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1 Introduction

Binary classification has been one of the most prevalent problems in machine learning, as it relates to a wide
range of empirical problems (e.g., whether or not a user clicks on an ad, likes a photo on social networks,
etc). In binary classification, we are given a set of n examples {(xi, yi)}ni=1, where xi ∈ Rd is the feature
vector of the ith example and yi ∈ {−1, 1} is its label, distributed i.i.d. from some distribution DXY , and
the goal of the classifier is to infer the label of unseen examples.

Another important property of a classifier is how fast it learns. That is, for a given hypothesis space,
we want to see how fast the error goes down as a function of the number of observations n. In this lecture,
we focus on the problem of binary classification and examine two approaches to tackle the problem: passive
and active learning. In passive learning, the goal of the learner is to infer an accurate predictor from
labeled training data. The labeled training data are examples of input-output pairs (x, y), where the label y
represents the outcome associated with the input x. In this setting, the supervised algorithm would obtain
the labels for a random subset of inputs and learn the classifier. In many situations, however, obtaining
labels can be costly and time consuming. For example, in speech recognition, the speech signal is cheap to
obtain but labeling would require a lot of time and labor force.

This gives rise to the notion of active learning, which instead, considers situation wherein we are given
a set of unlabeled data points, (i.e., each training example is an input x without an associated label y), and
the learner is allowed to request the label y of any particular input x. The goal of the active learner is to
infer an accurate classifier of labels from inputs without making too many queries. An active learner tries
to get the most out of a limited budget by choosing its query points (points for which it asks for the label)
in an intelligent and adaptive manner [1].

In this lecture, we start with the problem of passive learning in a realizable setting, where we assume a
perfect classifier exists and the data is separable. We examine how fast the error goes down as we increase
the sample size. We then consider a particular active learning setting wherein unlabeled data come as a
stream, and for each incoming data point, the learner needs to decide whether to query its label or not. We
introduce an active learning algorithm proposed by Cohn, Atlas, and Ladner (CAL henceforth) [2] and see
how much we can improve the convergence rate as compared with the passive one.

CAL is an example of a broader set of algorithms called disagreement-based methods. The main idea
behind these methods is that the active learner maintains a candidate set of hypotheses (often called a version
space), and queries the label of a data point only if there is disagreement within this set on how to label the
point. As such, each time a new label is seen, the current set of hypothesis that are still “in the running”
shrinks. Figure 1, taken from Dasgupta [1], shows an example of a disagreement-based method (CAL) under
the assumption that the data is linearly separable. As shown in Figure 1a, seven points were labeled and
a new point arrives. Figure 1b shows some of the hypotheses in the current version space, indicating that
all these lines are consistent with the labeled data seen so far. Combining all the lines in the version space,
we can form the region of disagreement, as shown in Figure 1c. Since the new point does not lie in the
disagreement region, the learner is able to infer its label.

Finally, we discuss the agnostic case, where a perfect separator does not exist and the best classifier
has some noise. We introduce a disagreement-based algorithm proposed by Dasgupta, Hsu, and Monteleoni
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(DHM henceforth) [3] that extends CAL to the agnostic case. We show some theorems on the properties of
this algorithm.

(a) Arrival of a new point (b) Consistent hypotheses (c) Disagreement region

Figure 1: An Example of A Disagreement-Based Active Learning Algorithm, taken from Dasgupta [1].

2 Preliminaries

Before delving into the passive and active learning settings for binary classification, we first introduce a series
of notations and definitions that are necessary to characterize the problem. Let X be the input space, D the
joint distribution over X × {−1, 1}, and H a class of hypotheses h : X → {−1, 1}.

Definition 1. If a finite dataset is identically and independently distributed (i.i.d.) from some distribution,
i.e., {(xi, yi)}ni=1 ∼ DX,Y , then the true risk of a hypothesis h ∈ H is:

R(h) = Pr(h(X) 6= Y )

Definition 2. For a hypothesis class H and dataset {(xi, yi)}ni=1 where xi ∈ X and yi ∈ {−1, 1}, we call ĥ

the empirical risk minimizer if ĥ = arg minh∈H R̂n(h) where:

R̂n(h) =
1

n

n∑
i=1

1{h(xi) 6= yi}

For i.i.d. draws {xi, yi}ni=1, then the empirical risk R̂(h) is an unbiased estimator of the true risk R(h)
for any hypothesis h ∈ H. Let h∗ = arg minh∈HR(h) be a hypothesis of minimum true risk in H. Then, the
goal of the learner is to return a hypothesis h ∈ H with true risk R(h) as close as possible to the minimum
true risk R(h∗).

3 Passive Learning

We start with the problem of passive learning for binary classification. Herein, we have a set of data points
and labels {(xi, yi)}ni=1 drawn i.i.d. from distribution D. Our goal is to find how fast the true risk goes
down as a function of n. Intuitively, the lower the risk we want, the more data points we need to sample.
Further, there must be a positive relationship between the number of hypotheses we have in the hypothesis
space and the number of data points we need to identify the hypothesis with the minimum true risk almost
surely. The following theorem characterizes these relationships:

Theorem 1. Suppose that we have a finite set of hypotheses H (i.e., |H| <∞) and ĥn = arg minh∈H R̂n(h).
Also, assume that the data is separable (i.e., the perfect classifier h∗ with no error exists). For any ε, δ ∈
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(0, 1), we have Pr
(
R(ĥn) > ε

)
≤ δ whenever n ≥ ε−1 log( |H|δ ). In other words, for any ε, δ ∈ (0, 1), with

probability 1− δ, we have:

R(ĥn) ≤
log( |H|δ )

n

Before going over the proof, it is worth noting that the theorem assumes a finite set of hypotheses
in the hypothesis class H. Such assumption, besides being practical from an optimization point of view,
also simplifies the theory. Given that we can turn an infinite hypothesis class into a finite one just by
discretizing the space, it is a reasonable assumption to make that will make the proof simpler. We refer
the interested reader to Boucheron et al. [4] in order to better understand how to discretize the space using
Vapnik-Chervonenkis (VC) dimension and Rademacher complexity.

Proof. First, we can show that R̂n(ĥn) = 0, since we have:

R̂n(ĥn) = min
h∈H

R̂n(h) ≤ R̂n(h∗) = 0

Now we can write:

Pr
(
R(ĥn) > ε

)
= Pr

( ⋃
h∈H

{R(h) > ε ∧ R̂n(h) = 0}
)
≤
∑
h∈H

Pr
(
{R(h) > ε ∧ R̂n(h) = 0}

)
, (1)

where we performed a union bound to obtain the inequality. We can now find a bound for each element—
Pr
(
{R(h) > ε, R̂n(h) = 0}

)
. This is the probability that a hypothesis with true risk greater than ε shows

zero empirical risk in n points drawn i.i.d. from D. Since the true risk for this hypothesis is greater than
ε, the probability that this hypothesis correctly identifies a random point is lower than 1− ε. Thus, we can
write: ∑

h∈H

Pr
(
{R(h) > ε ∧ R̂n(h) = 0}

)
≤
∑
h∈H

(1− ε)n (2)

Finally, using the approximation 1− x ≤ e−x for x ≥ 0, we can write:∑
h∈H

(1− ε)n ≤ |H|e−εn (3)

Combining (1), (2), and (3), we have the following:

Pr
(
R(ĥn) > ε

)
≤ |H|e−εn = δ (4)

Solving for n, we find n ≥ ε−1 log( |H|δ ), and this completes the proof.

Example 1. As a concrete example, let us assume x being uniform on [0, 1], and that the hypothesis class
is defined as H = {sign(x − i−1

m−1 ) : i = 1, ...,m}; that is, there are m classifiers uniformly spaced in our

hypothesis class (i.e., |H| = m). Figure 2 shows one of those classifiers (at 3
m threshold).

If y = h∗(x) for some h∗ ∈ H (i.e., the perfect classifier exists in the hypothesis class), then we can apply
Theorem 1 and say that after n observations with probability at least 1− δ:

R(ĥn) ≤ log(m/δ)

n

Using the definition of expectation, the expected risk is given by:
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Figure 2: An Example of a Hypothesis

E[R(ĥn)] =

∫ 1

t=0

Pr(R(ĥn) > t)dt

In view of Theorem 1, we know that the probability term in RHS is bounded by me−tn. Indeed, we know that
probability cannot exceed 1. Thus, we can upper bound the probability term as follows:

E[R(ĥn)] ≤
∫ 1

0

min{1,me−tn}dt

≤
∫ log(m)

n

0

1dt+

∫ 1

log(m)
n

e−tndt

≤ log(m)

n
+

∫ 1

log(m)
n

e−tndt

≤ 2 log(m)

n

which shows that the expected risk goes down with 1/n rate. We expect to improve it using some active
(interactive) learning strategy, as we shall see next.

4 Active Learning

We now turn our attention into active learning. As mentioned before, the motivation behind active learning
comes from the cases in which querying labels is costly. Thus, the main goal of an active learning algorithm
is to identify the true hypothesis with fewer queries compared to passive learning. In particular, we focus on
a streaming setting wherein unlabeled data come as a stream and the active learner has to decide whether
to query for particular labels or not. An example of such streaming environments is spam detection where
contents come as a stream and the algorithm classifies whether the content is spam or not, upon receiving
any content. However, if the algorithm is uncertain about the label, it must ask for the label by showing the
content to the user and getting her feedback.

In the active learning framework, we essentially want to see whether we can achieve the same risk as
passive learning with lower number of labels requested. Before introducing any further notation, let us revisit
Example 1 with the simple one-dimensional data points to give some intuition on why active learning might
help. If the data is separable, its hidden labels are a sequence of −’s followed by a sequence of +’s. As
such, when we get the label −1 for a data point, we can infer that all the points left to this point to be −1.
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Therefore, we do not query for these points and save many potential queries that we would have made in
passive learning.

Figure 3 illustrates this idea of successive elimination of the hypotheses in the hypothesis class. Suppose
that we are left with three hypotheses in our hypothesis space and the learner receives the data point xi
and asks for its label, which turns out to be −1 (Figure 3a). The learner can then rule out inconsistent
hypotheses (in this case, the red classifier), and only keep the consistent ones (blue and green). Later in
time, the learner asks for the label of point xj which is +1 (Figure 3b). The learner is now able to rule out
even more hypotheses (in this case, the green classifier), which means that the space of possible classifiers
keeps on shrinking. Over time, this shrinkage allows the learner to end up with a single best classifier (the
blue classifier as shown in Figure 3c).

(a) Elimination of red hypothesis (b) Elimination of green hypothesis (c) Identifying the best hypothesis

Figure 3: Successive Elimination of Hypotheses in Active Learning

The above example assumes that the data is separable and that there exists a perfect classifier that makes
no mistakes. This is known as the realizable setting. Besides this setting, there is also the agnostic case, in
which we do not make the separability assumption (i.e., the best separator could make mistakes). We show
how active learning works in those settings as well.

4.1 Realizable Case

In this setting we assume there exists a hypothesis h∗ ∈ H that correctly labels every example, that is,
Pr(h∗(X) = Y ) = 1. In other words, we assume that h∗ has no error, i.e., R(h∗) = 0.

4.1.1 Preliminaries

Here we include some definitions that we will use throughout this section.

Definition 3. After observing n labels we call the set of all hypotheses still in the running for being the empir-
ical risk minimizer over all observed data the version space and denote it Vn ⊂ H. If h∗ = arg minh∈HR(h)
and R(h∗) = 0, then

Vn = {h ∈ H : h(x) = y ∀(x, y) ∈ Z}

the subset of hypotheses in H consistent with the examples in Z.

Definition 4. For some hypothesis class H and set X where for h ∈ H, h : X → {−1, 1}, the region of
disagreement is

DIS(H) = {x ∈ X : ∃ h, h′ ∈ H s.t. h(x) 6= h′(x)}

the set of unlabeled examples x for which there are hypotheses in H that disagree on how to label x.
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4.1.2 Algorithm: CAL

The CAL algorithm [2] (see Algorithm 1) proceeds by examining the unlabeled data points one at a time,
and decides after each point xt whether to query its label yt or not. CAL decides to query yt if there is
disagreement about how to label xt among the version space Vt. In other words, CAL chooses to query the
label yt if and only if xt is in the region of disagreement DIS(Vt−1). Figure 4 shows an example of the
disagreement region between the two classifiers.

Figure 4: Region of Disagreement between the blue and green classifiers

Algorithm 1 CAL

1: Initialize: Z0 = Ø, V0 = H
2: for t = 1, 2...n do
3: Obtain unlabeled data point xt
4: if ∃h, h′ ∈ Vt−1 such that h(xt) 6= h′(xt) then
5: Query yt, and set Zt = Zt−1 ∪ (xt, yt)
6: else
7: Set ŷt = h(xt) for any h ∈ Vt−1, and set Zt = Zt−1 ∪ (xt, ŷt)
8: end if
9: Set Vt = {h ∈ H : h(xi) = yi ∀(xi, yi) ∈ Zt}

10: end for
11: return any h ∈ Vn

4.1.3 Disagreement Coefficient

CAL (and other disagreement-based methods in general) use a concept called the disagreement coefficient
for analyzing the label complexity. The label complexity is the number of data points for which we query for
their labels. It is an important concept since, as we mentioned in the introduction, asking for a data point’s
label can be costly.

Definition 5. For a random variable X ∈ X , the disagreement (pseudo) metric ρ on H is defined by:

ρ(h, h′) = Pr(h(X) 6= h′(X))

Let B(h, r) = {h′ ∈ H : ρ(h, h′) ≤ r} denote the closed ball centered at h ∈ H with radius r. The ball
basically denotes all the hypotheses that are close to the hypothesis h in the hypothesis space. Using this
ball, we can now define the disagreement coefficient.
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Definition 6. The disagreement coefficient of h ∈ H with respect to a hypothesis class H and distribution
DX,Y is defined as

θh = sup
r

Prx(DIS(B(h, r)))

r

To give intuition about the disagreement coefficient, let us go through the definition step by step for
the optimal hypothesis. According to definition, DIS(B(h∗, r)) denotes the disagreement region in the ball
with radius r around the optimal hypothesis h∗. Consequently, Prx(DIS(B(h∗, r))) denotes the probability
that we get a data point in the disagreement region of the optimal hypothesis to label. The disagreement
coefficient essentially allow us to see how fast the probability that the next data point would land in the
disagreement region around the optimal hypothesis changes.

The size of the ball around the optimal hypothesis (B(h∗, r)) is important. A smaller ball means that we
are closer to finding the optimal hypothesis, and that there are less hypotheses that agree in the currently
assigned labels. It is of foremost importance to understand at what rate the size of this ball decreases. The
disagreement coefficient is a measure that captures it; the higher the disagreement coefficient, the harder
the problem of finding the optimal hypothesis is.

Figure 5: The region of disagreement for B(h∗, r)

Let us calculate the disagreement coefficient for our previous example. As you can see in Figure 5, the
shaded area shows the disagreement region for B(h∗, r). Since the distribution of data points is uniform in
[0, 1], the value of Pr(DIS(B(h∗, r))) is equal to 2r, the size of the shaded area. Therefore, the disagreement
coefficient is equal to

θh∗ = sup
r

Pr(DIS(B(h∗, r)))

r
=

2r

r
= 2.

With the exception of very nice situations (uniform distribution, symmetric geometry, etc.) the disagree-
ment coefficient is often impossible to calculate. Below are the disagreement coefficients for some classes of
problems:

• Thresholds on R : θ = 2.

• Homogeneous hyperplanes in Rd with data uniformly distributed on a sphere: θ ≤
√
d

• General hyperplanes in Rd with the data density bounded below: θ = O(d)

• Intervals [a, b] on R: θ =∞
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Figure 6: Vn and the ball B around h∗ with the worst hypothesis

4.1.4 Label Complexity

We now present the label complexity analysis of CAL.

Theorem 2. Let h∗ = arg minh∈HR(h) and R(h∗) = 0, and suppose n samples have been taken producing

a version space Vn ⊆ H s.t. Vn = {h ∈ H : R̂(h) = 0}. If we request λ additional labels only when the
samples lie in the disagreement region DIS(Vn), where λ = 2θh∗ log(|H|/δ), then, with probability greater
than 1− δ/n:

sup
h∈Vn+λ

R(h) ≤ sup
h∈Vn

1

2
R(h) (5)

Theorem 2 is saying that if we have taken n samples and we take λ more, then the risk of the worst
possible hypothesis in the new version space Vn+λ is smaller than the risk of the worst previous hypothesis in
the version space Vn, divided by two; that is, we are cutting the error by half every time we take λ samples.

Proof. The disagreement coefficient allows for a bound that relates the region of disagreement to the true
risk of any h ∈ Vn. First, observe that:

Pr(DIS(Vn))

suph∈Vn R(h)
≤
Pr(DIS(B(h∗, suph∈Vn R(h))))

suph∈Vn R(h)
(6)

≤ θh∗ (7)

where (6) falls from the fact that in the RHS we replace Vn with a bigger set; that is, the ball around h∗

that contains the worst hypothesis suph∈Vn R(h), as shown in Figure 6. We can then upper bound the RHS
of (6) by θh∗ , just by using the definition of the disagreement coefficient.
By the definition of risk we have:

sup
h∈Vn+λ

R(h) = sup
h∈Vn+λ

Pr(h(X) 6= Y ) (8)

Using the following probability rules:

P (A) = P (A,B) + P (A,¬B) = P (A|B)P (B) + P (A|¬B)P (¬B)
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If we condition, we have that (8) is equal to:

sup
h∈Vn+λ

Pr(h(X) 6= Y |X ∈ DIS(Vn))Pr(X ∈ DIS(Vn)) + Pr(h(X) 6= Y |X /∈ DIS(Vn))Pr(X /∈ DIS(Vn))

(9)

Note that h ∈ Vn+λ, and as we only remove hypotheses from the version space, then Vn+λ ⊂ Vn. Given that
h∗ ∈ Vn at all times and that all hypotheses in the version space agree on the labels of points outside the
disagreement region DIS(Vn), the second term in the summation (9) has to be zero.
We are left with the first term of (9), where we only look at λ points that land in the disagreement region
of Vn. This is like a brand new problem, where we can do passive learning only with points that land in
DIS(Vn). If we apply Theorem 1 and condition on the new version space Vn+λ, then the risk of any classifier
in the new version space if we see only λ samples satisfies:

Pr(h(X) 6= Y |X ∈ DIS(Vn)) ≤ log(|Vn+λ|/δ)
λ

≤ log(|H|/δ)
λ

(10)

Plugging in the definition of λ in (10), log(|H|/δ) cancels out and we are left with 1/2θh∗ . Going back to
(9), then we have:

sup
h∈Vn+λ

R(h) ≤ 1

2θh∗
Pr(X ∈ DIS(Vn)) (11)

By multiplying both sides of (7) by suph∈Vn R(h), we can replace Pr(X ∈ DIS(Vn)) in (11):

sup
h∈Vn+λ

R(h) ≤ 1

2θh∗
θh∗ sup

h∈Vn
R(h)

≤ sup
h∈Vn

1

2
R(h)

which concludes the proof.

Finally, we need to do the previous procedure log2(1/ε) epochs in order to achieve ε-error, meaning that
the bound holds simultaneously for all epochs. By taking a union bound over λ, 2λ, ..., dn/λe, we have that
after n ≥ λdlog2(1/ε)e labels, the true risk of any classifier satisfies:

R(ĥn) ≤ exp(−n/(θh∗ log(|H| log2(1/ε)/δ)))

which is equivalent to say that R(ĥn) < ε when:

n ≥ log2(1/ε)θh∗ log
( |H| log2(1/ε)

δ

)
We see that the disagreement coefficient governs how fast the risk goes down, and is going exponentially

fast as opposed to the passive learning rate, which was O(1/n).

4.2 Agnostic Case

The CAL [2] algorithm introduced in the previous section has two major shortcomings: 1) it explicitly
maintains the region of uncertainty which would be computationally cumbersome in most cases, and 2) it
assumes separability but data is not usually separable in practice. To address these issues, Dasgupta, Hsu,
and Monteleoni [3] developed an agnostic active learning algorithm, DHM, that does not assume separability
and extends CAL [2] to this setting.
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4.2.1 Preliminaries

Before formally stating DHM, we introduce a series of notations and definitions that are necessary in char-
acterizing the problem. These notations are fairly similar to those in the previous section on realizable
setting. However, here we use the original notation in DHM [3] for two reasons. First, while CAL and DHM
are similar in many aspects, they are built on fundamentally different assumption (realizable vs. agnostic).
Therefore, transforming the notation in favor of consistency might cause confusion for the readers. Second,
we want readers to easily refer to the original article in case of any confusion as proofs we present here can
be complicated.

Similar to previous condition, let X be the input space, D the joint distribution over X × {−1, 1}, and
H a class of hypotheses h : X → {−1, 1} with VC dimension vcdim(H) = d < ∞. The setting is similar to
CAL [2] – unlabeled points are drawn from DX (marginal distribution of D over X ), and we can optionally
request the label y sampled from the joint distribution D.

We first define the error of a hypothesis h under D as follows:

errD(h) = Pr
(x,y)∼D

[h(x) 6= y]

We can then define the empirical error on a finite sample Z ⊂ X × {−1, 1} as follows:

err(h, Z) =
1

|Z|
∑

(x,y)∈Z

1{h(x) 6= y} (12)

It is important to notice that since we are in the agnostic case, the best classifier h∗ has some error ν.

4.2.2 Algorithm: DHM

We now present DHM (see Algorithm 2). The main idea of this algorithm is to divide the data points into
two groups Ŝ and T to extend the notion of uncertainty to the agnostic setting. The former contains the
points for which we do not request the label, while the latter contains the data points for which we explicitly
request labels.

For A,B ⊂ X × {−1, 1}, let learnH(A,B) be a black-box supervised learner that takes as input a data
set and returns any classifier from H consistent with A and with the minimum error on B. Consistent with
A means that the classifier perfectly classifies the examples in A. Instead, minimum error on B indicates
that the classifier can make some mistakes on the set B. Upon receiving xt, the DHM algorithm considers
two hypotheses, hŷ = learnH(St−1 ∪ {(xt, ŷ)}, Tt−1) for ŷ ∈ {−1, 1}, where ŷ refers to predicted labels, and

compares their empirical errors on Ŝt−1 ∪Tt−1 (Ŝt−1 and Tt−1 refers to the state of the Ŝ and T sets at time
t−1 respectively). If the difference is large enough (denoted by ∆t−1), we infer the label for xt and add it to
Ŝt−1. Otherwise, the algorithm requests the label yt, and adds (xt, yt) to Tt−1. In the following subsection
we will show how the error difference, ∆t, gets updated.

4.2.3 Error differences

As mentioned before, upon arriving any new point, we build two classifiers h−ŷ and hŷ that are consistent
with the new point being classified as −1 or +1 respectively. DHM algorithm then infers the label if the
error difference between these two hypotheses exceeds ∆t. This difference actually reflects the extent to
which we are certain about the true label of the new point: if the errors are close enough, we need to request
the label. Intuitively, ∆t should reflect how closely empirical errors on a sample approximate true errors on
the distribution D. In this section, we derive this threshold for the error difference.

It is worth noting that we do not necessarily have the true labels for the points in Ŝt, as we might have
made mistake in inferring their label. However, the setting of ∆t can only depends on observable quantities
(including those inferred and not necessarily the true labels of the points in Ŝt). As such, to ensure that it
does not cause statistical problems, we need to highlight the distinction between errors on Ŝt∪Tt (observable)
and St ∪ Tt (unobservable) as presented in the following definition.
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Algorithm 2 DHM

1: Initialize: Ŝ0 = Ø, T0 = Ø
2: for t = 1, 2...n do
3: Obtain unlabeled data point xt
4: For each ŷ ∈ {−1, 1}, let hŷ = learnH(Ŝt−1 ∪ {(xt, ŷ)}, Tt−1)

5: if err(h−ŷ, Ŝt−1 ∪ Tt−1)− err(hŷ, Ŝt−1 ∪ Tt−1) > ∆t−1 for some ŷ ∈ {−1, 1}
(or if no such h−ŷ is found) then

6: Set Ŝt = Ŝt−1 ∪ (xt, ŷ) and Tt = Tt−1
7: else
8: Request yt, and set Ŝt = Ŝt−1, Tt = Tt−1 ∪ (xt, yt)
9: end if

10: end for
11: return hf = learnH(Ŝn, Tn)

Definition 7. Let St be the set of labeled examples identical to those in Ŝt, except with the true hidden labels
swapped in St, whereas the labels in Ŝt are inferred. We distinguish the error on true from the inferred set
as follows:

errt(h) = err(h, St ∪ Tt)
êrrt(h) = err(h, Ŝt ∪ Tt)

With the definitions above, we now have three different notions of error. To avoid confusion, we briefly
describe each of them here:

• errD(h) is defined as the true error defined over the joint distribution D (this is similar to R(h)
presented in realizable case)

• errt(h) is the empirical error over t examples with their true labels (St ∪ Tt)

• êrrt(h) is the empirical error on the sample with some inferred labels (Ŝt ∪ Tt)

We would like to examine whether the êrrt(h) converges to the true error errD(h), with specific setting of
∆t. To do so, we need to take a two-step approach to prove the consistency. In the first step, we examine
the convergence of errt(h) and errD(h). In the second step, we show the consistency of êrrt(h) and errD(h).

For the analysis of this algorithm, we use the following normalized uniform convergence bound. Before
stating the lemma, we define the n-th shattering coefficient S(H, n) as the maximum number of ways in
which H can label a set of n points; by Sauers lemma, this is at most O(nd) [5].

Lemma 1. (Vapnik and Chervonenkis [6]) Let F be a family of measurable functions f : Z → {0, 1} over a
space Z. Denote by EZf the empirical average of f over a subset Z ⊂ Z. Let αt =

√
(4/t) ln(8S(F , 2t)/δ).

If Z is an i.i.d. sample of size t from a fixed distribution over Z, then, with probability at least 1− δ, for all
f ∈ F :

−min
(
αt
√
EZf, α2

t + αt
√

Ef
)
≤ Ef − EZf ≤ min

(
α2
t + αt

√
EZf, αt

√
Ef
)

In light of Lemma 1, we can view Ef −EZf as the difference between errD(h) and errt(h). Since the sample
in St ∪ Tt is i.i.d., one idea is to apply Lemma 1 to the errt(h) function and obtain convergence bounds.
However, there are some issues with this approach. First, we cannot reliably compute errt(h), since we do
not request the true labels for points in Ŝt. Instead, we can compute error differences for pairs of hypotheses
(h, h′) that agree on Ŝt, because we have:
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errt(h)− errt(h′) = êrrt(h)− êrrt(h′) (13)

The second issue is that these empirical error differences are means of {−1, 0, 1}-valued random variables.
In order to apply Lemma 1, we need to rewrite them in terms of {0, 1}-valued random variables, as specified
for the range of the function f . The following definition helps us apply Lemma 1:

Definition 8. For a pair of (h, h′) ∈ H ×H, define:

g+h,h′(x, y) = 1[h(x) 6= y ∧ 1(h′(x) = y]

g−h,h′(x, y) = 1[h(x) = y ∧ 1(h′(x) 6= y]

Now, we can write the following lemma:

Lemma 2. Let αt =
√

(4/t) ln(8S(H, 2t)2/δ). With probability 1− δ over an i.i.d. sample Z of size t from
D, we have for all (h, h′) ∈ H ×H,

err(h, Z)− err(h′, Z) ≤ errD(h)− errD(h′) + α2
t + αt

(√
EZ [g+h,h′ ] +

√
EZ [g−h,h′ ]

)
Proof. Let G = {g+h,h′ : (h, h′) ∈ H×H} = {g−h,h′ : (h, h′) ∈ H×H}. Using the fact that S(G, 2t) ≤ S(H, 2t)2
and the LHS inequality of Lemma 1, we can write:

EZ [g+h,h′ ] ≤ E[g+h,h′ ] + min
(
αt

√
EZ [g+h,h′ ], α

2
t + αt

√
E[g+h,h′ ]

)
≤ E[g+h,h′ ] + αt

√
EZ [g+h,h′ ] (14)

We can also use the RHS inequality of Lemma 1 and the function g−h,h′ , and obtain the following inequality:

−EZ [g−h,h′ ] ≤ −E[g−h,h′ ] + min
(
α2
t + αt

√
EZ [g−h,h′ ], αt

√
E[g−h,h′ ]

)
≤ −E[g−h,h′ ] + α2

t + αt

√
EZ [g−h,h′ ] (15)

We add (14) and (15) and derive the following inequality:

EZ [g+h,h′ ]− EZ [g−h,h′ ] ≤ E[g+h,h′ ]− E[g−h,h′ ] + α2
t + αt

(√
EZ [g+h,h′ ] +

√
EZ [g−h,h′ ]

)
(16)

By definition (Eq. 12 and Def. 8), we have EZ [g+h,h′ ] − EZ [g−h,h′ ] = err(h, Z) − err(h′, Z). Hence, we can
write:

err(h, Z)− err(h′, Z) ≤ errD(h)− errD(h′) + α2
t + αt

(√
EZ [g+h,h′ ] +

√
EZ [g−h,h′ ]

)

For Z = St∪Tt, we can use (13) and obtain the inequality for difference in errors that can be empirically
determined (i.e., êrrt(h) − êrrt(h′)). However, to obtain bounds for this difference in empirical errors, we
need to fix the terms in the square root on the RHS of Lemma 2. To do so, we can write the following
inequalities:

ESt∪Tt [g
+
h,h′ ] =

1

t

∑
(x,y)∈Tt

1[h(x) 6= y ∧ h′(x) = y] ≤ 1

t

∑
(x,y)∈Tt

1[h(x) 6= y] = êrrt(h) (17)

ESt∪Tt [g
−
h,h′ ] =

1

t

∑
(x,y)∈Tt

1[h(x) = y ∧ h′(x) 6= y] ≤ 1

t

∑
(x,y)∈Tt

1[h′(x) 6= y] = êrrt(h
′) (18)

We take the sum over Tt, because h and h′ agree on the labels for the examples in St. The last equality also
holds because both h and h′ are consistent with Ŝt by construction.

Now, we can state a corollary of Lemma 2 as follows:



Lecture 14: Binary Classification: Disagreement-based Methods 13

Corollary 1. Let βt =
√

(4/t) ln(8(t2 + t)S(H, 2t)2/δ). Then, with probability 1 − δ, for all t ≥ 1 and all

(h, h′) ∈ H ×H consistent with Ŝt, we have:

êrrt(h)− êrrt(h′) ≤ errD(h, Z)− errD(h′, Z) + β2
t + βt

(√
êrrt(h) +

√
êrrt(h′)

)
Proof. For each t ≥ 1, we apply Lemma 2 using Z = St ∪ Tt and δ = δ/(t2 + t). Therefore, we will have
bounds with different probabilities, i.e., 1 − δ/(t2 + t) for each t. We then apply a union bound over all
t ≥ 1. Thus, with probability at least 1 − δ, the bounds in Lemma 2 hold simultaneously for all t ≥ 1 and
all (h, h′) ∈ H ×H, with Z = St ∪ Tt.1 So we can write:

err(h, Z)− err(h′, Z) ≤ errD(h)− errD(h′) + β2
t + βt

(√
EZ [g+h,h′ ] +

√
EZ [g−h,h′ ]

)
(19)

Using Eq. 13 for the LHS and Eq. 17 and 18 for the RHS, we can show:

êrrt(h)− êrrt(h′) ≤ errD(h, Z)− errD(h′, Z) + β2
t + βt

(√
êrrt(h) +

√
êrrt(h′)

)

Corollary 1 shows a very interesting fact: although Ŝt ∪ Tt is not an i.i.d. sample from D, we can obtain
the normalized uniform convergence bounds for empirical error differences in Ŝt ∪Tt. In light of this finding,
we can define ∆t as follows:

∆t := β2
t + βt

(√
êrrt(h+1) +

√
êrrt(h−1)

)
, (20)

where βt =
√

(4/t) ln(8(t2 + t)S(H, 2t)2/δ) = Õ(
√
d log n/n), since S(H, 2t) ≤ (2t)d.

4.2.4 Correctness and Fall-back

Now we prove that the set of hypotheses that are consistent with Ŝ always includes the optimal hypothesis,
h∗.

Lemma 3. With probability of at least 1 − δ, the hypothesis h∗ = arg infh∈H errD(h) is consistent with Ŝt
for all t ≥ 0 in Algorithm 2.

Proof. Apply the bounds in Corollary 1 and proceed by induction on t. The base case of induction is trivial
since Ŝ0 = ∅. Now assume that h∗ is in the set of consistent hypotheses with Ŝt. Suppose upon arriving
xt+1, we discover êrrt(h+1) − êrrt(h−1) > ∆t. Using contradiction, we will show that h∗(xt+1) = −1.
Suppose that h∗(xt+1) = +1. Since we assumed that êrrt(h+1)− êrrt(h−1) > ∆t, we can write:

êrrt(h+1)− êrrt(h−1) > β2
t + βt

(√
êrrt(h+1) +

√
êrrt(h−1)

)
=⇒

√
êrrt(h+1) > βt (21)

In addition, since our algorithm chooses h+1, we know that êrrt(h
∗) ≥ êrrt(h+1). Together with Eq. 21, we

have:

êrrt(h
∗)− êrrt(h−1) =

(
êrrt(h

∗)− êrrt(h+1)
)

+
(
êrrt(h+1)− êrrt(h−1)

)
>
√
êrrt(h+1)

(√
êrrt(h∗)−

√
êrrt(h+1)

)
+ β2

t + βt
(√

êrrt(h+1)−
√
êrrt(h−1)

)
> βt

(√
êrrt(h∗)−

√
êrrt(h+1)

)
+ β2

t + βt
(√

êrrt(h+1)−
√
êrrt(h−1)

)
= β2

t + βt
(√

êrrt(h∗)−
√
êrrt(h−1)

)
.

Now since we have êrrt(h
∗) − êrrt(h−1) > β2

t + βt
(√

êrrt(h∗) −
√
êrrt(h−1)

)
, Corollary 1 implies that

errD(h∗) > errD(h−1), which is a contradiction since h∗ is the optimal hypothesis. The proof is similar for
the case where êrrt(h−1)− êrrt(h+1) > ∆t.

1The reason the union bound gives us the probability 1− δ is because of the term t2 + t in βt. For each t ≥ 1, we have the
bounds in Lemma 2 with probability 1− δ/(t2 + t). Thus, the probability for union bound will be 1−

∑∞
t=1 δ/(t

2 + t) = 1− δ.
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Recall that the best hypothesis h∗ in the hypothesis space has some error ν. Here we prove that for
t = Õ((d/ε)(1 + ν/ε)), Algorithm 2 returns a hypothesis with error at most ε + ν. To be more specific, we
prove the following theorem.

Theorem 3. Let ν = infh∈H errD(H) and d = vcdim(H). There exist a constant c > 0 such that the
following holds. If Algorithm 2 is given a stream of n unlabeled examples, then with the probability of
least 1 − δ, the algorithm returns a hypothesis with error at most ν + c(α2 +

√
να) where α is equal to√

(1/n)(d log n+ log(1/δ)).

Proof. In Lemma 3 we proved that h∗ is consistent with Ŝn with probability at least 1 − δ. We know that
êrrn(hf ) ≤ êrrn(h∗), where hf is the hypothesis returned from Algorithm 2. Also, using a similar approach

as Corollary 1, we can have êrrn(h∗)− êrrn(hf ) ≤ errD(h∗)−errD(hf )+β2
n+βn

(√
êrrD(h∗)+

√
êrrD(hf )

)
.

Therefore,2

errD(hf ) ≤ errD(h∗) + êrrn(hf )− êrrn(h∗) + β2
n + βn

(√
êrrD(h∗) +

√
êrrD(hf )

)
≤ errD(h∗) + β2

n + βn
(√

êrrD(h∗) +
√
êrrD(hf )

)
≤ ν + β2

n + βn
√
ν + βn

√
êrrD(hf )

≤ ν + 3β2
n + 2βn

√
ν

Thus, the error term is at most ν+c(β2
n+
√
νβn). Also, we discussed in Corollary 1 that βn = Õ(

√
d logn
n )

which concludes the proof.

In view of Theorem 3, Algorithm 2 returns a hypothesis with error at most ν + ε when n = Õ
(
(d/ε)(1 +

ν/ε)
)
; this is (asymptotically) the usual sample complexity of supervised learning. Since the algorithm

requests at most n labels, its label complexity is always at most n = Õ
(
(d/ε)(1 + ν/ε)

)
.

4.2.5 Label Complexity

We can also propose a higher bound on the expected number of labels requested by DHM in terms of the
disagreement coefficient. Before proving the bound, we need to find some bounds for the probability of
requesting a label. The main idea for proving this is that the probability of requesting a label is intimately
related to the disagreement coefficient and the empirical errors of the hypothesis in the previous step.

Lemma 4. There exist constants c1, c2 > 0 such that, with probability at least 1 − 2δ for all t ≥ 1, the
following holds. Let ŷ = h∗(xt+1), where h∗ = arg infh∈H errD(h), then the probability that Algorithm 2
requests the label yt+1 is

Prxt+1∼DX [Request yt+1] < Prxt+1∼DX [errD(h−ŷ) ≤ c1ν + c2β
2
t ] (22)

where ν and β are as defined in Theorem 3 and Corollary 1, respectively.

Proof. Define γt =
√

(4/t) ln (8(t2 + t)S(H, 2t)/δ) ≤ βt. With probability at least 1− 2δ:

1. By Lemma 1, for all t ≥ 1 and h ∈ H:

−γ2t − γt
√
errD(h) ≤ errD(h)− errt(h) ≤ γt

√
errD(h)

2. By Lemma 3, h∗ is consistent with Ŝt for all t ≥ 0.

2In order to derive the inequality, in (14) and (15), we select the terms with E[g−
h,h′ ] and E[g+

h,h′ ] in the min function instead

of the terms with EZ [g−h,h′ ] and EZ [g+h,h′ ]. Also in (17) and (18) we take expectation instead of empirical expectation.
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Now suppose that h∗(xt+1) = −1 and Algorithm 2 requests the label yt+1. So we need to prove that the
RHS of (22) equals one for some c1, c2 > 0. Since the label is requested:

êrrt(h+1)− êrrt(h−1) ≤ β2
t + βt(

√
êrrt(h+1) +

√
êrrt(h−1)) (23)

A lower bound for the equation above is:

errt(h+1)− errt(h∗) = êrrt(h+1)− êrrt(h∗) ≤ êrrt(h+1)− êrrt(h−1) (24)

This lower bound and the fact that êrrt(h+1) ≤ errt(h+1) and êrrt(h−1) ≤ errt(h∗) implies that,

errt(h+1) ≤ errt(h∗) + β2
t + βt(

√
errt(h+1)) + βt

√
errt(h∗)

Due to the fact that A ≤ B + C
√
A→ A ≤ B + C2 + C

√
B, it can be implied that:

errt(h+1) ≤ errt(h∗) + 2β2
t + βt

√
errt(h∗) + βt

√
errt(h∗) + β2

t + βt
√
errt(h∗)

Uniform convergence of errors results in errD(h+1) + γt
√
errD(h+1) ≤ errt(h+1) and it also implies

that errt(h
∗) ≤ ν + γ2t + γt

√
ν, which sums up to the conclusion that errD(h+1) ≤ 3ν + (12 + 2

√
3)β2

t , as
needed.

Using this upper bound on the probability of requesting a label, Lemma 5 presents another upper bound
in terms of the disagreement coefficient. Herein, we use a slight variation of the disagreement coefficient
introduced in the realizable setting, defined as follows:

Definition 9. The disagreement coefficient θ = θ(D,H, ε) > 0 is:

θ = sup
Prx∼DX [∃h ∈ B(h∗, r) s.t. h(x) 6= h∗(x)]

r
: r ≥ v + ε

where h∗ = arg infh∈H errD(h) and v = errD(h∗).

Lemma 5. In the same setting as Lemma 4, there exists a constant c > 0 such that

Prxt+1∼DX [Request yt+1] ≤ cθ(ν + β2
t ),

where θ = θ(D,H, 3β2
n + 2βm

√
ν) is the disagreement coefficient defined in Definition 9.

Proof. Suppose h∗(xt+1) = −1. By triangle inequality, errD(h+1) ≥ ρ(h+1, h
∗)− ν, where ρ is the disagree-

ment (pseudo) metric. By Lemma 4, there exists c1 and c2:

Prxt+1∼DX [Request yt+1] < Prxt+1∼DX [ρ(h+1, h
∗) ≤ (c1 + 1)ν + c2β

2
t ] (25)

We can choose the constants c1, c2 > 0 such that (c1 + 1)ν + c2β
2
t ≥ ν + 3β2

n + 2βm
√
ν. By Definition 5,

Prxt+1∼DX [ρ(h+1, h
∗) ≤ (c1 + 1)ν + c2β

2
t ] ≤ θ.((c1 + 1)ν + c2β

2
t )

Now, using this lemma, calculating the complexity bound for agnostic active learning and obtaining the
upper bounds on the number of labels requested by the algorithm is straightforward.

Theorem 4. Let n be the number of unlabeled data given to Algorithm 2, d = vcdim(H) and ν, β, θ as
defined in Theorem 3, Corollary 1 and Lemma 5, respectively. There exists constants c1 > 0 such that for
any c2 ≥ 1, with probability higher than 1− 2δ:

1. If ν ≤ (c2 − 1)β2
n, Algorithm 2 returns a hypothesis with error as bounded in Theorem 3 and L ≤

1 + c1c2θ.(d log2 n+ log 1
δ log n)
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2. Otherwise, the same holds except that L ≤ 1 + c1θ(νn+ d log2 n+ log 1
δ log n)

where L is the expected number of labels requested. Furthermore, with the probability at least 1 − δ′, the
algorithm requests no more than L+

√
3L log(1/δ′) labels.

Proof. Using a Chernoff bound for the Poisson trials and applying Lemma 5 the proof is concluded.

In conclusion, with the substitution ε = 3β2
n + 2βm

√
ν, these theorems prove that for any hypothesis

class and data distribution for which θ ≤ 1
ε+ν , Algorithm 2 using only Õ(θd log2(1/ε)) labels, can achieve

the error ε ≈ ν, and using only Õ(θd log2(1/ε) + θd(ν/ε)2) labels, it can achieve the error ε� ν.
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