Realizable Active Learning Notes Kevin Jamieson November 11, 2010

Definition 1. For a hypothesis class \mathcal{H} and dataset $\{(x_i, y_i)\}_{i=1}^n$ where $x_i \in X$ and $y_i \in \{-1, 1\}$ we call \hat{h} the empirical risk minimizer if $\hat{h} = \arg \min_{h \in \mathcal{H}} \hat{R}(h)$ where

$$\hat{R}(h) = \sum_{i=1}^{n} \mathbf{1}\{h(x_i) \neq y_i\}$$

Definition 2. If a finite dataset is identically and independently distributed from some distribution, that is, $\{(x_i, y_i)\}_{i=1}^n \sim \mathcal{D}_{X,Y}$ then the true risk of a hypothesis $h \in \mathcal{H}$ is denoted

$$R(h) = P(h(X) \neq Y) = \int_X \mathbf{1}\{h(X) \neq Y\}dP(X)$$

Definition 3. After observing n labels we call the set of all hypotheses still "in the running" for being the empirical risk minimizer over all observed data the version space and denote it $V_n \subset \mathcal{H}$. If $f = \arg \min_{h \in \mathcal{H}} R(h)$ and R(f) = 0 then

$$V_n = \{h \in \mathcal{H} : \hat{R}(h) = 0\}$$

and $f \in V_n$ for all $n \in \mathbb{N}$.

Theorem 1. Vapnik (1982) For a hypothesis class \mathcal{H} with finite VC dimension d and an iid sample $\{(x_i, y_i)\}_{i=1}^n$ from $\mathcal{D}_{X,Y}$ with $f = \arg \min_{h \in \mathcal{H}} R(h)$ and R(f) = 0 then with probability greater than $1 - \delta$

$$\sup_{h \in V_n} R(h) \le \frac{4d \log \frac{2en}{d} + \log \frac{2}{\delta}}{n}.$$

Definition 4. For some hypothesis class \mathcal{H} and set \mathcal{X} where for $h \in \mathcal{H}$, $h : \mathcal{X} \to \{-1, 1\}$, the region of disagreement is defined as

$$DIS(\mathcal{H}) = \{ x \in \mathcal{X} : \exists h, h' \in \mathcal{H} \text{ s.t. } h(x) \neq h'(x) \}.$$

Observation 1. Assume $f = \arg \min_{h \in \mathcal{H}} R(h)$ and R(f) = 0. If after n labeled examples we observe an $X \notin DIS(V_n)$ then we need not ask for its label because no two hypotheses in V_n disagree on its label and because $f \in V_n$ its label is deterministic.

Definition 5. For some hypothesis class \mathcal{H} and the marginal \mathcal{D}_X of $\mathcal{D}_{X,Y}$ the closed ball centered at $h \in \mathcal{H}$ with radius r is defined as

$$B(h,r) = \{h' \in \mathcal{H} : P_{X \sim \mathcal{D}}(h(X) \neq h'(X)) \le r\}.$$

Definition 6. The disagreement coefficient of $h \in \mathcal{H}$ with respect to \mathcal{H} and $\mathcal{D}_{X,Y}$ is

$$\theta_h = \sup_r \frac{P(DIS(B(h,r)))}{r}.$$

Lemma 1. If $f = \arg \min_{h \in \mathcal{H}} R(h)$ and R(f) = 0 then after n labeled examples there is a nonempty subset $V_n \subset \mathcal{H}$ s.t. $V_n = \{h \in \mathcal{H} : \hat{R}(h) = 0\}$ and if we simulate samples $x \sim \mathcal{D}_X$ requesting labels only when $x \in DIS(V_n)$ then with probability greater than $1 - \delta/n$ after at most $\lambda_n = 4\theta_f(4d\log(15e\theta_f) + \log(2n/\delta))$ label requests

$$\sup_{h \in V_m} R(h) \le \sup_{h \in V_n} \frac{1}{2} R(h)$$

for some $m \ge n + \lambda_n$.

Proof. The disagreement coefficient allows for a bound that relates the region of disagreement to the true risk of any $h \in V_n$:

$$\frac{P(DIS(V_n))}{\sup_{h \in V_n} R(h)} \leq \frac{P(DIS(B(f, \sup_{h \in V_n} R(h))))}{\sup_{h \in V_n} R(h)}$$
$$\leq \sup_r \frac{P(DIS(B(f, r)))}{r}$$
$$= \theta_f$$

which implies

$$\frac{P(DIS(V_n))}{\theta_f} \le \sup_{h \in V_n} R(h) \tag{1}$$

and there exists some m > n such that

$$\sup_{h \in V_m} R(h) \leq \sup_{h \in V_m} R(h(X)|X \in DIS(V_n))P(DIS(V_n))$$
(2)

$$\leq \frac{4d\log\frac{2e\lambda_n}{d} + \log\frac{2n}{\delta}}{\lambda_n} \cdot P(DIS(V_n)) \tag{3}$$

$$\leq \frac{P(DIS(V_n))}{2\theta_f} \tag{4}$$

$$\leq \sup_{h \in V_n} \frac{R(h)}{2} \tag{5}$$

where (2) follows from Observation 1, (3) and (4) follow from Theorem 1 and the definition of λ_n and finally (5) follows from (1).

Theorem 2. Under the same setting and assumptions of Lemma 1, for any $t \in \mathbb{N}$ with probability greater than $1 - \delta$ the true risk of \hat{h} after t label requests satisfies

$$R(\hat{h}) \le 2 \cdot exp \bigg\{ - \frac{t}{6\theta_f (4d \log(44\theta_f) + \log(2t/\delta))} \bigg\}.$$

Proof. Lemma 1 says that after just λ_t labeled examples we have $\sup_{h \in V_n + \lambda_t} R(h) \leq \sup_{h \in V_n} R(h)/2$ with probability greater than $1 - \delta/t$. So after $t \geq \lambda_t \lceil \log_2(1/\epsilon) \rceil$ labeled examples $\sup_{h \in V_n} R(h) \leq \epsilon$ with probability greater than $1 - \delta$ by taking a union bound over $n = \lambda_t, 2\lambda_t, \ldots, \lceil t/\lambda_t \rceil$. Solving for ϵ in terms of t gives the result.

Some disagreement coefficients

With the exception of very nice situations (uniform distribution, symmetric geometry, etc) the disagreement coefficient is often impossible to calculate. However, Theorem 2 shows that θ just needs to be finite to learn with $O(\log(1/\epsilon))$ labels and this is often done in the literature.

- Thresholds on \mathbb{R} : $\theta = 2$
- Homogeneous hyperplanes in \mathbb{R}^d with data uniformly distributed on a sphere: $\theta \leq \sqrt{d}$
- General hyperplanes in \mathbb{R}^d with the data density bounded below: $\theta = O(d)$
- Intervals [a, b] on \mathbb{R} : $\theta = \infty$