Bu∗t−1)TPt(Axt−1 +Bu∗t−1) (17)

= xTt−1(Q+KT
t−1RKt−1 + (A−BKt−1)TPt(A−BKt−1))xt−1 (18)

= xTt−1Pt−1xt−1 (19)

Therefore, Pt−1 = Q+KT
t−1RKt−1 + (A−BKt−1)TPt(A−BKt−1).

Eqs.(12) and (13) holds for time i = t− 1.

Therefore, theorem 1 has been proved by induction.

Some insights:

Theorem 1 basically says that the optimal control law for linear system subject to quadratic cost is a linear
feedback controller. At every time step, the optimal control input is a linear function of the current system
state, where ut = −Ktxt. A demonstration of the optimal control law for linear system dynamics is provided
in Fig. 2.
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Figure 2: The optimal controller for LQR problem is a linear feedback controller ut = −Ktxt.

Therefore, the system dynamics under the optimal control law could be written as

xt+1 = Axt +But = Axt −BKtxt = (A−BKt)xt , (20)

2.2 Infinite horizon LQR

If we consider the finite time horizon LQR problem in (6) in infinite time horizon, there is no so called “final
step” so we need to drop out the last step cost term xTNQfxN in Eq. (6a).

Therefore we need to re-define the optimal cost-to-go function in V ∗(x) under the infinite time horizon case,

V ∗(x0) = min
u0,u1,...

∞∑
t=0

(xTτ Qxτ + uTτ Ruτ ) , (21)

subject to xt+1 = Axt +But

In finite horizon, we proved that the optimal cost-to-go V ∗(xt) = xTt Ptxt is a quadratic function of the
current system state xt, and Pt changes with respect to (w.r.t.) time t. Under the infinite horizon case, [1]
shows that the optimal cost-to-go function V ∗(x) is still a quadratic form of state, where P is a time invariant
matrix. To give a bit intuition about why P is constant: under the infinite horizon condition, all time steps
look the ”same” because the system evolution and cost function are the same. Therefore, instead of having
a backward recursive formula of Kt and Pt, we have a stationary optimal policy K and optimal cost-to-go
function.

From Bellman’s optimality equation, for any state x

V ∗(x) = min
u
{xTQx+ uTRu+ V (Ax+Bu)}

= min
u
{xTQx+ uTRu+ (Ax+Bu)TP (Ax+Bu)}

minimizing u is
u∗ = −(R+BTPB)−1BTPAx , (22)

So the optimal value function

V ∗(x) = xTQx+ u∗TRu∗ + (Ax+Bu∗)TP (Ax+Bu∗)

= xT (Q+ATPA−ATPB(R+BTPB)−1BTPA)x

this must hold for all x, so we conclude that P satisfies the Algebraic Riccati Equation (ARE):

P = (Q+ATPA−ATPB(R+BTPB)−1BTPA) , (23)
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The solution of the ARE in (23) exists if the system described in the form of (3) is controllable. A system
is said to be controllable if a control input can be applied to move the system states from an initial state to
a final state in a finite time interval. If the system matrix A ∈ Rn×n is full rank and its rank is n, then the
system is controllable if the controllability matrix:

C = [B AB A2B . . . An−1B] (24)

is also full rank, that is, n for x ∈ Rn [7]. This guarantees that a controller can be found to achieve the
stated objective. This definition follows from the observation that

xt+1 = Axt +But

= A(Axt−1 +But−1) +But

= A2xt−1 +ABut−1 +But

= A3xt−2 +A2But−2 +ABut−1 +But

which makes it clear that it is sufficient for C to be full rank to generate an arbitrary state through some
sequence of control input.

System controllability is roughly defined as the ability to do whatever we want with our system, or in more
technical terms, the ability to transfer our system from any initial state x(0) = x0 to any desired final
state x(N) = xN in a finite time. Thus, the question to be answered is: can we find a control sequence
u(0), u(1), ..., u(N − 1) such that x(N) = xN?

For a linear system as,
x(k + 1) = Ax(k) +Bu(k), x(0) = x0 ,

we have the following set of equations,

x(1) = Ax(0) +Bu(0) , (25)

x(2) = Ax(1) +Bu(1) = A(Ax(0) +Bu(0)) +Bu(1) (26)

Once we solved P from (23), we plug back P to Eq.(22). The optimal control law in this case is given by a
linear constant state feedback:

u∗ = −Kx, K = (R+BTPB)−1BTPA

The system dynamics under the infinite horizon LQR optimal controller could be written as

xt+1 = Axt +But

= Axt −BKxt
= (A−BK)xt

= (A−BK)2xt−1

= ...

= (A−BK)t+1x0 ,

Assuming the eigenvalue decomposition of (A−BK) = MΛM−1,

lim
t→∞

xt = lim
t→∞

(A−BK)tx0 = lim
t→∞

MΛtM−1x0 ,

The stability of a system means all components of the state vector xt decaying to zero with time t, which is
determined by the eigenvalues of (A−BK). Define all eigenvalues of (A−BK) as λ1, λ2, ..., λn:

If there is any eigenvalue with magnitude greater than one (∃i ∈ N, |λi| > 1), the corresponding state
component will grow exponentially with time and system is by definition unstable; If all eigenvalues have
magnitude smaller than 1 (∀i ∈ N, |λi| < 1), the system is stable; if there is an eigenvalue |λ| = 1 and all
other eigenvalue no larger than 1, the system is defined to be marginally stable.
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2.3 Linear Quadratic Gaussian (LQG)

The LQG problem is an extension of the LQR problem to a case where there is now Gaussian noise in the
system, which means our system state evolves as:

xt+1 = Axt +But + wt , (27)

where wt ∼ N(0,W ) is a Gaussian noise

For this case the optimization equation in (6) is modified to:

minimize
u0,...,uN−1

J(u0, ..., uN−1, xt) = E[

N−1∑
τ=t

(xTτ Qxτ + uTτ Ruτ ) + xTNQfxN ]

subject to xt+1 = Axt +But + wt,

(28)

Following the LQR derivation, let the optimal value function be at i = t be V ∗(xt) = xTt Ptxt + Σt. For
i = t− 1, V ∗(xt−1) can be obtained by backwards recursion as

V ∗(xt−1) = min
ut−1

(xTt−1Qxt−1 + uTt−1Rut−1 + E[V ∗(Axt−1 +But−1 + wt−1)])

= min
ut−1

(xTt−1Qxt−1 + uTt−1Rut−1 + E[(Axt−1 +But−1 + wt−1)TPt(Axt−1 +But−1 + wt−1) + Σt])

= min
ut−1

(xTt−1Qxt−1 + uTt−1Rut−1 + (Axt−1 +But−1)TPt(Axt−1 +But−1) + E[wTt−1Ptwt−1] + Σt),

= min
ut−1

(
xTt−1Qxt−1 + uTt−1Rut−1 + (Axt−1 +But−1)TPt(Axt−1 +But−1)

)
+ Tr(WPt) + Σt (29)

where E[wTt−1Ptwt−1] = Tr(WPt).

The derivative of (29) is the same as for LQR since the extra terms added are constants which are not a
function of ut−1, that is

∇ut−1
V ∗(xt−1) = 2uTt−1R+ 2(Axt−1 +But−1)TPtB = 0 (30)

Hence the optimal control is,

u∗t−1 = −(R+BTPtB)−1BTPtAxt−1 = −Kt−1xt−1 (31)

Remarkably, the optimal control rule doesn’t change even when we add noise to the system!

To get the optimal cost-to-go, we can substitute optimal control in (31) in equation (29):

V ∗(xt−1) = xTt−1Qxt−1 + u∗t−1
TRu∗t−1 + (Axt−1 +Bu∗t−1)TPt(Axt−1 +Bu∗t−1) + +Tr(WPt) + Σt

= xTt−1(Q+KT
t−1RKt−1 + (A−BKt−1)TPt(A−BKt−1))xt−1 + Tr(WPt) + Σt

= xTt−1Pt−1xt−1 + Σt−1 (32)

where Pt−1 = Q+KT
t−1RKt−1 +(A−BKt−1)TPt(A−BKt−1), PN = Qf , Σt−1 = Tr(WPt)+Σt and ΣN = ~0

The infinite horizon derivation for the LQG follows accordingly from the LQR derivation.
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3 Model Estimation

In computing the LQR and LQG in section 2, the model parameters are assumed to be known which makes
computing the optimal controller straightforward. In cases where the system model is unknown, the LQR
and LQG methods can still be used, the system model will first estimated before designing the optimal
controller.

The most common method for model estimation is through Least Squares Estimation. There are different
variants of this method but only two will be considered here: Ordinary Least Square (used off-line) and
Recursive Least Square (used on-line)

3.1 Ordinary Least square

This method is used in estimating the system model using the input (control action) and output (state
trajectory) data obtained from a linear dynamic system. Using the helicopter dynamics from section 1,
assume the helicopter dynamics in (2) is unknown but we have obtained the input and output data by
randomly driving the system resulting in [xt, ut]

T
t=0. Recall from (3), that the dynamics of a linear system

can be written in the form:

xt+1 = Axt +But. (33)

The least square estimation problem aims to find the unbiased estimator Â and B̂ of the unknown model A
and B by solving the quadratic optimization problem:

(Â, B̂) = arg min
(A,B)

T∑
t=0

1

2
||xt+1 − (Axt +But)||22 , (34)

To solve (34), let zt =

[
xt
ut

]
∈ Rn+p and θ = [A, B] ∈ R(n+p)×n. Collecting the data for all time steps, we

have:

X =


x1

x2

...
xT

 , Z =


z0

z1

...
zT−1

 , (35)

and (33) can be re-written as:

X = Zθ. (36)

Assuming ZTZ is invertible, the least square estimate of θ is given by [8]:

θ̂ = (ZTZ)−1ZTX. (37)

3.2 Recursive least square

In the subsection above, the ordinary least squares is used in estimating the unknown model when the full
data can be obtained beforehand, that is off-line. If the data comes in sequentially, for example, in an on-line
application where the data is collected from a running system, we would like to recursively update the model
as more data comes in. An ordinary least square estimate can be used repeatedly to obtain the estimate as
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more data comes in but this is expensive due to the matrix inversion required. This gives rise to an algorithm
called Recursive Least Square [4] which uses the matrix inversion lemma to reduce the computational burden.

From (35), suppose at time n we know Zn = z0, . . . , zn−1 and Xn = x1, . . . , xn, then from (37):

θ̂n = (ZTn Zn︸ ︷︷ ︸
Φn

)−1 ZTnXn︸ ︷︷ ︸
δn

= Φ−1
n δn (38)

where Φn := ZTn Zn =
∑n
i=0 z

T
i zi and δn := ZTnXn =

∑n
i=0 z

T
i xi.

When the next data arrives at time n+ 1, the updates will be as follows:

Φ−1
n+1 = (Φn + zTn+1zn+1)−1 = Φ−1

n −
Φ−1
n zTn+1z

T
n+1Φ−1

n

1 + zTn+1Φ−1
n zTn+1

(39)

δn+1 = δn + zTn+1xn+1 (40)

θn+1 = Φ−1
n+1δn+1 (41)

This process can be initialized with θ0 = 0 and Φ0 = α−1I, where α is a very small positive number.

4 Recent Advances

In this section, we review some recent advances that have been made in the area of controlling linear systems
with unknown system dynamics and providing guarantees on the optimality of the controller.

4.1 Linear Robust Control with Model Unknown

Paper [5] addresses the optimal control problem when the system dynamics are unknown. The proposed
control procedure works as following:

a) estimate the unknown system dynamics model by least-square method,

b) quantify the least-square estimation error

c) design a robust controller using the error bound of system dynamics estimation.

The idea of first quantifying the system estimation error and then solving the optimal control problem by
robust optimization is quite interesting and novel. Two major results are established in the paper: on the
accuracy of least squares system estimation, and robust controller performance respectively. As we intro-
duced in Section 3.1, least square method is widely used for unknown system estimation. Let’s define the
least square estimation of system matrix as (Â, B̂). In order to quantify the least-square estimation error,
we use only the final sample (xT , xT−1, uT−1) of each trajectory (sample i.i.d. assumption).

Theorem 1. Least squares estimate accuracy

Assuming the data is collected from a linear, time-invariant system initialized at x0 = 0, using inputs

ut
i.i.d.∼ N(0, σ2

uIp) for t = 1, ..., T . Suppose that the process noise is wt
i.i.d.∼ N(0, σ2

wIn) and we use only the
final sample of each trajectory. With probability at least 1− δ, the least squares estimator of system matrix
satisfies:

||Â−A||2 ≤
16σw√

λmin(σ2
uGTG

∗
T + σ2

wFTF
∗
T )

√
(n+ 2p log(36/δ))

N
(42)
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||B̂ −B||2 ≤
16σw
σu

√
(n+ 2p log(36/δ))

N
(43)

where
GT = [AT−1B,AT−2B, ..., B] and FT = [AT−1, AT−2, ..., I] ,

and,
N ≥ 8(n+ p) + 16 log(4/δ) ,

The above theoretical error bounds in (42) and (43) can only be computed if we know the true system
matrices (A, B). However, this paper is trying to solve the optimal control problem when system dynamics
are unknown. Therefore, the above theoretical bound may not be applicable and we need other methods
to quantify the least square estimation error. The authors further proposed a bootstrapping method which
provides an upper bound on the errors εA = ||A− Â||2 and εB = ||B − B̂||2 from simulations.

With the least squares estimates (Â, B̂) and error bounds (εA, εB) obtained from bootstrapping, a robust
controller can then be designed. With high probability, we know the true system dynamics should be close
to the LS estimation where A = Â + ∆A, B = B̂ + ∆B and ||∆A||2 ≤ εA, ||∆B ||2 ≤ εB . The objective of
the robust LQR is to minimize the worst-case performance of the system given the (high-probability) norm
bounds on the perturbations ∆A and ∆B

minimize sup
||∆A||2≤εA,||∆B ||2≤εB

limT→∞
1

T

T∑
t=1

E[x∗tQxt + u∗t−1Rut−1] (44a)

s.t. xt+1 = (Â+ ∆A)xt + (B̂ + ∆B)ut + wt (44b)

Using System Level Synthesis (SLS) framework, a sub-optimal guarantee between the robust controller and
the optimal LQR controller is given as follows:

Theorem 2. Sub-optimality guarantee Let J∗ denote the minimal LQR cost achievable by any controller
for the dynamical system with system matrices (A,B) known, and let K∗ denote the optimal controller. Let
(Â, B̂) be estimates of the system matrices such that ||∆A||2 ≤ εA, ||∆B ||2 ≤ εB. Then, if K is the proposed
robust controller. Then the relative error in the LQR cost is bounded as,

J(A,B,K)− J∗
J∗

≤ 5(εA + εB ||K∗||2)||RA+BK∗ ||H∞ , (45)

with probability 1− δ provided N is sufficiently large.

This above result offers a guarantee on the performance of the proposed robust controller regardless of the
estimation procedure used to estimate the system matrices. In this paper, they used least square estimation
method. But in practice, this framework could be extended to work with different kinds of system estimation
methods as long as the estimation error bound is provided.

4.2 Adaptive Control

A sub-field of control theory called Adaptive Control focuses on the design of controllers when the model
parameters are unknown. In section 3, under the recursive least squares, no guarantees were given for the
on-line estimated model and the subsequently designed linear quadratic (LQ) controller using the estimated
model. Paper [6] provides these guarantees by deriving an error bound on the estimation error of the on-line
model and a regret bound on the performance of the proposed on-line LQ controller.
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4.2.1 Error Bound on Estimated Model

To estimate the model on-line, a high-probability confidence set is required for the unknown parameter
matrix. Recall the modified linear system in where (36):

ΘT = [A, B] and zt =

[
xt
ut

]
, (46)

and assume the uncertainties in the system are modeled as a Gaussian noise wt such that we have a stochastic
linear system, then the linear state-space equation can be written as:

xt+1 = ΘT zt + wt+1 (47)

To derive the confidence set, a self-normalization processes is used to estimate the least square estimation
error:

e(Θ) = λtrace(ΘTΘ) +

t−1∑
s=0

trace((xs+1 −ΘT zs)(xs+1 −ΘT zs)
T ) (48)

Let Θ̂t be the `2−regularized least-squares estimate of Θ∗, with regularization parameter λ > 0:

Θ̂t = argmin
Θ

e(Θ) = (ZTZ + λI)−1ZTX, (49)

where Z and X are the matrices whose rows are zT0 , . . . , z
T
t−1 and xT1 , . . . , x

T
t , respectively.

Theorem 3. Let (z0, x1), . . . , (zt, xt+1), zi ∈ Rn+d, xi ∈ Rn, satisfy the linear model assumption in [6]
some l > 0, Θ∗ ∈ Rn×(n+d), trace(ΘT

∗Θ∗) ≤ S2 and let F = (Ft) be the associated filtration. Consider the
`2-regularized least-squares parameter estimate Θ̂t with regularization coefficient λ > 0. Let

Vt = λI +

t−1∑
i=0

ziz
T
i

be the regularized design matrix underlying the covariates. Define

βt(δ) =

(
nL

√
2log

(
det(Vt)1/2det(λI)−1/2

δ

)
+ λ1/2S

)
(50)

Then, for any 0 < δ < 1, with probability at least 1− δ,

trace
(

(Θ̂t −Θ∗)
TVt(Θ̂t −Θ∗)

)
≤ βt(δ) (51)

In particular, P(Θ∗) ∈ CT (δ), t = 1, 2, . . . ) ≥ 1− δ, where

CT (δ) =
{

Θ ∈ Rn×(n+d) :
{

trace
(

(Θ̂t −Θ∗)
TVt(Θ̂t −Θ∗)

)
≤ βt(δ)

}
≤ βt(δ)

}
(52)

This theorem shows that if the covariate matrix Vt is within a certain bound, then the deviation of the
estimated model from the actual mode is bounded by Bt(δ).



Lecture 20: Linear Dynamics and LQG 12

4.2.2 Regret Bound on Performance Criterion

To define the regret of this system, consider the performance objective selected for the helicopter dynamics
in section 1, let the cost at time t be:

ct = xTt Qxt + utRut. (53)

The average expected cost over a time horizon T is given by:

J(u0, u1, . . . , ) = lim sup
T→∞

1

T

T∑
t=0

E[ct] (54)

Let J∗ be the optimal (lowest) average cost which is the cost when an optimal controller that has the full
information about the system dynamics is used. The regret up to time T of a controller which incurs a cost
of ct at time t is defined by

R(T ) =

T∑
t=0

(ct − J∗) (55)

The algorithm for obtaining the on-line feedback controller is then as follows

Algorithm 1: Adaptive Algorithm for LQ Control

Input : T, S > 0, δ > 0, Q, L, λ > 0.
1 Set V0 = λI and Θ̂0 = 0;
2 for t := 0, 1, 2, . . . , do
3 if det(Vt) > 2 det (V0) then

4 Calculate Θ̂ using equation (49);

5 Find Θ̃ such that J(Θ̃) ≤ infΘ inCt(δ)∩SJ(Θ) + 1√
t
;

6 Let V0 = Vt;

7 else

8 Θ̃t = Θ̃t−1

9 end

10 Calculate ut based on the current parameters, ut = K(Θ̃)xt ;
11 Execute control, observe new state xt+1 ;

12 Save (zt, xt+1) into the dataset, where zTt = (xTt , u
T
t );

13 Vt+1 := Vt + ztz
T
t

14 end

Following this algorithm will lead to a regret bound given by the theorem below:
Theorem 4. For any 0 < δ < 1, for any time T , with probability at least 1− δ, the regret of Algorithm 1 is
bounded as follows:

R(T ) = Õ(
√
T log(1/δ)) (56)

where the constant hidden is a problem depended constant

Remarks: It is unclear how computationally tractable step 5 in the algorithm 1 above will be since the
computation is expected to be performed on-line and requires a search through the space for the model that
satisfies the condition. Nevertheless, it is a step forward in this active research area and with time, we can
expect a more developed result.
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Furthermore, the regret bound derived in Theorem 4 is novel as it provides an explicit bound for an LQ
problem. A recent paper [9] seems to be an extension of this result but for both a stationary and time-varying
system though the regret bound derived is also Õ(

√
T where Õ(.) hides the constants and logarithmic factor.

In this recent paper, a Thompson sampling-based learning algorithm is used in estimating the unknown
system parameters as compared to using a high confidence probability bound. It will be interesting to do a
comparison of these two papers to see which is more computationally tractable and under what assumption
will the bounds hold.
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