
CSE599i: Online and Adaptive Machine Learning Winter 2018

Lecture 13: Gaussian Process Optimization
Lecturer: Kevin Jamieson Scribes: Rahul Nadkarni, Brian Hou, Aditya Mandalika

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

In these notes, we will introduce the Gaussian Process Upper Confidence Bound (GP-UCB) algorithm
and bound the regret of the algorithm. First, we introduce the property of submodularity in Section 1.1, one
of the tools that is necessary to prove these regret bounds. Next, we review Gaussian processes in Section 1.2.

1 Preliminaries

1.1 Submodularity

Consider a finite set of objects Ω and an objective function f that assigns each subset S ⊆ Ω a non-negative
value f(S). Finding the subset that maximizes f is intractable in general because all 2|Ω| subsets would
need to be checked, but if f is both submodular and monotone, we can prove that a greedy algorithm will
achieve at least (1− 1

e) of the optimum.1

Definition 1 (Discrete Derivative). For a set function f , S ⊆ Ω, and x ∈ Ω, let ∆f (x|S) = f(S∪{x})−f(S)
be the discrete derivative of f at S with respect to x. This is the marginal gain of adding x to the set S.

Definition 2 (Submodularity). A set function f is submodular if for all S ⊆ T ⊆ Ω and x ∈ Ω \ T ,

∆f (x|S) ≥ ∆f (x|T)

Intuitively, submodularity is equivalent to diminishing returns: the marginal benefit of adding a new
element x to a set T is no greater than the marginal benefit of adding that element to a subset S.

Definition 3 (Monotonicity). A set function f is monotone if for all S ⊆ T ⊆ Ω,

f(S) ≤ f(T)

A function is monotone if all of its discrete derivatives are non-negative, i.e. ∆f (x|S) ≥ 0 ∀x ∈ Ω.
Intuitively, this means that adding an element to the set will never reduce the objective, which is important
if we are greedily optimizing the objective as described in the following section.

Definition 4 (Monotone Submodularity). A set function f is monotone submodular if for all S ⊆ T ⊆ Ω
and x ∈ Ω,

∆f (x|S) ≥ ∆f (x|T)

This is slightly different than the statement in Definition 2 because x is permitted to be in T .

1 This section is adapted from Krause and Golovin [2012] and Kun [2014].

1

Lecture 13: Gaussian Process Optimization 2

1.1.1 Submodular Optimization

Suppose we want to find the subset of at most k < |Ω| elements, S∗k ⊂ Ω, that maximizes a non-negative
monotone submodular set function f . Algorithm 1 describes a greedy algorithm for computing Sk.

Algorithm 1 A greedy algorithm for submodular optimization.

Input: Monotone submodular function f ; Ω; k
S0 ← {}
for t = 1, 2, . . . , k do
xt ← arg maxx∈Ω\St−1

∆f (x|St−1)
St ← St−1 ∪ {xt}

end for
return Sk

To compare the objective values for the set Sk returned by the greedy algorithm and S∗k , we will instead
prove a more general case. We permit the greedy algorithm to run for ` iterations (yielding S1, S2, . . . , S`)
where ` does not necessarily equal k.

Theorem 1 (Nemhauser et al. 1978). Let f be a monotone submodular set function and S∗k be the subset of
at most k elements that maximizes f . After running the greedy algorithm for ` iterations,

f(S`) ≥ (1− e−`/k)f(S∗k)

Proof. Let S∗k = {x∗1, . . . , x∗k} be the optimal set of size k.

f(S∗k) ≤ f(St ∪ {x∗1 . . . x∗k}) (1)

= f(St ∪ {x∗1 . . . x∗k})− f(St ∪ {x∗1 . . . x∗k−1}) + f(St ∪ {x∗1 . . . x∗k−1}) (2)

= ∆f (x∗k|St ∪ {x∗1 . . . x∗k−1}) + f(St ∪ {x∗1 . . . x∗k−1}) (3)

= f(St) +

k∑
j=1

∆(x∗j |St ∪ {x∗1, . . . , x∗j−1}) (4)

≤ f(St) +
∑
x∈S∗

k

∆f (x|St) (5)

≤ f(St) +
∑
x∈S∗

k

(f(St+1)− f(St)) (6)

≤ f(St) + k(f(St+1)− f(St)) (7)

Equation (1) follows from monotonicity of f . Equations (2) to (4) are a telescoping sum. Equation (5) follows
from submodularity of f . Equation (6) is because St+1 is greedily constructed by maximizing ∆f (x|St).
Equation (7) follows because S∗k contains at most k elements.

We can rearrange Equation (7) to describe how the gap between the optimal set S∗k and the greedily-
constructed set St shrinks as the greedy algorithm runs for more iterations. This inequality holds for all
t ≥ 0.

f(S∗k)− f(St) ≤ k(f(S∗k)− f(St))− k(f(S∗k)− f(St+1)) (8)

f(S∗k)− f(St+1) ≤
(

1− 1

k

)
(f(S∗k)− f(St)) (9)

Starting from t = 0 and applying Equation (9) ` times yields

f(S∗k)− f(S`) ≤
(

1− 1

k

)`
(f(S∗k)− f(S0)) (10)

Lecture 13: Gaussian Process Optimization 3

Because f is non-negative, we can describe the gap directly in terms of f(S∗k).

f(S∗k)− f(S`) ≤
(

1− 1

k

)`
f(S∗k) (11)

Finally, we apply the common inequality 1− x ≤ e−x to simplify, rearranging to yield our desired result.

f(S∗k)− f(S`) ≤ e−`/kf(S∗k) (12)

f(S`) ≥ (1− e−`/k)f(S∗k) (13)

Setting ` = k shows that the greedy algorithm (Algorithm 1) is approximately optimal.

f(Sk) ≥
(

1− 1

e

)
f(S∗k) (14)

1.2 Gaussian Processes

Gaussian processes generalize the concept of a Gaussian distribution over discrete random variables to the
idea of a Gaussian distribution over continuous functions.2

1.2.1 Intuition and Motivation

Suppose that we are given some data {(xi, yi)}ni=1,xi ∈ Rd, yi ∈ R, as well as an estimate of the Gaussian
noise model at each xi. If we fit a continuous function to those data points, we may also hope to estimate
the noise at interpolated points. Intuitively, nearby points along the fitted function will have a similar noise
distribution, but adjusted by the distance between them.

Just as a Gaussian distribution is fully described by its mean and covariance matrix, a Gaussian process
is fully described by its mean and covariance function. See Figure 1 for an example of how the mean and
covariance change as additional points are provided to the Gaussian process.

A Gaussian process is parametrized by a kernel function, which determines which xi are close. One
common choice for the kernel function is the squared exponential, or radial basis function (RBF).

kRBF(x,x′) = exp

(
− 1

2σ2
s

‖x− x′‖2
)

Figure 2 shows Gaussian processes with σs = 0.1, 1, and 2, respectively. For the RBF kernel, a higher choice
of σs results in smoother samples from the Gaussian process.

Gaussian processes allow us to model nonlinear functions in a particularly appealing way: the covariance
function provides a metric of confidence in the estimated mean function’s accuracy. This nonlinearity can
be used to extend the linear contextual bandit scenario to nonlinear contextual bandits. In addition, the
covariance function yields an Upper Confidence Bound (UCB) algorithm that is analogous to the linear
setting (LinUCB) described in Lecture 10.

2 This section is adapted from Rasmussen and Williams [2006, Ch. 2].

Lecture 13: Gaussian Process Optimization 4

Figure 1: An example of the behavior of Gaussian process regression as additional data points are added.
All figures show the mean function of the Gaussian process in black, as well as the region within two
standard deviations in gray. The red, green, and blue functions are samples from the Gaussian process.
(Note that the samples are not necessarily always within the gray region; there is a 5% probability that a
sample from a Gaussian distribution is outside of two standard deviations.)

The first image shows the zero-mean prior with uniform spread at each point. As more points are
added, the mean function shifts to accommodate the data point. Furthermore, the gray region is pinched
around the point, indicating that nearby points also have reduced uncertainty. In this example, we have
assumed that there is no measurement noise σn, so there is no uncertainty at the given data point. If this
is not the case, then the gray region will not be pinched to zero.

Figure 2: Gaussian processes using RBF kernel with σs = 0.1, 1, and 2, respectively. For the RBF kernel,
increasing σs results in smoother samples from the Gaussian process.

Lecture 13: Gaussian Process Optimization 5

1.2.2 Gaussian Process Regression

The goal of Gaussian process regression is to recover a (nonlinear) function f given data {(xi, yi)}ni=1, where
yi = f(xi) + εi with εi ∼ N (0, σ2

n). We can combine xi into the design matrix X and combine yi into the
vector Y.

A Gaussian process is completely specified by its mean function µ(x) (which, for simplicity, is assumed
to be the zero function) and a positive definite covariance function k(x,x′).

µ(x) = E[f(x)] (15)

k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))] (16)

We can write the Gaussian process as

f(x) ∼ GP(µ(x), k(x,x′)) (17)

One formal definition of a Gaussian process is that it is an infinite collection of random variables, any
finite subset of which is jointly Gaussian. This means that given training input X with additive independent
identically distributed Gaussian measurement noise εi ∈ N (0, σ2

n), training output Y, and query input X∗,
the query output Y∗ (which is equal to f(X∗) in the absence of noise) is given by the following Gaussian
distribution: [

Y
Y∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(18)

where K(·, ·) is a matrix of pairwise kernel values. (If there are n training pairs and n∗ query pairs, then
K(X,X∗) is an n× n∗ matrix.)

The multivariate Gaussian distribution has the property that any conditional distribution is also Gaus-
sian. Therefore, the distribution Y∗|X,Y,X∗ can be fully described with a mean and covariance matrix.
We can describe that mean and covariance using the standard multivariate Gaussian conditional formula:

Y∗|X,Y,X∗ ∼ N (µY∗ ,ΣY∗) (19)

µY∗ = K(X∗,X)[K(X,X) + σ2
nI]−1Y (20)

ΣY∗ = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2
nI]−1K(X,X∗) (21)

Lecture 13: Gaussian Process Optimization 6

2 Gaussian Process Optimization

2.1 Problem setup

We consider the problem of maximizing a real-valued function f(·) over a domain D, such that we want to

choose a sequence of T points x1, . . . ,xT to maximize the sum
∑T
t=1 f(xt). We can compare this to choosing

the best point in hindsight, i.e. x∗ = arg maxx∈D f(x), and therefore define the instantaneous regret at time

t as rt = f(x∗) − f(xt) and the cumulative regret as RT =
∑T
t=1 rt with the goal of minimizing RT . An

additional issue is that we can only observe noisy estimates of the function, meaning that when we choose a

point xt we observe yt = f(xt) + εt, where εt
i.i.d.∼ N(0, σ2I) for some known variance quantity σ2. We can

approach this problem by modeling the underlying function f(·) as a Gaussian process, with a mean function
µ(·) capturing our estimate of the function across the domain and a variance function σ2(·) capturing our
uncertainty in this estimate.

2.2 The Gaussian Process Upper Confidence Bound (GP-UCB) Algorithm

We can use Gaussian processes to describe a natural UCB algorithm for optimizing an unknown nonlinear
function. βt will be defined later, but it is an increasing function in t and captures the number of standard
deviations in the upper confidence bounds.

Algorithm 2 The GP-UCB algorithm.

Input: Function to maximize, f ; Function input space D; GP Prior µ0 = 0, σ0, k(x,x′) ≤ 1 ∀x,x′
for t = 1, 2, . . . do

Choose xt = arg maxx∈D µt−1(x) +
√
βtσt−1(x)

Examine yt = f(xt) + εt, εt
i.i.d.∼ N(0, σ2I)

Perform Gaussian process Bayesian update with (xt, yt) to obtain µt and σt (Eq. 20 and 21)
end for

Next, we describe how to choose βt to achieve sublinear regret bounds.

2.3 Regret Bounds for GP-UCB

We will analyze the GP-UCB algorithm for solving the problem described in Section 2.1, and in particular
derive bounds on the cumulative regret under this algorithm.

2.3.1 Case 1: Finite D

For the first case, assume the domain D that we are working in is of finite size |D|. In a practical setting,
we can imagine taking a bounded set D that is in a continuous space and discretizing it to allow for the
following regret bound to hold. The regret bound is defined as follows

Theorem 2. Let δ ∈ (0, 1) and βt = 2 log(|D|t2π2/6δ). Running GP-UCB with βt for a function f
sampled from a GP with mean function zero and covariance function k(x,x′), we obtain a regret bound
of O∗(

√
TγT log|D|) with high probability (probability 1− δ). Precisely,

Pr
{
RT ≤

√
C1TβT γT ∀T ≥ 1

}
≥ 1− δ

where C1 = 8/ log(1 + σ−2) and T is the number of rounds of sampling an individual point.

Here, γT is the maximum information gain after T rounds, defined as

γT := max
A⊂D:|A|=T

I(yA;fA) = max
A⊂D:|A|=T

H(yA)−H(yA | fA)

Lecture 13: Gaussian Process Optimization 7

For marginal entropy H(yA) of the observations yA and conditional entropy H(yA | fA) of the observations
yA given the corresponding function values fA. The quantity γT describes the maximum reduction in
uncertainty about the unknown function f from revealing the observations yA, and is a problem-dependent
quantity relying on the properties of both the choice of kernel and the input space.

We prove Theorem 2 via the following sequence of lemmas. We begin by showing that we can bound the
deviation between the true function and our estimated mean function by a scaled version of the estimated
variance function. We then use this to bound the instantaneous regret rt = f(x∗)−f(xt) at each timepoint t,
where x∗ refers to the point(s) in the domain D which maximizes the function f . We describe an alternative
way of writing the maximum information gain γT , and rewrite the bound on the instantaneous regret to
come up with a bound on the sum of squared instantaneous regrets in terms of the maximum information
gain. We then use this final result to bound the cumulative regret RT =

∑T
t=1 rt in terms of the information

gain, variables chosen for GP-UCB, and constant terms. We begin with the following lemma.

Lemma 1. Pick δ ∈ (0, 1) and set βt = 2 log(|D|πt/δ), for some πt such that
∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(x)− µt−1(x)| ≤ β1/2
t σt−1(x) ∀x ∈ D,∀t ≥ 1

holds with probability ≥ 1− δ.

Proof. The outline of this proof is that we start with the expression for Pr{r > c} for a random variable
r ∼ N(0, 1), based on the definition of the Gaussian cumulative distribution function. We then manipulate

that expression to an alternate form, perform the substitutions r = (f(x)− µt−1(x))/σt−1(x) and c = β
1/2
t ,

and apply the union bound over all points in our domain and all timepoints to prove the lemma.
To start, fix t ≥ 1 and x ∈ D. Conditioned in yt−1 = (y1, . . . , yt−1), {x1, . . . ,xt−1} are deterministic, and

f(x) ∼ N(µt−1(x), σ2
t−1(x)). For a variable r ∼ N(0, 1), we can use the Gaussian cumulative distribution

function to define

Pr{r > c} =
1√
2π

∫ ∞
c

e−r
2/2 dr =

1√
2π

∫ ∞
c

e−r
2/2+c2/2 e−c

2/2 dr

= e−c
2/2 1√

2π

∫ −∞
c

e(−r2/2+rc−c2/2)+(−rc−c2) dr

= e−c
2/2 1√

2π

∫ −∞
c

e−(r−c)2/2 e−c(r−c) dr

Notice that the integral term scaled by 1/
√

2π resembles the Gaussian density integrated from c to ∞ for a
random variable r with mean c and unit standard deviation, which would ordinarily integrate to 1/2 (i.e.,
integrating over the Gaussian density for all values greater than the mean). However, the integrand is scaled
by the term e−c(r−c). For c > 0 and r ≥ c, we have that e−c(r−c) ≤ 1, so the integrand is actually scaled
down. Therefore, we have that

e−c
2/2 1√

2π

∫ −∞
c

e−(r−c)2/2 e−c(r−c) dr ≤ 1

2
e−c

2/2

Using this expression with r = (f(x)−µt−1(x))/σt−1(x) and c = β
1/2
t , we get that for any given x ∈ D and

timepoint t ≥ 1

Pr{|f(x)− µt−1(x)| > β
1/2
t σt−1(x)} ≤ e−βt/2

Applying the union bound over all x ∈ D, we get

Pr

{ ⋃
x∈D
|f(x)− µt−1(x)| > β

1/2
t σt−1(x)

}
≤
∑
x∈D

Pr{|f(x)− µt−1(x)| > β
1/2
t σt−1(x)} ≤ |D|e−βt/2

Lecture 13: Gaussian Process Optimization 8

To further generalize this to all timepoints t ≥ 1, we can redefine |D|e−βt/2 = δ/πt. To satisfy the conditions

on πt from the lemma statement, we can use πt = π2t2/6 since
∑∞
t=1

1
t2 = π2

6 . We then apply the union
bound again over all timepoints t ∈ N to get

Pr

{ ∞⋃
t=1

|f(x)− µt−1(x)| > β
1/2
t σt−1(x),∀x ∈ D

}
≤
∞∑
t=1

Pr{|f(x)− µt−1(x)| > β
1/2
t σt−1(x),∀x ∈ D}

≤
∞∑
t=1

δ

πt
= δ

Changing the direction of the inequality to upper bound the absolute difference |f(x) − µt−1(x)| for all
x ∈ D and all t ≥ 1 gives us that

|f(x)− µt−1(x)| ≤ β1/2
t σt−1(x) ∀x ∈ D,∀t ≥ 1

Holds with probability ≥ 1 − δ, which gives us the original statement of the lemma. This completes the
proof of Lemma 1.

Lemma 2. Fix t ≥ 1. If |f(x) − µt−1(x)| ≤ β
1/2
t σt−1(x) for all x ∈ D, then the instantaneous regret

rt = f(x∗)− f(xt) (where x∗ is the point that maximizes the true function f) is bounded as

rt ≤ 2β
1/2
t σt−1(xt).

Proof. We have already shown that the deviation of the true function value at x from our estimated mean
function is bounded by a scaled version of our estimated variance function at that point. If we choose our
next point according to the argmax expression given by the GP-UCB algorithm, we can be sure that the
upper confidence bound at that point is greater than both the function evaluated at that point and at the
optimal point x∗ which maximizes the function. This allows us to bound the deviation between the function
value at our chosen point and the maximum function value (i.e. the instantaneous regret) by a scaled version
of our estimated variance.

Since GP-UCB specifies choosing xt as the argmax of µt−1(xt) +β
1/2
t σt−1(xt) at each timestep, we have

that: µt−1(xt)+β
1/2
t σt−1(xt) ≥ µt−1(x∗)+β

1/2
t σt−1(x∗) ≥ f(x∗). In other words, the expression within our

argmax must be larger at our chosen point than at the optimal point x∗, otherwise we wouldn’t have chosen
it. This in turn must also be larger than the actual function evaluated at x∗ due to the previously-proven
upper confidence bound. Using this fact, we can bound the instantaneous regret rt as

rt = f(x∗)− f(xt) ≤ β1/2
t σt−1(xt) + µt−1(xt)− f(xt) ≤ 2β

1/2
t σt−1(xt).

Lemma 3. The information gain for the points selected can be expressed in terms of the predictive variances.
For observations yT = (y1, . . . , yT) and function values fT = (f(x1), . . . , f(xT)):

I(yT ;fT) =
1

2

T∑
t=1

log(1 + σ−2σ2
t−1(xt)).

Proof. Recall that we defined the maximum information gain in Theorem 2 in terms of the information gain.
The purpose of this lemma is to derive an alternate expression for the information gain I(yA;fA) which
we can incorporate into the regret bound from the previous lemma, so that we can derive a regret bound
expression in terms of the maximum information gain across all sets of points A of size given by the number
of rounds T . For a Gaussian with covariance matrix σ2I, the expression for the information gain can be
written as

I(yT ;fT) = H(yT)−H(yT | fT) = H(yT)− 1

2
log|2πeσ2I| (22)

Lecture 13: Gaussian Process Optimization 9

Using the definition of the entropy for a N(0, σ2I) random variable. The term σ2 is defined to be the known
variance of the additive Gaussian observation noise, i.e. yt = f(xt) + εt with εt ∼ N(0, σ2). Since the
determinant of a diagonal matrix is the product of the diagonal elements, we also have that

1

2
log|2πeσ2I| = 1

2

T∑
t=1

log(2πeσ2) (23)

We can expand out H(yT) as

H(yT) = H(yT−1) +H(yT | yT−1) = H(yT−1) +
1

2
log(2πe(σ2 + σ2

T−1(xT)))

Where we can write the variance term in the entropy expression as a sum of variances due to the fact that
x1, . . . ,xT are deterministic conditioned on yT−1, and the conditional variance σ2

T−1(xT) does not depend
on yT−1. Continuing to expand the entropy terms gives us

H(yT) =
1

2

T∑
t=1

log(2πe(σ2 + σ2
t−1(xt))) (24)

Finally, we can substitute the expressions from (23) and (24) into (22) to get

I(yT ;fT) = H(yT)−H(yT | fT)

=
1

2

T∑
t=1

log(2πe(σ2 + σ2
t−1(xt)))−

1

2

T∑
t=1

log(2πeσ2)

=
1

2

T∑
t=1

log

(
2πe(σ2 + σ2

t−1(xt)))

2πeσ2

)

=
1

2

T∑
t=1

log(1 + σ−2σ2
t−1(xt))

This concludes the proof.

Lemma 4. Pick δ ∈ (0, 1) and let βt be defined as in Lemma 1 as βt = 2 log(|D|t2π2/6δ). Then, the
following holds with probability ≥ 1− δ:

T∑
t=1

r2
t ≤ C1βT I(yT ;fT) ≤ C1βT γT ∀T ≥ 1,

where C1 := 8/ log(1 + σ−2) ≥ 8σ2, βT is βt defined at t = T , and γT is the maximum information gain
over all sets of chosen points of size T (as defined in the statement of Theorem 2).

Proof. By Lemma 1 and Lemma 2 we have that r2
t ≤ 4βtσ

2
t−1(xt),∀t ≥ 1 with probability ≥ 1− δ. Since βt

is defined in such a way that it is nondecreasing for increasing t and t ≤ T , we can write

4βtσ
2
t−1(xt) ≤ 4βTσ

2
t−1(xt)

To further manipulate this inequality, we rely on the fact that σ2
t−1(xt) = k(xt,xt) by definition, and our

restriction in the statement of GP-UCB that k(x,x′) ≤ 1 for all x,x′ means that σ2
t−1(xt) ≤ 1 for all t. We

can combine this with the fact that the function s/ log(1 + s) is positive and monotonically increasing for
positive s to show that

Lecture 13: Gaussian Process Optimization 10

σ−2σ2
t−1(xt)

log(1 + σ−2σ2
t−1(xt))

≤ σ−2

log(1 + σ−2)

σ−2σ2
t−1(xt) ≤

σ−2

log(1 + σ−2)
log(1 + σ−2σ2

t−1(xt))

4βTσ
2
t−1(xt) = 4βTσ

2(σ−2σ2
t−1(xt)) ≤ 4βTσ

2C2 log(1 + σ−2σ2
t−1(xt))

with C2 = σ−2/ log(1 + σ−2). We can combine this inequality with the expression we got in Lemma 2,
squaring both sides and summing over all T timepoints to get

T∑
t=1

r2
t ≤ 4βT

T∑
t=1

σ2
t−1(xt) ≤ 4βTσ

2C2

T∑
t=1

log(1 + σ−2σ2
t−1(xt))

= 8σ2C2βT

(
1

2

T∑
t=1

log(1 + σ−2σ2
t−1(xt))

)
= C1βT I(yT ;fT) ≤ C1βT γT

Where C1 = 8σ2C2 = 8/ log(1 + σ−2). Note that the constants C1 and C2 are not meaningful other than
to collect constant terms to simplify the notation. The final expression above is the same as stated in the
lemma, and concludes the proof.

We prove Theorem 2 by combining the results of the previous lemmas. As an overview, we began by
defining Lemma 1 to show that we can bound the deviation of the actual function value from our estimated
mean function by a scaled version of our estimated variance function, at all points x in our domain D and
all timepoints t. We then showed in Lemma 2 that this fact can be used to bound the instantaneous regret
rt. Lemma 3 showed that we can write an expression for the information gain I(yT ;fT) in terms of our
estimated variance function and the observation noise variance σ2. Lemma 4 combined the facts introduced
in Lemma 2 and Lemma 3 to bound the sum of squared instantaneous regrets by a quantity that involves the
maximum information gain. Finally, we conclude the proof of Theorem 2 by referring back to the definition
of the total regret RT as the sum of instantaneous regrets rt over all timepoints t = 1, . . . , T , using our
bound on the sum of squared instantaneous regrets from Lemma 4, and making use of the Cauchy-Schwarz
inequality:

R2
T =

(
T∑
t=1

rt

)2

=

(
T∑
t=1

rt · 1

)2

≤

(
T∑
t=1

r2
t

)(
T∑
t=1

12

)
= T

T∑
t=1

r2
t =⇒ RT ≤

√√√√T

T∑
t=1

r2
t ≤

√
C1TβT γT

Where the inequality above again holds with probability ≥ 1− δ. This concludes the proof of Theorem 2.

2.3.2 Case 2: Generalization

We now generalize the previous theorem to any compact and convex D ⊂ Rd. However as we shall see, this
generalization comes with a few assumptions on the kernel function. Let us now first state the theorem:

Theorem 3. Let D ⊂ [0, r]d be compact and convex, d ∈ N, r > 0. Suppose that the kernel k(x, x′) satisfies
the following high probability bound on the derivatives of GP sample paths f: for some a, b > 0

Pr{sup
x∈D
|∂f/∂xj | > L} ≤ ae−(L/b)2 , j = 1, . . . , d.

Pick δ ∈ (0, 1) and define

βt = 2 log
(
t22π2/(3δ)

)
+ 2d log

(
t2dbr 2

√
log (4da/δ)

)

Lecture 13: Gaussian Process Optimization 11

Running the GP-UCB algorithm with βt for a sample f of a GP with mean function zero and covari-
ance function k(x,x′), we obtain a regret bound of O∗(2

√
dTγT) with high probability. Precisely with C1 =

8/ log
(
1 + σ−2

)
, we have

Pr{RT ≤ 2
√
C1TβT γT + 2 ∀T ≥ 1} ≥ 1− δ

where, T is the number of rounds of sampling an individual point and γT is the maximum information gain
at the end of T rounds

γT := max
A⊂D:|A|=T

I(yA;fA)

Note that the assumption (weaker than Lipschitz condition) on the kernel function imposes smoothness
conditions, specifically, that the slope of the function at any given point exceeds a constant L with very
low probability. This naturally disqualifies GPs with sample paths f that are not differentiable or vary
erratically. It is to be noted that this assumption is not very strict and many kernels, such as the Radial
Basis Function (RBF) kernel, used in practice satisfy this condition.

Before we continue to prove the theorem, note that the sequence of lemmas constructed for Theorem 2
breaks at Lemma 1 which sets the value of βt as a function of size of D. Since we are considering an infinite
D, we break away from the previous lemmas albeit maintaining a similar proof strategy.

To give an overview, this is the sequence of steps we shall follow to obtain the regret bound for continuous
decision set D: we will show in Lemma 5 that we can extend Lemma 1 to the continuous case i.e. we can
bound the deviation between the true function and our estimated mean function by a scaled version of the
estimated variance function. We shall note that the scaling is appropriately chosen to not involve the size
of the decision set as was done in the discrete case. Once this is formalized, we need to obtain a confidence
interval on x∗. For this we will take advantage of discretization where we use a particular discretization Dt

at given time step t. In each of these subsets, using the same procedure as in the previous discrete case,
we obtain confidence bounds for a given subset, a variant of Lemma 1. With this set up, for the next steps
where we obtain a bound on the instantaneous regret, we will pick a particular discretization for Lemmas 7
and 8. We will notice that we obtain similar expressions as in the discrete case by this point and using the
procedure as in Lemma 4, we prove the theorem and conclude.

As stated, our first step is to show that all decisions made are of high confidence.

Lemma 5. Pick δ ∈ (0, 1) and set βt = 2 log (2πt/δ), where
∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(xt)µt−1xt| ≤ β1/2
t σt−1(xt), ∀t ≥ 1

holds with probability ≥ 1− δ.

Proof. The proof is exactly as in Lemma 1 with only the difference in the definition of βt since we no longer
can define it as a function of size of D. We fix t ≥ 1. Given the sequence of function values {y1, . . . , yt−1},
we have that from the algorithm, {x1, . . . , xt−1} is deterministic and f(x) ∼ N(µt−1(x), σ2

t−1(x)). As in
Lemma 1,

Pr{|f(x)− µt−1(x)| > β
1/2
t σt−1(x)} ≤ e−βt/2

But from the definition of βt, we have e−βt/2 = δ/2πt. Using the union bound over t and the fact that∑∞
t=1

1
t2 = π2

6 , we set πt = π2t2/12, to prove the lemma.

Note that in the current setting, we could also have discretized the space D into finite sets Dt, where Dt

is used at time t. This gives us the same confidence bound as Lemma 1. For the sake of completeness in
exposition, we will formally state (proof can be borrowed from Lemma 1):

Lemma 6. Pick δ ∈ (0, 1) and set βt = 2 log(|Dt|πt/δ), where
∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(x)− µt−1(x)| ≥ β1/2
t σt−1(x) ∀x ∈ Dt,∀t ≥ 1

holds with probability ≥ 1− δ.

Lecture 13: Gaussian Process Optimization 12

Consider a discretization Dt of size (τt)
d such that:

||x− [x]t|| ≤ rd/τt, ∀x ∈ Dt (25)

where [x]t denotes the closest point in Dt to x. This essentially implies that we are discretizing the space
finely enough such that for any point x considered in D, there exists at least one point [x]t in the discretized
space Dt contained within the ball of radius rd/τt centered at x. With this framework in place, we are now
ready to bound the confidence on x∗.

Lemma 7. Pick δ ∈ (0, 1) and set βt = 2 log(2πt/δ) + 4d log
(
dtbr 2

√
log (2da/δ)

)
, where

∑
t≥1 π

−1
t = 1,

πt > 0. Let τt = dt2br 2
√

log (2da/δ). Let [x∗]t denote the closest point in Dt to x∗. Then,

|f(x∗)− µt−1([x∗]t)| ≤ β1/2
t σt−1([x∗]t) +

1

t2
∀t ≥ 1

holds with probability ≥ 1− δ.

Proof. We now invoke the assumption we made for the kernel function to satisfy with high probability on
the GP sample paths. With the assumption and union bound, we have:

Pr{∀j,∀x ∈ D, |∂f/∂xj | < L} ≥ 1− dae−L
2/b2 .

In other words, we have with a probability greater than 1− dae−L2/b2 that for all,

∀x ∈ D |f(x)− f(x′)| ≤ L ||x− x′||1 (26)

Now, let δ/2 = dae−L
2/b2 . This implies L = b 2

√
log 2ad/δ. Substituting in Eq. 26, we have

∀x ∈ D |f(x)− f(x′)| ≤ b 2
√

log 2ad/δ ||x− x′||1

Using Eq. 25, we obtain for each time-step and Dt,

∀x ∈ Dt |f(x)− f(x′)| ≤ rdb 2
√

log 2ad/δ/τt

Now, choose the discretization such that τt = dt2br 2
√

log 2da/δ and we therefore get,

∀x ∈ Dt |f(x)− f(x′)| ≤ 1/t2

This implies that |Dt| = (dt2br 2
√

log (2da/δ))d from the definition of τt considered. Using δ/2 in Lemma
6, we can apply the confidence bound to [x∗] to obtain the result.

Lemma 8. Pick δ ∈ (0, 1) and set βt = 2 log(4πt/δ) + 4d log
(
dtbr 2

√
log (4da/δ)

)
, where

∑
t≥1 π

−1
t = 1,

πt > 0. Then the regret is bounded as,

rt ≤ 2β
1/2
t σt−1(xt) +

1

t2
∀t ≥ 1

holds with probability ≥ 1− δ.

Proof. Since by the definition, xt = argmaxx∈Dµt−1 + β
1/2
t σt−1, we have that

µt−1(xt) + β
1/2
t σt−1(xt) ≥ µt−1([x∗]t) + β

1/2
t σt−1([x∗]t)

Also notice that from Lemma 7, we have:

µt−1([x∗]t) + β
1/2
t σt−1([x∗]t) + 1/t2 ≥ f(x∗)

Lecture 13: Gaussian Process Optimization 13

From the above two equations, we can compute the regret at time t as:

rt = f(x∗)− f(x)

≤ µt−1([x∗]t) + β
1/2
t σt−1([x∗]t) + 1/t2 − f(x)

≤ µt−1(xt) + β
1/2
t σt−1(xt) + 1/t2 − f(x)

Finally from Lemma 5, we get,

rt ≤ 2β
1/2
t σt−1(xt) + 1/t2. (27)

which completes the proof.

Note that we have the same framework as before when D was finite except that we have an addition 1/t2

term which sums to a constant (π2/6) when a summation over the time-step is considered. Following the
procedure described in Lemma 4, we get with a probability greater than 1− δ,

RT =

T∑
t=1

rt ≤ 2
√
C1TβT γT + π2/6 ∀T ≥ 1

which implies Theorem 3.

References

Andreas Krause and Daniel Golovin. Submodular function maximization., 2012.

Jeremy Kun. When greedy algorithms are good enough: Submodularity and the (1 1/e)-approximation.
https://jeremykun.com/2014/07/07/when-greedy-algorithms-are-good-enough-submodularity\

-and-the-1-1e-approximation/, 2014.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for maxi-
mizing submodular set functions. Mathematical Programming, 14(1):265–294, 1978.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning. The MIT
Press, Cambridge, MA, USA, 38:715–719, 2006.

https://jeremykun.com/2014/07/07/when-greedy-algorithms-are-good-enough-submodularity\ -and-the-1-1e-approximation/
https://jeremykun.com/2014/07/07/when-greedy-algorithms-are-good-enough-submodularity\ -and-the-1-1e-approximation/

	Preliminaries
	Submodularity
	Submodular Optimization

	Gaussian Processes
	Intuition and Motivation
	Gaussian Process Regression

	Gaussian Process Optimization
	Problem setup
	The Gaussian Process Upper Confidence Bound (GP-UCB) Algorithm
	Regret Bounds for GP-UCB
	Case 1: Finite D
	Case 2: Generalization

