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1 Introduction

In this lecture, we focus on pool-based active learning methods for binary classification. In the previous
lecture, we studied disagreement-based methods wherein unlabeled data comes as a stream and for each
incoming data point the learner needs to decide whether to query its label or infer it. Pool-based methods,
instead, are given a pool of unlabeled data points all at once, and the learner chooses the points to query
from that pool. The active learner wants to identify the classifier with the lowest error with as few queries
as possible. An example of pool-based active learning would be classifying images in a large repository into
cats and dogs by only asking for labels for a small subset of images.

The simplest version of this problem is the noiseless case where each query always gives us the correct
label. Among the most popular algorithms within this category we find generalized binary search (GBS
henceforth) [1,2]. GBS, discussed in section 3, is a greedy algorithm for determining a binary-valued function
through a sequence of strategically selected queries. In every step, the query that most evenly splits the
hypotheses under consideration into two disjoint subsets is selected, i.e., a natural generalization of classic
binary search.

In section 4 we consider a setting with noisy labels. For example, when using Mechanical Turk to
manually annotate a dataset, the task may not be defined properly or Turkers may not understand the
task. When label observations are noisy, noiseless GBS can perform very poorly as shown by Golovin et
al. [3]. A modified version of GBS using a Bayesian model of noisy observations can handle noise in the
realizable setting, where the true data-generating model lies within the hypothesis class being considered.
Another approach to noisy realizable active learning is the Equivalence Class Edge Cutting algorithm (EC2)
of Golovin et al. [3] This algorithm reframes the problem as finding an equivalence class in which the correct
hypothesis lies by cutting edges between hypothesis classes. This allows the use of adaptive submodularity,
a natural diminishing returns property that generalizes the classical notion of submodularity to adaptive
policies, to bound the number of queries needed to find the best hypothesis [3].

When the true data-generating model is not in the class of hypotheses being considered (e.g. nonlinear
data being fit with linear classifiers), we are in the much more challenging agnostic case discussed in section 5.
One approach in this setting is to transform the binary labeling task to a combinatorial bandit problem,
which facilitates successful learning without dramatically increasing the sample complexity.

2 Preliminaries

The problem formulation in the setting of pool-based active learning is defined as follows: Suppose we have
X = x1, . . . , xm ∈ Rd as input domain, and for each xi there exists an unknown scalar µi influencing its
label Yi as follows. For t = 1, 2 . . . :

• Player chooses xi ∈ X ,

• Nature reveals Yi ∈ {−1, 1};P (Yi = 1|xi) = (1 + µi)/2, where µi ∈ [−1, 1] and E(Yi) = µi

The objective is to identify sign(µi) as soon as possible, with the magnitude of µi impacting the level of error
in our observations. When |µi| = 1 for all µi, we are in the noiseless case with no uncertainty about labels.
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As µi tends to zero, then P (Yi|xi) = 1/2, and the error rate becomes very high. If this is the case, we can
ask for a label multiple times because of the pool-based, non-streaming setting. For example, in scenarios
like Mechanical Turk crowdsourcing, µt may be close to 0 if each individual Turker does not produce reliable
labels. In this case we may want to ask multiple Turkers for the same label.

2.1 Effective Hypothesis Class

The goal is to find the best hypothesis function h to label our data from a broader hypothesis class H (for
example, linear classifiers). This can be seen as learning the true µi that generate the data labels with as
few queries as possible. Note that if there is a hypothesis h∗ ∈ H such that h∗(xi) = sign(µi)∀i, we are
in the realizable case where the true data-generating model is in our hypothesis class. If we have no such
guarantee, we are in the harder agnostic case. While the hypothesis class may be an infinite set of functions,
if we assume the data are finite, we can represent each hypothesis by its labeling of the data xi and consider
hypotheses which produce equivalent labelings to be the same hypothesis. This gives us a finite effective
hypothesis class Ĥ defined as

Ĥ ≈ {(h(x1), . . . , h(xm)) : h ∈ H} (1)

where we identify a given element of Ĥ as ĥ = (h(x1), . . . , h(xm)) for some h ∈ H.
The size of the effective hypothesis class can be quantified in two ways. First, since there are m points

with binary labels, there may be no more than 2m possible labelings, and thus no more than 2m effective
hypotheses. Second, we can use the VC dimension d from Vapnik–Chervonenkis theory, defined as the
maximum number of points for which we can always find a perfect classifier in H for any labeling of the d
points.

Sauer’s lemma [4] relates VC dimension d of a hypothesis space H over m points to the size of the effective
hypothesis class Ĥ as follows:

|Ĥ| ≤
d∑
i=0

(
m

i

)
≤ (1 +m)d = O(md)

where the first inequality is the statement of Sauer’s lemma and the second inequality holds for any sum
of binomial coefficients. This result implies that we can classify a pool of unlabeled data points in at most
O(md) ways, which bounds the size of the effective hypothesis space Ĥ at O(md).

2.2 Search strategy

Any deterministic search strategy can be represented as a binary query tree T where internal nodes are
queries and leaves are elements of Ĥ, as depicted in Figure 1.

This idea was first introduced as extended teaching dimension by Hegeds [5] and later studied by Hanneke
[6] with the aim of investigating the query complexity of learning a concept class over a finite domain with
membership queries and quantifying the minimum number of queries we have to ask in order to reduce the
hypothesis class by half.

In a noiseless setting, the process goes as follows: we choose a point and see its label, then we choose
another point and see its label, and so on. We can view this process as building a tree, where each internal
node in the tree is a query point, and the leaves are hypotheses h1, h2, . . .. If we uniformly draw a hypothesis
from our class H, the expected path length down the tree representing H is the number of labels we need.
If we can build an “optimal” tree deterministically offline (i.e., before any querying) that minimizes the
expected path length, we could then achieve the optimal label complexity. However, building and searching
this tree is NP-hard and intractable to compute. Despite this intractability, there exists a heuristic algorithm
called Generalized Binary Search (GBS) that can get a constant approximation ratio in favorable conditions.
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Figure 1: Deterministic Search Tree

2.3 Distribution over hypotheses

In many cases it will be useful to think about the probability of a hypothesis h, which we will refer to as
P (h). In the average-case analysis of generalized binary search in section 3, we want to find the average
runtime of an algorithm with respect to the distribution over hypotheses P (h). In the Bayesian analysis of
noisy generalized binary search in 4.1, we want to start with a prior P (h) over the correct hypothesis, and
update it to generate a new posterior Pt(h) at each time step t.

3 Generalized Binary Search

To begin, we discuss the simplest case of active learning for binary classification. In this noiseless case,
|µi| = 1 for all data xi and every query produces a completely accurate label, and. We follow the work of
Dasgupta [1] and start with a 1-dimensional example illustrating the promise of active learning, followed by
a 2-dimensional example illustrating why the worst-case performance of active learning can be quite poor.
We then develop the generalized binary search (GBS) algorithm and bound the number of samples it needs
on average.

3.1 Motivation: 1D Binary Search

A very simple example of why active learning might help is in binary classification of linearly separable
points in 1 dimension. Suppose we have points x1, . . . , xm ∈ R1 and we know there exists a threshold w∗

such that Y (x) = sgn(x− w∗), as in Figure 2.

Figure 2: 1D Binary Search (Dasgupta [1])

All points left to the threshold are labeled negative, and all to the right are labeled positive. As shown in
the previous lecture, the number of points queried in a fixed, nonadaptive strategy like uniform sampling to
achieve error ε is of O( 1

ε ). However, we can do substantially better than this if we employ an active learning
scheme that intelligently chooses which labels to query. In particular, the problem of finding the point at
which the transition occurs can be achieved by binary searching on the m points, which results in a sample
complexity of O(logm) labels. The reason for this efficient search is that we can use the ordering of points
on the real line to cut the search space in half at every step.
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3.2 Worst-case Intractability of Higher Dimensions

Unfortunately, when the number of dimensions is 2 or greater, there are target hypotheses in Ĥ that can not
be identified without querying every data point in the dataset. An example comes from Dasgupta [1], which
discusses the worst-case complexity of generalized binary search and introduces an average-case analysis.

We show that active learning may provide no benefit even in a two-dimensional case, let alone higher
dimensions, in Proposition 1.

Proposition 1. Let H be the hypothesis class of half spaces such that ∀h ∈ H; |h+ ∩ X | ≤ 1, where h ⊆ R2

and h+ = {x ∈ X : h(x) = 1}. For any set of m distinct data points on the perimeter of the unit circle,
there is always some labeling such that the correct hypothesis in H cannot be identified without querying all
m labels.

Proposition 1 considers half spaces in R2, which are simply linear classifiers that split the space in half
on either side of a line as in the 1-dimensional example we saw before. The number of classifiers that label
exactly 1 or 0 points positive is |Ĥ| = m + 1. Any active learning method will, at worst, require querying
all m points in this scenario. To see this, call the noiseless labelings L0 and L1, . . . , Lm, where L0 is the
hypothesis that labels all points negative, whereas Li labels xi positive and all other points negative.

Figure 3: 2D worst-case for generalized binary search. [1] The labeling L3 labels xi negative for all i 6= 3, and
labels x3 positive. Suppose we tested every point except for x3; we would still have to query x3 to determine
whether L3 or L0 was the correct labeling.

In Figure 3, L3 labels all points negative except for x3, so sampling x3 is crucial in order to choose the
true hypothesis between L3 and L0. A similar argument holds for all the data points xi. In other words, we
have to sample every single point on the circle in order to find the optimal hypothesis. The one-dimensional
case in Figure 2, on the real line, was easier because labeling a point on the line also fixes the labels of all
points to its left or right. However, in the worst case of a unit circle like Figure 3, even labeling every single
other point may not necessarily force the label of xi.

3.3 Average-case Model

We have shown that in ideal cases like 1-dimensional binary search, active learning can achieve log2 |Ĥ|
queries. In subsection 2.1 |Ĥ| was shown to be O(md), which gives us d logm queries. However, in the worst
case, such as the 2-dimensional unit circle, active learning may require up to order m queries.

Even though there are worst-case examples where active learning fails, we may hope that the optimal
h can be identified using close to log2 |Ĥ| queries on average with respect to some distribution P (h) over
target hypotheses in Ĥ. The intuition is that each label reveals at most 1 bit of information and since it
only takes log2 |Ĥ| bits to encode a hypothesis, there should exist a strategy that can query labels and find
the hypothesis Ĥ using just log2 |Ĥ| queries.

The main result by Dasgupta [1], which we walk through in subsection 3.4, shows that if the distribution
P (h) is uniform over Ĥ, and we greedily ask for the labels which most evenly divide the current effective
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version space, then the expected number of labels needed to identify a target hypothesis drawn from P (h)
is at most O(log |Ĥ|) times any other strategy.

3.4 Greedy Strategy

In this section, we describe the greedy strategy, then analyze its effectiveness by putting upper and lower
bounds on the number of queries it requires.

Consider our effective hypothesis class Ĥ as defined in (1) and let P be any distribution over Ĥ. Recall
that each search strategy can be represented as a binary tree where internal nodes are queries and leaves are
hypotheses of Ĥ. Consider any tree T whose leaves (hypotheses) are chosen from P . The quality of this tree
is its expected depth with respect to P :

Q(T, P ) =
∑
h∈Ĥ

P (h) · (# labels needed for h) =
∑
h∈Ĥ

P (h) · leaf depth(h) (2)

We are interested in determining whether there is always a tree T of average depth o(m). Unfortunately,
as shown in Proposition 2, we cannot always achieve an average depth of o(m). We refer the interested
reader to Dasgupta [1] for the proof.

Proposition 2. Pick any d ≥ 2 and any m ≥ 2d. There is an input space X of size m and a hypothesis class
H of VC dimension d, defined on domain X , with the following property: if P (h) is chosen to be uniform
over H = Ĥ, then any query tree T has Q(T, P ) ≥ m

8 .

So far, the benefit of pool-based active learning for binary classification has varied based upon the
particular hypothesis class and the pool of unlabeled data points. Thus, we are interested in a querying
strategy that makes close to the minimum number of queries, whatever that minimum is. A natural approach
is the following greedy strategy. We maintain a version space S ⊆ Ĥ which contains the hypotheses that are
being considered. S0 = Ĥ, while S1 ⊂ Ĥ, and at the end of the algorithm we should have that St = {h∗}, a
singleton set containing the target hypothesis. Points are queried by always choosing the xi whose label is
most uncertain among hypotheses in H:

Let S ⊆ Ĥ be the current version space. For each unlabeled xi, let S+
i be the hypotheses that label it

positive and S−i those that label it negative. Query the label of xi for which these sets are nearest to
being equal in mass with respect to P (h), that is, query the xi for which min{P (S+

i ), P (S−i )} is largest.

The key step of Algorithm 1, Generalized Binary Search, is step 3. The sum in this step is minimized to
0 when half of the hypotheses by probability mass label xi positive, and half negative. Thus the xt produced
is the point whose label will greedily rule out as many hypotheses as possible.

Algorithm 1 Generalized Binary Search Algorithm (GBS)

1: Initialize: S0 = Ĥ
2: for t = 1, 2, . . . do
3: xt = arg minx |

∑
h∈St

P (h)h(x)|
4: Observe h∗(xt) for unknown h∗ ∈ Ĥ
5: Update St
6: end for

The rest of this section will show that the simple greedy strategy is almost as good at minimizing queries
as any other strategy. For the GBS algorithm shown in Algorithm 1, in the noiseless setting, we will show
the number of queries required to obtain h∗ is at most (log |Ĥ|)OPT, where OPT is the expected number of
queries performed by the optimal strategy.

If ∃c < 1 such that minx maxS⊆H |
∑
h∈S h(x)|/|S| < c, then |St| ≤ c|St−1| ≤ ct|S0| where S0 = Ĥ, which

gives us an upper bound on the total number of queries we need to ask, t ≤ log |Ĥ|
log2 c

. However, sometimes it
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is hard to prove that a constant c < 1 exists. Instead, we can only say that c = 1/|Ĥ|, which is very slow.
This is why we look to the average-case model and the expected number of queries.

3.4.1 Lower Bounds

In this section we want to derive lower bounds on the greedy scheme. The greedy approach builds a query
tree top-down, trying to reduce the number of hypotheses being considered as quickly as possible. However,
this may not be optimal because each query looks only one step ahead; it does not consider how a query
may reshape the search space and reduce the quality of later queries. This could result in slower elimination
of hypotheses than alternative learning strategies. Proposition 3 shows a lower bound on a greedy active
learner assuming P is uniform. For instance, Ĥ might consist of several tight clusters, where binary search
is rapid within a given cluster. However, it is possible that the optimal strategy must first slowly cut down
the version space to one of these subregions. This process, though ultimately optimal, could initially be
slower at eliminating hypotheses than greedy alternatives. A concrete example of this type gives rise to the
following lower bound; we refer the interested reader to the proofs in Dasgupta [1].

Proposition 3. For any integer n ≥ 24, there is a concept class Ĥn of size n with the following property:
under uniform P , the optimal tree has average height at most qn = Θ(log n), but the greedy active learning
strategy produces a tree of average height Ω(qn · logn

log logn )

The above lower bound is derived assuming π is uniform. Proposition 4 follows a similar analysis, but
assumes π is not uniform.

Proposition 4. Pick any n ≥ 2. There exists a hypothesis class Ĥ with 2n+ 1 elements and a distribution
P over Ĥ such that (a) P ranges in value from 1

2 to 1
2n+1 ; (b) the optimal query tree has average depth less

than 3; (c) the greedy query tree has average depth at least n
2 .

3.4.2 Upper Bounds

We next seek to upper bound the number of queries required by the greedy algorithm. We follow [1] and
relate the quality of a tree as defined in 3.4 to the amount ∆ by which it shrinks the version space.

Assume the candidate hypotheses have shrunk to some version space S ⊆ Ĥ and the next possible query
is xj . Now we want to analyze what probability mass P is going to be eliminated on average by this query.
Let S+ be the subset of S that labels xj positive and S− be the subset that labels xj negative. On average
the following probability mass is eliminated:

∆ =
P (S+)

P (S)
P (S−) +

P (S−)

P (S)
P (S+) =

2P (S+)P (S−)

P (S)
.

It can be easily shown that the shrinkage is monotonically decreasing; we refer the interested reader to the
proofs in Dasgupta [1].

From the definition of shrinkage, one might think that if all queries result in at most ∆ shrinkage, then
we need at least P (S)/∆ more queries. However, this is not completely true because if there are only two
hypotheses left in the current version space S, then only one query is needed, regardless of P (S).

If there are many hypotheses with significant mass left in the current space S, then the shrinkage effect
P (S)/∆ dominates; afterwards, the second effect does. The concept of collision probability helps us address
this transition. Let v be a distribution over support Z, then the collision probability defines the chance that
two random draws from v are identical:

CP (v) =
∑
z∈Z

v(z)2

We can now write a single bound that relates the quality of a tree with the amount of shrinkage ∆, and
thus, with the collision probability.
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Lemma 1. Suppose that every query shrinks (Ĥ, P ) by at most some ∆ > 0. Then for any S ⊆ H, and any
query tree T whose leaves include S

Q(T, PS) ≥ P (S) · (1− CP(PS))

∆
(3)

Proof. We prove this proposition using mathematical induction on |S|. First consider |S| = 1: we can easily
verify CP (Ps) = 1 and thus the claim holds for |S| = 1. Next consider any S ⊂ Ĥ with |S| > 1. Let the
next query for the optimal tree under Ps be at xj . Querying here splits the space S into S+ and S− with
masses pP (S) and (1 − p)P (S), respectively. Our inductive hypothesis says that the lemma holds for the
two subtrees, thus the average number of queries needed for S+ and S− are P (S+)(1 − CP (PS+))/∆ and
P (S−)(1− CP (PS−))/∆, respectively. Thus, the expected number of queries for PS is at least:

(1 + p).P (S+)(1− CP (PS+))/∆ + (1− p).P (S−)(1− CP (PS−))/∆

= 1 +
P (S)

∆

{
p2 + (1− p)2 − p2CP (PS+)− (1− p)2CP (PS−)

}
= 1 +

P (S)

∆
{1− 2p(1− p)− CP (PS)}

We know 2p(1−p)P (S) ≤ ∆, as any query shrinks (S, P ) by at most ∆. From this and the above equality we
conclude the expected number of queries needed for S is at least P (S)(1− CP (P (S)))/∆, which completes
the proof.

If P (S) has small collision probability, then we expect to exist some query that can eliminate a reasonable
amount of space S. By rearranging terms in (3), we get Corollary 1, which shows that such a query exists:

Corollary 1. Pick any S ⊆ Ĥ and any tree T whose leaves include all of S. Then there must exist a query

which shrinks (S, PS) by at least (1−CP(PS))
Q(T,PS) .

The next lemma attempts to use this result to bound the sample complexity of GBS. The only problem
is that if PS has high collision probability, then Corollary 1 doesn’t guarantee much shrinkage of the sample
space: S could shrink an insignificant amount during the next greedy queries. However, the following proof
explicitly addresses the case where there is a hypothesis h0 causing high collision probability by occupying
≥ 1

2 of the probability mass. Within roughly the number of iterations that the optimal tree needs to identify
h0, the greedy active learner will either reject h0 or identify it as the target. If h0 is the target hypothesis,
we are done. Otherwise, by the time h0 is rejected, the remaining search space S will have shrunk by enough
that a logarithmic bound on the number of queries still exists.

Lemma 2. Let T ∗ denote any particular query tree for P (for instance, the optimal tree), and let T be the
greedily-constructed query tree. For any S ⊆ Ĥ which corresponds to a subtree TS of T

Q(TS , PS) ≤ 4Q(T ∗, PS) ln
P (S)

minh∈S P (h)

Proof. We use mathematical induction for completing the proof. First consider |S| = 1: the claim holds
trivially. Next consider S ⊂ Ĥ where |S| > 1. We do the proof for the following two cases:

Case i) CP (PS) < 1/2 Assume greedy query S splits S into S+ and S− where p = P (S+)/P (S). In
the remainder of the proof we use Q∗(A) as a shorthand for Q(T ∗, PA) and min(A) as a shorthand for
minh∈A P (h) where A is some subset of the hypothesis space. The number of queries needed for tree Ts is

Q(TS , PS) = 1 + pQ(TS+ , PS+) + (1− p)Q(TS− , PS−)
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From the induction hypothesis we have the following inequality:

Q(TS , PS) ≤ 1 + 4pQ∗(S+) ln
P (S+)

min(S+)
+ 4(1− p)Q∗(S−) ln

P (S−)

min(S−)

≤ 1 + 4
(
pQ∗(S+) + (1− p)Q∗(S−)

)
ln

max{P (S+), P (S−)}
min(S)

= 1 + 4Q∗(S) ln
P (S)

min(S)
− 4Q∗(S) ln max{p, 1− p}

From inequality ln(1− x) ≤ −x, we obtain the following inequality:

Q(TS , PS) ≤ 1 + 4Q∗(S) ln
P (S)

min(S)
− 4Q∗(S) min{p, 1− p}

As CP (PS) ≤ 1/2, from Corollary 1 we have

min{p, 1− p} ≥ p(1− p) ≥ 1− CP (PS)

2Q∗(S)
≥ 1

4Q∗(S)
.

If we input the above inequality to the inequality on Q(TS , PS) we get Q(TS , PS) ≤ 4Q∗(S) ln P (S)
min(S) and

this completes the proof for case i.

Case ii) CP (PS) > 1/2: As CP (PS) ≤ maxh∈S PS(h), we can conclude there is a single hypothesis h0

that covers more than half of the probability mass S. Now consider the figure below which assumes that

hypothesis h0 is located at depth D in the greedy tree TS [1]. Assume at depth d < D of TS , Rd is the set of
hypotheses that have not been distinguished from h0. Thus, at depth d, the greedy tree is trying to remove
as much probability mass of Rd as possible. At the next step, the greedy tree will remove some Sd+1 and
therefore we have Rd = Rd+1 ∪ Sd+1.

Note that, by definition hypothesis h0 can be identified using Q∗(h0) queries and as a result, it must
always be possible to cut off 1/Q∗(h0) of Rd:

P (Rd+1) = P (Rd)− P (Sd+1) ≤ P (Rd)−
P (Rd)

Q∗(h0)

From the above inequality we conclude

P (Rd) ≤ (1− 1/Q∗(h0))
d
P (R0) ≤ P (R0)e−d/Q

∗(h0).

From the above inequality we conclude D ≤ Q∗(h0) ln (P (R0)/min(R0)).
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If we consider h0 separately from other hypothesis in space S we can split the expected tree depth into
a weighted sum of the depth of h0 and the depth of all other subtrees:

Q(TS , PS) =
1

P (S)

{
P (h0)D +

D∑
d=1

P (Sd)
(
d+Q(Ts, PS+

d
)
)}

By applying the inductive hypothesis to the rightmost sum, we get the following inequality:

Q(TS , PS) =
1

P (S)

{
P (h0)D +

D∑
d=1

P (Sd)d+

D∑
d=1

P (Sd)4Q
∗(Sd) ln

P (Sd)

min(Sd)

}

≤ 1

P (S)

{
P (h0)D +

D∑
d=1

P (Sd)d+ 4P (R0)Q∗(R0) ln
P (R0)

min(R0)

}
where the last step follows because the mass cut out at any given split of the tree must be less than or equal
to R0, the total non-h0 mass. Note that at each depth d at least 1/Q∗(h0) fraction of Rd is cut off. Thus
we have

∑
d P (Sd)d ≤ P (R0)Q∗(h0). Combining this with the above upper bound on Q(TS , PS) we have:

Q(TS , PS) ≤ 1

P (S)

{
P (h0)D + P (R0)Q∗(h0) + 4P (R0)Q∗(R0) ln

P (R0)

min(R0)

}
≤ 1

P (S)

{
P (h0)Q∗(h0) ln

P (R0)

min(R0)
+ P (R0)Q∗(h0) + 4P (R0)Q∗(R0) ln

P (R0)

min(R0)

}
≤ 1

P (S)

{
P (h0)Q∗(h0) ln

P (S)

min(S)
+ P (R0)Q∗(h0) + 4P (R0)Q∗(R0) ln

P (S)

min(S)

}
It must be true that P (S) ≥ 2 min(S), which lets us conclude

Q(TS , PS) ≤ 1

P (S)
{4P (h0)Q∗(h0) + 4P (R0)Q∗(R0)} ln

P (S)

min(S)

≤ 4Q∗(S) ln
P (S)

min(S)

where the last inequality comes from P (h0) ≥ P (R0) and this completes the proof.

4 Noisy Realizable Active Learning

In this section, we introduce the problem of active learning with noisy observations. As before, we want to
select the smallest number of expensive tests required to identify a hypothesis. However, in this case the
tests may not be perfectly reliable and may mislabel points.

One way to formalize this problem is Bayesian experimental design [7], where one assumes a prior on the
hypotheses as well as probabilistic assumptions on the outcomes of tests. The goal then is to determine the
correct hypothesis while minimizing the cost of the experiments. In such setting, finding the optimal policy
is NP-hard and also hard to approximate [8].

4.1 Bayesian Posterior Inference

We start by discussing how we can apply ideas from Bayesian posterior inference to adapt GBS to noisy
settings. In the realizable setting, as discussed above, we make the rather strong assumption that the true
data-generating hypothesis h∗ is in our hypothesis class H and that the labels are noisy realizations of the
predictions of h∗, Let the noise model be

Yi =

{
h∗(xi), w.p. 1− α
−h∗(xi), w.p. α
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where α is the noise rate. From the posterior inference literature, if we know we have this noise model, we
can then infer the probability of h∗ given values of Yi. Thus, by doing posterior inference we can build a
probability distribution, which results in Pt(h) to be the probability that the hypothesis h is equal to h∗
given all the noisy observations up to the current time. We show GBS for noisy observations in Algorithm 2,
which is an adaptation of Algorithm 1 used in the noise-free setting.

Rather than starting with a set of hypotheses and eliminating them through queries, we start with a
uniform prior P0 over hypotheses. We choose the point xt to query at each time t according to the exact
same rule as GBS, maximizing disagreement among hypotheses weighted by the probability assigned to them
by Pt. We then update the distribution Pt based on which hypotheses fit the observed label and continue.
Eventually, we will have Pt(h) ≥ 1

2 for some h ∈ Ĥ, at which point we will report h as the best hypothesis.

Algorithm 2 Generalized Binary Search Algorithm for Noisy Observations

1: P0 = uniform over Ĥ
2: for t = 1, 2, . . . do
3: xt = arg minx |

∑
h∈St

h(x)Pt(h)|
4: Observe h∗(xt) for unknown h∗ ∈ Ĥ
5: Update Pt
6: end for

4.2 Adaptive Submodularity

Another approach to noisy, realizable binary classification is to use the framework of adaptive submodularity.
We start the section with some preliminaries, introduce the adaptive submodularity framework, then make
some connections to GBS in the noiseless case. Finally, we address the noisy case by introducing the
Equivalence Class Determination problem and the EC2 algorithm proposed by Golovin et al. [3].

4.2.1 Preliminaries

Recall we want to distinguish among a set of hypothesis H = {h1, ..., hn}. The adaptive submodularity
framework introduces a cost c(i) when we query each label Yi; if this is uniform, we have the exact same
goal as above of minimizing the total number of queries. Note also that our query policies, written as trees
T , function as maps from the labels seen so far (a likely-incomplete vector of labels yt = {Yt=0...Yt} to a
new index i to query. As before, we assume a distribution P (h) over the hypotheses.

4.2.2 Framework

At first glance, the objective of eliminating as many hypotheses as possible with as few tests seems like
a natural submodular optimization problem. Recall that a submodular optimization problem refers to
optimizing a submodular function.

Let N be a finite ground set and f : 2N → R. Then f is submodular if for all A,B ⊂ N

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

Another definition commonly used in the literature has to do with marginals. Let fA(i) = f(A+i)−f(A)
as the marginal value of i with respect to A. Then f is submodular if for all A ⊂ B ⊂ N and i ∈ N /∈ B,
fA(i) ≥ fB(i).

In particular, the submodular approximation for the max-cover problem (find k sets whose union covers
as many elements as possible) seems analogous to the task of finding a small number of tests whose union
rules out as many hypotheses as possible. The key difference is that in active learning, we don’t know which
hypotheses a test will rule out before we choose it—if 99% of our hypotheses predict xi = 1, testing and
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finding xi = 1 rules out almost none of our hypotheses, but finding xi = 0 rules out almost all of them, and
we don’t know in advance which it will be.

Instead of blindly applying a greedy approximate algorithm, we have to create an extension of submod-
ularity for the case where the marginal increase given by a set is not fixed but is a random variable. A way
to implement this extension is by considering the expected increase when a set is added, which gives us the
concept of “adaptive submodularity”.

The adaptive submodularity framework, introduced by Golovin et al. [9], is used in the design and
analysis of many active learning algorithms, and allows us to borrow many results from the submodular
function optimization setting to the adaptive one.

Call xA a subvector of xB if A ⊆ B and P (xB|xA) > 0. We denote this as xA ≺ xB. A function f : 2T x
H is called adaptive submodular with respect to a distribution P , if for any xA ≺ xB and any new element
q we have that ∆(q|xA) ≥ ∆(q|xB), where

∆(q|xA) = EH [f(A ∪ {q}, H)− f(A, H)|xA] (4)

is the expected marginal benefit of adding a new element q. In other words, f is adaptive submodular if the
expected marginal benefits ∆(q|xA) of a new element q can only decrease as we add more elements.

f is strongly adaptively monotone w.r.t. P if observations never “hurt” with respect to the reward. More
formally, for all A, all q /∈ A, and all x ∈ X , EH [f(A, H)|xA] ≤ EH [f(A ∪ {q}, H)|xA, Xq = x].

In the language of active learning, q is a new query. For an adaptive submodular objective, the expected
marginal benefit of adding a query q decreases with each query. An adaptively monotone objective means
that, in expectation, each query moves the search closer to the optimal hypothesis, or at worst does not
move it farther away.

A greedy algorithm with an adaptive submodular and strongly adaptive monotone objective function can
play as follows:

q∗ = arg max
q∈T

∆{q|xA}/c(q) (5)

The work by Golovin et al. [9] shows that if f is adaptive monotone and adaptive submodular, then the
adaptive greedy algorithm achieves a (1− 1/e) approximation to the expected reward of the best policy, i.e.,

f(πgreedy) ≥ (1− 1/e) max
π

f(π).

4.2.3 Connection to Generalized Binary Search

For the noise-free setting, the GBS objective of reducing the version space probability mass is adaptive
submodular and strongly adaptive submonotone. Thus by choosing queries according to (5), and by using
adaptive submodular analysis (Theorem 1 from [3]) we can directly get the near-optimal expected cost bound
of c(TGBS) ≤ c(T ∗)(ln(1/pmin) + 1), where pmin = minh∈HP (h). Note that this removes the factor of 4
from the upper bound in the GBS analysis of equation 2.

Unfortunately, the noisy GBS objective isn’t adaptive submodular because queries do not rule out hy-
potheses, only make them less likely. Since we can’t use submodular analysis directly we have to take a
different approach.

4.2.4 Reducing to Noiseless Classification

We can reduce the noisy problem to noiseless classification by generating extra “noisy” hypotheses. Recall
that an infinite hypothesis class H can be reduced to a finite effective hypothesis class Ĥ by considering
hypotheses which predict the same label for every data point to be the same hypothesis, represented as
ĥ = {h(x1)...h(xm)} for any h ∈ Ĥ. That is, each hypothesis is specified by its vector of predictions on
the data seen so far. In the noisy case, we assume that the data is generated by a true hypothesis h∗ with
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Figure 4: Equivalent Class Determination problem, where distinguishing hypotheses is viewed as disconnect-
ing groups in a graph. Figure adapted from [3].

added noise, and introduce a random noise parameter θ ∈ Θ that denotes exactly what realization of noise is
added. We can now represent the hypothesis space as {ĥ(θ)∀(h, θ) ∈ Ĥ ×Θ} that is, each noiseless ĥ turns

into a set of new “noisy” ĥ′, one for each possible addition of noise to ĥ’s predictions.
This process substantially increases the number of effective hypotheses being considered. We need some

way to account for the fact that many of these hypotheses are equivalent in some way, i.e., we can separate
them into equivalence classes, where all elements of an equivalence class are noisy versions of the same
original hypothesis. Since we are not trying to find a single best noisy hypothesis but the best equivalence
class, we can use the structure of the equivalence classes to narrow down to the correct answer much faster.

4.2.5 The Equivalence Class Determination Problem and the EC2 Algorithm

In this section we introduce the general formulation of Bayesian active learning with noisy observations used
by Golovin et al. [3] called Equivalence Class Determination. The core idea of this framework, developed by
Dasgupta in [10], is to reframe differentiating hypotheses as cutting edges between them. We will use this
model as a way to apply adaptive submodularity to a problem with noisy hypotheses; it has also been used
to analyze noisy GBS by Bellala et al in [11].

The Equivalence Class Determination Problem (ECD) is formulated as follows (see Figure 4). Suppose
the set of hypotheses Ĥ is partitioned into a set of m equivalence classes such that Ĥ =

⋃m
i=1 Ĥi. The goal

is to determine in which class the true hypothesis lies.
In the Equivalence Class Edge Cutting (EC2) algorithm, we define a set of edges E =

⋃
1≤i<j≤m{(ĥ, ĥ′) :

ĥ ∈ Ĥi, ĥ′ ∈ Ĥj}. These are the edges that must be cut, i.e., for any instance in this set at least one hypothesis

must be ruled out. A query q under true hypothesis ĥ∗ is said to cut the edges Eq(ĥ∗) = {(ĥ′, ĥ′′) : ĥ′(q) 6=
ĥ(q) or ĥ′′(q) 6= ĥ(q)}. Figure 4, borrowed from [3], shows an example with the set of edges that must be
cut, and depicts the effects of test i under different outcomes. We also define a weight function to prioritize
which edges we cut w : E → R≥0 as w(ĥ, ĥ′) = P (ĥ)P (ĥ′).

The objective function that will then be greedily maximized is defined as follows:

fEC(T, ĥ) = w(
⋃

q:xq∈X
Eq(ĥ)) (6)

In other words, our objective increases as more and more edge weight is removed with cuts. The objective
fEC is adaptive submodular and strongly adaptive submonotone. We can compute the marginal benefits for
query q upon observations yt using (4), where f = fEC and xA = yt. For the proofs of why fEC is adaptive
submodular and strongly adaptive submonotone please refer to Appendix A of [3].

Now recall that in our noisy version of the active learning problem, each equivalence class is a set of noisy
copies of a single hypothesis. We then draw edges between hypotheses with weights w(ĥ, ĥ′) = P (ĥ)P (ĥ′),
and pick tests that disconnect as much of this edge weight at each step as possible. The goal is no longer
to reduce the number of viable hypotheses to one, but to disconnect all edges connecting to an equivalence
class. Once this process is complete, the original hypothesis corresponding to this equivalence class must
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be the best one. The EC2 algorithm uses the adaptive policy TEC that, after observing yt, greedily selects
the next query with (5). Finally, by using adaptive submodular analysis and the same theorem as before
from [3], we can get the cost bound for EC2:

c(TEC) ≤ c(T ∗)(2 ln(1/pmin) + 1)

where pmin = minh∈HP (h). Note that the constant factor here is only 2, not 4 as in the noiseless GBS
analysis.

5 Agnostic Setting – Reduction to Bandits

In this section, we show how the noisy case can be transformed to a multi-armed bandit problem and thus
solved even in the agnostic case, where the true data-generating model is not in the set of hypotheses
being considered. Recall the noise model introduced in Section 2, with datums x1...xm and degree of noise
parameterized by µi. In the agnostic setting, the function sign(µi) is not in the hypothesis class H, which
makes the problem quite difficult. Our goal is to cast the task as a bandit problem and leverage the rich
literature on bandits. We start by defining a set Π:

π ∈ Π, π ⊆ [m] : ∀h ∈ H,∃π ∈ Π : h(xi) = 1⇐⇒ i ∈ π ∀i ∈ [m]

In other words, for every h there exists πh which includes the indices i for which h(xi) = 1. In order to
frame the problem as a bandit one, we will try to move away from h and start using π.

Recall the risk of a classifier h:

R(h) = P X∼Px
Y∼P (Y |X)

(h(X) 6= Y )

If Px is uniform, which we will assume for the rest of the analysis, then we can write R(h) as

R(h) =
1

m

m∑
i=1

P (h(xi) 6= Yi) (7)

where Yi follows the noise model outlined above.
Let’s first analyze when P (h(xi) 6= Yi):

P (h(xi) 6= Yi) = E[1{Yi = −1, hi(x) = 1},1{Yi = 1, hi(x) = −1}]
= E[1{Yi = −1, i ∈ πh},1{Yi = 1, i /∈ πh}]
= E[1{Yi = −1}1{i ∈ πh},1{Yi = 1}1{i /∈ πh}]

=
1− µi

2
1{i ∈ πh}+

1 + µi
2

1{i /∈ πh}

=
1− µi

2
1{i ∈ πh}+

1 + µi
2

(1− 1{i ∈ πh})

=
1 + µi

2
+ 1{i ∈ πh}(−µi)

Using the above equation we can write (7) as:

R(h) =
1

m

m∑
i=1

(
1 + µi

2
+ 1{i ∈ πh}(−µi)

)

=
1

m

m∑
i=1

(
1 + µi

2
) +

1

m

m∑
i=1

1{i ∈ πh}(−µi)
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Thus, we can conclude the following:

arg min
h∈H

1

m

m∑
i=1

P (h(xi) 6= Yi) = arg max
π∈Π

∑
i∈π

µi = π∗ (8)

The formulation in (8) converts the active learning problem into a bandits problem. For the ith arm, we
observe some random variable Yi with expectation µi and we are trying to find a set π that has the highest
mean value. In other words, the active learning algorithm for binary classification that rules out hypotheses
has now became a bandits algorithm, which rules out arms.

For clarity consider Figure 5, where µi = µ and we are trying to find the set π that best matches µ;
therefore we get arg maxπ∈Π

∑
i∈π µi = π∗ = π

Figure 5: Set π that best matches µ.

Note that we do not assume that µi is matched to our policy class and therefore µi could be arbitrarily
bad, up to the point where we can no longer do binary search. The natural next question then becomes how to
solve the problem for arbitrary policy classes. We will analyze an algorithm similar to successive elimination.
To obtain a confidence bound for a successive elimination approach at a time step t, let C(π, π′, t, δ) satisfy

P
(
∪∞t=1 ∪∞π∈Π\π′ |µ̂π,t − µ̂π′,t| > C(π, π′, t, δ)

)
≤ δ

where µ̂π,t =
∑
i∈π µ̂i,t and µ̂i,t = 1

t

∑t
i=1 Yi,j (i.e., µ̂i,t is the empirical mean of the ith arm if pulled t

times), and µπ =
∑
i∈π µi. We have two sets π and π′, which agree on their overlaps. The total disagreement

between the two is the value of the arms falling in the symmetric set difference between them:

ξ = µ̂π,t − µ̂π′,t =
∑
i∈π\π′

µ̂i,t −
∑
i∈π′\π

µ̂i,t

Recall that the goal is to identify a set with a classifier that makes the fewest errors or, equivalently,
has the highest empirical mean, and to output that set as the empirical risk minimizer. We want to build
a confidence interval on µ̂π,t − µ̂π′,t. First consider P (tξ > tε) for some ε, where tξ is a sum of t|π∆π′|
mean-zero random variables bounded in [−1, 1], and where ∆ indicates the symmetric set difference between
π and π′.

We can apply Hoeffding’s inequality to P (tξ > tε) as we have a sum of independent random variables all
in [−1, 1]:

P ((µ̂π,t − µ̂π′,t) > (µπ − µπ′) + ε) ≤ exp

(
−tε2

2|π∆π′|

)
As a result, with probability at least 1− δ, we have the following confidence interval:

|(µ̂π,t − µ̂π′,t)− (µπ − µπ′)| ≤
√

2|π∆π′| log(2/δ)

t
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We can use this confidence interval to implement Algorithm 3 for agnostic active learning. The approach
is modeled on successive elimination. In step 3, the first step of the loop, we set St equal to all i for which
there is some disagreement about how to label xi. Steps 4 and 5 construct µ̂i,k as an unbiased estimator
of the true µi. In particular, we only query points in St, and for every arm µ̂i,t we sum only over samples
from Yi. Finally, in step 6 we eliminate hypotheses π whenever there exists some other π̂ that is statistically
significantly better according to the constructed confidence interval.

Algorithm 3 Agnostic Bandit Classification

1: Input δ, π1 = π
2: for t = 1, 2, . . . do
3: St = (∪π∈Πt

π)− (∩π∈Πt
π)

4: Draw It ∈ [m] randomly and uniformly, if It ∈ St let YIt be a query, otherwise set YIt arbitrarily.
5: Let µ̂i,t = m

t

∑t
`=1 YI`1{I` = i}

6: Πt+1 = Πt − {π ∈ Πt : ∃π̂ ∈ Πt, µ̂π̂,h − µ̂π,h > C̃(π̂, π, t, δ)}
7: end for

Finally, we would like to introduce an upper bound on the total number of samples needed. We can
directly apply results from combinatorial bandits like the work of Cao et al. [12] to obtain this bound. In
particular, [12] shows that not only will the optimal π∗ never be eliminated, if we construct the confidence
bounds as above, every other candidate π will eventually be significantly worse and will be eliminated.

Theorem 1. (Cao et al. [12]) Let D(π, π∗) = max(log(|B(|π∆π∗|, π)|), log(|B(|π∆π∗|, π∗)|), where B(k, π) =
{π′ ∈ Π : (|π∆π′|) ≤ k}. For any data distribution and any δ > 0, Algorithm 3 guarantees that P (π 6= π∗) ≤
δ. Moreover, it runs in polynomial time, and the total number of samples is at most

64

m∑
i=1

H
(1)
i

(
2 log(64H

(1)
i ) + log(mπ2/δ)

)
+H

(2)
i

where H
(1)
i = maxπ:i∈π∆π∗

|π∗∆πi|
<µ,π∗−πi>2 and H

(2)
i = maxπ:i∈π∆π∗

|π∗∆πi|D(π,π∗)
<µ,π∗−π>2 .

The full proof is very detailed; we refer the interested reader to the original paper. The fact that we
can convert an active binary classification problem into a bandits one, and that the result holds even in the
agnostic case, is a proof of the power of the bandits framework; that is, bandits allow us to handle cases in
which our hypothesis class poorly matches the data.
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