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1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a policy-optimization algorithm for finite-horizon, finite-size Markov
Decision Processes, based on random episode sampling structured by a decision tree [1]. In this section,
we describe Monte Carlo Tree Search in generality, laying the groundwork for the bandit-based extension
discussed in the following section. As a preview, that extension essentially provides an effective yet still
generic instantiation, with proven probabilistic guarantees, for an especially challenging implementation-
specific component of MCTS.

1.1 Summary of Markov Decision Processes

A Markov Decision Process (MDP) is a probabilistic model for reward-incentivized, memoryless, sequential
decision-making. An MDP models a scenario in which an agent (the decision maker) iteratively observes the
current state, selects an action, observes a consequential probabilistic state transition, and receives a reward
according to the outcome. Importantly, the agent decides each action based on the current state alone and
not the full history of past states, providing a Markov independence property. Mathematically, an MDP
consists of the following components:

• a state space (set), X ;

• an action space (set), A;

• a transition probability function, P : X ×A×X → [0, 1]; and

• a reward function, R : X ×A → [0, 1].

MCTS places some restrictions on the kind of MDPs that we may consider. We require that an MDP
under consideration be finite; this means that the state- and action-spaces must both have finite size, though
they may be fairly large nonetheless. We also require that the MDP be finite-horizon; this property means
that any transition sequence x0, a0,1, x1, a1,2, x2, . . . of nonzero probability (i.e.,

∏
i≥0 P(xi, ai,i+1, xi+1) > 0)

must have finite length. A finite-length transition sequence of which every extension has zero probability
is called an episode of the MDP. Given the Markov independence inherent in any MDP (i.e., transition
probability independent of past history), the finite-horizon restriction implies that some states of the MDP
are terminal, such that any transition from one has zero probability. By analogy, states that are not terminal
are called nonterminal. Lastly, MCTS assumes an undiscounted MDP; that is, MCTS assumes that the MDP
has unit discount factor. Technically, one could easily adapt MCTS to work with non-unit discount factors,
but requiring a finite-horizon MDP typically makes discounting irrelevant.

From the components of an MDP, we define the optimal state value function V ∗ : X → R and optimal
state-action value function Q∗ : X ×A → R:
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V ∗(x) = max
a∈A

Q∗(x, a)

Q∗(x, a) = R(x, a) +
∑
x′∈X

P(x, a, x′)V ∗(x′)

The function V gives the maximum expected reward for any decision policy when starting from state
x, and the Q function similarly gives the maximum expected reward for any decision policy when starting
from state x with action a. A rigorous derivation of these functions and proof of their stated properties are
beyond the scope of these lecture notes. The classic problem for an MDP is to come up with a decision policy
that is optimal with respect to expected reward. A decision policy — or simply “policy” — is a function
from states to actions, π : X → A, and for such a policy to be optimal with respect to expected reward, it
must hold that π(x) = arg maxa∈AQ(x, a) for any state x ∈ X . The intuition for this problem, sometimes
called planning, is that an agent following an optimal decision policy can maximize its acquired reward, in
expectation.

Several algorithms exist to calculate or approximate such an optimal policy (e.g., Q-learning), but most
such algorithms become either computationally intractable or hopelessly imprecise when the state- and/or
action-spaces are very large. As an algorithm for policy optimization, MCTS has shown great success for
such larger-scale problems. Two qualities of MCTS critical to this success are that it is incremental and that
it is iterative. MCTS is incremental in the sense that it approximates each decision in the optimal policy
individually (i.e., step by step), and it is iterative in the sense that it can use whatever available computation
budget to improve its approximation of the optimal decision as much as possible. In combination, these two
qualities enable MCTS to scale to MDPs of seemingly intractable size, by focusing its computational resources
on the next local decision of immediate concern.

1.2 Applications to Games

Practitioners most frequently apply MCTS is game theory, where the goal is to learn the optimal policy for
a Markov game. A Markov game can be thought of an extension of game theory to MDP-like environments
where a player may take an action from a state, but the reward and state transitions are uncertain as they
depend on the adversary’s strategy [2]. Generally the focus is on two-player zero-sum Markov games since
it is a well researched area of game theory where there is no concern of cooperation between players and the
rewards are symmetric for players except for positive/negative values.

Markov games are much like MDPs where there is a set of states S and a set of actions Ai for each player
i; in the two-player setting call the action set of the player A and the opponent O. Define the reward of the
player’s action a in state s where the opponent plays action o in return as R(s, a, o) and where the system
will transition to a new state s′ after the moves where s′ ∼ T (s, a, o, ·) for the transition kernel T . Since we
are considering zero-sum games, the absolute value of the reward is the same for each player but is positive
for the current player and negative for the opponent; this simplifies analysis so we can deal with just one
reward function and change the sign depending on the player. For most common games like Go and Chess
the transition and reward functions are deterministic given the actions of the player and the opponent, but
we consider them non-deterministic values sine the player and opponent may use randomized strategies.

Finding an optimal policy in this scenario seems impossible since it depends critically on which adversary
is used. The way this is resolved is by evaluating a policy with respect to the worst opponent for that policy.
The goal now is to find a policy that will maximize the reward knowing that this worst case opponent will
then minimize the reward after the action is played (the fact that this is a zero-sum game makes it so the
opponent will maximizes your negative reward); this idea is used widely in practice in what is known as
the minimax principle. This optimal policy is a bit pessimistic since you won’t always be playing against
a worst-case opponent for that policy, but it does allow to construct a policy for a game that can be used
against any adversary. One technical note is it’s common to allow a policy to be non-deterministic as it
might not be optimal to play deterministically in games like rock-paper-scissors.
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Using this minimax strategy changes the optimal value function for a state s ∈ S

V ∗(s) = max
π∈∆|A|−1

min
o∈O

∑
a∈A

Q(s, a, o)πa

where ∆|A|−1 is the probability simplex over the A actions. The quality of action a in state s against action
o is

Q∗(s, a, o) = R(s, a, o) + γ
∑
s′

T (s, a, o, s′)V ∗(s′)

One algorithm for finding this minimax optimal policy called minimax-Q is exactly like Q-learning except
using a min-max instead of just a max like in the definition of the state value above [2].

1.2.1 Minimax Trees

Another popular algorithm to estimate the optimal action from a state against this worst case opponent
is the Minimax algorithm. The idea behind this algorithm is that the opponent will play optimally given
your action and select an action that maximizes their reward; therefore you should select an action that
maximizes your reward given that the opponent will be minimizing your reward after your action has been
chosen. To compute which action is optimal, the algorithm forms a game tree from the current state s is
the root node where each action is a branch to nodes of result states s′ (where s′ is the state resulting from
taking action a from state s). The important part of this tree representation of choices is that each level of
the tree alternates which players it is representing; on the first level it is the first player, the second layer is
their opponent (the second player), the third is the first player, etc. The Minimax tree allows us to explore
all possible scenarios up to a certain depth of the tree to simulate what the opponent will do under this
worst-case assumption.

For the same reasons listed above, Q-learning and Minimax like strategies may be infeasible for games like
Go where the state and action spaces are incredibly large; real-world games can have hundreds of actions and
over a quindecillion (i.e. 1 trillion trillion trillion trillion) possible states. Instead what is used is a version
of MCTS that explores the Minimax game tree described above in a depth-first wise fashion to estimate the
optimal action.

1.3 The Algorithm

The MCTS algorithm centers around iterative manipulation of a decision tree, happening in four phases:
selection, expansion, simulation, and backpropagation. Figure 1 diagrams how the phases of an iteration
interact with the decision tree. To instantiate MCTS for an MDP, the user must, at least, supply a repre-
sentation of states and of actions; a handful of operations on states and actions (e.g., enumerate actions and
determine whether state is terminal); and a generative model of the MDP that stochastically generates a
new state given a nonterminal state and an action. At a high level, MCTS repeatedly samples episodes from
this generative model in order to approximate the expected reward down the various paths recorded in the
decision tree. In the following paragraphs, we explain these core aspects of MCTS in detail.

The decision tree encodes prefixes of episodes – maximal finite transition sequences of nonzero probability
– observed in the current run of MCTS. The nodes of the decision tree represent states of the underlying
MDP, with the root’s state given as input to the algorithm. A branch from a parent node to a child node
is labeled by the action taken in sampled transitions from the parent’s state to the child’s state. Figure 2
illustrates the structure of a decision tree in MCTS. Notice how multiple branches may share the same action
label, because an MDP transitions to a new state stochastically – not deterministically – given a state and
action.

Until exhaustion of a user-specified time budget, MCTS iteratively samples full episodes (originating at
the root’s state) from the generative model, expanding the decision tree incrementally for each observed
episode. To sample an episode, MCTS needs a decision policy with which to feed actions to the generative
model. The selection phase and simulation phase of an MCTS iteration determine this decision policy
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Figure 1: Diagram of the phases of an MCTS iteration (credit to [1]).
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Figure 2: Illustration of a decision tree in MCTS.

dynamically. Selection induces a decision policy, known as the tree policy, to navigate through the existing
decision tree, attempting to strike a balance between exploration of unknown decision paths and exploitation
of known, promising decision paths. Once selection reaches the end of the existing decision tree – by observing
a transition triple unrecorded in the decision tree – the tree is expanded with a new leaf node, and simulation
begins. Simulation aims to choose actions quickly and stochastically, in order to finish sampling the episode as
quickly as possible. When the episode is complete (having reached a terminal state), MCTS backpropagates
the reward accumulated in the episode up the decision path taken by selection.

Since the goal of MCTS is to optimize policy decisions from the root state, MCTS accumulates statistics
from sampled episodes in each node. In particular, MCTS tracks a quantity N , the number of observed
transitions into a node’s state from its parent’s state using the branch’s action, and a quantity R, the
total reward observed in any sampled episode after passing through the node. As these quantities better
approximate probabilistic expectation, Rx,a/Nx,a better approximates the Q-value for a state x and action
a, where Rx,a is the total reward observed for all children of the node for x connected by a branch for a
(respectively for Nx,a).

Algorithm 1 presents the pseudocode for the MCTS algorithm. As hinted at in the introduction, generic
MCTS is highly configurable. At the very least, instantiating the algorithm requires providing the MDP’s
probabilistic transition relation P : X×A×X → [0, 1] and reward functionR : X×A×X → [0, 1], but imple-
mentors must also define exploratory action selection (SelectAction), which characterizes the tree policy.
While not strictly necessary, implementors routinely tweak simulative action selection (RandomAction),
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which similarly characterizes the default policy, and the determination for the approximately best action
(BestAction) as well. As a practical matter, implementations typically use a technique like transposi-
tion tables to mitigate state duplication within the decision tree, effectively turning the decision tree into a
decision dag (directed acyclic graph).
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Algorithm 1 Monte Carlo Tree Search

1: procedure MonteCarloTreeSearch(x0)
2: τ0 ← MakeTree(x0) . Initialize decision tree with root state x0

3: repeat . Main, iterative loop of the algorithm
4: τi, r ← TreePolicy(τ0) . Exploration, returning new leaf and current reward
5: xi ← τi.state
6: r ← DefaultPolicy(xi) . Simulation, completing episode and returning total reward
7: Backpropagate(τi, r) . Update node statistics along exploration path
8: until Timeout()
9: return BestAction(τ0) . Pick the approximately optimal root-level action

10: end procedure
11:

12: procedure TreePolicy(τ) . Decision policy for exploration
13: r ← 0
14: x← τ .state
15: while Nonterminal(x) do
16: a← SelectAction(x) . Heuristically select an action from A
17: x′ ← TransitionP(x, a) . Sample transition from generative model
18: r ← r +R(x, a, x′)

19: if τ .children[a][x′] = null then . Is this the first observation of x
a−→ x′?

20: τ .children[a][x′]←MakeTree(x′) . Initialize leaf node for state x′

21: return τ .children[a][x′], r . Move on to simulation phase
22: end if
23: τ ← τ .children[a][x′]
24: x← x′

25: end while
26: return τ, r
27: end procedure
28:

29: procedure DefaultPolicy(x, r) . Decision policy for simulation
30: while Nonterminal(x) do
31: a← RandomAction(x) . Randomly select an action from A
32: x′ ← TransitionP(x, a) . Sample transition from generative model of P
33: r ← r +R(x, a, x′)
34: end while
35: return r
36: end procedure
37:

38: procedure Backpropagate(τ, r) . Update statistics along path to this tree node
39: repeat
40: τ .reward← τ .reward + r
41: τ .count← τ .count + 1
42: τ ← τ .parent
43: until τ = null
44: return
45: end procedure
46:

47: procedure BestAction(τ) . Pick the approximately best action at this tree node

48: return arg maxa∈A

∑
τ′∈τ.children[a][·] τ

′.reward∑
τ′∈τ.children[a][·] τ

′.count

49: end procedure
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2 MCTS with Multi-armed Bandits

Generally speaking, MCTS uses a simple timeout as its stopping condition. Therefore, a desirable property
for MCTS is that the probability of selecting a sub-optimal decision quickly approaches zero as the algorithm
is given more time. Moreover, another related desirable property is that the probability of a sub-optimal
decision will indeed converge to zero given unbounded time. Unfortunately, general MCTS does not guarantee
any of the properties above. As we will see, there is an algorithm, UCT (UCB applied to trees) [3], which
achieves the desired properties by taking a statistical approach to balancing the exploration-exploitation
trade-off.

2.1 Multi-armed Bandits

To understand UCT, one must first understand multi-armed bandits, a statistical problem integral to the
UCT algorithm. In this subsection, we briefly review the problem and a common algorithm, UCB1 [4], used
by UCT.

The premise of multi-armed bandits is this: At each time step t ≥ 1, the player must choose one of K
arms — each associated with an independent random reward sequence Xi,t for i ∈ {1..K} — from which
to receive a reward, based on the player’s past observation of rewards from each arm. For simplicity, these
rewards are generally assumed to lie in [0, 1], and we assume a fixed mean µi for each arm, with a unique
arm having a maximum mean µ∗. Some policy π(t) picks an arm It ∈ {1..K} to pull at time t. The regret
of such a policy is the loss incurred for not having picked the best arm always, which is shown in Equation
1, where Ti(t) =

∑t
s=1 1(Is = i) is the number of times arm i has been pulled up to time t.

Rn = max
i

{
E

[
n∑
t=1

Xi,t

]}
− E

 K∑
j=1

Tj(n)∑
t=1

Xj,t

 (1)

It has been shown that the best possible policy π(t) has a regret bounded by Ω(lnn), and any policy that
is within a constant factor of this is considered to balance the exploration-exploitation trade-off in the tree
policy well. One such algorithm is UCB1. [3]

The high level concept of UCB1 is simple: pick the arm with the highest confidence bound on its mean
reward. To facilitate this, UCB1 tracks the empirical average of each arm’s rewards X̄i,Ti(t−1) up to time t.
As a result, when incorporating UCB into MCTS, it becomes necessary to track empirical average reward
in MCTS. The policy is outlined in Equation 2, where ct,s is a bias sequence over time t and sample size s,
picked such that both Equation 3 and Equation 4 are satisfied.

UCB1(t) = arg max
i∈{1..K}

{
X̄i,Ti(t−1) + ct−1,Ti(t−1)

}
(2)

P(X̄i,s ≥ µi + ct,s) ≤ t−4 (3)

P(X̄i,s ≤ µi − ct,s) ≤ t−4 (4)

For standard multi-armed bandits, the bias sequence ct,s =
√

2 ln t
s is appropriate. Note that the bias

sequence is proportional to time and inversely proportional to sample size. It is designed so that confidence
bounds expand slowly over time, but contract quickly as we gather more data.

2.2 Drifting Multi-armed Bandits

For more detail on any of the theorems discussed in this section, please refer to [5]. In order to understand
UCT, we must first relax the restraints on K-armed bandits to allow each arm’s mean µi to change over time
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t. While we can no longer rely on the assumption that the mean of each arm is fixed from t = 1 onward,
we can assume that the expected value of the empirical averages converge. We let X̄i,n = 1

n

∑n
t=1Xi,t be

the empirical average of arm i at time n, and µi,n = E[X̄i,n] be its expected value. Therefore, we now
have a sequence of expected means for each arm i, namely µi,n. We assume that these expected means
eventually converge to one final mean µi = limn→∞ µi,n. We further define a sequence of offsets for each
arm as δi,n = µi,n − µi. We also make the following assumptions about the reward sequence:

Assumption 1. Fix 1 ≤ i ≤ K. Let {Fi,t}t be a filtration such that {Xi,t}t is {Fi,t}-adapted and Xi,t is
conditionally independent of Fi,t+1,Fi,t+2, ... given Fi,t−1

1. Then 0 ≤ Xi,t ≤ 1 and the limit of µi,n = E[X̄in]
exists. Further, we assume that there exist a constant Cp > 0 and an integer Np such that for n ≥ Np, for

any δ > 0, ∆n(δ) = Cp
√
n ln(1/δ), the following bounds hold:

P(nX̄i,n ≥ nE[X̄i,n] + ∆n(δ)) ≤ δ
P(nX̄i,n ≤ nE[X̄i,n]−∆n(δ)) ≤ δ

This assumption allows us to define a bias sequence ct,s for time t and sample size s which satisfies
Equation 3 and Equation 4. This sequence is as follows:

ct,s = 2Cp

√
ln t

s
(5)

We define ∆i = µ∗−µi to be the loss of arm i. Recall that since the expected mean of each arm converges,
the mean offset δi,t converges to zero. Therefore, there exists a time N0(ε) at which the uncertainty of the
true mean rewards are guaranteed to be within a factor ε of their distance from the optimal mean, and the
uncertainty of the optimal mean is guaranteed to be within the same factor ε of its distance to to closest
suboptimal mean. Therefore, even though we still have some uncertainty as to what the true means really
are, we have enough information to know which is probably the best, as µ∗N0(ε) is closer to µ∗ than it is to

any µi,N0(ε). More formally, N0(ε) : R→ N is a function which returns the minimum t for which 2|δi,t| ≤ ε∆i

for all arms i, and 2|δj∗,t| ≤ εmini ∆i. Under Assumption 1, and using the preceding definitions, we can
upper bound the expected number of times that a suboptimal arm will be played by UCB1 when the means
are allowed to drift. The bounds follow:

Theorem 1. Consider UCB1 applied to a non-stationary problem where the pay-off sequence satisfies As-
sumption 1 and where the bias sequence, ct,s, used by UCB1 is given by Equation 5. Fix ε > 0. Let Ti(n)
denote the number of plays of arm i. Therefore if i is the index of a suboptimal arm then

E[Ti(n)] ≤
16C2

p lnn

(1− ε)2∆2
i

+N0(ε) +Np + 1 +
π2

3
.

To provide an intuition for the above bound, we quickly review some of the values invoked in it. First
of all, recall that Np is a constant chosen based on the definition of the drifting means bias sequence ct,s for
time t and sample size s. It is a lower bound on t such that another constant Cp can be used in Equations 3
and 4. Also we reference the value N0(ε). This value is a lower bound for t at which µ∗t is closer to µ∗ than
it is to any µi,t. The value also incorporates a notion of how small the distance is using ε.

Because we allow the means to drift, we cannot directly use regret as a benchmark for the effectiveness
of UCB, but we can instantiate a similar measure, and prove a bound on it using Theorem 1. This measure

involves a few odd quantities for which we will attempt to give some intuition. Let X̄n =
∑K
i=1

Ti(n)
n X̄i,Ti(n),

where Ti(n)
n is the empirical probability of pulling arm i, and X̄i,Ti(n) is the empirical mean of arm i.

Therefore X̄n is like an empirical expected reward for UCB at time t = n. We cannot use this value directly
to compare to the best possible reward µ∗, because Ti(n) is itself a random variable. Therefore the measure
|E[X̄n] − µ∗| is similar to regret, as it is proportional to the loss incurred for not having always played the
best arm. A bound on the measure follows:

1If this terminology is unfamiliar, it is sufficient to say that the reward process can only rely on past information, it cannot
see into the future.
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Theorem 2. Under the assumptions of Theorem 1,

|E[X̄n]− µ∗| ≤ |δ∗n|+O

(
K(C2

p lnn+N0)

n

)

where N0 = N0(1/2).

To provide further intuition for the above, recall that δ∗n is the distance between the optimal arm’s mean
at time t = n, and the true optimal mean. Furthermore, the theorem is proven using the value N0(ε) where
ε = 1/2.

Furthermore, using Theorem 1, we can derive a lower bound on the number of times some arm i will be
played. This result follows:

Theorem 3. Under the assumptions of Theorem 3, there exists some positive constant ρ such that for all
arms i and n, Ti(n) ≥ dρ log(n)e.

We need the above result to prove that the optimal reward converges quickly to its true mean in the
drifting multi armed bandit problem. We omit the proof of the result, but it is natural that it would require
both the lower bound on Ti(n) and the upper bound on E[Ti(n)]. This quick convergence is one of the two
most important properties for incorporating UCB into MCTS. If the drifting means converge slowly then we
cannot hope to quickly find an optimal arm. The bound follows:

Theorem 4. Fix an arbitrary δ > 0 and let ∆n = 9
√

2n ln 2/δ. Let n0 be such that

√
n0 ≥ O(K(C2

p lnn0 +N0(1/2)))

Then for any n ≥ n0, under the assumptions of Theorem 1 the following bounds hold true:

P(nX̄n ≥ nE[X̄n] + ∆n) ≤ δ
P(nX̄n ≤ nE[X̄n]−∆n) ≤ δ

Another extremely important result for using UCB in MCTS is that when the means can drift, UCB still
finds the best arm when given infinite time. This result follows:

Theorem 5. Under the assumptions of Theorem 1 it holds that

lim
t→∞

P (It 6= i∗) = 0

2.3 UCT

UCT is simply a marriage of MCTS and UCB1. The main idea is to treat each internal node in MCTS as a
K-armed bandit, where the arms are the actions available at that state. A separate instance of UCB1 is run
on each internal state, modified to accommodate the drifting means present in this problem. The necessity
of the drifting means generalization can be seen by realizing that UCT is essentially a tree of separate UCB1
instances. The means of the action rewards in each of these multi-armed bandit problems depend on the
instances lower in the tree. As we explore the tree, we gain a clearer understanding of the true means,
reducing noisiness introduced by a partial exploration deeper in the tree. Simply put, UCT is MCTS where
we use UCB1 to select an action in the tree policy. See Algorithm 2 for pseudo code of the action selection.

Recall Theorems 4 and 5 from the previous section. These state that when means can drift in the multi
armed bandit problem, UCB still finds the optimal solution quickly with high probability, and given enough
time it always finds the optimal arm. When incorporating UCB into MCTS, we also get these properties in
UCT, as stated in Theorem 6.
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Figure 3: Depiction of a UCT search tree

Algorithm 2 UCT Action Selection

1: procedure selectAction(position, depth)
2: nActions← |A|
3: nsum← 0
4: for i ∈ {1..nActions} do
5: nsum← nsum + position.actions[i].n . Add the number of times the ith action has been chosen
6: end for
7: maxv← −∞
8: for i ∈ {1..nActions} do
9: if position.actions[i].n = 0 then

10: v ← +∞
11: else

12: v ← position.actions[i].value +
√

2·ln(nsum)
position.actions[i].n

13: end if
14: if v > maxv then
15: maxv← v
16: j ← i
17: end if
18: end for
19: return position.actions[j]
20: end procedure

Theorem 6. Consider algorithm UCT running on a game tree of depth D, branching factor K with stochastic
payoffs at the leaves. Assume that the payoffs lie in the interval [0, 1]. Then the bias of the estimated expected
payoff, X̄n, is O((KD log(n) +KD)/n). Further, the failure probability at the root converges to zero as the
number of samples grows to infinity.

A detailed proof of the preceding theorem is beyond the scope of these lecture notes (see [5] for such a
proof), however we will provide a sketch of the proof. We must induct on D to prove the theorem. In the
base case of D = 1, UCT is reduced to a single instantiation of UCB. Therefore Theorems 4 and 5 lead
directly to our desired result. In the inductive case, we assume the result holds for any tree of depth D− 1,
and consider a tree of depth D. All of the children of the root node are trees of depth D − 1 which, by
induction, satisfy the theorem. Therefore, we consider only the single UCB instance at the root. Using the
theorems from the previous section (particularly Theorems 2, 4, and 5), we can then show that the theorem
holds at the root as well.



Lecture 19: Monte Carlo Tree Search 11

3 MCTS for Go

The game of Go has proved to be one of the biggest challenges for AI due to its complexity and the effect that
moves have on long term success of the game [6]. The application to more sophisticated MCTS algorithms
like UCT to games like Go have greatly improved the rankings of Go systems to the top of the amateur
level [6].

Recently in 2015, Google’s AlphaGo program was the first program to defeat a 9-dan (i.e. top-ranked)
professional in a game without handicaps. That version of AlphaGo, named AlphaGo Fan, was fairly
complicated and used multiple neural networks trained on expert play to guide decision making. Afterwards,
AlphaGo Lee was created that used a similar design as that of AlphaGo Fan, but depended more on data
generated from self-play to learn the value functions of states. AlphaGo Lee was the most famous iteration of
AlphaGo since it was the one that beat the European champion Lee Sedol in 2016. In 2017, Google released
an AI on an online Go server that was able to beat top human players 60-0 named AlphaGo Master. Google
published their final design AlphaGo Zero which shared many similarities to AlphaGo Master but removed
some complications relating to evaluating states. This final version, AlphaGo Zero, learned the strategies of
the game of Go exclusively from games of self-play and using a single neural network to do so.

This section will have no theoretical results but serve rather as an exposition on how to specialize MCTS
to be successful in a specific application.

3.1 AlphaGo Zero

AlphaGo Zero is a specific instantiation of the general MCTS algorithm that uses a neural network learned
using reinforcement learning to help guide the decision making process. One of the most important things
about this system is that it is trained only by playing against itself and improving from there; it learned
the strategy of how to play Go from no prior background. To understand how AlphaGo Zero works, we
first specify how its decision process fits in the general MCTS framework and then we will describe how it
is trained. This entire section uses [7] as a reference so further citations will be omitted.

3.1.1 AlphaGo Zero MCTS

MCTS for AlphaGo works very similarly to how it works in UCT and the terminology is referenced heavily
from there. While the computational budget hasn’t been exceeded, episodes are played out to iteratively
builds up a game tree from a start state s in order to estimate which action is optimal from from s. During
each episode, a game is played out by using a Tree Policy to decide a path down the known tree, a leaf node
is expanded and it’s value estimated using a trained neural network, and that information is percolated back
up the tree.

Because the game alternates between two players on each turn, each level of the tree models a different
player just like a minimax tree. The algorithm stays the same at each level of the tree but just makes decision
to make the current player win. This makes sense for games like Go because it’s a perfect information game
and you can use the same estimation technique to approximate how the opponent will play optimally with
an approximation that improves with computation time.

Phase One: Play-out iterations to build tree
The Tree Policy that determines the path down the tree on each episode that the algorithm is run is:

at = arg max
a∈A

Q(st, a) + U(st, a)

This is very similar to UCT because Q(st, a) represents an empirical average of the value of taking action
a from state st. U(st, a) is a an additional term to encourage exploration when the value estimates lack
high-confidence and favors actions that have a higher prior-probability. Each episode i ends the tree policy
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at a leaf node siL. After n episodes in total, we define the terms above as

N(s, a) =

n∑
i=1

1(s, a, i)

Q(s, a) =
1

N(s, a)

n∑
i=1

1(s, a, i)V (siL)

U(s, a) = cP (s, a)

√∑
b∈AN(s, b)

1 +N(s, a)

where 1(s, a, i) is an indicator that action a was chosen from state s on iteration i, V (siL) is an estimate
of the value of a state (in the case of games it is an indication of how likely it is that the current player
will win), and P (s, a) is a prior probability of selecting action a from state s. These Q and V functions are
exactly estimates of the Q-values and V-values of the game.

The interesting thing to ask is how does AlphaGo Zero determine the values of V (s) and P (s, a). Gen-
erally, MCTS uses a Default Policy to complete a sampled episode in order to estimate the value of a state
and usually only uses a uniform prior over the actions. AlphaGo Zero instead uses a single neural network
fθ, that when given a state s, outputs (p, v) = fθ(s) where p ∈ ∆||A||−1 is a probability distribution over
the possible actions and v ∈ R is a value estimate for that state. The algorithm uses P (s, a) = p(a) and
V (s) = v. Unlike the standard definition of MCTS, Alpha Go Zero does not use a default policy to perform
a rollout in order to achieve an estimate of the value of a state. Alpha Go Zero instead uses this learned
network as the sole estimate of the value of the state based off of the games of self-play it has seen in training;
previous versions of AlphaGo used a strategy that mixed the result of using a simple default policy as well
as a neural network evaluation but they removed the mixing of evaluations for AlphaGo Zero. Details on
how the weights θ of the neural network are learned are described section 3.1.2

The other components of AlphaGo Zero’s MCTS work similarly to their counterparts in UCT. Expansion
occurs at leaf nodes that have been visited more than some threshold number of times. When a leaf node s′

is expanded, it is evaluated by the neural network to get (p′, v′) = fθ(s
′) and it’s value v′ and probabilities

for it’s children branches p’ are recorded for future use. Like Minimax, the layers of the AlphaGo tree
at each height alternate between which player the model is predicting for (the turn of the player switches
each time one moves). To make the network optimize predictive accuracy for the value and probabilities of
the current player, the backpropagation step alternates the reward of the leaf at each step up the tree to
be positive/negative depending on the perspective of the player at that level. This process can be seen in
Figure4 below.

Phase Two: Determine action to play
After the timeout for building up the tree has expired, AlphaGo Zero will play an action a from the root

state st with probability proportional to the number of times that action was chosen during Phase One.
To do this, AlphaGo Zero creates a probability distribution πt over the actions from the state st such that
πt(a) ∝ N(st, a)1/τ for some hyperparameter τ ; when τ = 1 the distribution exactly matches the ratios
of the visit counts, while when τ → 0 the probability mass focuses on the action that was chosen most
often. Using this distribution to selects actions improves the performance of AlphaGo Zero because πt is a
refinement of the prediction pt for the start state st; as MCTS is allowed to run, it starts selecting actions
with high value estimates more frequently rather than relying on the prior probability bonus exploration
term.

These two phases can be seen pictorially in Figure 5 a.

3.1.2 Training fθ

Previous versions of AlphaGo required the use of labeled data from a database of games from expert human
players. AlphaGo Zero differs from these versions in the fact that it does not use games labeled by humans



Lecture 19: Monte Carlo Tree Search 13

Figure 4: MCTS for AlphaGo Zero [7]. a. Uses the tree policy to select a path down the known tree until a
leaf node. b. A leaf node is expanded by evaluating it using fθ. c. The value is backpropagated up the tree
alternating the value according to which player moved at that state (pictured 2 players Green and Pink)

but rather plays games against itself to learn Go strategies. The idea behind the training process is that we
can use MCTS as a policy-optimization algorithm to improve the predictions of the neural network.

Consider the case when at a state st the network outputs that we should play according to pt. After
running MCTS (which involves computing the Q and U terms for each action) for many iterations, we find
the empirical distribution of the actions chosen from st based on the visit counts is actually πt. If πt puts
high probability on an action that pt did not then we should update the model to closer match πt because it
favors actions that have higher empirical value estimates as the algorithm is allowed to run longer. Remember
that the goal of this process is to make it so that the network can output probability distributions over the
actions from the state that can lead to a win. The idea behind this is that since AlphaGo Zero’s tree policy
eventually starts picking actions that have high value after the exploration term has diminished, the network
should be updated to predict distributions that more closely match the empirical one seen by MCTS.

The network fθ starts with completely random weights and plays games following its outputs. Each
game uses the MCTS algorithm described above at each state of the game st which is allowed to run for
some short amount of time (≈ 0.4s) . The action probabilities from the start state πt are recorded for that
state st and then just like the MCTS algorithm, AlphaGo will pick an action at ∼ πt and transition to the
next state. This process is continued until the end of the game at time T , where the result of the game
z ∈ {−1, 1} is computed to indicate if the game was a win/loss. All of the states from the game are used
to build up a large training set by recording from the game the sequence {(st,πt, zt)}Tt=1, where zt = ±z
depending on which is the current player for each time t during that game.

For a specific setting of the hyperparameters, the neural network parameters θ are continuously optimized
using stochastic gradient descent using the set of moves from the last 500,000 games of self-play. The loss
function that is minimized when considering a training example (si,πi, zi) is

`i(θ) = (zi − v)2 − πTi log p+ c ||θ||2

where (p, v) = fθ(si). Minimizing this loss function minimizes the error predicting the value and makes
the probability distributions predicted more similar to the ones found using MCTS by measuring the cross-
entropy. This training process can be seen in Fig5.

There are technicalities in this procedure like running multiple processes asynchronously. The following
three things are done at the same time concurrently using the processes described above in this section:

1. The currently best performing network is used to generate games of self-play. The best network is
determined in Process 3.
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2. The current set of weights θt are continuously updated using the stochastic gradient descent process
described in the paragraph above using the last 500,000 games of self-play data to sample states from.

3. The current set of weights θt are used to play against the current best network θ∗. If the current set of
weights θt defeats the best set of weights θ∗ more than 55% of the time during 400 evaluation games,
then θt becomes the new best parameter values; these are the parameters that will be used for future
games of self-play in Process 1.

Figure 5: A single game of self-play and updating the network to better match the results [7]

3.1.3 Results

After 36 hours of training, AlphaGo Zero was able to beat AlphaGo Lee which was the best performing
system of the previous design that used multiple neural networks and fast rollouts to estimate state values.
After only 3 days of training, AlphaGo Zero was able to beat AlphaGo Lee 100 games to 0 in games where
AlphaGo Zero was run on 1 machine with 4 Tensor Processing Units (TPUs) while AlphaGo Lee was run
in a distributed manner over many machines using 48 TPUs in total. This is an incredible empirical result
given that AlphaGo Lee not only was able to beat the world champion in a formal match, but also AlphaGo
took weeks to train using millions of example games from expert play while AlphaGo Zero took only a few
days and no human interaction at all.

To show that MCTS really is helping refine the policy used by AlphaGo, the researches compared the
AlphaGo system against a system that just uses the same neural network to determine the distribution over
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actions for a state. At a state st, this comparison system evaluated (p, v) = fθ(st) and played an action
at ∼ p without using MCTS to refine the distribution using play-outs. The AlphaGo Zero system got an
Elo rating of over 5000 while the system with just the neural network got just above 3000; an Elo gap of
200 corresponds approximately to a 75% probability of winning [8]. This suggests while the design of their
network is beneficial and is learning strategies for Go, there is a huge benefit to coupling this with MCTS
to look ahead and refine the policy.
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