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Definition 1. For a hypothesis class H and dataset {(xi, yi)}ni=1 where xi ∈ X and yi ∈ {−1, 1} we call ĥ

the empirical risk minimizer if ĥ = arg minh∈H R̂(h) where

R̂(h) =

n∑
i=1

1{h(xi) 6= yi}

Definition 2. If a finite dataset is identically and independently distributed from some distribution, that is,
{(xi, yi)}ni=1 ∼ DX,Y then the true risk of a hypothesis h ∈ H is denoted

R(h) = P (h(X) 6= Y ) =

∫
X

1{h(X) 6= Y }dP (X)

Definition 3. After observing n labels we call the set of all hypotheses still “in the running” for being the em-
pirical risk minimizer over all observed data the version space and denote it Vn ⊂ H. If f = arg minh∈HR(h)
and R(f) = 0 then

Vn = {h ∈ H : R̂(h) = 0}

and f ∈ Vn for all n ∈ N.

Theorem 1. Vapnik (1982) For a hypothesis class H with finite VC dimension d and an iid sample
{(xi, yi)}ni=1 from DX,Y with f = arg minh∈HR(h) and R(f) = 0 then with probability greater than 1− δ

sup
h∈Vn

R(h) ≤
4d log 2en

d + log 2
δ

n
.

Definition 4. For some hypothesis class H and set X where for h ∈ H, h : X → {−1, 1}, the region of
disagreement is defined as

DIS(H) = {x ∈ X : ∃h, h′ ∈ H s.t. h(x) 6= h′(x)}.

Observation 1. Assume f = arg minh∈HR(h) and R(f) = 0. If after n labeled examples we observe an
X /∈ DIS(Vn) then we need not ask for its label because no two hypotheses in Vn disagree on its label and
because f ∈ Vn its label is deterministic.

Definition 5. For some hypothesis class H and the marginal DX of DX,Y the closed ball centered at h ∈ H
with radius r is defined as

B(h, r) = {h′ ∈ H : PX∼D(h(X) 6= h′(X)) ≤ r}.

Definition 6. The disagreement coefficient of h ∈ H with respect to H and DX,Y is

θh = sup
r

P (DIS(B(h, r)))

r
.

Lemma 1. If f = arg minh∈HR(h) and R(f) = 0 then after n labeled examples there is a nonempty subset

Vn ⊂ H s.t. Vn = {h ∈ H : R̂(h) = 0} and if we simulate samples x ∼ DX requesting labels only when
x ∈ DIS(Vn) then with probability greater than 1 − δ/n after at most λn = 4θf (4d log(15eθf ) + log(2n/δ))
label requests

sup
h∈Vm

R(h) ≤ sup
h∈Vn

1

2
R(h)

for some m ≥ n+ λn.
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Proof. The disagreement coefficient allows for a bound that relates the region of disagreement to the true
risk of any h ∈ Vn:

P (DIS(Vn))

suph∈Vn R(h)
≤

P (DIS(B(f, suph∈Vn R(h))))

suph∈Vn R(h)

≤ sup
r

P (DIS(B(f, r)))

r

= θf

which implies

P (DIS(Vn))

θf
≤ sup
h∈Vn

R(h) (1)

and there exists some m > n such that

sup
h∈Vm

R(h) ≤ sup
h∈Vm

R(h(X)|X ∈ DIS(Vn))P (DIS(Vn)) (2)

≤
4d log 2eλn

d + log 2n
δ

λn
· P (DIS(Vn)) (3)

≤ P (DIS(Vn))

2θf
(4)

≤ sup
h∈Vn

R(h)

2
(5)

where (2) follows from Observation 1, (3) and (4) follow from Theorem 1 and the definition of λn and finally
(5) follows from (1).

Theorem 2. Under the same setting and assumptions of Lemma 1, for any t ∈ N with probability greater
than 1− δ the true risk of ĥ after t label requests satisfies

R(ĥ) ≤ 2 · exp
{
− t

6θf (4d log(44θf ) + log(2t/δ))

}
.

Proof. Lemma 1 says that after just λt labeled examples we have suph∈Vn+λt
R(h) ≤ suph∈Vn R(h)/2 with

probability greater than 1 − δ/t. So after t ≥ λtdlog2(1/ε)e labeled examples suph∈Vn R(h) ≤ ε with
probability greater than 1 − δ by taking a union bound over n = λt, 2λt, . . . , dt/λte. Solving for ε in terms
of t gives the result.

Some disagreement coefficients

With the exception of very nice situations (uniform distribution, symmetric geometry, etc) the disagreement
coefficient is often impossible to calculate. However, Theorem 2 shows that θ just needs to be finite to learn
with O(log(1/ε)) labels and this is often done in the literature.

• Thresholds on R: θ = 2

• Homogeneous hyperplanes in Rd with data uniformly distributed on a sphere: θ ≤
√
d

• General hyperplanes in Rd with the data density bounded below: θ = O(d)

• Intervals [a, b] on R: θ =∞
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