
Lehrstuhl für Informatik VII
der Technischen Universität München

Model-Checking Pushdown Systems

Stefan Schwoon

Vollständiger Abdruck der von der Fakultät für Informatik der Techni-
schen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. T. Nipkow, Ph.D.

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Dr.h.c. W. Brauer
2. Prof. Dr. J. Esparza,

Universität Edinburgh

Die Dissertation wurde am 27.06.2002 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 21.11.2002
angenommen.

Abstract

The thesis investigates an approach to automated software verification
based on pushdown systems. Pushdown systems are, roughly speaking, tran-
sition systems whose states include a stack of unbounded length; there is a
natural correspondence between them and the execution sequences of pro-
grams with (possibly recursive) subroutines. The thesis examines model-
checking problems for pushdown systems, improving previously known algo-
rithms in terms of both asymptotic complexity and practical usability.

The improved algorithms are used in a tool called Moped. The tool
acts as a model-checker for linear-time logic (LTL) on pushdown systems.
Two different symbolic techniques are combined to make the model-checking
feasible: automata-based techniques are used to handle infinities raised by
a program’s control, and Binary Decision Diagrams (BDDs) to combat the
state explosion raised by its data.

It is shown how the resulting system can be used to verify properties
of algorithms with recursive procedures by means of several examples. The
checker has also been used on automatically derived abstractions of some
large C programs. Moreover, the thesis investigates several optimizations
which served to improve the efficiency of the checker.

Acknowledgements

This thesis would not have been possible without the guidance, generosity,
and goodwill of many people. I feel grateful and indebted to have received
all their help.

To a large part, this applies to my supervisor Prof. Javier Esparza, who
gave me the opportunity to conduct research in his group and introduced me
to a topic that suited my interests. I also have to thank Prof. Wilfried Brauer
in his twofold capacity as referee and as speaker of the graduate college “Co-
operation and resource management in distributed systems”. The Deutsche
Forschungsgemeinschaft (DFG), which funded the graduate college, gave me
indispensable financial support, and both the Technical University of Munich
and the University of Edinburgh, where I studied, provided organizational
and additional financial help.

I enjoyed my time at both institutions mainly because of my colleagues
and the great working atmosphere in our group. I thank them all, especially
Claus Schröter and Peter Rossmanith, who always had an open ear for dis-
cussions about data structures, algorithms, and many other things. I also
want to acknowledge David Hansel, who wrote the original implementation
of the tool that eventually grew into Moped.

Moreover, parts of the thesis are due to the direct influence of members of
the international research community. Ahmed Bouajjani helped to develop
the theory on which this work is built and continued to provide valuable
ideas throughout. Antońın Kučera inspired the work on regular valuations;
Chapter 6 directly results from joint work between him and me. Tom Ball and
Sriram Rajamani not only invited me to visit them at Microsoft Research, but
also provided me with many examples on which I could try my model-checker.
This opportunity has been a most valuable and motivating experience for me.

Most importantly, however, my parents enabled me to study in the first
place, and their love and encouragement never failed to support me through-
out the years. Thank you for everything.

Contents

1 Introduction 1
1.1 Verification vs testing . 1
1.2 Hardware vs software verification 3
1.3 Contribution of the thesis . 4
1.4 Related research . 5

2 Preliminaries 8
2.1 Basic definitions . 8
2.2 Transition systems . 9

2.2.1 Finite automata . 10
2.2.2 Büchi automata . 11
2.2.3 Pushdown systems . 11

2.3 A model of sequential programs 12
2.3.1 Control flow . 12
2.3.2 Data . 14

2.4 Binary Decision Diagrams . 20
2.5 Model checking and temporal logics 22

2.5.1 Branching-time logics 24
2.5.2 Linear-time logics . 25

3 Model-Checking Algorithms 29
3.1 Reachability . 31

3.1.1 Computing pre∗ . 32
3.1.2 Computing post∗ . 36
3.1.3 An efficient implementation for pre∗ 41
3.1.4 An efficient implementation for post∗ 46
3.1.5 The procedural case 52
3.1.6 Witness generation . 59

i

3.1.7 Shortest traces . 63
3.1.8 Regular rewriting systems 71

3.2 Model-checking problems for LTL 73
3.2.1 Computing the repeating heads 77
3.2.2 The pre∗ method . 80
3.2.3 The post∗ method . 84
3.2.4 Summary of model-checking problems 85

3.3 Symbolic algorithms . 87
3.3.1 Operations on sets and BDDs 89
3.3.2 Computing pre∗ . 90
3.3.3 Computing post∗ . 91
3.3.4 Problems of the symbolic approach 94

4 Experiments with Moped 97
4.1 Examples . 98

4.1.1 The plotter example 98
4.1.2 The lock/unlock example 101
4.1.3 Lock/unlock example as a Boolean Program 105

4.2 Experiments . 107
4.2.1 Recursive algorithms 107
4.2.2 A family of Boolean Programs 116
4.2.3 Abstractions of C programs 118
4.2.4 Conclusions . 127

5 Implementation aspects 129
5.1 A data structure for transition tables 129
5.2 Symbolic cycle detection . 131
5.3 Symbolic trace generation . 137
5.4 The cost of generating shortest traces 140
5.5 Backward versus forward computation 142
5.6 Eager versus lazy evaluation 144
5.7 Variable optimizations . 145
5.8 Variable ordering . 148
5.9 Variable mapping strategies 152

6 Regular Valuations 155
6.1 Regular Valuations . 156
6.2 Technique 1 – extending the finite control 158

ii

6.3 Technique 2 – extending the stack 160
6.4 Interprocedural Data-Flow Analysis 163
6.5 Pushdown Systems with Checkpoints 163
6.6 Model-checking CTL∗ . 168
6.7 Lower Bounds . 170

7 Conclusion 173

A Moped tool description 175
A.1 Syntax for pushdown systems 175
A.2 Syntax of Boolean Programs 185
A.3 Specifying properties . 190
A.4 Usage and options summary 192

Bibliography 199

iii

iv

Chapter 1

Introduction

Research on formal verification concerns the theory and practice of methods
to prove that computer systems meet critical design requirements. It has im-
plications on everyday life in today’s society where computers and electronic
equipment in general assume more and more functions. As our dependence
on these systems grows, so does the need to ensure that the hardware and
software components they consist of deserve the trust that we put into them.

1.1 Verification vs testing

The most basic form of verification is testing. In testing, the actual behaviour
of the system under consideration (be it a piece of hardware or a computer
program) is observed on a set of inputs and matched against the expected
behaviour. In hardware verification, where fabrication runs are costly, the
testing of actual samples is often preceded by a simulation stage where the
behaviour of the system is modelled by a software program.

Simulation and testing are essential parts of a development cycle, but
they suffer from fundamental shortcomings, the main one being that they are
incomplete: If the set of possible inputs becomes very large or even infinite,
it becomes impossible to confirm that the system behaves correctly in all
possible circumstances, and so errors may not be noticed. Strictly speaking,
testing may not even guarantee that subsequent runs on the same input
yield the same result. Moreover, the tester is required to determine what the
correct behaviour of a program actually is; this becomes increasingly difficult
as the system grows in complexity. The approach does not translate well to

1

reactive systems, where the behaviour consists of continual interaction with
its environment rather than producing an output and terminating. In fact,
testing cannot distinguish a program that is not terminating (because of an
error) from one whose computation merely takes very long. Lastly, testing
can merely assert the presence of an error, but not provide an explanation
of how things went wrong and why.

Formal verification tries to address some of these problems. Instead of
merely observing the systems behaviour, it provides foundations to reason
about correctness of a system on a mathematical basis. In order to achieve
this, the verification problems need to be formalised; what is required is a
precise mathematical model of the behaviour of the system and a precise
definition of its intended behaviour. For the former, a machine is usually
modelled as a system whose state evolves over time; the model then consists
of a specification of the state space and how the system can traverse it.
For the latter, temporal logic has been shown to be useful to express the
behaviour of reactive systems as well as properties like program termination,
the existence of deadlocks etc.

The model-checking approach to formal verification consists of taking
a mathematical model of the system under consideration and checking the
validity of a temporal logic formula within the model. A number of interesting
model-checking problems has been shown to be decidable and can hence be
automated and solved by computers. Many model-checking methods not
only determine the validity of a temporal logic formula but, in the case of
failures, also find execution sequences that violate it; an engineer can use
such a sequence to find and repair an error in the system.

Formal verification is the subject of large and varied research efforts. In
the model-checking community, researchers have investigated many different
mathematical models and temporal logics. The diversity stems from the fact
that formal verification is fundamentally hard; there is no single method to
accommodate all interesting problems. The primary problem faced by all
methods is popularly known as state explosion, meaning that the state space
of the system under consideration typically grows exponentially with the
amount of memory used by it (i.e. registers, or program variables, instruction
pointers etc.), which limits the practical applicability of verification methods.
The methods used to counter the state explosion problem usually fall into
three categories: reduction, abstraction, and compression.

Reduction and abstraction both replace the original complete model by
a simplified one with a smaller state space on which the property of interest

2

is then checked. Reduction can be characterized as cutting away states and
execution sequences without affecting the validity of the property in question.
For instance, if a system can execute one or more steps in any order, but the
order in which the steps happen has no influence on whether the property
holds or not, then nothing is gained by exploring all possible orders, and one
can reduce the system to one where some arbitrary order is fixed.

Abstraction techniques partition the state space. The abstract model
has one abstract state for each partition and can move from one abstract
state to another if and only if their respective partitions contain states which
are connected in the original system. Thus, information is lost and the
abstract model is an overapproximation of the original model. For instance,
the abstract model might use less variables than the original model and
employ non-determinism whenever the value of a removed variable is queried
in order to simulate all possible outcomes. This way, errors that do exist in
the original model are preserved, but new ‘spurious’ errors may be added. If
such a spurious error is detected the abstraction has to be refined, possibly
repeatedly.

Compression concerns the use of efficient data structures to succinctly
represent large sets of states in the hopes that ‘well-behaved’ verification
problems will be amenable to such representations. These techniques are
also often called symbolic (as opposed to explicit). Well-known symbolic
representations include Binary Decision Diagrams, finite automata, polyhe-
dra, and others.

1.2 Hardware vs software verification

Traditionally, the verification community distinguishes between two fields of
application: hardware, and software. While the verification of hardware has
seen significant progress and has advanced into large-scale industrial use, the
same cannot be said of software. The reasons for this appear to be partly
technical (availability and usability of methods), and partly economical.

In the hardware industry, the need for verification of digital designs is
driven by the high cost of production. A chip whose design does not meet its
specification is essentially worthless; its production cost is lost, and parts that
have already been shipped to customers cannot easily be replaced (and only
with a loss of reputation). Large chip manufacturers are therefore quite pre-
pared to spend more effort in the pre-production phase to ensure the validity

3

of their designs, and formal verification techniques have become ubiquitous
in this area. From a model-checking point of view, hardware can be mod-
elled by finite state systems; thus, model-checking problems remain decidable
and can be automated. In practice, complex processor designs with several
hundreds of variables have been successfully verified.

Software verification, on the other hand, is a rather harder problem –
not only in practice where programs can be vastly complex, but also on the
theoretical side: Since a computer program has the same expressiveness as a
Turing machine, even very simple verification problems are generally unde-
cidable. It is probably in subconscious recognition of this that the presence
of bugs in computer software (at least as far as non-safety-critical software is
concerned) appears to be accepted as a necessary evil by software companies
and a many customers alike. Hence, the software industry is currently us-
ing formal verification methods on a much smaller scale than the hardware
industry. Another contributing factor is that software can be more easily
replaced than hardware, so in economic reality the extra cost of thorough
verification and longer time-to-market often does not pay off.

For all the aforementioned reasons, general and easily usable solutions
for verification of software are an unrealistic goal. Research therefore con-
centrates on identifying subclasses of programs which are suitably expressive
but not Turing-powerful and still allow automated verification, and on ap-
plying them to ‘essential’ aspects of software, e.g. cryptographic protocols
or communication protocols.

1.3 Contribution of the thesis

This thesis investigates an approach to automated software verification. The
abstract formalism employed to describe programs is known as pushdown
systems. Pushdown systems are, roughly speaking, transition systems whose
states include a stack of unbounded length; hence, they are strictly more
expressive than finite state systems. One can argue that pushdown systems
are a natural model for sequential programs with procedures where there is no
restriction on the call hierarchy among the procedures. Arbitrary recursion
is allowable since the stack can keep track of active procedure calls. The
model has two main restrictions: it does not handle parallelism, and it can
only model finite data domains.

The pushdown model and its relation to programs with procedures is

4

explained in greater detail in Chapter 2. This section also discusses other
preliminaries, such as symbolic techniques to efficiently represent the model
and its state space, and temporal logics.

Chapter 3 then examines model-checking problems for pushdown sys-
tems, starting with reachability and going on to linear-time logic (LTL). It
extends the theory presented in [9, 22], which served as a starting point.
The previously known algorithms are improved in terms of both asymptotic
complexity and practical usability with suggestions for data structures and
implementation details to speed them up.

The improved algorithms are used in a tool called Moped. The tool acts as
a model-checker for linear-time logic on pushdown systems and combines two
different symbolic techniques to make the model-checking feasible: automata-
based techniques are used to handle infinities raised by a program’s control,
and Binary Decision Diagrams (BDDs) to counter the state explosion raised
by its data. Moped has been made available to the public [37] and is described
in greater detail in Chapter 4. As a usability test, the checker has been
applied to automatically derived abstractions of large (10,000 lines of code)
device drivers written in C. In these tests, Moped managed to perform better
than Bebop, a similar model-checker that was developed concurrently [3].

Efforts have been made to ensure the efficiency of the checker, which is
influenced by a variety of design choices. Chapter 5 lists some of these choices
and evaluates their impact by means of further experiments.

Chapter 6 discusses an extension of the model-checking problems from
Chapter 3 in which the predicates of LTL formulas may be given by regular
languages. This extension provides a unified framework for problems from
different areas (e.g. data-flow analysis, analysis of systems with checkpoints),
and can also be used to extend the model-checker to the more powerful logic
CTL∗.

1.4 Related research

Pushdown systems have already been investigated by the verification commu-
nity in the past. Model-checking algorithms for various temporal logics have
been proposed, e.g. by Walukiewicz [42] and Burkart and Steffen [12] who
have shown decidability of the full-modal mu-calculus for pushdown systems.
While the model-checking problem for branching-time logics is computation-
ally intractable (even for the relatively small fragment EF), linear-time logic

5

can be solved in polynomial time (for a fixed formula). Finkel et al [22]
and Bouajjani et al [9] first proposed such algorithms. Esparza and Podelski
showed that the reachability problem remains polynomial even for parallel
interprocedural flow graphs [21] which are more expressive than pushdown
systems. The various complexity and decidability results are discussed in
greater detail in later sections.

On the implementation side, Polanský [35] has implemented a model-
checker for the alternation-free mu-calculus based on the algorithm in [9].
Moreover, Obdržálek has applied the Moped checker to the verification of
Java programs [33].

Jensen, Le Métayer and Thorn [26] introduced a model that could be
described as pushdown systems with checkpoints. This model is motivated
by languages like newer versions of Java, where programs can perform local
security checks in which it is verified that the methods on the call stack
have the appropriate permissions to perform an action. In [26] this was used
to prove the validity of global security properties as well as to detect (and
remove) redundant security checks. In Chapter 6 this thread is taken up
again; the methods presented here provide an efficient framework for this
application and are somewhat more general than those of [26].

A number of other researchers have investigated a model of computation
related to pushdown systems called recursive (or hierarchical) state machines
(RSMs). In fact, pushdown systems and RSMs possess the same expressive-
ness and succinctness but could be said to operate from different perspec-
tives: RSMs explicitly model a procedural setting whereas pushdown systems
take on a more ‘machine-oriented’ view. Recently, two papers by Benedikt,
Godefroid, Reps [6] and Alur, Etessami, Yannakakis [1] proposed efficient
solutions for reachability problems and linear-time logic on RSMs. Their al-
gorithms provide a slight asymptotic improvement for model-checking RSMs
as compared to translating an RSM into a pushdown system and applying
the methods from [18]. However, no implementation for these algorithms
exists. A more thorough examination of the relation between the two mod-
els and a comparison of the algorithms put forward for them is provided in
Section 3.1.5.

Remarkable efforts towards a verification framework for large-scale C pro-
grams have been made by Ball and Rajamani on the basis of Boolean pro-
grams, which could be dubbed as hierarchical state machines equipped with
Boolean variables [4]. Their SLAM toolkit implements a cyclic process based
on abstraction and iterative refinement. Each iteration of the cycle consists

6

of three steps. In the first step, a C program is fully automatically abstracted
into a Boolean Program. In the second step, the reachability checker Bebop
is used to search for violations of the desired safety property. Because the ab-
stracted Boolean Program overapproximates the possible execution sequences
of the C program, resulting error traces are then checked for feasibility using
a third tool; if the error trace is spurious, the cycle starts again with a more
refined abstraction. This iteration takes place until either no error trace is
found anymore, or a real error is found. The process is not guaranteed to
terminate but has shown good results in practice. Ball and Rajamani are
using SLAM to verify that device drivers used in Windows observe a pro-
tocol imposed by the operating system. Moped has been equipped with an
interface to Boolean Program and the SLAM kit and could be used in place
of Bebop within the verification cycle.

7

Chapter 2

Preliminaries

A model-checking framework consists of three parts; a mathematical model
for the behaviour of the systems which are to be verified, a logic for defining
properties of these systems, and a method that checks whether a given system
satisfies a given property. This section introduces the first two items of the
framework laid out in this thesis.

2.1 Basic definitions

In the following, we assume the usual notations for alphabets, concatenation,
finite and infinite words:

Definition 2.1 Let S be a set (or alphabet). A (finite) word w over S is a
finite sequence of elements of S. The empty word is denoted by ε, non-empty
sequences by the concatenation of their elements. The length of w is denoted
by |w|, i.e. if w = s1 . . . sn, then |w| = n. Moreover, wR := sn . . . s1 denotes
the reverse of w.

S∗ is the set of all words over S, and S+ := S∗ \ {ε} denotes the set
of all non-empty words. Sω is the set of all infinite sequences (or ω-words)
of elements of S. A language over S is some set of finite or infinite words
over S.

Within this thesis, finite words will usually be referred to by lowercase
letters near the end of the alphabet such as u, v, w, possibly with indices.
Infinite sequences will usually be denoted by lowercase Greek letters near
the end of the alphabet such as σ or ω.

8

An infinite sequence σ can also be seen as a function from IN0 to S; hence
σ = σ(0)σ(1) Given an ω-word σ we denote by σi (for any i ≥ 0) the i-th
suffix of σ, i.e. the ω-word σ(i)σ(i + 1) The set Inf (σ) contains exactly
those elements of S which occur infinitely often in σ.

2.2 Transition systems

In order to reason about the behaviour of a system it is convenient to think of
it as an entity which can assume different states. A mathematical definition
of possible behaviours would then describe the set of possible states (the
state space) and how the system can evolve from one state into the other
(the transition relation between states). In the following, we assume that
time is discrete; in other words, a behaviour will consist of an enumerable
number of states. While this is at odds with the natural notion that time
is continuous, it is a often a good enough approximation, in particular for
digital systems whose components operate according to a discrete tact. The
most general model for such descriptions are labelled transition systems.

Definition 2.2 A labelled transition system is a quadruple T = (S,A,→, r)
where S is a set of states, A is a set of actions, → ⊆ S×A×S is a transition
relation, and r is a distinguished state called root. The transition relation →
denotes possible state changes; if (s, a, s′) ∈ → we say that the system can
move from state s to s′ by performing action a. As a more compact notation,
we usually write s a−→ s′. If s a−→ s′ for some a, then s is an immediate
predecessor of s′, and s′ is an immediate successor of s.

In order to reason about the behaviour of such a system, we need to
introduce several reachability relations:

Definition 2.3 A path of T is a sequence of states s0 . . . sn (for some n ≥ 0)
such that the system can ‘evolve’ from s0 to sn, i.e. there are transitions
si

ai+1−−−→ si+1 for all 0 ≤ i < n. We say that such a path has length n and is
labelled by the word a1 . . . an ∈ A∗.

If there is a path of length n from s to s′ labelled by w, then we write
s w−→

n
s′. We may also write s w−→+ s′ to denote that s w−→

n
s′ holds for

some n ≥ 1. Moreover, s w−→∗ s′ holds if and only if s w−→+ s′ or w = ε and
s = s′.

If s w−→∗ s′ for some w ∈ A∗, then s′ is said to be reachable from s. If
s′ is reachable from the root r, then s′ is reachable. Given a set S ′ ⊆ S, the

9

set pre∗(S ′) = { s | ∃s′ ∈ S ′, w ∈ A∗ : s w−→∗ s′ } contains the predecessors
of S ′, and the set post∗(S ′) = { s | ∃s′ ∈ S ′, w ∈ A∗ : s′ w−→∗ s } contains the
successors of S ′.

A run of T is an infinite sequence of states σ = s0s1 . . . where for all
i ≥ 0 we have si

ai+1−−−→ si+1. Such a run is said to by labelled by the ω-word
ω = a1a2

A labelled transition system can be identified with a directed graph whose
nodes are elements of S and which has an edge from node s to node s′ labelled
by a if s a−→ s′. We borrow some definitions from graph theory:

Definition 2.4 Let T = (S,A,→, r) be a labelled transition system. A set
of states S ′ ⊆ S is a strongly connected component (SCC) of T if and only
if every pair of states in S ′ is reachable from each other and S ′ is maximal,
i.e. there is no set S ′′ ⊃ S ′ which has this property. An SCC is trivial if it
consists of a single state which has no transition to itself. The diameter of T
is the length of the longest path between any two states in S.

In the definition above, a labelled transition system defines both the pos-
sible evolutions of a system through time and the actions taken during each
particular evolution. Depending on our needs, we may wish to emphasize one
aspect over the other. If, for instance, we are interested only in the possible
behaviours but not in the actions which are carried out, we can use the sim-
pler notion of an (unlabelled) transition system (S,→, r). All the relevant
notions from this subsection are defined analogously for unlabelled transition
systems; we drop the labels from the reachability relations and write s → s′,
s →∗ s′, and s −→

n
s′, respectively.

Alternatively, we can focus on the sequences of actions that are possible in
the system. We then define the semantics of a transition system to be the set
of labels of paths or runs which adhere to some acceptance condition. Thus,
a transition system (S,A,→, r) can be used as a symbolic representation of
a language over the set of actions A.

Having established the notations above, we introduce some well-known
classes of transition systems relevant to the material that follows later.

2.2.1 Finite automata

A finite automaton is a language acceptor. Informally speaking, the lan-
guages represented by finite automata are those that can be recognized by a

10

machine or program which reads its input only once, stores only one element
of the input at a time, and requires a constant amount of memory.

Definition 2.5 A finite automaton is a quintuple M = (Q, Γ,→, q0, F) such
that Q is a finite set of states, Γ is a finite set called the input alphabet,
→ ⊆ (Q × Γ × Q) is a set of transitions, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states. The language L(M) accepted by M is the
set of all finite words w such that q0

w−→∗ q′ holds for some final state q′ ∈ F
in the labelled transition system (Q, Γ,→, q0). A language is called regular if
and only if there is a finite automaton which accepts it.

2.2.2 Büchi automata

A Büchi automaton is similar to a finite automaton with the difference that
its acceptance condition works on ω-words.

Definition 2.6 A Büchi automaton B is a quintuple (Q, Γ,→, q0, F) where
Q is a finite set of states, Γ is a finite input alphabet, → ⊆ (Q × Γ × Q)
is a set of transitions, and q0 ∈ Q is the initial state. The language L(B)
accepted by B is the set of all infinite sequences ω such that the labelled
transition system (Q, Γ,→, q0) has a run σ labelled by ω and starting at q0

such that Inf (σ)∩F 	= ∅, i.e. σ visits accepting states from F infinitely often.
A language is called ω-regular if and only if there is a Büchi automaton which
accepts it.

2.2.3 Pushdown systems

A pushdown system is a transition system equipped with a finite set of control
locations and a stack. The stack contains a word over some finite stack
alphabet ; its length is unbounded. Hence, a pushdown system may have
infinitely many reachable states.

Definition 2.7 A pushdown system P = (P, Γ, ∆, c0) is a quadruple where
P contains the control locations and Γ is the stack alphabet. A configuration
of P is a pair 〈p, w〉 where p ∈ P and w ∈ Γ∗. The set of all configurations
is denoted by Conf (P). With P we associate the unique transition system
TP = (Conf (P),⇒P , c0) whose initial state or configuration is c0.

∆ is a finite subset of (P ×Γ)× (P ×Γ∗); if ((p, γ), (p′, w)) ∈ ∆, we also
write 〈p, γ〉 ↪→P 〈p′, w〉. The transition relation of TP is determined by the
set of rules ∆ as follows:

11

If 〈p, γ〉 ↪→P 〈p′, w〉, then 〈p, γw′〉 ⇒P 〈p′, ww′〉 for all w′ ∈ Γ∗.

The head of a configuration 〈p, γw〉 is the pair 〈p, γ〉. Similarly, the head of
a rule 〈p, γ〉 ↪→P 〈p′, w〉 is the pair 〈p, γ〉.

In other words, a transition in TP may change the control location and
replace the ‘topmost’ (i.e. leftmost) stack symbol by a string of other symbols
including the empty string (effectively removing the topmost symbol). Every
step depends only on the control location and the topmost element of the
stack. The rest of the stack is unchanged and has no influence on the possible
actions. In the following, if the pushdown system in question is understood,
we drop the index P from the relations ⇒P and ↪→P .

The focus of this thesis is on the analysis of pushdown systems and its
use in verification of software. The next section illustrates this application.

2.3 A model of sequential programs

Pushdown systems find a natural application in the analysis of sequential
programs, e.g. programs written in languages such as C or Java. These are
typically composed of a number of procedures. Procedures may interact by
calling each other, passing argument values to the callee or returning values
to the caller. An execution of a function may involve calls to other functions
or even recursively to itself. When a function terminates, execution resumes
at its caller. Execution starts in a distinguished function main which cannot
be called recursively. As we shall see, many aspects of such programs have a
natural counterpart in the behaviour of pushdown systems. In the following,
we discuss informally how to derive a pushdown system from such a program.

2.3.1 Control flow

If we are interested in modelling only the control flow of a program, we
proceed in two steps.

In the first step, we represent the program by a system of flow graphs, one
for each procedure. The nodes of a flow graph correspond to control points
in its associated procedure, and its edges are annotated with statements, e.g.
assignments or calls to other procedures. Non-deterministic control flow is
allowed and may for instance result from abstraction. Each flow graph has
a distinguished start node.

12

void m() { void s() {
if (?) { if (?) return;

s(); right(); up(); m(); down();

if (?) m(); }
} else {

up(); m(); down(); main() {
} s();

} }

Figure 2.1: An example program.

As an example, consider the program in Figure 2.1. The program, pre-
sented in C-like pseudo-code, controls a plotter, creating random bar graphs
via the commands up, right, and down. Figure 2.2 displays the set of flow
graphs created from the program. (We represent up, right, and down by flow
graphs with just a return action. Note that the behaviour of this example
could not be modelled by a finite state system since there is no bound on the
depth of the recursion.

In the second step, we apply a straightforward transformation to obtain
a pushdown system. Let N be the union of the node sets of all flow graphs
(assuming that the node sets of different procedures are disjoint). Then we
construct a pushdown system ({ · }, N, ∆, 〈 · ,main0〉) with a single control
location. The stack alphabet consists of the flow graph nodes where main0

should be the start node of the procedure main. The rewrite rules are as
follows:

• 〈 · , n〉 ↪→ 〈 · , n′〉 if control passes from n to n′ without a procedure call
(for instance, through an assignment).

• 〈 · , n〉 ↪→ 〈 · , f0n
′〉 if an edge between points n and n′ contains a call to

procedure f , assuming that f0 is f ’s entry point; n′ can be seen as the
return address of that call.

• 〈 · , n〉 ↪→ 〈 · , ε〉 if an edge leaving n contains a return statement.

Thus, a configuration 〈 · , nw〉 represents the fact that execution is cur-
rently at node n whereas w represents the return addresses of the calling pro-
cedures. Figure 2.3 shows the rewrite rules derived from the example. Notice
that the resulting pushdown system does not have any notion of procedures;

13

0 0

3 2

4

5

1
1

0

1

0

return

up:

0

return

right:

0

return

down:

call up

call down

call m

m: s:
else

return

return

call up

call m

call s

else

return

if ? if ?else

if ?

call m

call down

3

4

5

6

2

8

7

main:

(end)

call s

call right

Figure 2.2: Flow graph of the program in Figure 2.1.

it uses the stack merely to record the effect of call and return statements but
does not require the program to have any particular structure.

2.3.2 Data

The construction in the previous subsection produces pushdown systems
which are overapproximations of their underlying programs. Since we re-
move all variables, we cannot decide when a conditional jump has to be
made; therefore we allow both possibilities non-deterministically. Thus, the
possible runs of the derived pushdown system are a superset of the runs
which are possible in the underlying program. For many applications this
approximation is too rough, i.e. complete abstraction of variable contents is
too restrictive.

Procedural programming languages typically distinguish between global
variables, which are accessible to all procedures, and local variables. Each
procedure may declare a set of local variables which are accessible only to
itself. More precisely, whenever the procedure is invoked, new instances of
its local variables are created; these instances are accessible only to that par-
ticular invocation of the function, and they are destroyed upon termination
of the procedure.

These mechanisms can be simulated quite faithfully by the behaviour of a

14

〈 · ,m0〉 ↪→ 〈 · ,m3〉 〈 · ,m0〉 ↪→ 〈 · ,m7〉
〈 · ,m3〉 ↪→ 〈 · , s0 m4〉 〈 · ,m4〉 ↪→ 〈 · , right0 m5〉
〈 · ,m5〉 ↪→ 〈 · ,m1〉 〈 · ,m5〉 ↪→ 〈 · ,m6〉
〈 · ,m6〉 ↪→ 〈 · ,m0 m1〉 〈 · ,m7〉 ↪→ 〈 · , up0 m8〉
〈 · ,m8〉 ↪→ 〈 · ,m0 m2〉 〈 · ,m2〉 ↪→ 〈 · , down0 m1〉
〈 · ,m1〉 ↪→ 〈 · , ε〉
〈 · , s0〉 ↪→ 〈 · , s2〉 〈 · , s0〉 ↪→ 〈 · , s3〉
〈 · , s2〉 ↪→ 〈 · , up0 s4〉 〈 · , s3〉 ↪→ 〈 · , ε〉
〈 · , s4〉 ↪→ 〈 · ,m0 s5〉 〈 · , s5〉 ↪→ 〈 · , down0 s1〉
〈 · , s1〉 ↪→ 〈 · , ε〉
〈 · ,main0〉 ↪→ 〈 · , s0 main1〉 〈 · ,main1〉 ↪→ 〈 · , ε〉
〈 · , up0〉 ↪→ 〈 · , ε〉 〈 · , down0〉 ↪→ 〈 · , ε〉
〈 · , right0〉 ↪→ 〈 · , ε〉

Figure 2.3: Pushdown system associated with the flow graphs in Figure 2.2.

pushdown system if the global variables are encoded into the control locations
and the local variables into its stack alphabet. The main limitation of this
approach comes from the requirement that both the control locations and the
stack alphabet must be finite sets. Essentially this means that only variables
of finite data types can be modelled, e.g. boolean variables or integers from a
finite fragment. (Strictly speaking, since the stack can be arbitrarily long, a
configuration can still encode an unbounded amount of data, but the push-
down system can access it only in a restricted fashion.) Notice that allowing
an infinite set of control locations would make the model Turing-powerful
and render all the interesting analysis problems undecidable. By employ-
ing abstraction, we can still use pushdown systems to argue about programs
with more complex data types provided that the properties of those data
structures relevant to the application can be expressed by a finite number of
boolean predicates (see also Section 4.2.3).

With the aforementioned encoding, the control location becomes a tu-
ple g which represents the values of the global variables, whereas the stack
alphabet contains pairs (n, l) where n is a control point (as above) and l is
a tuple carrying the local variables of the procedure that n belongs to, but
does not store the local variables of any other procedure. Thus, the precise

15

meaning of l depends on n. This encoding preserves characteristic properties
of global and local variables. For instance, each step in the pushdown system
depends only on the current control location and the topmost stack symbol;
this corresponds to the property that at each point in time a program can
only access and/or modify the global variables and the local variables of the
currently active procedure. Moreover, since local variables are stored on the
stack, the pushdown system can simulate the instantiation of new copies
when recursive calls are made.

Let us revisit the translation process from the previous subsection. As-
sume that G is the domain of the global variables (i.e., G could be the cross
product of domains of the individual variables). Moreover, if we have m pro-
cedures and Li, 1 ≤ i ≤ m, are the cross-products of the domains of their
respective local variables, then let L be a set with |L| ≥ |Li| for all 1 ≤ i ≤ m
such that the values from any of the Li can be encoded within L. (As we
shall see later, this encoding has an impact on the asymptotic complexity of
the algorithms we devise to analyse the systems.) We then construct a push-
down system (G,N × L, ∆′, 〈g0, (main0, l0)〉) where g0 and l0 are the initial
values of the global and local variables of main, respectively. Each program
statement is translated to a set of pushdown rules as follows:

Constraints If a flow graph edge from node n1 to node n2 represents an
assigment or another ‘simple’ statement (i.e. anything other than a function
call or a return statement), we translate it to set of rules of the form

〈g, (n1, l)〉 ↪→ 〈g′, (n2, l
′)〉.

where g and g′ (l and l′) are the values of the global (local) variables before
and after the assigment; for each pair (g, l), the new values (g′, l′) describe a
possible effect of the statement. In the case of an assignment, for instance, g
and l would be the same as g′ and l′ except for the entries of the variable(s)
on the left-hand side of the assignment. Alternatively, if the edge represents
an ‘if’ or ‘while’ statement, we could restrict the values of g and l to the set
allowed by its branching condition.

Procedure calls If a flow graph edge from node n1 to node n2 represents a
procedure call to a function m (with start node m0), it will be translated into
a set of rules with a right-hand side of length two according to the following
scheme:

〈g, (n1, l)〉 ↪→ 〈g, (m0, l
′) (n2, l)〉

16

bool l; /* global variable */ bool g (bool x) {
return !x;

void lock() { }
if (l) ERROR;

locked := 1; void main() {
· · · /* acquire a lock */ bool a,b;

} l,a := 0,0;

· · ·
void unlock() { lock();

if (!l) ERROR; b := g(a);

· · · /* release the lock */ unlock();

locked := 0; · · ·
} }

Figure 2.4: Another example with boolean variables.

Here, l ′ denotes initial values of the local variables of m as well as any argu-
ments that may be passed to the function; the local variables of the calling
function are stored on the stack together with the return address n2.

Return statements A return statement has an empty right-hand side:

〈g, (n, l)〉 ↪→ 〈g′, ε〉

If the procedure has return values, these have to be encoded in the global
variables, possibly by introducing temporary new variables.

Example Consider the pseudo-code program shown in Figure 2.4. The
program has a global boolean variable l which is supposed to determine
whether the program has exclusive access (a lock) on some file or device.
The functions lock and unlock acquire and release the lock; it is an error
to acquire a lock twice without releasing it in between or vice versa. The
function g takes a boolean argument and returns a boolean value. The func-
tion main has two local variables a and b. The values ‘true’ and ‘false’ are
represented by T and F, respectively.

The corresponding flow graph is shown in Figure 2.5, the pushdown rules
in Figure 2.6. The control locations contain the value of the global variable l
and, when needed, the return value of function g (see rules 10 and 15).

17

0

if (!locked)

lock:

locked := T

else

err

2

1

if (locked)

0

else

err

2

1

unlock:

locked := F

0

1

l,a := F,F;

main:

lock()

5

4

3

2

unlock()

0

return !x

g:
b:=g(a)

Figure 2.5: Flow graph of the program in Figure 2.4.

The stack alphabet consists of control points and the local variables of their
associated procedures. Rules 3, 9, and 11 are translations of assignments;
rules 1 and 2, and 6 and 7, are examples for ‘if’ statements. Procedure calls
are made in rules 13, 14 and 16. Rule 14 shows how to pass an argument
to g. In order to evaluate the return value of g, control is first transferred to
an intermediate control location main3′ after the call. Rule 15 then shows
the evaluation of the return value from a procedure.

In general, the translation yields a pushdown system whose size is far
larger than the underlying program. This is because in each statement one
rule is needed for every admissible combination of variable values; it is easy
to see that the number of resulting rules is exponential in the number of vari-
ables. Therefore it may quickly become impractical to represent the system
by an explicit enumeration of the rules. What appears to be needed are data
structures for storing rules in a similar notation to that used in Figure 2.6:
Instead of enumerating the rules, we can represent sets of them with the
control flow information accompanied by a compact representation of the
admissible valuations, effectively separating the representations of control
and data. The following paragraph concretizes this idea.

Symbolic pushdown systems Let P = (P, Γ, ∆, c0) be a pushdown sys-
tem where the control locations are of the form P = P0 × G and the stack

18

(1) 〈(T), (lock 0)〉 ↪→ 〈(T), (err)〉
(2) 〈(F), (lock 0)〉 ↪→ 〈(F), (lock 1)〉
(3) 〈(l), (lock 1)〉 ↪→ 〈(T), (lock 2)〉 l ∈ {T, F}
(4) 〈(l), (lock 2)〉 ↪→ 〈(l), ε〉 l ∈ {T, F}
(5) 〈(l), (err)〉 ↪→ 〈(l), (err)〉 l ∈ {T, F}
(6) 〈(F), (unlock 0)〉 ↪→ 〈(F), (err)〉
(7) 〈(T), (unlock 0)〉 ↪→ 〈(T), (unlock 1)〉
(8) 〈(l), (unlock 1)〉 ↪→ 〈(l), (unlock 2)〉 l ∈ {T, F}
(9) 〈(l), (unlock 2)〉 ↪→ 〈(F), ε〉 l ∈ {T, F}

(10) 〈(l), (g0, x)〉 ↪→ 〈(l,¬x), ε〉 l, x ∈ {T, F}
(11) 〈(l), (main0, a, b)〉 ↪→ 〈(F), (main1, F, b)〉 a, b, l ∈ {T, F}
(12) 〈(l), (main1, a, b)〉 ↪→ 〈(l), (main2, a, b)〉 a, b, l ∈ {T, F}
(13) 〈(l), (main2, a, b)〉 ↪→ 〈(l), (lock 0) (main3, a, b)〉 a, b, l ∈ {T, F}
(14) 〈(l), (main3, a, b)〉 ↪→ 〈(l), (g0, a) (main3′ , a, b)〉 a, b, l ∈ {T, F}
(15) 〈(l, r), (main3′ , a, b)〉 ↪→ 〈(l), (main4, a, r)〉 a, b, l, r ∈ {T, F}
(16) 〈(l), (main4, a, b)〉 ↪→ 〈(l), (unlock 0) (main5, a, b)〉 a, b, l ∈ {T, F}
(17) 〈(l), (main5, a, b)〉 ↪→ 〈(l), ε〉 a, b, l ∈ {T, F}

Figure 2.6: Pushdown rules for the program in Figure 2.4.

alphabet of the form Γ = Γ0 × L. Let

r := 〈p, γ〉 ↪−→
[R]

〈p′, γ1 . . . γn〉,

where p, p′ ∈ P0, γ, γ1, . . . , γn ∈ Γ0, and R ⊆ (G×L)×(G×Ln) is a relation.
We call r a symbolic rule which denotes the following set of pushdown rules:

{ 〈(p, g), (γ, l)〉 ↪→ 〈(p′, g′), (γ1, l1) . . . (γn, ln)〉 | (g, l, g′, l1, . . . , ln) ∈ R }

Assuming that R usually has some compact representation, ∆ can be suc-
cinctly represented as a list of symbolic rules. Somewhat informally, we call
a pushdown system with such a data structure a symbolic pushdown system.

In this structure, ∆ comes as a partitioned transitioned relation, and con-
figurations are given in a mix of explicit and symbolic components; element
of P0 and Γ0 are stated explicitly whereas elements of G and L are given
symbolically. In the following, most of the theory about pushdown systems
is developed independently of their actual representation, and the resulting

19

algorithms can be instantiated appropriately. However, the usage of a parti-
tioned representation does have certain practical advantages, as we shall see
later.

What remains is to find good data structures for the symbolic represen-
tations. These need to satisfy certain demands: They must be compact in
practical cases, and they must allow efficient set operations needed by the
model-checking algorithms. The next section introduces Binary Decision Di-
agrams (BDDs) for this purpose. BDDs are particularly suited to represent
sets of vectors of boolean values but can also be used to encode finite sets in
general. In the experiments, only programs with boolean and integer vari-
ables are considered and BDDs are used to represent them. Integer variables
with values from a finite range are simulated using multiple boolean vari-
ables. Other representations are conceivable and could be realised with only
minor modifications of the algorithms in Chapter 3.

2.4 Binary Decision Diagrams

In the previous section we introduced the concept of a symbolic pushdown
system in which the data-related part of the transition relation is stored as a
set R. It is hoped that these sets (which are relations containing the admis-
sible variable valuations before and after the application of pushdown rules)
have, in practice, compact representations since the cost of enumerating their
elements individually would make model-checking them infeasible. The rep-
resentations used in this thesis are Boolean Decision Diagrams (BDDs). This
section gives only a rough overview of BDDs; for more detailed treatments
of the topic the reader is referred to, e.g., [2] or [11].

The basic idea behind BDDs is to equate sets with boolean formulas. Let
us assume that the relations we want to represent contain only boolean vari-
ables. This is not a real restriction since we will only handle variables with a
finite range anyway, and these can be simulated with multiple boolean vari-
ables. Let V = {v1, . . . , vn} be the variables occurring in one such relation.

The set of boolean formulas over V is defined as usual; each variable vi

(for vi ∈ V) and the constants ‘true’ and ‘false’ are boolean formulas; if
p and q are boolean formulas, then so are ¬p and p ∨ q. Given a valuation
V : V → {0, 1} and a boolean formula p, we can evaluate whether V satisfies p
(written V |= p). For this purpose, negation (¬) and disjunction (∨) have
the meaning they usually have in propositional logic and can be combined

20

to build all other logical connectives.
Moreover, we can identify each formula p with the set {V | V |= p }, i.e.

the set of valuations that satisfy p; in fact we consider two formulas equal
if they are identified with the same set. Conversely, we can denote a set by
some corresponding formula. With this in mind, we can also express certain
standard set operations by boolean operations; e.g., the union of the two sets
denoted by the formulas p and q is the set associated with p ∨ q.

Binary Decision Diagrams are designed to compactly represent boolean
formulas. They were made popular by Bryant [11] and introduced into model-
checking by McMillan [32]. Like other representations for the same purpose,
BDDs have certain advantages and drawbacks, for instance that they can
encode certain classes of sets more efficiently than others. (It is worth re-
membering at this point that by a simple counting argument no universal
compression is possible, i.e. no encoding exists which compresses every single
element of its domain by at least one bit.) However, BDDs are generally
considered the most efficient method known to date, and ready-to-use, effi-
cient libraries exist to handle them [38, 30]. In the experiments, we use the
CUDD library by Fabio Somenzi [38].

Definition 2.8 A BDD with domain V is a rooted directed acyclic graph
whose nodes are labelled by elements of V or by the constants 0 and 1. Nodes
labelled by constants are leaves with no outgoing edges; all other nodes haves
two outgoing edges labelled by 0 and 1, respectively.

The truth value of a BDD B for a valuation V : V → {0, 1} is determined
as follows: Starting at the root node, we descend through the tree; if we are
at a node labelled by v ∈ V , we follow the edge labelled by V(v); otherwise, if
we are at a leaf, we terminate, and the truth value is given by the constant
labelling of the leaf.

A BDD B represents a boolean formula p (or, equivalently, a set of val-
uations) in the following sense: V |= p if and only if the truth value of V
in B is 1. Figure 2.7 shows a BDD with domain {a, b, a′, b′}. The formula
represented by the BDD is (a′ ↔ a ∧ b) ∧ (b ↔ b′)

We say that a BDD B is ordered if there exists an ordering < on V such
that if B has an edge from a node labelled v to a node labelled v′, then
v < v′. (In other words, the variables encountered when descending the
diagram occur in the same order on every path.) The BDD in Figure 2.7
respects the ordering a < b < a′ < b′.

21

1 0 0 1

b
0 1

a′

0 1

a′

0 1

a′

0 1

0 0 0 1 0 0 1 0 0 0 0 0

b′

0 1

b′

0 1

b′

0 1

b′

0 1

b′

0 1

b′

0 1

b′

0 1

b′

0 1

a
0 1

b
0 1

a′

0 1

∗ ∗

× ×

Figure 2.7: A BDD for the formula (a′ ↔ a ∧ b) ∧ (b ↔ b′)

More compact structures can be achieved with reduced BDDs. A BDD
is said to be reduced under two conditions: It does not contain any two
isomorphic subtrees, and it does not contain any non-leaf node whose two
children are the same. Figure 2.8 shows a reduced BDD equivalent to the one
from Figure 2.7. All terminal nodes have been combined to only two leaves
labelled by 0 and 1. Moreover, Figure 2.7 contains two more isomorphic pairs
of subtrees (marked there by ∗ and ×, respectively). In the reduced BDD,
these are combined and occur only once.

An important feature of reduced ordered BDDs is their canonicity – for
each boolean formula (and each ordering <) over V there exists one unique
reduced ordered BDD. This makes it possible to check equivalence of two
BDDs (or formulas, or sets) in constant time. Since the library used in
the experiments uses reduced ordered BDDs, all references to BDDs in the
following implicitly assume that the BDDs in question are, in fact, reduced
and ordered BDDs. The size of a BDD representing a particular function
(and hence the efficiency with which it can be processed) may very much
depend on the ordering it adhers to. Ideas on how to derive a good ordering
are discussed in Section 5.8.

2.5 Model checking and temporal logics

In order to provide a meaningful model-checking framework, we need a pre-
cise logic in which analysis problems can be stated. The most basic analysis

22

0

a′

1

b′

a′

b′

b b

a

a′

0
1

1
0

0

0

1

0 1

0

1

0

10 11

Figure 2.8: The BDD from Figure 2.7 in reduced form.

problem is the reachability problem which we can formulate in two variants:

(I) Given a transition system T and a state s, is s reachable in T , i.e. is
there a path from the root to s?

(II) Given a transition system T , compute the set of all reachable states.

However, reachability cannot express many interesting properties such as
“all runs of the process will eventually terminate” or “a certain state or
action will occur infinitely often”. This gap is filled by temporal logics in
which properties like these can be expressed with formulas. A temporal
logic framework defines the semantics of each formula as the set of states,
paths, or runs which satisfy it. A model-checking problem then consists
of checking whether some given states (or paths, or runs) satisfy a given
property encoded in a formula of some temporal logic. More specifically, we
can ask the following three questions:

(III) Given a transition system T = (S,A,→, r) and a formula ϕ of some
temporal logic, does the root r satisfy the formula ϕ (written r |= ϕ)?

(IV) Given a transition system T and a formula ϕ, compute the set of all
states of T which satisfy (or violate) ϕ. This is also called the global
model-checking problem.

23

(V) Given a transition system T and a formula ϕ, compute the set of all
reachable states which satisfy (or violate) ϕ, i.e. the intersection of the
solutions to problems (II) and (IV).

In this thesis, we will examine problems (I) to (V) for the cases where T is
generated by a pushdown system (for general transition systems, all these
questions are of course undecidable), for the temporal logic LTL and, as an
extension, for the logic CTL∗. We will also examine how computationally
difficult these problems are.

Complexity measures The complexity of model-checking algorithms can
be measured in different ways. We have two parameters to consider: the
system and the temporal property. Therefore, we can state the complexity in
three ways: As a function of the size of the system (i.e. for a fixed property),
as a function of the size of the property (i.e. for a fixed system), or as a
function of both. In practice the size of the system can be quite large whereas
formulas are typically small. Therefore, the complexity in terms of the system
can be regarded as the more important question.

The transition system associated with a pushdown system is actually
infinitely large, but it is natural use the pushdown system itself as a basis for
the complexity measure. In fact, we shall analyze the complexities in terms
of parameters such as the number of control locations or the size of the stack
alphabet.

As far as temporal logics are concerned, this section gives only some
details relevant to the material in the following chapters; for a more thorough
treatment of temporal logics see for instance [15]. The complexity of model-
checking problems for various logics and different classes of transition systems
including pushdown systems is treated in [31]. There are two main classes of
temporal logics: Branching-time logics and linear-time logics.

2.5.1 Branching-time logics

Branching-time logics are interpreted over the computation tree of the transi-
tion system under consideration. The computation tree of a transition system
T = (S,A,→, r) is the (possibly infinite) tree whose nodes are labelled by
elements of S, whose root is labelled with r, and whose edges are labelled
with elements of A. If s a−→ s′ then a node labelled s has a child labelled s′

24

connected by an edge labelled a. The validity of formulas in branching-time
logic is defined on the nodes of this computation tree; the truth value at each
particular state depends on the state itself and the subtree below it.

Since branching-time logic will not play an important role in this thesis
(for the reasons stated below), we will not present branching-time logics in
any more detail; suffice to say that probably the best-known branching-time
logic is CTL (Computation Tree Logic), introduced by Clarke and Emer-
son [13]. CTL’s advantage over more expressive logics such as variants of
the µ-calculus is that it is more intuitive to understand while still power-
ful enough to express many interesting properties. Moreover, CTL can be
checked in linear time on finite state systems and is therefore widely used in
this area. For pushdown systems, the situation is different; even for EF, a
fragment of CTL, the model-checking problem is computationally intractable
as shown by a result from [9].

Theorem 2.1 There is formula ϕ of EF such that the problem of deciding
if a pushdown system satisfies ϕ is PSPACE-complete.

In other words, model-checking EF takes exponential time in the size of the
pushdown system. Hence, efficient model-checking procedures for pushdown
systems and CTL seem to be unattainable, even more so if we want to apply
them to pushdown systems derived from programs for which the translation
already involves one exponential blowup. Chapter 3 therefore concentrates on
algorithms for linear-time logic. In Section 6.6 we show how these algorithms
could (at least in theory) be used to extend the logic to CTL∗, a superset of
CTL.

2.5.2 Linear-time logics

In linear-time logic the semantics of each formula is given as a set of ω-
words. The most widely used variant of this kind is Linear-Time Temporal
Logic (LTL), introduced by Pnueli [34]:

Let At be a (countable) set of atomic propositions. LTL formulas are
built according to the following abstract syntax equation (where A ranges
over At):

ϕ ::= tt | A | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1 U ϕ2

X and U are called the next and until operators, respectively. Let At(ϕ) be
the set of atomic propositions which appear in ϕ (note that At(ϕ) is finite).

25

Each formula ϕ defines a language L(ϕ) of ω-words over the alphabet 2At(ϕ)

that satisfy ϕ; we denote that ω satisfies ϕ by ω |= ϕ. The satisfaction
relation is defined inductively on the structure of ϕ as follows:

ω |= tt

ω |= A ⇐⇒ A ∈ ω(0)
ω |= ¬ϕ ⇐⇒ ω 	|= ϕ
ω |= ϕ1 ∧ ϕ2 ⇐⇒ ω |= ϕ1 and ω |= ϕ2

ω |= Xϕ ⇐⇒ ω1 |= ϕ
ω |= ϕ1 U ϕ2 ⇐⇒ ∃i : (ωi |= ϕ2) ∧ (∀j < i : ωj |= ϕ1)

We also define �ϕ ≡ ttU ϕ and �ϕ ≡ ¬(�¬ϕ). The �ϕ operator (“eventu-
ally ϕ”) expresses that φ will hold at some point in the future, whereas the
�ϕ operator (“always ϕ”) states that ϕ holds in every step from now on.

LTL can be interpreted on a transition system T = (S,A,→, r) by means
of a valuation function. A valuation function assigns to each atomic proposi-
tion the set of states or actions that satisfy it. Thus, each run of the system
can be translated into an ω-word over the alphabet 2At(ϕ) containing the
atomic propositions that hold at each point of time during the run.

Since a run σ is labelled by an infinite sequence of actions ω, the logics
can be interpreted in two ways: state-based or action-based. In the following
we shall use and present algorithms for the state-based semantics; however,
this choice is not essential, and action-based variants could be achieved with
only minor modifications. A valuation is therefore a function ν : At(ϕ) → S
and the translation σν is given by σν(i) = {A | A ∈ At(ϕ), σ(i) ∈ ν(A) } for
all i ≥ 0. The run σ satisfies ϕ under the valuation ν if σν |= ϕ. We say that
a state s ∈ S satisfies ϕ under the valuation ν, written s |=ν ϕ, if and only if
all runs starting at s satisfy ϕ. We say that T satisfies ϕ (written T |=ν ϕ)
if and only if r |=ν ϕ.

Examples The termination property above (“all runs of the process will
eventually terminate”) can be expressed in LTL as

�term

if the atomic proposition term is true of all states in which the process has
terminated. The property that proposition p will occur infinitely often in all
executions is expressed by

��p

26

In the plotter example (see Figures 2.1 through 2.3), a desired correctness
property could be that an upward movement should never be immediately
followed by a downward movement and vice versa:

�(up → (¬down U (up ∨ right))) ∧ �(down → (¬up U (down ∨ right)))

In the pushdown system corresponding to the program, the atomic proposi-
tion up should be true of configurations which correspond to the entry point
of procedure up, i.e. those of the forms 〈 · , up0 w〉. Similarly, down should be
true of configurations with down0 as the topmost stack symbol, and right of
those with right0.

Some well-known properties of data-flow analysis (e.g., liveness, reacha-
bility, very business, availability) can be expressed in LTL. For instance, a
program variable Y is said to be dead at a program point n if in every pos-
sible continuation from n we have that Y is either not used or is redefined
before it is used. Suppose that we are given a pushdown system derived from
the control-flow graph of a program (see Section 2.3). If we want to know at
which program points Y is dead, we can model-check the formula

(¬usedY U defY) ∨ (�¬usedY)

where usedY , and defY are atomic propositions which are valid in exactly
those configurations where the topmost stack symbol corresponds to an in-
struction which uses the variable Y , or to an instruction which defines Y ,
respectively. The solution of problem (IV) in this case yields the set of all
program configurations from which there is a run in which the value of Y is
used before it is redefined (i.e. Y is not dead in these configurations).

Reachability can be expressed only indirectly. If c is the configuration
whose reachability we want to check, we introduce a single atomic proposi-
tion pc which is true only for c. Then the following formula expresses that c
is unreachable:

�¬pc

Complexity measures (continued) The following well-known theorem
(see, e.g., [41]) will play a central role in the model-checking algorithms:

Theorem 2.2 Given an LTL formula ϕ, one can effectively construct a
Büchi automaton Bϕ of the form Bϕ = (Q, 2At(ϕ),→, q0, F) of size O(2|ϕ|)
which recognizes the language L(ϕ).

27

Our solution to LTL model-checking (see Section 3.2) involves translat-
ing an LTL formula ϕ into a Büchi automaton B, and the complexity of
the solution depends on the size of the automaton. In general, B may be
exponentially larger than ϕ; however, this is often not the case. Therefore it
seems to make sense to measure complexity in terms of B, and our results
will be stated in this way. The worst-case complexity in terms of ϕ is there-
fore exponential, but this is unavoidable according to a result of Bouajjani
et al [9]:

Theorem 2.3 The model-checking problem for LTL and pushdown systems
is DEXPTIME-complete.

28

Chapter 3

Model-Checking Algorithms

In this chapter we define the problems we study as well as algorithms for
their solutions. Before starting, we introduce a restriction that will make the
presentation slightly easier: We restrict the problems to pushdown systems
which satisfy |w| ≤ 2 for every rule 〈p, γ〉 ↪→ 〈p′, w〉. This restriction is
natural in light of the intended application (see Section 2.3) where the stack
is used to store activation records and can increase by at most one in a
single transition. Moreover, the restriction is not truly restrictive since by
the following Theorem 3.1 any pushdown system can be converted into such
a normal form at the cost of introducing additional configurations:

Definition 3.1 Let P and P ′ be pushdown systems. P ′ simulates P if
Conf (P) ⊆ Conf (P ′) and the following condition holds: for any two con-
figurations c, c′ ∈ Conf (P) we have c ⇒P c′ if and only if c =⇒

n P ′ c′

for some n ≥ 1 and all the n − 1 configurations between c and c′ are in
Conf (P ′) \ Conf (P).

Theorem 3.1 Given a pushdown system P = (P, Γ, ∆, c0), we can construct
a pushdown system P ′ = (P, Γ′, ∆′, c0) such that

(a) |w| ≤ 2 holds for each rule 〈p, γ〉 ↪→ 〈p′, w〉 ∈ ∆′;

(b) P ′ simulates P;

(c) |P ′| = O(|P|).

Proof:

29

(a) Let Γ′ and ∆′ be the least sets such that

1. Γ ⊆ Γ′;

2. if ∆ has a rule r of the form 〈p, γ〉 ↪→ 〈p′, w〉 such that |w| ≤ 2,
then r ∈ ∆′;

3. if ∆ has a rule r of the form 〈p, γ〉 ↪→ 〈p′, γ1 . . . γn〉 such that
n > 2, then {δr,1, . . . , δr,n−2} ⊆ (Γ′ \ Γ) and ∆′ contains the rules

– 〈p, γ〉 ↪→ 〈p′, δr,n−2γn〉
– 〈p′, δr,i〉 ↪→ 〈p′, δr,i−1γi+1〉 for 2 ≤ i ≤ n − 2

– 〈p′, δr,1〉 ↪→ 〈p′, γ1γ2〉

(b) Suppose that c ⇒P c′. Then c =⇒
n P ′ c′ obviously holds because the

effect of the pushdown rule that was used to get from c to c′ in P can
be achieved by one or more rules in P ′. For the other direction, note
that every element of Γ′ \ Γ occurs on the left-hand side of exactly
one rule, thus every configuration whose topmost stack symbol is from
Γ′ \ Γ has only one immediate successor. Hence, if a path in P ′ starts
at c ∈ Conf (P) and goes to some configuration in Conf (P ′)\Conf (P),
the rest of the path is uniquely determined until the next c′ ∈ Conf (P)
is reached. An inspection of the rules in ∆′ \ ∆ shows that c′ is an
immediate successor of c in P.

(c) For every rule 〈p, γ〉 ↪→ 〈p′, γ1 . . . γn〉 ∈ ∆, Γ′ contains no more than
n− 2 additional symbols, and ∆′ contains no more than n− 1 rules of
constant size. Thus, |Γ′| = O(|Γ| + |∆|), |∆′| = O(|∆|), and therefore
|P ′| = O(|P|).

�

For these reasons, all problems and algorithms will be presented for push-
down systems which satisfy the aforementioned restriction. If, for some rea-
son, we want to solve one of the analysis problems for an unrestricted push-
down system P, we can apply the construction from Theorem 3.1 to get a
restricted system P ′ and solve the problem for P ′. Since the additional con-
figurations of P ′ are easily recognisable, simple procedures exist to remove
them from the result of the algorithms. Since the asymptotic sizes of P
and P ′ are equal, the complexity results we derive also hold for unrestricted
pushdown systems.

30

3.1 Reachability

Reachability analysis comes in two flavours: forward and backward. Given
a pushdown system P and a set C ⊆ Conf (P), a backward reachability
analysis consists of computing the predecessors of elements of C, i.e. the
set pre∗(C). The forward reachability analysis consists of computing the
successors of elements of C, i.e. the set post∗(C).

In general, C can be an infinite set. Even if C is finite, however, the sets
pre∗(C) or post∗(C) may be infinite. Therefore, we cannot hope to represent
sets of configurations explicitly – we need a finite symbolic representation for
them. In the following, we present algorithms to solve both problems for the
case where C is a regular language (in a sense made precise by the following
definition).

Definition 3.2 Let P = (P, Γ, ∆, c0) be a pushdown system. A P-automaton
uses Γ as alphabet, and P as its set of initial states (we consider automata
with possibly many initial states). Formally, a P-automaton is a quintuple
A = (Q, Γ,→, P, F) where Q ⊇ P is a finite set of states, → ⊆ Q × Γ × Q
is the set of transitions, and F ⊆ Q the set of final states. P accepts or
recognizes a configuration 〈p, w〉 if the transition system (Q, Γ,→, p) satisfies
p w−→∗ q for some q ∈ F . The set of configurations recognised by a P-
automaton A is denoted by L(A). A set of configurations of P is regular if
it is recognized by some P-automaton.

It is important to understand that a P-automaton simply represents a
set of configurations of P, and not to confuse its behaviour with that of P.

In order to handle the problems (I) to (V) presented in Section 2.5 it
will be enough to solve the reachability analysis problems for regular sets
of configurations. For problems (I) and (II) we can, for instance, compute
post∗(C) for the regular singleton set C = {c0}. For problems (III) to (V),
the pre∗ and post∗ operations will be important building blocks.

Notation Fix a pushdown system P = (P, Γ, ∆, c0) for the rest of the
section. Since all the automata we encounter in this section are P-automata,
we drop the P from now on. We use the symbols p, p′, p′′ etc., eventually
with indices, to denote initial states of an automaton (i.e., the elements
of P). Non-initial states are denoted by s, s′, s′′ etc., and arbitrary states,
initial or not, by q, q′, q′′.

31

γ0
s1p0

γ0
s2

p1

p2

∆ = {r1, r2, r3, r4}
r1 = 〈p0, γ0〉 ↪→ 〈p1, γ1γ0〉
r2 = 〈p1, γ1〉 ↪→ 〈p2, γ2γ0〉
r3 = 〈p2, γ2〉 ↪→ 〈p0, γ1〉
r4 = 〈p0, γ1〉 ↪→ 〈p0, ε〉

γ0
s1

γ2

s2p0
γ0

p1

p2

γ0

γ1

γ1

γ1

Figure 3.1: The automata A (left) and Apre∗ (right)

The algorithms for pre∗ and post∗ are introduced in two steps. First, abstract
procedures are shown which are relatively easy to understand. Then we
present efficient algorithms and prove that they are correct implementations
of the abstract procedures.

3.1.1 Computing pre∗

Our input is an automaton A = (Q, Γ,→0, P, F) accepting a regular set C.
Without loss of generality, we assume that A has no transition leading to an
initial state. We compute pre∗(C) as the language accepted by an automaton
Apre∗ = (Q, Γ,→, P, F) obtained from A by means of a saturation procedure.
The procedure adds new transitions to A, but no new states. New transitions
are added according to the following saturation rule:

If 〈p, γ〉 ↪→ 〈p′, w〉 and p′ w−→∗ q in the current automaton,
add a transition (p, γ, q).

The saturation procedure eventually reaches a fixed point because the
number of possible new transitions is finite.

The intuition behind this procedure is that if there is a rule 〈p, γ〉 ↪→
〈p′, w〉, then 〈p, γw′〉 is a predecessor of 〈p′, ww′〉. Thus, if the automaton
already accepts 〈p′, ww′〉 by way of p w−→∗ q w′−−→∗ qf (for some final state qf),
then it also ought to accept 〈p, γw′〉. Adding the transition (p, γ, q) achieves
this by adding the sequence p γ−→ q w′−−→∗ qf .

32

Example: Let us illustrate the procedure by an example. Consider the
pushdown system with control locations P = {p0, p1, p2} and ∆ as shown in
in the left half of Figure 3.1. Let A be the automaton that accepts the set
C = {〈p0, γ0γ0〉}, also shown on the left. The result of the algorithm is shown
in the right half of Figure 3.1. The result is derived through the following
six steps:

1. First, we note that p0
ε−→∗ p0 holds. Since 〈p0, ε〉 occurs on the right-

hand side of rule r4, we have a match for the saturation rule, and we
add the transition (p0, γ1, p0).

2. Now that we have p0
γ1−−→ p0, there is a match for the saturation rule

with r3, and so we add (p2, γ2, p0).

3. This in turn creates the path p2
γ2−−→ p0

γ0−−→ s1 which, because of r2,
leads to the addition of (p1, γ1, s1).

4. The rule r1 in conjunction with p1
γ1γ0−−−→∗ s2 give us (p0, γ0, s2).

5. The previous addition creates a path p2
γ2γ0−−−→∗ s2 which allows another

application of rule r2 leading to (p1, γ1, s2).

6. No further additions are possible, so the procedure terminates.

Proof: Let A be a P-automaton, and let Apre∗ be the automaton obtained
from A by means of the saturation rule defined above. We show that Apre∗

recognises the set pre∗(L(A)). In the sequel we use →i to denote the tran-
sition relation in the automaton obtained after adding i transitions to A;
in particular, →0 is the transition relation of A. Moreover, → (the tran-
sition relation of Apre∗) subsumes all →i. Observe that all new transitions
added by the procedure start at an initial state, i.e. an element of P . The
result is proved in Theorem 3.2 at the end of this subsection. We need two
preliminary lemmata.

Lemma 3.1 For every configuration 〈p, v〉 ∈ L(A), if 〈p′, w〉 ⇒∗ 〈p, v〉 then
p′ w−→∗ q for some final state q of Apre∗.

Proof: Assume 〈p′, w〉 =⇒
k

〈p, v〉. We proceed by induction on k.

Basis. k = 0. Then p′ = p and w = v. Since 〈p, v〉 ∈ L(A), we have
p v−→∗

0 q for some final state q, and so p v−→∗ q, which implies p′ w−→∗ q.

33

Step. k > 0. Then there is a configuration 〈p′′, u〉 such that

〈p′, w〉 =⇒
1

〈p′′, u〉 ===⇒
k−1

〈p, v〉 .

We apply the induction hypothesis to 〈p′′, u〉 ===⇒
k−1

〈p, v〉, and obtain

p′′ u−→∗ q for some q ∈ F .

Since 〈p′, w〉 =⇒
1

〈p′′, u〉, there are γ, w1, u1 such that

w = γw1, u = u1w1, and 〈p′, γ〉 ↪→ 〈p′′, u1〉 ∈ ∆.

Let q1 be a state of Apre∗ such that

p′′ u1−−→∗ q1
w1−−→∗ q.

By the saturation rule, we have

p′ γ−→ q1
w1−−→∗ q ,

since w = γw1, this implies

p′ γw1−−−→∗ q .

�

Lemma 3.2 If p w−→∗ q, then the following properties hold:

(a) 〈p, w〉 ⇒∗ 〈p′, w′〉 for a configuration 〈p′, w′〉 such that p′ w′−−→∗
0 q;

(b) moreover, if q is an initial state, then w′ = ε.

Proof:

Let i be an index such that p w−→∗
i q holds. We shall prove (a) by induction

on i. Statement (b) then follows immediately from the fact that initial states
have no incoming transitions in A.

Basis. i = 0. Since 〈p, w〉 ⇒∗ 〈p, w〉 always holds, take p′ = p and w′ = w.

34

Step. i ≥ 1. Let t = (p1, γ, q′) be the i-th transition added to A. (Notice
that we can safely write (p1, γ, q′) instead of (q1, γ, q′) because all new tran-
sitions start at an initial state.) Let j be the number of times that t is used
in p w−→∗

i q.
The proof is by induction on j. If j = 0, then we have p w−→∗

i−1 q, and
(a) follows from the induction hypothesis (induction on i). So assume that
j > 0. Then there exist u and v such that w = uγv and

p u−→∗
i−1 p1

γ−→i q′ v−→∗
i q (0)

The application of the induction hypothesis (induction on i) to p u−→∗
i−1 p1

yields (notice that p1 is an initial state, and so both (a) and (b) can be
applied):

〈p, u〉 ⇒∗ 〈p1, ε〉 (1)

Since the transition (p1, γ, q′) has been added by applying the saturation
rule, there exist p2 and w2 such that

〈p1, γ〉 ↪→ 〈p2, w2〉 (2.1)

p2
w2−−→∗

i−1 q′ (2.2)

From (0) and (2.2) we get

p2
w2−−→∗

i−1 q′ v−→∗
i q (3)

Since the transition t is used in (3) less often than in (0), we can apply
the induction hypothesis (induction on j) to (3), and obtain

〈p2, w2v〉 ⇒∗ 〈p′, w′〉 (4.1)

p′ w′−−→∗
0 q (4.2)

Putting (1), (2.1), and (4.1) together, we get

〈p, w〉 = 〈p, uγv〉 ⇒∗ 〈p1, γv〉 ⇒ 〈p2, w2v〉 ⇒∗ 〈p′, w′〉 (5)

We obtain the claim from (5) and (4.2).
�

35

Theorem 3.2 Let Apre∗ be the automaton obtained from A by exhaustive
application of the saturation rule defined in the beginning of Section 3.1.1.
Apre∗ recognises the set pre∗(L(A)).

Proof: Let 〈p, w〉 be a configuration of pre∗(L(A)). Then 〈p, w〉 ⇒∗ 〈p′, w′〉
for a configuration 〈p′, w′〉 ∈ L(A). By Lemma 3.1, p w−→∗ q for some final
state q of Apre∗ . So 〈p, w〉 is recognised by Apre∗ .

Conversely, let 〈p, w〉 be a configuration accepted by Apre∗ . Then p w−→∗ q
in Apre∗ for some final state q. By Lemma 3.2(a), 〈p, w〉 ⇒∗ 〈p′, w′〉 for a
configuration 〈p′, w′〉 such that p′ w′−−→∗

0 q. Since q is a final state, we have
〈p′, w′〉 ∈ L(A), and so 〈p, w〉 ∈ pre∗(L(A)). �

3.1.2 Computing post∗

Again, our input is an automaton A accepting C. Without loss of generality,
we assume that A has no transition leading to an initial state. We compute
post∗(C) as the language accepted by an automaton Apost∗ with ε-moves.
Apost∗ is obtained from A in two stages:

• For each pair (p′, γ′) such that P contains at least one rule of the form
〈p, γ〉 ↪→ 〈p′, γ′γ′′〉, add a new state qp′,γ′ .

• Add new transitions to A according to the following saturation rules:

(i) If 〈p, γ〉 ↪→ 〈p′, ε〉 and p γ−→∗ q in the current automaton,
add a transition (p′, ε, q).

(ii) If 〈p, γ〉 ↪→ 〈p′, γ′〉 and p γ−→∗ q in the current automaton,
add a transition (p′, γ′, q).

(iii) If 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 and p γ−→∗ q in the current automaton,
first add (p′, γ′, qp′,γ′) and then (qp′,γ′ , γ′′, q).

Example: Consider again the pushdown system P and the automaton A
from Figure 3.1. Then the automaton shown in Figure 3.2 is the result of
the new algorithm and accepts post∗({〈p0, γ0γ0〉}). The result is reached via
the following steps:

1. First, we add the new states: r1 = 〈p0, γ0〉 ↪→ 〈p1, γ1γ0〉 leads to qp1,γ1

and r2 = 〈p1, γ1〉 ↪→ 〈p2, γ2γ0〉 to qp2,γ2 .

36

γ0
s1p0

γ0
s2

p1
γ1

p2 γ2

γ0

γ0

γ0

ε

γ1

qp1,γ1

qp2,γ2

Figure 3.2: Apost∗

2. Since p0
γ0−−→ s1 matches the left-hand side of rule r1, the first transitions

we add are (p1, γ1, qp1,γ1) and (qp1,γ1 , γ0, s1).

3. The first of these new transitions together with rule r2 gives rise to two
more transitions: (p2, γ2, qp2,γ2) and (qp2,γ2 , γ0, qp1,γ1).

4. Because of (p2, γ2, qp2,γ2) and r3 the next step is to add (p0, γ1, qp2,γ2).

5. This in turn, together with r4 leads to the ε-edge from p0 to qp2,γ2 .

6. We now have p0
γ0−−→∗ qp1,γ1 and can apply rule r1 once more. Because

(p1, γ1, qp1,γ1) has been added before, we just add (qp1,γ1 , γ0, qp1,γ1).

7. No unprocessed matches remain, so the procedure terminates.

Proof: Let A be a P-automaton, and let Apost∗ be the automaton obtained
from A by means of the saturation rules. We show that Apost∗ recognizes
the set post∗(L(A)). In the sequel we use a notation similar to the proof
for pre∗; the transition relation of Apost∗ is →, the relation of the automaton
after i transitions have been added is denoted by →i. The result is proved
in Theorem 3.3 at the end of this subsection. We need two preliminary
lemmata.

Lemma 3.3 For every configuration 〈p, v〉 ∈ L(A), if 〈p, v〉 ⇒∗ 〈p′, w〉 then
p′ w−→∗ q for some final state q of Apost∗.

Proof: Assume 〈p, v〉 =⇒
k

〈p′, w〉. We proceed by induction on k.

37

Basis. k = 0. Then p′ = p and w = v. Since 〈p, v〉 ∈ L(A), we have
p v−→∗

0 q for some final state q, and so p v−→∗ q, which implies p′ w−→∗ q.

Step. k > 0. Then there is a configuration 〈p′′, u〉 with

〈p, v〉 ===⇒
k−1

〈p′′, u〉 =⇒
1

〈p′, w〉 .

We apply the induction hypothesis to 〈p, v〉 ===⇒
k−1

〈p′′, u〉, and obtain

p′′ u−→∗ q for some q ∈ F .

Since 〈p′′, u〉 =⇒
1

〈p′, w〉, there are γ, u1, w1 such that

u = γu1, w = w1u1, and 〈p′′, γ〉 ↪→ 〈p′, w1〉 ∈ ∆.

There are three possible cases distinguished by the length of w1. We consider
only the case |w1| = 2, the others being simpler. Since |w1| = 2, we have
w1 = γ′γ′′. Let q1 be a state of Apost∗ such that

p′′ γ−→∗ q1
u1−−→∗ q.

By the saturation rule, we have

p′ γ′−−→ qp′,γ′
γ′′−−→ q1

u1−−→∗ q ,

and since w = w1u1, this implies

p′ w1u1−−−→∗ q .

�

Lemma 3.4 If p w−→∗ q, then the following holds:

(a) if q is a state of A, then 〈p′, w′〉 ⇒∗ 〈p, w〉 for a configuration 〈p′, w′〉
such that p′ w′−−→∗

0 q;

(b) if q = qp′,γ′ is a new state, then 〈p′, γ′〉 ⇒∗ 〈p, w〉.

Proof: Let i be an index such that p w−→∗
i q. We prove both parts of the

lemma by induction on i.

38

Basis. i = 0. Only (a) applies. Take p′ = p and w′ = w.

Step. i ≥ 1. Let t be the i-th transition added to A. Let j be the number
of times that t is used in p w−→∗

i q. A has no transitions leading to initial
states, and the algorithm does not add any such transitions; therefore, if t
starts in an initial state, t can be used at most once and only at the start of
the path.

The proof is by induction on j. If j = 0, then we have p w−→∗
i−1 q, and we

apply the induction hypothesis (induction on i). So assume that j > 0. We
distinguish three possible cases:

1. If t was added by cases (i) or (ii) of the saturation rule, then t =
(p1, v, q1), where v = ε or v = γ1. Then j = 1 and there exists w1 such
that w = vw1 and q1 such that

p = p1
v−→∗

i q1
w1−−→∗

i−1 q (0)

Because of the saturation rule, there exist p2 and γ2 such that

〈p2, γ2〉 ↪→ 〈p1, v〉 (1.1)

p2
γ2−−→∗

i−1 q1 (1.2)

From (0) and (1.2) we get

p2
γ2−−→∗

i−1 q1
w1−−→∗

i−1 q (2)

As t is not used in (2), we apply the induction hypothesis (on j).
For (a), we obtain

〈p′, w′〉 ⇒∗ 〈p2, γ2w1〉 (3.1)

p′ w′−−→∗
0 q (3.2)

Combining (3.1) and (1.1) we have

〈p′, w′〉 ⇒∗ 〈p2, γ2w1〉 ⇒ 〈p1, vw1〉 = 〈p, w〉 (4)

Part (a) of the lemma follows from (3.2) and (4). For (b) we assume
that q = qp′,γ′ ; the induction hypothesis applied to (2) gives us

〈p′, γ′〉 ⇒∗ 〈p2, γ2w1〉 (5)

39

Combining (5) and (1.1) yields the proof of part (b):

〈p′, γ′〉 ⇒∗ 〈p2, γ2w1〉 ⇒ 〈p1, vw1〉 = 〈p, w〉 (6)

2. If t is the first transition added in case (iii) of the saturation rule,
then it has the form (p′, γ′, qp′,γ′). Assume that the transition is indeed
new (otherwise we just apply the induction hypothesis on i). Then,
since qp′,γ′ has no transitions leading into it initially, it cannot have
played part in an application rule before this step, and t is the first
transition leading to it. Also, there are no transitions leading away
from t so far. So the only path using t is p′ γ′−−→i qp′,γ′ . For this path
we only need to prove part (b), and 〈p′, γ′〉 ⇒∗ 〈p′, γ′〉 holds trivially.

3. Let t = (qp1,γ1 , γ
′′, q′) be the second transition added by the third part

of the saturation rule. Then there exist u, v such that w = uγ′′v and

p u−→∗
i−1 qp1,γ1

γ′′−−→i q′ v−→∗
i q (7)

Because t was added via the saturation rule, we conclude that there
exists some rule of the form

〈p2, γ2〉 ↪→ 〈p1, γ1γ
′′〉 (8.1)

p2
γ2−−→∗

i−1 q′ (8.2)

Application of the induction hypothesis (on i) yields

〈p1, γ1〉 ⇒∗ 〈p, u〉 (9)

Combining (7) and (8.2) we get

p2
γ2−−→∗

i−1 q′ v−→∗
i q

Since t occurs less often than j in this path, we can apply the induction
hypothesis (on j). For (a) we obtain the existence of some 〈p′, w′〉 such
that

〈p′,w′〉 ⇒∗ 〈p2, γ2v〉 (10.1)

p′ w′−−→∗
0 q (10.2)

If we put together (10.1), (8.1) and (9), we get

〈p′, w′〉 ⇒∗ 〈p2, γ2v〉 ⇒ 〈p1, γ1γ
′′v〉 ⇒∗ 〈p, uγ′′v〉 = 〈p, w〉 (11)

40

and (a) follows from (10.2) and (11). For (b) assume that q = qp′,γ′ and
the induction hypothesis (on j) yields

〈p′, γ′〉 ⇒∗ 〈p2, γ2v〉 (11)

Part (b) then follows from (11), (8.1) and (9):

〈p′, γ′〉 ⇒∗ 〈p2, γ2v〉 ⇒ 〈p1, γ1γ
′′v〉 ⇒∗ 〈p, uγ′′v〉 = 〈p, w〉 (12)

�

Theorem 3.3 Let Apost∗ be the automaton obtained from A by exhaustive
application of the saturation rule defined at the beginning of Section 3.1.2.
Apost∗ recognises the set post∗(L(A)).

Proof:
Let 〈p, w〉 be a configuration of post∗(L(A)). Then 〈p′, w′〉 ⇒∗ 〈p, w〉 for

a configuration 〈p′, w′〉 ∈ L(A). By Lemma 3.3, p w−→∗ q for some final state
q of Apost∗ . So 〈p, w〉 is recognised by Apost∗ .

Conversely, let 〈p, w〉 be a configuration recognised by Apost∗ . Then p w−→∗

q in Apost∗ for some final state q. Since the construction does not add final
states, q is a state of A. By Lemma 3.4, 〈p′, w′〉 ⇒∗ 〈p, w〉 for a configuration
〈p′, w′〉 such that p′ w′−−→∗

0 q. Since q is a final state, 〈p′, w′〉 ∈ L(A), and so
〈p, w〉 ∈ post∗(L(A)). �

3.1.3 An efficient implementation for pre∗

We now present a concrete implementation of the abstract algorithm from
Section 3.1.1. Again, given an automaton A which accepts a set C, we want
to compute pre∗(C) by constructing the automaton Apre∗ .

Algorithm 1, shown in Figure 3.3, computes the transitions of Apre∗ by im-
plementing the saturation rule from section 3.1.1. The idea of the algorithm
is to avoid unnecessary operations. When we have a rule 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉,
we look out for pairs of transitions t1 = (p′, γ′, q′) and t2 = (q′, γ′′, q′′), where
q′, q′′ are arbitrary states, so that we may add (p, γ, q′′) – but we do not know
the order in which such transitions will be added to the automaton. If every
time we see a transition like t2 we check for the existence of t1, many checks
might be negative and waste time to no avail. However, once we see t1 we

41

Algorithm 1
Input: a pushdown system P = (P, Γ, ∆, c0);

a P-Automaton A = (Γ, Q,→0, P, F) without transitions into P
Output: the set of transitions of Apre∗

1 rel := ∅; trans := →0; ∆′ := ∅;
2 for all 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ do trans := trans ∪ {(p, γ, p′)};
3 while trans 	= ∅ do
4 pop t = (q, γ, q′) from trans;
5 if t /∈ rel then
6 rel := rel ∪ {t};
7 for all 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ (∆ ∪ ∆′) do
8 trans := trans ∪ {(p1, γ1, q

′)};
9 for all 〈p1, γ1〉 ↪→ 〈q, γγ2〉 ∈ ∆ do

10 ∆′ := ∆′ ∪ {〈p1, γ1〉 ↪→ 〈q′, γ2〉};
11 for all (q′, γ2, q

′′) ∈ rel do
12 trans := trans ∪ {(p1, γ1, q

′′)};
13 return rel

Figure 3.3: An algorithm for computing pre∗.

know that all subsequent transitions (q′, γ′′, q′′) must lead to (p, γ, q′′). It so
happens that the introduction of an extra rule 〈p, γ〉 ↪→ 〈q′, γ′′〉 is enough
to take care of exactly these cases. We collect these extra rules in a set
called ∆′; this notation should make it clear that the pushdown system itself
is not changed and that ∆′ is merely needed for the computation. However,
∆′ does play a useful rule when model-checking LTL (see Section 3.2.2).

The sets rel and trans contain transitions that are known to belong to
Apre∗ . The set trans contains those transitions which are waiting to be ‘ex-
amined’ – by this we mean that the algorithm still needs to check whether
the presence of these transitions prompts further additions. When a transi-
tion is added to the automaton, it is first placed in trans . As long as trans
is not empty, the algorithm picks one transition t from trans, moves it to rel
and checks whether other transitions need to be added because of t.

Example: For a better illustration, consider how Algorithm 1 would pro-
cess the example from Figure 3.1. The initialisation phase evaluates the
ε-rules and adds (p0, γ1, p0). When the latter is taken from trans, the rule

42

〈p2, γ2〉 ↪→ 〈p0, γ1〉 is evaluated and (p2, γ2, p0) is added. This, in combination
with (p0, γ0, s1) and the rule 〈p1, γ1〉 ↪→ 〈p2, γ2γ0〉, leads to (p1, γ1, s1), and
∆′ now contains a rule 〈p1, γ1〉 ↪→ 〈p0, γ0〉. We now have p1

γ1−−→ s1
γ0−−→ s2,

so the next step adds (p0, γ0, s2), and ∆′ is extended by 〈p0, γ0〉 ↪→ 〈s1, γ0〉.
Because of ∆′, (p0, γ0, s2) leads to the addition of (p1, γ1, s2). Finally, ∆′ is
extended by 〈p0, γ0〉 ↪→ 〈s2, γ0〉, but no other transitions can be added and
the algorithm terminates.

We now show that Algorithm 1 correctly implements the procedure from
Section 3.1.1, the correctness of which has already been proved, and examine
its complexity. The results are summarized in Theorem 3.4 at the end of this
section. We need the following four lemmata:

Lemma 3.5 For every transition t, if t ∈ trans at any time during the
execution of the algorithm, then t will be ‘examined’ exactly once.

Proof: rel is initially empty, and every transition added to it is examined
immediately afterwards. Until t is removed from trans, the algorithm cannot
terminate. When t is removed from trans, it is examined if and only if it is
not in rel , i.e. if and only if it has not been examined before, otherwise t is
ignored. �

Lemma 3.6 Algorithm 1 terminates.

Proof: rel is initially empty and can only grow afterwards. Q and Γ are
finite sets, therefore rel can only contain finitely many elements. Thus, the
part after line 6 can only be executed finitely many times. Because of this
and because ∆ is finite, there will be finitely many members of ∆′, and so the
loop at line 7 is traversed only finitely often. Thus, every execution of the
part after line 6 terminates, and only finitely many elements can be added
to trans . Once rel can no longer grow, trans can no longer grow either and
will be empty eventually, which causes Algorithm 1 to terminate. �

Lemma 3.7 Upon termination of Algorithm 1 we have rel = →, where →
is the transition relation of Apre∗.

Proof:

43

“⊆”: We show that throughout the algorithm rel ⊆ → holds. In Section 3.1.1
→ was defined to be the smallest relation containing →0 and satisfying
the following:

If 〈p, γ〉 ↪→ 〈p′, w〉 ∈ ∆ and p′ w−→∗ q, then p γ−→ q.

rel contains only elements from trans, so we inspect the lines that
change trans. In line 1, trans initialized to →0. We show that all other
additions are in compliance with the saturation rule:

– Lines 2 and 12 directly model the saturation rule.

– In line 8, if the rule 〈p1, γ1〉 ↪→ 〈q, γ〉 is taken from ∆, then we
directly model the saturation rule. Otherwise, 〈p1, γ1〉 ↪→ 〈q, γ〉
was added to ∆′ because 〈p1, γ1〉 ↪→ 〈p′′, γ′γ〉 ∈ ∆ and (p′′, γ′, q)
in trans for some p′′, γ′ and again the saturation rule applies.

“⊇”: We show that upon termination rel ⊇ → holds. After line 1, trans
contains →0. Because of Lemma 3.5 all elements of trans will eventually
end up in rel. Moreover, we prove that by the time the algorithm
terminates, all possible applications of the saturation rule have been
realized. Assume that we have 〈p, γ〉 ↪→ 〈p′, w〉 and that there is a
path from p′ to q labelled by w in rel.

– If w = ε, then q = p′, and (p, γ, p′) has been added in line 2.

– If w = γ1, then there is some transition t1 = (p′, γ1, q) in rel.
When t1 was added to rel , (p, γ, q) was added to trans in line 8.

– If w = γ1γ2, then rel contains t1 = (p′, y1, q
′) and t2 = (q′, γ2, q)

for some state q′.

∗ If t1 was examined before t2, ∆′ has the rule 〈p, γ〉 ↪→ 〈q′, γ2〉.
Then, when t2 was examined, (p, γ, q) was added in line 8.

∗ If t2 was examined before t1, it was in rel when t1 was exam-
ined. Then (p, γ, q) was added in line 12.

�

Lemma 3.8 Algorithm 1 takes O(|Q|2|∆|) time and O(|Q| |∆|+|→0|) space.

44

Proof: Let nQ = |Q|, n0 = |→0|, and n∆ = |∆|. The size of A can be
written as nQ + n0.

Imagine that prior to running the algorithm, all rules of the form 〈p, γ〉 ↪→
〈p′, γ′w〉 have been put into ‘buckets’ labelled (p′, γ′). If the buckets are
organised in a hash table this can be done in O(n∆) time and space. Similarly,
all rules in ∆′ can be put into such buckets at run-time, and the addition of
one rule takes only constant time.

If rel and →0 are implemented as hash tables, then addition and member-
ship test take constant time. Moreover, if trans is a stack, then addition and
removal of transitions (from the stack) take constant time, too. However, we
will want to avoid adding any transition to trans more than once. This can
be done (without asymptotic loss of time) by storing all transitions which are
ever added to trans in an additional hash table. Transitions are added to the
stack only if they are not already in the table. A more detailed discussion of
useful data structures for this purpose can be found in Section 5.1.

When (q, γ, q′) is examined, we need to regard just the rules in the bucket
(q, γ). Because of Lemma 3.5, every possible transition is used at most once.
Based on these observations, let us compute how often the statements inside
the main loop are executed.

Line 10 is executed once for each combination of rules 〈p1, γ1〉 ↪→ 〈q, γγ2〉
and transitions (q, γ, q′), i.e. O(nQn∆) times; hence the size of ∆′ is O(nQn∆),
too. For the loop starting at line 11, q′ and γ2 are fixed, so line 12 is executed
O(n2

Qn∆) times.
Line 8 is executed once for each combination of rules 〈p1, γ1〉 ↪→ 〈q, γ〉

in (∆ ∪ ∆′) and transitions (q, γ, q′). As stated previously, the size of ∆′ is
O(nQn∆), so line 8 is executed O(n2

Qn∆) times.
Let us now count the iterations of the main loop, i.e. how often line 4 is

executed. This directly depends on the number of elements that are added
to trans. Initially, there are n0 + O(n∆) elements from lines 1 and 2. Notice
that n0 = O(nQ ·n∆ ·nQ). We already know that the other additions to trans
are no more than O(n2

Qn∆) in number. As a conclusion, the whole algorithm
takes O(n2

Qn∆) time.
Memory is needed for storing rel , trans and ∆′. The size of ∆′ is O(nQn∆)

(see above). There are n0 additions to trans in line 1, and O(n∆) additions
in line 2. In lines 8 and 12, p1 and γ1 are taken from the head of a rule
in ∆. This means that these lines can only contribute O(n∆nQ) different
transitions.

From these facts it follows that the algorithm takes O(nQn∆ + n0) space,

45

the size needed to store the result. Algorithm 1 is therefore optimal with
respect to memory usage. �

Theorem 3.4 Let P = (P, Γ, ∆, c0) be a pushdown system and let A =
(Γ, Q,→0, P, F) be an automaton. There exists an automaton Apre∗ which
recognizes pre∗(L(A)). Moreover, Apre∗ can be constructed in O(n2

Qn∆) time
and O(nQn∆ + n0) space, where nQ = |Q|, n0 = |→0|, and n∆ = |∆|.

Proof: The existence of Apre∗ has been established by Theorem 3.2. Accord-
ing to Lemmata 3.6, 3.7, and 3.8, Algorithm 1 terminates, computes Apre∗ ,
and requires no more than the time and space stated in the theorem. �

Conclusions The abstract procedure from Section 3.1.1 was first presented
in [9]; its proof of correctness was also given there and has been repeated
here for the sake of completeness. However, Theorem 3.4 provides an asymp-
totic improvement over the implementations given in [9], which were either
O(n2

Pn3
A) time and O(nPnA) space or O(nPn2

A) time and O(nPn2
A) space,

where nP = |P | + |∆| and nA = |Q| + |→0|.
It is easy to see that the bound still holds for pushdown systems in general

(i.e. without the restriction of right-hand sides to length 2). All that is
required is to apply Algorithm 1 to the pushdown system constructed by
the method from Theorem 3.1, then remove from Apre∗ all transitions which
carry additional stack symbols, which takes O(|Apre∗|) time.

3.1.4 An efficient implementation for post∗

Given a regular set of configurations C, we want to compute post∗(C), i.e. the
set of successors of C where C is represented by an automaton A. Without
loss of generality, we assume that A has no ε-transitions and no transitions
leading to initial states.

Algorithm 2, shown in Figure 3.4, computes the transitions of Apost∗ by
implementing the saturation rule from Section 3.1.2. The approach is in
some ways similar to the solution for pre∗; again we use trans and rel to
store the transitions that we still need to examine or have already examined,
respectively. Note that transitions from states outside of P go directly to rel
since these states cannot occur in rules.

The algorithm is quite straightforward. We start by including the tran-
sitions of A; then, for every transition that is known to belong to Apost∗ , we

46

find its successors. A complication arises from the presence of ε-transitions,
because paths of the form p γ−→∗ q may involve more than one transition.
This is resolved by combining transition pairs of the form p ε−→ q′ and q′ γ−→ q
to p γ−→ q whenever such a pair is detected.

Example: Consider again the example in Figure 3.2. The transitions
(p1, γ1, qp1,γ1) and (qp1,γ1 , γ0, s1) are a consequence of (p0, γ0, s1); the for-
mer gives the transitions (p2, γ2, qp2,γ2) and (qp2,γ2 , γ0, qp1,γ1) and, in turn,
(p0, γ1, qp2,γ2). Because of 〈p0, γ1〉 ↪→ 〈p0, ε〉, we add an ε-move from p0 to
qp2,γ2 . Having done this, we combine the ε-transition with all transitions that
leave qp2,γ2 ; in this example, we have (qp2,γ2 , γ0, qp1,γ1) and therefore we add
(p0, γ0, qp1,γ1). The latter finally leads to (p1, γ1, qp1,γ1) and (qp1,γ1 , γ0, qp1,γ1).
Figure 3.5 shows the result, similar to Figure 3.2 but with an additional tran-
sition from p0 to qp1,γ1 which results from the combination of an ε-transition
with another transition.

We now show that Algorithm 2 is a correct implementation of the pro-
cedure from Section 3.1.2, and also analyze its complexity. The results are
summarized in Theorem 3.5 at the end of this section.

For a better understanding of the following paragraphs it is useful to
consider the structure of the transitions in Apost∗ . Let Q1 = (Q \ P) and
Q2 = (Q′ \ Q). In the beginning, there are no transitions into P , i.e. we
just have transitions from P into Q1, and from Q1 into Q1. After line 15
is executed once, we also have transitions from P to Q2. All the other
additions to rel are now either from P to Q1 ∪Q2 except for line 16; here we
have transitions from Q2 to Q1 ∪ Q2. We can summarise these observations
in the following facts:

• After execution of the algorithm, rel contains no transitions leading
into P .

• The algorithm does not add any transitions starting in Q1.

Lemma 3.9 Algorithm 2 terminates.

Proof: Clearly, the size of Q′ is still finite, so the maximum size of rel is
|Q′| · |Γ + 1| · |Q′| (accounting for ε-transitions), and we can use a similar
reasoning as in Lemma 3.6, the corresponding lemma for pre∗. �

47

Algorithm 2
Input: a pushdown system P = (P, Γ, ∆, c0);

a P-Automaton A = (Q, Γ,→0, P, F) without transitions into P
and without ε-transitions

Output: the automaton Apost∗

1 trans := (→0) ∩ (P × Γ × Q);
2 rel := (→0) \ trans; Q′ := Q;
3 for all 〈p, γ〉 ↪→ 〈p′, γ1γ2〉 ∈ ∆ do
4 Q′ := Q′ ∪ {qp′,γ1};
5 while trans 	= ∅ do
6 pop t = (p, γ, q) from trans;
7 if t /∈ rel then
8 rel := rel ∪ {t};
9 if γ 	= ε then

10 for all 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ do
11 trans := trans ∪ {(p′, ε, q)};
12 for all 〈p, γ〉 ↪→ 〈p′, γ1〉 ∈ ∆ do
13 trans := trans ∪ {(p′, γ1, q

′)};
14 for all 〈p, γ〉 ↪→ 〈p′, γ1γ2〉 ∈ ∆ do
15 trans := trans ∪ {(p′, γ1, qp′,γ1)};
16 rel := rel ∪ {(qp′,γ1 , γ2, q)};
17 for all (p′′, ε, qp′,γ1) ∈ rel do
18 trans := trans ∪ {(p′′, γ2, q)};
19 else
20 for all (q, γ′, q′) ∈ rel do
21 trans := trans ∪ {(p, γ′, q′)};
22 return (Q′, Γ, rel , P, F)

Figure 3.4: An algorithm for computing post∗.

48

Because Algorithm 2 combines ε-transitions with non-ε-transitions, we
cannot show that rel = →. Instead, we prove the following lemma which
implies that the acceptance behaviour of the automaton computed in Algo-
rithm 2 will be that of Apost∗ .

Lemma 3.10 Let → be the transition relation of Apost∗. Upon termination
of the algorithm, (q, γ′, q′) ∈ rel holds for any q, q′ ∈ Q′ and γ′ ∈ Γ ∪ {ε} if
and only if q γ′−−→∗ q′.

Proof: Recall that in Section 3.1.2 → was defined to be the smallest relation
containing →0, and satisfying the following:

• If 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ and p γ−→∗ q, then p′ ε−→ q.

• If 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ and p γ−→∗ q, then p′ γ′−−→ q.

• If 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆ and p γ−→∗ q, then p′ γ′−−→ qp′,γ′
γ′′−−→ q.

“⇒” We show that if (q, γ′, q′) ∈ rel , then q γ′−−→∗ q′. Since elements from
trans flow into rel , we inspect all the lines that change trans or rel :

– Lines 1 and 2 add elements from →0 which is a subset of →.

– Line 11 is a case of the first part of the saturation rule.

– Line 13 is a case of the second part of the saturation rule.

– Lines 15 and 16 are a case of the third part of the saturation rule.

γ0
s1p0

γ0
s2

qp1,γ1

qp2,γ2

p1
γ1

p2

γ0

γ2

γ0

γ0

γ0

ε

γ1

Figure 3.5: Apost∗ as computed by Algorithm 2.

49

– In line 18 we have (p′′, ε, qp′,γ1) and (qp′,γ1 , γ2, q). Since both tran-
sitions must have resulted from some application of the saturation
rule, we conclude that p′′ γ2−−→∗ q holds, so the addition of (p′′, γ2, q)
is justified.

– Likewise, in line 21 we combine (p, ε, q) and (q, γ′, q′) to (p, γ′, q′).

“⇐” We show that if q γ′−−→∗ q′, then after termination (q, γ′, q′) ∈ rel . By the
same argumentation as in Lemma 3.5 we can say that all the elements
in trans eventually end up in rel . Therefore it is sufficient to prove
that all elements of → and all combinations involving ε-transitions are
added to either rel or trans during execution of the algorithm.

We observe the following: Since there are no transitions leading into
P , the ε-transitions can only go from states in P to states in Q1 ∪ Q2,
and no two ε-transitions can be adjacent. The relation p γ−→∗ q can
thus be written as follows:

p γ−→∗ q ⇐⇒ p γ−→ q ∨ ∃q′ : p ε−→ q′ ∧ q′ γ−→ q

The desired property follows from the following facts:

– Because of lines 1 and 2, after execution →0 ⊆ rel holds.

– If 〈p′, γ′〉 ↪→ 〈p, ε〉 and (p′, γ′, q) ∈ rel , then (p, ε, q) is added in
line 11.

– If 〈p′, γ′〉 ↪→ 〈p, γ〉 and (p′, γ′, q) ∈ rel , then (p, γ, q) is added in
line 13.

– If 〈p′, γ′〉 ↪→ 〈p, γγ′′〉 and (p′, γ′, q) ∈ rel , then (p, γ, qp,γ) is added
in line 15 and (qp,γ, γ

′′, q) in line 16.

– Whenever there is a pair (p, ε, q′) and (q′, γ, q) in rel for some
p, q′, q ∈ Q′ and y ∈ Γ, we need to add (p, γ, q).

∗ Assume that (q′, γ, q) is known before (p, ε, q′) is known. Then
(p, γ, q) is added in line 21;

∗ Otherwise (p, ε, q′) is known before (q′, γ, q). Recall that q′ ∈
Q1 ∪ Q2. ε-transitions are added only after the initialization
phase, and the only transitions starting in Q1 ∪Q2 which are
added after initialization are those in line 16. In this case
(p, γ, q) is added in line 18.

50

�

Lemma 3.11 Algorithm 2 takes O(|P | · |∆| · (n1 +n2)+ |P | · |→0|) time and
space, where n1 = |Q \P |, and n2 is the number of different pairs (p, γ) such
that there is a rule of the form 〈p′, γ′〉 ↪→ 〈p, γγ′′〉 in ∆.

Proof: Let nP , n1, n2, n∆, n0 be the sizes of P,Q1, Q2, ∆ and δ, respectively.
Once again let rel and →0 be implemented as a hash table and trans as a
stack (without duplicates), so that all the needed addition, membership test
and removal operations take constant time.

The rules in ∆ can be sorted into buckets according to their left-hand
side at the cost of O(∆) time and space, i.e. every rule 〈p, γ〉 ↪→ 〈p′, w〉 is
placed into the bucket labelled (p, γ). The transitions in rel can be sorted
into buckets according to their source state (i.e. a transition (q, γ, q′) would
be sorted into a bucket labelled q). Since no transition is added to rel more
than once, this costs no more than O(|rel |) time and space.

For every transition t = (p, γ, q) ∈ rel , the part between lines 8 and 21
is executed only once. Because we just need go through the (p, γ)-bucket for
rules when we examine t, we can state the following:

• Line 11 is executed once for every combination of rules 〈p, γ〉 ↪→ 〈p′, ε〉
and transitions (p, γ, q) of which there are at most |∆| |Q1 ∪Q2| many,
i.e. there are O(n∆(n1 + n2)) many executions.

• Likewise, lines 13, 15, and 16 are also executed O(n∆(n1 + n2)) times.

• Since there are at most nP many transitions of the form (p, ε, q) for any
given q ∈ Q′, line 18 is executed O(nP n∆(n1 + n2)) times.

• For line 21, we distinguish two cases:

– q ∈ Q1: Altogether, there are O(n0) many transitions going out
from the states in Q1, and each of them can be copied at most
once to every state in P , which means O(nP n0) many operations
(remember that the algorithm adds no transitions which leave
states in Q1).

– q ∈ Q2: If 〈p1, γ1〉 ↪→ 〈p2, γ2γ3〉 ∈ ∆, then all the transitions
which leave qp2,γ2 are of the form (qp2,γ2 , γ3, q

′′) where q′′ may be
in Q1 ∪ Q2. Therefore we end up with O(nP n∆(n1 + n2)) many
operations.

51

• Line 6 is executed at most once for every transition added to trans as
discussed above, i.e. O(nP n∆(n1 + n2) + nP n0) times. This is also an
upper bound for the size of rel and trans.

• The initialisation phase can be completed in O(n0 + n∆ + nQ) (for the
transitions in δ we just need to decide whether the source state is in P
and add the transition to either trans or rel).

• Q′ has O(nP + n1 + n2) members.

�

Theorem 3.5 Let P = (P, Γ, ∆, c0) be a pushdown system, and let A =
(Q, Γ,→0, P, F) be an automaton. There exists an automaton Apost∗ which
recognizes post∗(L(A)). Apost∗ can be constructed in O(nP n∆(n1+n2)+nP n0)
time and space, where nP = |P |, n∆ = |∆|, n0 = |→0|, n1 = |Q \ P |, and
n2 is the number of different pairs (p, γ) such that there is a rule of the
form 〈p′, γ′〉 ↪→ 〈p, γγ′′〉 in ∆.

Proof: The existence of Apost∗ has been established by Theorem 3.3. Ac-
cording to Lemma 3.9, Algorithm 2 terminates. According to Lemma 3.10,
the automaton constructed by the algorithm accepts post∗(L(A)). Finally,
according Lemma 3.11, the algorithm requires no more than the time and
space stated in the theorem. �

Conclusions In [22] the same problem was considered (with different re-
strictions on the rules in the pushdown system). The complexity of the post∗

computation for the initial configuration was given as O(n3
P) where nP trans-

lates to nP +n∆. An extension to compute post∗(C) for arbitrary regular sets
C is also proposed. The different restrictions on the pushdown rules make
a more detailed comparison difficult, but it is safe to say that Algorithm 2
is at least as good as the one in [22]. Also, we give an explicit bound for
the computation of post∗ for arbitrary regular sets of configurations. For a
comparison with the bounds in [1] see Section 3.1.5.

3.1.5 The procedural case

Section 2.3 presented a translation from programs with procedures into push-
down systems. If we apply reachability analysis to this class of systems, we

52

can interpret the actions of the algorithms in terms of the underlying pro-
grams. In the first part of this section, we give such an interpretation for
post∗.

We proceed as follows: First, we embark on a fairly general discussion
of four types of actions which any reachability algorithm for programs with
procedures can be expected to perform. We then point out how the behaviour
of post∗ fits this description. Finally, we compare its behaviour to that of
some algorithms for recursive state machines [1, 3, 6]. It turns out that there
is a close relationship between all algorithms.

A general view Suppose that we are given a program with procedures,
global, and local variables like the model discussed in Section 2.3, and that we
are given the task of computing its set of reachable states. In the following,
we make the assumption that reachability is computed in forward direction.

Let us define the head of a program state as its control point with an
associated global and local valuation, but without any information about the
rest of the call stack. We can distinguish two slightly different objectives:
to compute the set of program states (complete with stack contents), or to
compute the reachable heads only. In both cases, we need to take care of
both actions within a procedure and interaction between procedures:

Intraprocedural propagation For propagation of reachability within a pro-
cedure, we shall use the concept of path edges. A path edge records the
information that a certain head inside some procedure has been found to
be reachable from some initial head of the same procedure (with whatever
possible stack contents). Reachability within a procedure can be propagated
by the following action:

1. If there is a path edge from initial an head x to some head y, and y can
go to head z in of the same procedure, then a path edge from x to z
must be added.

Interprocedural propagation To compute the interactions between proce-
dures involves three more types of action:

2. When a procedure call is reached, the initial state of the callee must
be marked reachable.

53

When a procedure terminates, we need to record the ‘result’ of the callee
and feed it back into the caller. The result of the callee can be described by
the values of the global variables upon termination. Since a callee can have
multiple callers we need two actions for this:

3. When reaching a return statement, the algorithms need to resume
reachability analysis at the return addresses of all corresponding call
sites that have already proven to be reachable.

4. When reaching a call statement, the algorithms can check whether
the effect of the callee has been computed previously and immediately
continue reachability analysis at the return address.

The information needed by action 4 three can be prepared during action 3
in two different ways:

• Lazy evaluation records, for each procedure, a relation between initial
heads and possible results. Subsequently, when a call is reached, this
relation is used explicitly to produce a path edge.

• Eager evaluation inserts the result into every possible call site in the
form of summary edges whenever results become known. A summary
edge is essentially a new intraprocedural transition between the head
where the call takes place and the corresponding return address.

Interpretation of post∗ Assume that pushdown system P has the form
(G, Γ0 × L, ∆, c0) and that we want to compute post∗({c0}) where c0 =
〈g0, (main0, l0)〉 represents the initial state of a program with procedures,
i.e. g0 and l0 are the initial states of the global and local variables.

We defined the head of a pushdown configuration 〈g, (m, l) w〉 as the pair
〈g, (m, l)〉. Thus, if a configuration represents a program state, the head of
the configuration represents the head of the program state.

The automaton representing {c0} has the states P ∪ {s} (where s is a
final state) and one edge (g0, (main0, l0), s). The post∗ procedure first looks
for rules of the form

〈g, (n1, l)〉 ↪→ 〈g′, (m0, l
′) (n2, l

′′)〉

and adds a state qg′,(m0,l′) for each of them. Notice that m0 is the first control
point in the callee function m and that g′ and l′ together make up the initial

54

values of the variables and arguments passed to m. In other words, each
new state qg′,(m0,l′) corresponds to some initial head of a procedure m. In a
similar vein, the state s can be seen as corresponding to the initial head of
the procedure main.

By Lemma 3.4 we have that if p w−→∗ q holds in the automaton Apost∗ for
some new state q = qp,γ′ , then 〈p, γ′〉 ⇒∗ 〈p, w〉. In particular, this means
that

g′ (m′,l′)−−−−→ qg,(m0,l) ⇐⇒ 〈g, (m0, l)〉 ⇒∗ 〈g′, (m′, l′)〉
i.e. when entering the procedure at the head 〈g, (m0, l)〉 one can reach the
head 〈g′, (m′, l′)〉 of the same procedure. Similarly, a transition g′ (m′,l′)−−−−→ s
means that 〈g′, (m′, l′)〉 is a head of main which is reachable from the initial
head. We conclude therefore that an automaton transition which originates
from an initial state of Apost∗ corresponds to a path edge in the sense defined
earlier.

Intraprocedural progress (i.e. action 1) is computed by line 13 in Algo-
rithm 2: As we have said, a transition g′ (m′,l′)−−−−→ qg,(m0,l) corresponds to a
path edge from x = 〈m0, (g, l)〉 to y = 〈m′, (g′, l′)〉. A step from y to a
head z = 〈m′′, (g′′, l′′)〉 is expressed by a rule 〈g′, (m′, l′)〉 ↪→ 〈g′′, (m′′, l′′)〉. If
we have a rule and a transition of the above form, then line 13 extends the
automaton by a transition g′′ (m′′,l′′)−−−−−→ qg,(m0,l), i.e. a path edge from x to z.

Some of the transitions produced by Algorithm 2 are labelled with ε. In
light of Lemma 3.4 this means:

g ε−→ qg,(m,l) ⇐⇒ 〈g, (m, l)〉 ⇒∗ 〈g, ε〉

i.e. the ε-transitions are exactly the sort of relation needed for lazy evalu-
ation. Suppose that we have a transition/path edge g′ (m′,l′)−−−−→ qg,(m,l) and
a procedure call represented by a rule 〈g′, (m′, l′)〉 ↪→ 〈g1, (m1, l1) (m′′, l′′)〉.
Then lines 15 and 16 add new transitions

g1
(m1,l1)−−−−−→ qg1,(m1,l1)

(m′′,l′′)−−−−−→ qg,(m,l)

The first is a path edge from the initial head of the callee to itself; its addi-
tion corresponds to action 2. The other new transition has no counterpart
in actions 1 to 4 and can be given the following interpretation: “The caller,
starting at head 〈g, (m, l)〉, has invoked the callee at 〈g1, (m1, l1)〉 and de-
posited a return address m′′ and local variables l′′ on the stack.” Given
the previous arguments, it is relatively straightforward to see that line 18
corresponds to action 4, and line 21 to action 3.

55

Comparison with other algorithms The papers [1] and [6] propose re-
cursive (also called hierarchical) state machines (RSMs) to model sequential
programs with recursive procedure calls. The following definition is taken
from [1] with minor differences in notation:

Definition 3.3 A recursive state machine A is a tuple (A1, . . . , Ak), where
each component state machine Ai = (Ni, Bi, Yi, Eni, Exi, δi) consists of the
following items:

• a set Ni of nodes and a disjoint set Bi of boxes;

• a labelling Yi : Bi → {1, . . . , k} that maps every box to the index of one
of the component machines A1, . . . , Ak;

• a set of entry nodes Eni ⊆ Ni;

• a set of exit nodes Exi ⊆ Ni;

• a transition relation δi where transitions are of the form (u, v) where
u ∈ Ni or u = (b, x) such that b ∈ Bi and x ∈ ExYi(b), and v ∈ Ni or
v = (b, e) such that b ∈ Bi and e ∈ EnYi(b).

Figure 3.6 shows an example which illustrates this definition. The exam-
ple has three component state machines A1, A2, and A3. Nodes are repre-
sented by circles, entry nodes on the left edge of their boxes and exit nodes
on the right. A1 contains a box which is mapped to A2, A2 contains a box
mapped to A3, and vice versa. The transition relation is indicated with
arrows.

Each box can be said to represent a procedure. The node sets Ni represent
the states of an execution of procedure i and encode both control flow and
data values. An edge to a pair (b, e) in δi where b ∈ Bi represents a call to

A2A1 A3

A2

A3

A2

Figure 3.6: An example for a recursive state machine.

56

procedure Yi(b) such that the procedure is entered at entry node e. RSMs
have the same expressive power as pushdown systems.

The Boolean Program (BP) model in [3] can be interpreted as a special
case of RSM where control flow and data are encoded separately and where
all variables, global and local, are of type Boolean. If control can pass from
control point v to v′, the admissible variable valuations for the transition are
stored in a BDD Transfer v,v′ . The representation of BPs is therefore very
similar to our notion of symbolic pushdown systems.

The algorithms proposed in [1, 3, 6] compute the heads of the reachable
states, but not their associated stack contents. For the BP model, [3] presents
a forward reachability algorithm; [1] and [6] propose very similar reachability
algorithms for the RSM model which use forward analysis in procedures i
where |Eni| < |Exi| and backward analysis in the other procedures.

Path edges and intraprocedural propagation is handled analogously to
the method described in action 1.

• The algorithms in [1, 6] (in their forward versions) maintain predicates
of the form Ri(x, y) where x ∈ Eni and y ∈ Ni. The predicate Ri(x, y)
expresses that procedure i has a path edge from x to y. The valid
predicates are determined as follows:

If Ri(x, y) and δi(y, z) hold, then so does Ri(x, z).

The backward versions are similar, but maintain path edges from the
exit nodes to the inner nodes and propagate reachability backwards.

• The algorithm for the BP model [3] implements the idea in a symbolic
setting: For each control point v, the BDD PathEdges(v) is true at the
element (g, l, g′, l′) if the valuation (g′, l′) (of the global and local vari-
ables) can be reached at control point v when entering the procedure
with valuation (g, l). If v′ is a successor of v, then PathEdges(v′) is
extended by the join of PathEdges(v) and Transfer v,v′ . Incidentally, in
a symbolic setting the BDD operations used to implement this are the
same as in Algorithm 2, see also Section 3.3.

Going into the details of how these algorithms handle actions 2,3, and 4
would lead too far at this point; we shall just point out that in [1] lazy
evaluation is used whereas [3] and [6] use eager evaluation.

57

Conclusions To summarize the comparison we can say that despite the
different models (RSM/BP vs pushdown systems) and representation issues
(symbolic vs explicit) a substantial similarity is noticeable between the ac-
tions performed by all algorithms. All algorithms execute the four types of
actions explained in the beginning of the section. The differences can be
summarized as follows:

• Algorithm 2 computes all possible stack configurations whereas the
others compute only the heads. The effort required to obtain this
additional information is incurred by line 16 which has no counterpart
in the other algorithms.

• We introduced the concepts of lazy and eager evaluation for analyzing
interactions between procedures. Algorithm 2 and [1] use lazy evalua-
tion, whereas [3] and [6] use eager evaluation. Section 5.6 examines the
effect of this difference through experiments. These suggest (perhaps
not very surprisingly) that lazy evaluation is faster.

• A ‘philosophical’ difference is that the RSM/BP model has a strong
notion of procedures which the pushdown model has not. However,
this does not seem to have an influence on efficiency or applicability of
these models in practice.

• Algorithm 2 and the one in [3] use forward computation whereas [1]
and [6] use a mix of forward and backward computation. While the
comparison above focuses on their forward ‘mode’, a similar relation-
ship could be established between pre∗ (Algorithm 1) and their back-
ward mode (which we have left out of the discussion here).

• Algorithm 2 and [3] have been implemented and tested on large exam-
ples (see Chapter 4), which the other two have not.

The fact that [1] and [6] have no implementations is regrettable, be-
cause their mixture of forward and backward search affords them a better
asymptotic complexity, which would make a comparison on practical exam-
ples interesting. Their algorithms need O(θ2 |δ|) time where δ =

⋃k
i=1 δi and

θ = max1≤i≤k min(|Eni|, |Exi|).
When we translate an RSM to an equivalent pushdown system of the

form (G, Γ0×L, ∆, c0), we get |∆| = O(|δ|), |G| = max1≤i≤k |Exi|, and n2 =

58

∑k
i=1 |Eni|, where n2 is the number of newly added states. The estimation

given by Theorem 3.5, applied to the type of pushdown system used in this
subsection, is O(|G| |∆|n2) time and space, which would make the estimation
for [1] and [6] look far better. However, using Theorem 3.5 can be somewhat
misleading here because the theorem does not make any assumptions at all
about structural aspects of the pushdown system (which would be likely to
improve the estimation for this special case). As we have seen, Algorithm 2
and the forward mode of [1] and [6] actually perform almost the same actions.

Thus, the main question would be what the mixture of forward and back-
ward computation can achieve. This is difficult to predict because, even in
cases where backward reachability has a better complexity estimation, it may
perform worse in practice. This is discussed to a greater extent in Section 5.5.

3.1.6 Witness generation

Algorithms 1 and 2 compute, for a regular set of configurations C, the prede-
cessors and successors of the elements of C. In practice it is often desirable to
understand how a certain configuration was added to pre∗(C) or post∗(C),
that is, given a configuration c ∈ post∗(C) (resp. c ∈ pre∗(C)) we would
like to find a configuration c′ ∈ C such that c′ ⇒∗ c (resp. c ⇒∗ c′) and
reconstruct a ‘witness’ path between the two configurations. In the following
we show how to obtain such witnesses with a simple extension of the exist-
ing algorithms and without affecting their complexity. We show the method
for post∗; the corresponding method for pre∗ is analogous.

To each transition t in Apost∗ we add a label L(t) to record the ‘reason’
why the transition was added. Applying these reasons in reverse reconstructs
the path by which each configuration was added. The method is first pre-
sented for the abstract algorithm from Section 3.1.2. Its extension to the
implementation from Section 3.1.4 is then fairly straightforward.

Every transition t which is initially in A is given a special label ⊥. All
other transitions result from an application of the saturation rule which can
be summarised as follows:

If p γ−→∗ q and r = 〈p, γ〉 ↪→ 〈p′, w〉 ∈ ∆,
add transitions to create a path p′ w−→∗ q.

The ‘reason’ for the addition of p′ w−→∗ q, as it were, is rule r and the presence
of p γ−→∗ q. Labelling the transitions of p′ w−→∗ q with r already allows to

59

transition label

(p0, γ0, s1) ⊥
(s1, γ0, s2) ⊥
(p1, γ1, qp1,γ1) (r1, •)
(qp1,γ1 , γ0, s1) (r1, •)
(p2, γ2, qp2,γ2) (r2, •)
(qp2,γ2 , γ0, qp1,γ1) (r2, •)
(p0, γ1, qp2,γ2) (r3, •)
(p0, ε, qp2,γ2) (r4, •)
(qp1,γ1 , γ0, qp1,γ1) (r1, qp2,γ2)

p1
γ1−−→ qp1,γ1

γ0−−→ qp1,γ1

γ0−−→ s1
γ0−−→ s2

p0
ε−→ qp2,γ2

γ0−−→ qp1,γ1

γ0−−→ s1
γ0−−→ s2

p0
γ1−−→ qp2,γ2

γ0−−→ qp1,γ1

γ0−−→ s1
γ0−−→ s2

p2
γ2−−→ qp2,γ2

γ0−−→ qp1,γ1

γ0−−→ s1
γ0−−→ s2

p1
γ1−−→ qp1,γ1

γ0−−→ s1
γ0−−→ s2

p0
γ0−−→ s1

γ0−−→ s2

Figure 3.7: Labels and reconstruction for Apost∗ from Figure 3.2.

recover r, p, γ and q. Earlier, we noted that

p γ−→∗ q ⇐⇒ p γ−→ q ∨ ∃q′ : p ε−→ q′ ∧ q′ γ−→ q.

Therefore we extend the label with q′ if an ε-transition is involved and with •
to indicate the other case. To summarize, each added transition gets the
following label:

• if a transition is already present, the label is not changed;

• if p γ−→ q, set L(t) := (r, •) for every new transition t;

• if p ε−→ q′ γ−→ q, set L(t) := (r, q′) for every new transition t.

Example The left half of Figure 3.7 shows the labels which would be com-
puted in the example from Section 3.1.2.

Now, given a configuration c = 〈p′, w′〉 ∈ post∗(C), the information con-
tained in L will allow us to reconstruct a sequence from some c′ ∈ C to c in
reverse order:

1. Find an accepting path p′ w′−−→∗ qf within Apost∗ .

2. Let t1 = (p′, γ′, q) be the first transition in the path (where γ′ ∈ Γ ∪
{ε}). If L(t1) = ⊥, we have a configuration from C and are finished.
Otherwise, let L(t1) = (r, x).

60

3.1. If r has the form 〈p, γ〉 ↪→ 〈p′, w〉 with |w| ≤ 1, obtain a new path
by replacing t1 with the transition (p, γ, q) if x = • and with (p, ε, x),
(x, γ, q) otherwise.

3.2. Otherwise, r has a right-hand side of length 2. Let t2 = (q, γ′′, q′) be
the second transition in the path and L(t2) = (r′, x′); then r′ has the
form 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉. Obtain a new path by removing t1 and t2
and replacing them with (p, γ, q′) if x′ = • and with (p, ε, x′), (x′, γ, q′)
otherwise.

4. The configuration represented by the new path is an immediate prede-
cessor of the previous configuration. Go to step 2 for the next iteration.

Example (continued) The right half of Figure 3.7 illustrates the recon-
struction procedure. It uses the labelling displayed on the left half of the
figure to reconstruct a path from 〈p1, γ1γ0γ0γ0〉 back to 〈p0, γ0γ0〉, the only
configuration accepted by the initial automaton.

The following two lemmata show that the reconstruction procedure is
correct in the sense it indeed produces a valid path and that it ends at a
configuration of C.

Lemma 3.12 Given a configuration c ∈ post∗(C), Steps 3.1 and 3.2 produce
a predecessor of c which is also in post∗(C).

Proof: It is easy to see that Step 3.1 produces a direct predecessor of the
previous configuration; only the prefix is changed and we just apply the rule r
in reverse, at the same time obtaining a new path through the automaton.
Step 3.2 follows the same principle but requires additional reasoning: If r has
a right-hand side of length 2, then q can only be the state qp′,γ′ , which was
added by the post∗ computation and which is not a final state. Hence the
path must have a second transition. Inspecting the saturation rule and its
augmentation above, we notice that all transitions of the form (qp′,γ′ , γ′′, q′)
are added because of a path p γ−→∗ q′ and a rule 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉. Hence
the reconstruction is correct in this case, too. (Notice that L(t1) and L(t2)
may be different!) �

Lemma 3.13 The reconstruction procedure (Steps 1 to 4) terminates and
ends at a configuration c′ ∈ C.

61

Proof: To prove that the procedure terminates we use a monotonicity argu-
ment. Let age(t) = 0 for every transition in A, and let age(t) = i if t is the
i-th transition added to Apost∗ during the construction. Let n be the number
of transitions in Apost∗ (note that n is finite). Let us associate a weight with
each sequence of transitions:

weight(p γ−→ q) := age((p, γ, q))/n

weight(p w−→+ q′ γ−→ q) := weight(p w−→+ q′)/n + weight(q′ γ−→ q)

We observe that in step 3, the age of the transition(s) replacing t1 is strictly
smaller than age(t1). In step 4, the age of the transition(s) replacing t1 and t2
is strictly smaller than age(t2). This has two consequences:

1. When starting at a configuration 〈p′, w′〉, the reconstruction procedure
can never create a configuration with more than |w′|+1+n transitions.
This is because whenever the length of the configuration is extended,
the age of the first transition decreases.

2. Given the observations above, it is easy to see that the weight strictly
decreases with each iteration of the reconstruction procedure.

From 1. it follows that starting from a given configuration there are only
finitely many different configurations which the reconstruction process can
produce. From 2. it follows that the procedure cannot enter an infinite loop.
Therefore, it must eventually satisfy the termination condition.

We still need to prove that L(t1) = ⊥ in Step 2 implies that all transitions
of the path (not only t1) are from A. This is easy because L(t1) = ⊥
implies that q is a non-initial state. Since the algorithm does not add any
transitions from non-initial states and since no transition lead to initial states,
all transitions after t1 must also be from A. �

The time and space complexity of the post∗ algorithm is unchanged be-
cause the information added to each transition is of constant size and can be
constructed in constant time.

When transferring these ideas to Algorithm 2, the only difference is that
pairs of transitions t1 = (p, ε, q′) and t2 = (q′, γ, q) are combined to t =
(p, γ, q). This is easy enough to handle; we just mark t with q′ to indicate
that t results from such a combination. The rest of the procedure transfers
in a straightforward way.

62

3.1.7 Shortest traces

Section 3.1.6 shows how to augment the post∗ computation to obtain a path
from a given c ∈ post∗(C) back to some c ∈ C. In practice, one might be
interested in obtaining the shortest path from c to c′. The reconstruction
procedure itself is not concerned with the length of the sequence which it
generates. Without further assumptions about what happens during the
execution of post∗, it could actually produce a sequence which is exponentially
long in the size of the pushdown system even when c could reach c′ in just
one step.

In the following we propose (and solve) a generalization of the shortest-
path problem with non-negative edge lengths. The problem of finding the
length of the shortest path from C to any configuration in post∗(C) is a
special case of this more general problem, and its solution can be combined
with the method from Section 3.1.6 to reconstruct shortest paths. (As in
Section 3.1.6 we present the solution for post∗, but an analogous method is
available for pre∗.)

The problem is stated as follows:

• Let � be a total ordering on a domain D of labels. Let 〈D,⊕〉 be a
monoid whose neutral element ⊥ is also the minimum w.r.t. �. The
operator ⊕ shall have the property that for any a, b, c ∈ D:

a � b =⇒ (a ⊕ c � b ⊕ c) ∧ (c ⊕ a � c ⊕ b) (1)

To facilitate the presentation we assume the existence of an “unreach-
able” element � which is the maximum of D w.r.t. � and has the
property that a ⊕ b = � implies a = � or b = �. For technical
convenience we define min� ∅ := �. We write a � b if a � b and a 	= b.

• Let P = (P, Γ, ∆, c0) be a pushdown system and A = (Q, Γ,→0, P, F)
be a P-automaton which accepts C. Without loss of generality, we
assume that A has no transitions to initial states and no ε-transitions.

• Let f∆ : ∆ → (D \ {�}) be a function which assigns a ‘length’ to each
rule. Let c

〈r〉
==⇒ c′ denote that c′ can be reached from c by ‘firing’ r:

〈p, γw′〉 〈r〉
==⇒ 〈p′, ww′〉 ⇐⇒ r = 〈p, γ〉 ↪→ 〈p′, w〉 ∈ ∆, w′ ∈ Γ∗

Let c =⇒
d

⊕ c′ denote the fact that there exists n ≥ 0, configurations
c1, . . . , cn−1 ∈ Conf (P) and rules r1, . . . , rn ∈ ∆ such that

c
〈r1〉===⇒ c1

〈r2〉===⇒ · · · 〈rn〉===⇒ c′ and f∆(r1) ⊕ · · · ⊕ f∆(rn) = d

63

We have c ==⇒⊥
⊕ c for all c.

• Let S ⊆ Conf (P) be some set of configurations. ‖ · ‖S is defined (w.r.t.
〈D,⊕〉, �, and f∆) as a function ‖ · ‖S : Conf (P) → D with

‖c‖S := min�{ d | ∃c′ ∈ S, c′ =⇒
d

⊕ c }.

The problem consists of computing ‖ · ‖C .

Intuitively we want to compute for each configuration c′ the minimal
length of a path from any c ∈ C to c′ where the length of a path is measured
by the length of the rules fired along the way. In the following, we show
that this can be achieved by imposing a discipline on the order in which
Algorithm 2 processes the transitions it generates.

As usual, let Apost∗ = (Q′, Γ,→, P, F) be the automaton which accepts
post∗(C). Let L : (Q′ × (Γ ∪ {ε}) × Q′) → D be a labelling of transitions
in Apost∗ . For q, q′ ∈ Q′ and w ∈ Γ∗ let q w−→

d
⊕ q′ denote the existence of

states q1, . . . , qn−1 ∈ Q′ and γ1, . . . , γn ∈ (Γ ∪ {ε}) such that the following
holds:

L(qn−1, γn, q′) ⊕ · · · ⊕ L(q, γ1, q1) = d and γ1 . . . γn = w

For any q ∈ Q′, q ε−→⊥
⊕ q. Moreover, we denote minimal paths as follows:

|〈p, w〉| := min�{ d | ∃qf ∈ F : p w−→
d

⊕ qf }

The intuition for L is that the length of a path from C to some configuration c
can be computed by adding the labels of the automaton transitions by which
c is accepted in Apost∗ . We use q w−→

d

⊕
i q′ and |〈p, w〉|i to denote that the

respective properties hold after i rounds of the modified post∗ algorithm
which is outlined below:

Algorithm 3

1. Add new states as in the usual post∗ algorithm and set L(t) := ⊥ if
t ∈ →0 and L(t) := � otherwise. Set i := 1. Each round consists of
the following steps:

2. Consider the priority of (p, γ, q) ∈ P ×Γ× (Q′ \P) as the minimal sum
of the labels in an accepting path in the current automaton starting
with p γ−→∗ q, i.e.

prioi(p, γ, q) := min�{ d2 ⊕ d1 | p γ−−→
d1

⊕
i−1 q w−−→

d2

⊕
i−1 qf , qf ∈ F, w ∈ Γ∗ }

64

Choose a triple (p∗i , γ
∗
i , q

∗
i) ∈ P × Γ × (Q′ \ P) with minimal priority

among those triples that have not already been chosen in an earlier
round.

3. Let m∗
i := prioi(p

∗
i , γ

∗
i , q

∗
i) and let b∗i := min�{ d | p∗i

γ∗
i−→
d

⊕
i−1 q∗i }.

If m∗
i = �, terminate. Otherwise, for every rule of the form r =

〈p∗i , γ∗
i 〉 ↪→ 〈p′, w〉 do the following:

(i) If |w| ≤ 1, add a transition t1 = (p′, w, q∗i) and set L(t1) :=
min�{L(t1), b

∗
i ⊕ f∆(r)}.

(ii) If w = γ′γ′′, then add a transition t1 = (p′, γ′, qp′,γ′) and set
L(t1) := ⊥, and add another transition t2 = (qp′,γ′ , γ′′, q∗i) and
set L(t2) := min�{L(t2), b

∗
i ⊕ f∆(r)}.

4. Set i := i + 1 and go back to Step 2.

It is easy to see that this extension still computes the same transitions as
the procedure from Section 3.1.2 – we merely place a condition upon the order
in which new transitions are processed. The termination condition expresses
the fact that all matches for the saturation rule have been exhausted. Let n
be the number of rounds it takes until the algorithm terminates. We prove
two auxiliary lemmata:

Lemma 3.14 For 0 ≤ i ≤ n, p ∈ P , w ∈ Γ∗, d � �, if p w−→
d

⊕
i q, then the

following holds:

(a) if q ∈ F , then 〈p′, w′〉 =⇒
d

⊕ 〈p, w〉 for a configuration 〈p′, w′〉 ∈ C;

(b) if q = qp′,γ′ is a new state, then 〈p′, γ′〉 =⇒
d

⊕ 〈p, w〉.

Proof: We proceed by induction over i.

Basis. i = 0.

(a) Then 〈p, w〉 ∈ C and d = ⊥. Take p′ = p and w′ = w.

(b) Then the left side is impossible, so we have nothing to show.

65

Step. i > 0. If i > n, we have nothing to prove. Otherwise, let j be the
number of transitions occurring on p w−→∗ q whose label was changed in the
i-th round. We use induction on j. If j = 0, then p w−→

d

⊕
i−1 q and we apply

the induction hypothesis on i. So assume that j > 0 and

p w1−−→
d1

⊕
i q1

γ−−→
d2

⊕
i q2

w2−−→
d3

⊕
i−1 q (2)

where w1γw2 = w, γ ∈ (Γ ∪ {ε}), d3 ⊕ d2 ⊕ d1 = d, and (q1, γ, q2) is a
transition whose label was changed in round i, and p w1−−→∗ q1 has j − 1 such
transitions. We distinguish three cases:

1. If the label of (q1, γ, q2) =: t1 was changed by case (i) of Step 3, then
w1 = ε, d1 = ⊥, q1 = p. We conclude that there exists r = 〈p2, γ2〉 ↪→
〈p, γ〉 ∈ ∆ such that

p2
γ2−−→
b∗i

⊕
i−1 q2 (3)

Since L(t1) was changed, d2 = b∗i ⊕ f∆(r), so p w−−−−−−−−→
d3⊕b∗i ⊕f∆(r)

⊕
i q.

(a) From (2) and (3) and the induction hypothesis on i we get

〈p′, w′〉 ====⇒
d3⊕b∗i

⊕ 〈p2, γ2w2〉

for some 〈p′, w′〉 ∈ C, therefore

〈p′, w′〉 ========⇒
d3⊕b∗i ⊕f∆(r)

⊕ 〈p, γw2〉 = 〈p, w〉,

so the claim holds.

(b) We argue along the same lines as in (a), substituting 〈p′, γ′〉 for
〈p′, w′〉.

2. If (q1, γ, q2) =: t1 is the first of the transitions added by case (ii), then
again w1 = ε, d1 = ⊥, q1 = p, and moreover q2 = qp,γ. We observe that
L(t1) is changed only once and from � to ⊥, and when this happens in
round i, no transitions are leaving q2 before round i. Therefore w2 = ε,
d3 = ⊥, q = q2, and for (a) there is nothing to prove. For (b), we
simply have 〈p′, γ′〉 = 〈p, γ〉 ==⇒⊥

⊕ 〈p, γ〉 = 〈p, w〉, and since d2 = ⊥ the
claim holds.

66

3. If (q1, γ, q2) =: t2 is the second of the transitions added or modified
in case (ii), let r = 〈p2, γ2〉 ↪→ 〈p′′, γ′′γ〉 be the responsible rule, so
q1 = qp′′,γ′′ and

p2
γ2−−→
b∗i

⊕
i−1 q2. (4)

Since L(t2) was changed, d2 = b∗i ⊕ f∆(r). hence

p w−−−−−−−−−−→
d3⊕b∗i ⊕f∆(r)⊕d1

⊕
i q.

Moreover, by the induction hypothesis on j, 〈p, w1〉 ==⇒
d1

⊕ 〈p′′, γ′′〉
holds.

(a) Combining (2) and (4) with the induction hypothesis on i, we get

〈p′, w′〉 ====⇒
d3⊕b∗i

⊕ 〈p2, γ2w2〉 ====⇒
f∆(r)

⊕ 〈p′′, γ′′γw2〉

==⇒
d1

⊕ 〈p, w1γw2〉 = 〈p, w〉

for some 〈p′, w′〉 ∈ C. Therefore the claim holds.

(b) Analogous to (a) with 〈p′, w′〉 = 〈p′, γ′〉 if q = qp′,γ′ .

�

Lemma 3.15 For 1 ≤ i ≤ n and 〈p, w〉 ∈ Conf (P) the following holds:

‖〈p, w〉‖C � m∗
i =⇒ |〈p, w〉|i−1 = ‖〈p, w〉‖C

Proof: ‖〈p, w〉‖C � m∗
i implies ‖〈p, w〉‖C � �, which means that in TP there

exists a path of length k from some c ∈ C to 〈p, w〉 such that c ======⇒
‖〈p,w〉‖C

⊕

〈p, w〉. We proceed by induction on k.

Basis. k = 0. Then 〈p, w〉 ∈ C and |〈p, w〉|0 = ⊥ holds. Since the path
by which 〈p, w〉 is accepted consists only of transitions whose label is ⊥
initially, these labels will not change and so |〈p, w〉|i = ⊥ = ‖〈p, w〉‖C holds
for 1 ≤ i ≤ n.

67

Step. k > 0. Then there exists a configuration c′ reachable in k − 1 steps
from some c ∈ C and a rule r such that

c =⇒
d

⊕ c′
〈r〉

==⇒ 〈p, w〉

and moreover ‖〈p, w〉‖C = d ⊕ f∆(r). Since ‖c′‖C � d � d ⊕ f∆(r) � m∗
i we

can apply the induction hypothesis on k and obtain

|c′|i−1 = ‖c′‖C (5)

In d � d⊕f∆(r), and in a couple of other places in the following, we make use
of the property (1). Let r = 〈p′, γ′〉 ↪→ 〈p, w′′〉, c′ = 〈p′, γ′w′〉, and w = w′′w′

for suitable values of p′, γ′, w′, w′′. Because of (5), we have

p′ γ−−→
d1

⊕
i−1 q′ w′−−→

d2

⊕
i−1 qf

for some q′ ∈ Q′, qf ∈ F , and d1, d2 with the property d2 ⊕ d1 = ‖c′‖C .
Therefore prioi(p

′, γ, q′) � ‖c′‖C � m∗
i , so (p′, γ, q′) must have been chosen

in a round before i at which time a path p w′′−−→
d′

⊕
i−1 q′, d′ � d1 ⊕ f∆(r) must

have been added. Hence, we have

|〈p, w〉|i−1 � d2 ⊕ d′ � d2 ⊕ d1 ⊕ f∆(r)

� ‖c′‖C ⊕ f∆(r) � d ⊕ f∆(r) = ‖〈p, w〉‖C .

Observe that Lemma 3.14 implies ‖〈p, w〉‖C � |〈p, w〉|i−1. Therefore we have
|〈p, w〉|i−1 = ‖〈p, w〉‖C . �

Lemma 3.16 Algorithm 3 effectively computes ‖c‖C.

Proof: We claim that |c| = ‖c‖C for all c ∈ Conf (P): If c is reachable from
some configuration in C, then ‖c‖C � �. Since m∗

n = �, we have (according
to Lemma 3.15) |c|n = |c| = ‖c‖C . If c is not reachable from any configuration
in C, we have ‖c‖C = � = |c| as a consequence of Lemma 3.14 (a). �

Computing priorities We now show how an implementation can compute
the priorities efficiently. For this purpose we use a priority queue, i.e. a
data structure which keeps a set of keys and associated values and provides
efficient methods for adding key-value pairs and dequeueing the pair with
the lowest value (see for instance [10]). Every triple (p, γ, q) is chosen only

68

once. Therefore, we keep one pair in the queue for each triple which hasn’t
been chosen before and whose priority is not �. The algorithm terminates
when the priority queue is empty. Before round i, the value associated with
(p, γ, q) in the queue shall be prioi(p, y, q). For efficiency reasons, we also
keep keys (p, ε, q) in the queue whose value is the minimal sum of the labels
in an accepting path starting with (p, ε, q). Moreover, we maintain a value
minpath(q) for every non-initial state q ∈ (Q′ \ P); its value shall be the
minimal sum of the labels in a path starting in q and leading to a final state.
We augment Algorithm 3 as follows:

Initially, for every transition (p, γ, q′) ∈ →0, p ∈ P add the triple
(p, γ, q′) to the priority queue with value ⊥. For every state q ∈ (Q \ P)
set minpath(q) := ⊥, and for every state q ∈ (Q′ \ Q) set minpath(q) := �.

In the following, when we say we ‘update’ a triple (p, γ, q) with a value d,
we mean the following procedure: If prio(p, γ, q) � d, we do nothing. If
prio(p, γ, q) = �, we add (p, γ, q) into the priority queue with value d. If
d � prio(p, γ, q) � � (this will only happen when (p, γ, q) is already in the
queue), we update the value of (p, γ, q) in the priority queue to d.

In round j of the algorithm, do the following: If the element dequeued
from the priority queue is a triple (p, ε, q), then take all transitions of the
form (q, γ, q′) and update the triple (p, γ, q′) with minpath(q′)⊕L(q, γ, q′)⊕
L(p, ε, q). We repeat this until the dequeued element is (p, γ, q) with γ ∈ Γ.
Then we perform Step 3 with these additions:

• In case (i), update the triple (p, w, q) with m∗
j ⊕ f∆(r) – notice that

this is the shortest path created by the change of L(p, w, q).

• In case (ii), if m∗
j ⊕ f∆(r) � minpath(qp′,γ′), set minpath(qp′,γ′) :=

m∗
j ⊕ f∆(r) and update t1 with the new value of minpath(qp′,γ′). This

needs a bit of justification – why would t1 be the only triple which
needs updating? Let s be the old value of minpath(qp′,γ′). Then we
had

m∗
j � m∗

j ⊕ f∆(r) � s � prioj(t1)

Therefore, t1 cannot have been chosen in round j or before, and the only
path leading to qp′,γ′ consists of t1, and hence it is enough to update
only t1.

• In case (ii), if minpath(qp′,γ′) � m∗
j ⊕ f∆(r) and L(t2) was changed, go

through all triples (p′′, ε, qp′,γ′) which have already been chosen in an

69

earlier round and update (p′′, γ′′, q) with L(p′′, ε, qp′,γ′)⊕L(t2). We need
not update any non-ε-triples because we know that there are shorter
paths leading away from qp′,γ′ than the one starting with t2.

A comparison of this procedure with Algorithm 2 shows that the number
of additions and updates to the priority queue is the same as the number of
additions to trans and rel in Algorithm 2. Therefore, the complexity of the
algorithm is increased by a factor κ which is the average time needed for an
enqueue/dequeue operation on the priority queue (assuming that ⊕ opera-
tions take only constant time!). κ depends on certain properties of D and ⊕;
for instance, if D has a constant, finite size, then these operations can be
performed in constant time.

The following theorem summarizes the result of this section.

Theorem 3.6 Let P = (P, Γ, ∆, c0) be a pushdown system, and let A =
(Q, Γ,→0, P, F) be a P-automaton. Let � be a total ordering on a monoid
〈D,⊕〉 with property (1) and f∆ : ∆ → (D\{�}) be a function. Then ‖·‖L(A)

(w.r.t. 〈D,⊕〉, �, and f∆) can be effectively computed in

O(κ · (|P | · |∆| · (n1 + n2) + |P | · |→0|))

time and
O(|P | · |∆| · (n1 + n2) + |P | · |→0|)

space, where n1 = |Q \ P |, n2 is the number of different pairs (p, γ) with a
rule of the form 〈p′, γ′〉 ↪→ 〈p, γγ′′〉 in ∆, and κ is the average time for an
enqueue/dequeue operation on a priority queue for values from D.

Conclusions Algorithm 3 solves a generalization of the shortest path prob-
lem with non-negative edge lengths. It also provides a unified solution for
some problems proposed for pushdown systems and RSMs:

• For the Boolean Program setting (Sections 3.1.5 and 4.1.3) Ball and
Rajamani [3] implemented a method which, given a reachable control
point n in the program, constructs the shortest path from one partic-
ular initial configuration to any configuration involving n (but not for
arbitrary stack configurations, or for arbitrary regular initial sets C).

• Jha and Reps [27] propose the use of reachability analysis on push-
down systems to solve a number of certificate-analysis problems in an

70

authorization framework. Among other things, they suggest that au-
tomata transitions labelled by values from a lattice with meet and join
operators could be used to answer questions like “How long is an au-
thorization valid?” or “How trustworthy is an authorization?”. In the
applications they suggest the lattices are totally ordered; therefore the
algorithm above provides an efficient solution in those cases.

Practical issues of generating shortest traces are also discussed in Section 5.4.

3.1.8 Regular rewriting systems

The reachability algorithms presented in this section can be quite easily ex-
tended to the case where both sides of the rewriting rules are regular expres-
sions.

Definition 3.4 A regular rewriting system is a quadruple R = (P, Γ, ∆, c0)
whose components P , Γ, and c0 have the same role as in a pushdown system
(w.l.o.g. we assume that c0 has a non-empty stack). A rewrite rule r ∈ ∆ has
the form ((p, Ur), (p

′, Vr)) such that p, p′ ∈ P and Ur, Vr are regular languages
over Γ. With R we associate the transition system TR = (P × Γ∗,⇒R, c0)
where ⇒R is the least relation satisfying the following:

If (〈p, U〉, 〈p′, V 〉) ∈ ∆, u ∈ U , v ∈ V , w ∈ Γ∗, then 〈p, uw〉 ⇒R 〈p′, vw〉.

The construction is quite straightforward: Given a regular rewriting sys-
tem R we construct a pushdown system PR which simulates R. We can
then run the reachability algorithms on PR and remove additional configu-
rations afterwards.

For every transition of R, PR simulates finite automata for both sides
of the corresponding rewrite rule. For each r = ((p, Ur), (p

′, Vr)) ∈ ∆, let
Ur = (Sr, Γ,→Ur , s

0
r, Fr) and Vr = (Tr, Γ,→Vr , t

0
r, Gr) be finite automata such

that L(Ur) = {w ∈ Γ∗ | wR ∈ Ur } and L(Vr) = Vr. Let • be a symbol not
yet contained in Γ. Then PR = (P ′, Γ′, ∆′, c0) has the following components:

• P ′ = P ∪
⋃

r∈∆(Sr ∪ Tr)

• Γ′ = Γ ∪ {•}

• For every r = ((p, Ur), (p
′, Vr)) ∈ ∆, ∆′ contains the following:

71

– if s0
r

γ−→Ur s′ then 〈p, γ〉 ↪→ 〈s′, ε〉;
– if s γ−→Ur s′ then 〈s, γ〉 ↪→ 〈s′, ε〉;
– if s γ−→Ur s′ and s′ ∈ Fr then 〈s, γ〉 ↪→ 〈t0r, •〉;
– if s0

r
γ−→Ur s′ and s′ ∈ Fr then 〈p, γ〉 ↪→ 〈t0r, •〉;

– if s0
r ∈ Fr then 〈p, γ〉 ↪→ 〈t0r, • γ〉;

– if t γ−→Vr t′ then 〈t, •〉 ↪→ 〈t′, • γ〉;
– if t ∈ Gr then 〈t, •〉 ↪→ 〈p′, ε〉.

In other words, from any configuration of R, PR can nondeterministically
choose to execute any rule of r ∈ ∆ without knowing whether the rule is
applicable, i.e. whether the current stack content has a prefix from Ur. How-
ever, if the rule is not applicable, the system will be unable to reach another
configuration from R. Therefore the reachability algorithms applied to PR
compute automata which accept exactly the set of configurations reachable
in R plus additional configurations which start in

⋃
r∈∆(Sr ∪Tr). To remove

these additional configurations it suffices to restrict the initial states of these
automata to P .

A possible application for regular rewriting systems in verification con-
cerns the modelling of Java-style exceptions. In this setting, the program may
raise different types of exceptions which cause control to be transferred to the
currently active ‘handler’ for the respective type of exception. Each block of
the program can define such handlers for one or more types of exceptions.
A handler becomes active when execution enters the block within which it
is defined; when execution leaves the block, the previously active handler
becomes reactivated. Therefore, whenever an exception is thrown, the Java
engine has to walk the stack of activation records from top to bottom and
find the first return address belonging to a block which has defined a handler
for the exception. The latter property can be determined statically; if N is
the set of program points, let Ne be the set of program points belonging to a
block with a handler for an expression of type e, and for each handler h let
Nh be the set of program points in the block to which h belongs. A program
with exceptions can then be translated into a regular rewriting system along
the lines of Section 2.3 with the following additions:

• each instruction which throws an exception of type e is translated to a
rule which pushes the symbol te onto the stack;

72

• each handler h for exceptions of type e gives rise to a rule whose left-
hand side regular language is { tewn | w ∈ (N − Ne)

∗, n ∈ Nh } and
whose right-hand side language is {h0}, where h0 is the entry point of
the handler.

An alternative modelling of Java-style exceptions in a pushdown framework
is discussed by Obdržálek in [33].

Another class of transition systems studied in the literature are prefix-
recognizable rewrite systems (PRRS) where, in addition to having regular
languages on both sides of the rewrite rules, transitions are guarded by reg-
ular predicates on the rest of the stack content. The approach taken in this
subsection can be extended to PRRS by combining it with methods similar
to those of Chapter 6. A solution for model-checking the µ-calculus on PRRS
is presented in [29].

3.2 Model-checking problems for LTL

In this section we present solutions to the problems (III) to (V) presented in
Section 2.5, which concern model-checking question for pushdown systems
and linear-time temporal logics (LTL). Our approach can be characterised
as an adaptation of the automata-theoretic approach which was introduced
by Vardi and Wolper [41] for finite-state systems.

The principal idea of the automata-theoretic approach is as follows: We
are given a transition system T = (S,→, s0) and an LTL formula ϕ. We
consider unlabelled transition systems here since we use a state-based inter-
pretation of the logics given by a valuation ν : At(ϕ) → S. According to
Theorem 2.2 there is a Büchi automaton B = (Q, 2At(ϕ), δ, q0, F) which ac-
cepts L(¬ϕ). (We denote the transition relation of B by the letter δ instead
of → from here on to avoid it from being confused with transition relations
of finite automata.) It is then possible to synchronize T and B to a new
transition system BT = (S × Q,→′, (s0, q0)) in such a way that for each
run σ of BT (with σ(i) = (si, qi) for i ≥ 0) the following holds:

• the projection σT given by σT (i) = si, i ≥ 0, is a run of T ;

• the projection of σ to the states of B, i.e. σB(i) = qi, i ≥ 0, is a run
of B labelled by σT

ν ;

73

• T 	|=ν ϕ if and only if BT has a run σ starting at (s0, q0) such that
σT

ν ∈ L(¬ϕ).

Determining whether the satisfaction condition holds is equivalent to check-
ing whether BT has a run σ starting at (s0, q0) such that σB ∩ Inf (F) 	= ∅.
The corresponding run σT satisfies ¬ϕ (i.e. s0 	|=ν ϕ) and serves as a witness
to the (negative) result. The construction of BT is as follows:

If s → s′ and (q,A, q′) ∈ δ such that A = {A | A ∈ At(ϕ), s ∈ ν(A) },
then (s, q) →′ (s′, q′).

We cannot transfer this approach to infinite-state systems completely
without restrictions. First, we need the synchronized system to be finitely
representable. Secondly, membership in ν(A) needs to be decidable in order
to construct the synchronized system. A convenient and natural way to
satisfy both constraints is to allow only simple valuations:

Definition 3.5 Let P = (P, Γ, ∆, c0) be a pushdown system. A set of con-
figurations of P is simple if it has the form { 〈p, γw〉 | w ∈ Γ∗ } for some
p ∈ P , γ ∈ Γ. A valuation ν : At → 2P×Γ∗

is simple if ν(A) is a union of
simple sets for every A ∈ At.

A simple valuation can therefore describe a property of the control loca-
tion and the topmost stack symbol of a configuration, but not of the rest of
the stack. While this may seem quite restrictive at first, one can argue that
for many applications the valuation can still ‘talk’ about the most important
aspects of the configurations. For instance, in program analysis the con-
trol location contains the global variables and the topmost stack symbol the
control location and local variables of the currently active procedure, if the
translation from Section 2.3 is used. Also, simple valuations do not provide
for the case where the stack is completely empty. However, this is not a real
problem because we can always add an artificial ‘bottom-of-stack’ symbol to
the system. For the rest of this chapter, we shall assume that all valuations
are simple; in Chapter 6 we show how to lift the methods presented here to
the case where valuations may include regular properties of the stack.

We adapt the automata-theoretic approach to pushdown systems by con-
structing Büchi pushdown systems:

74

Definition 3.6 Let P = (P, Γ, ∆, 〈p0, w0〉) be a pushdown system, and let
B = (Q, 2At(ϕ), δ, q0, F) be a Büchi automaton which accepts L(¬ϕ) for some
LTL formula ϕ the validity of which is interpreted by a simple valuation ν.
The product of P and B (with respect to ν) yields a Büchi pushdown system
BP = (P × Q, Γ, ∆′, 〈(p0, q0), w0〉, G), where

• 〈(p, q), γ〉 ↪→BP 〈(p′, q′), w〉 if 〈p, γ〉 ↪→P 〈p′, w〉 and (q,A, q′) ∈ δ such
that A = {A | A ∈ At(ϕ), 〈p, γ〉 ∈ ν(A) };

• (p, q) ∈ G if q ∈ F .

The transition system TBP associated with BP is equal to that of the pushdown
system ((P × Q), Γ, ∆′, 〈(p0, q0), w0〉).

Notice that TBP is a synchronization of TP and B in the same sense as
explained earlier because the left-hand sides of the rules ensure that all con-
figurations which can ‘fire’ them are compatible with the corresponding Büchi
transition. In the following we assume that all Büchi pushdown systems are
generated as above and denote their control locations by a simple set P ,
rather than P × Q, to simplify the notation. In order to reason about these
systems we use the following definitions:

Definition 3.7 Let BP = (P, Γ, ∆, c0, G) be a Büchi pushdown system. An
accepting run of P is a run which visits infinitely often configurations whose
control locations are in G. The relation ⇒r between configurations of BP
is defined as follows: c ⇒r c′ if and only if c ⇒∗ 〈g, w〉 ⇒+ c′ for some
configuration 〈g, w〉 with g ∈ G. A head 〈p, γ〉 is repeating if there exists
v ∈ Γ∗ such that 〈p, γ〉 ⇒r 〈p, γv〉. The set of repeating heads of BP is
denoted by RepBP (we omit the index if BP is understood).

If BP is the product of a pushdown system P and a Büchi automaton
for ¬ϕ, then an accepting run σ starting from some 〈(p, q0), w〉 exists if
and only if the configuration 〈p, w〉 of P violates ϕ. The model-checking
problems (III) to (V) thus boil down to detecting accepting runs in a Büchi
pushdown system. The following proposition characterizes the configurations
from which there are accepting runs.

Proposition 3.1 [9] Let c be a configuration of a Büchi pushdown system
BP = (P, Γ, ∆, c0, G). BP has an accepting run starting from c if and only if
there exists a repeating head 〈p, γ〉 such that c ⇒∗ 〈p, γw〉 for some w ∈ Γ∗.

75

Proof: “⇒”: Let σ be an accepting run where σ(0) = c and where wi is
the stack content of σ(i), i ≥ 0. Construct a strictly increasing sequence of
indices i0, i1, . . . with the following properties:

|wi0 | = min{ |wj| | j ≥ 0 }
|wik | = min{ |wj| | j > ik−1 }, k ≥ 1

In other words, once any of the configurations σ(ik) is reached, the rest of the
run never changes the bottom |wik |− 1 elements of the stack anymore. Since
BP has only finitely many different heads, there must be a pair 〈p, γ〉 which
occurs infinitely often as a head in the sequence σ(i0)σ(i1) Moreover,
since some g ∈ G becomes a control location infinitely often, we can find
a subsequence of indices ij0 , ij1 , . . . with the following property: For every
k ≥ 0 there are v, w ∈ Γ∗ such that

σ(ijk
) = 〈p, γw〉 ⇒r 〈p, γvw〉 = σ(ijk+1

)

In fact, because w is never looked at or changed in this path, we have
〈p, γ〉 ⇒r 〈p, γv〉 which proves this direction of the proposition.

“⇐”: Since 〈p, γ〉 is a repeating head, we can construct the following run
for some u, v, w ∈ Γ∗ and g ∈ G:

c ⇒∗ 〈p, γw〉 ⇒∗ 〈g, uw〉 ⇒+ 〈p, γvw〉 ⇒∗ 〈g, uvw〉 ⇒+ 〈p, γvvw〉 ⇒∗ · · ·

Since g occurs infinitely often, the run is accepting. �

Subject to a method for finding the repeating heads, Proposition 3.1 gives
us strategies for solving the model-checking problems. For the rest of the sec-
tion we fix a pushdown system P = (P ′, Γ, ∆, 〈p0, w0〉) and an LTL formula ϕ
whose negation is accepted by a Büchi automaton B = (Q, 2At(ϕ), δ, q0, F).
We let BP = (P, Γ, ∆, 〈(p0, q0), w0〉, G), where P := P ′×Q and G := P ′×F ,
be the synchronization of P and B. Moreover, we define Rep Γ∗ to denote
{ 〈p, γw〉 | 〈p, γ〉 ∈ Rep, w ∈ Γ∗ }.

(III) To find whether 〈p0, w0〉 |=ν ϕ, we check one of these two properties:

– 〈(p0, q0), w0〉 ∈ pre∗(Rep Γ∗)

– post∗({〈(p0, q0), w0〉}) ∩ Rep Γ∗ 	= ∅

(IV) To solve the global model-checking problem, i.e. find the set of all
configurations of P which violate ϕ, we compute the set

76

– pre∗(Rep Γ∗) ∩ { 〈(p, q0), w〉 | p ∈ P ′, w ∈ Γ∗ }

(V) To find all reachable configurations which violate ϕ, we compute the in-
tersection between the solution to (II), i.e. post∗({〈p0, w0〉}), and (IV).

All the sets of configurations involved in these computations are regular, so
we can use the methods from Section 3.1. In this section, we first present a
solution to the problem of finding the set of repeating heads and then analyse
the complexity of the model-checking procedures.

3.2.1 Computing the repeating heads

An important realization is that when we are looking for a path between
〈p, γ〉 and 〈p, γv〉, we are not interested in the actual contents of v. We can
thus determine the repeating heads based solely on the information about
which heads are reachable from each other (while possibly pushing arbitrary
symbols onto the stack) and whether an accepting state is passed in between.
This information can be encoded in a finite graph; the problem of finding
repeating heads in this graph then becomes quite similar to the problem of
finding accepting cycles in a finite-state system.

Definition 3.8 The head reachability graph of BP is the directed labelled
graph G = (P × Γ, {0, 1},→) whose nodes are the heads of BP and whose
edges are labelled with 0 or 1. We have (p, γ) b−→ (p′, γ′) under the following
conditions:

• there exists a rule 〈p, γ〉 ↪→ 〈p′′, v1γ
′v2〉 for some v1, v2 ∈ Γ∗, p′′ ∈ P ;

• 〈p′′, v1〉 ⇒∗ 〈p′, ε〉;

• b = 1 if and only if p ∈ G or 〈p′′, v1〉 ⇒r 〈p′, ε〉

The instances for which 〈p, v〉 ⇒r 〈p′, ε〉 holds can be found with small
modifications to the algorithms for pre∗ or post∗. This is discussed in Sec-
tion 3.2.2 for pre∗. Once G is constructed, Rep can be computed by exploiting
the fact that some head 〈p, γ〉 is repeating if and only if (p, γ) is part of a
strongly connected component of G which has a 1-labelled edge connecting
two of its nodes. This is proved in Theorem 3.7 at the end of this section.

77

p0, γ0 p1, γ1

p2, γ2p0, γ1

0

0

1

1

r1 = 〈p0, γ0〉 ↪→ 〈p1, γ1γ0〉
r2 = 〈p1, γ1〉 ↪→ 〈p2, γ2γ0〉

∆ = {r1, r2, r3, r4}

r3 = 〈p2, γ2〉 ↪→ 〈p0, γ1〉
r4 = 〈p0, γ1〉 ↪→ 〈p0, ε〉

G = {p2}

Γ = {γ0, γ1, γ2}
P = {p0, p1, p2}

Figure 3.8: The graph G.

Example Consider a Büchi pushdown system where P , ∆, Γ, and G are
as shown in the left half of Figure 3.8. The right half of the figure shows the
graph G. Three of the edges are immediately derived from r1, r2, and r3; the
edge from 〈p1, γ1〉 to 〈p0, γ0〉 exists because

〈p1, γ1〉 ⇒ 〈p2, γ2γ0〉 ⇒ 〈p0, γ1γ0〉 ⇒ 〈p0, γ0〉;
it is labelled with 1 because p2 ∈ G. The SCCs of G are {(p0, γ0), (p1, γ1)},
{(p0, γ1)}, and {(p2, γ2)}. Only the first of these has an internal 1-edge, so
〈p0, γ0〉 and 〈p1, γ1〉 are the repeating heads.

In the following we write (p, γ) →r (p′, γ′) to express that there exist
heads (p1, γ1) and (p2, γ2) such that

(p, γ) →∗ (p1, γ1)
1−→ (p2, γ2) →∗ (p′, γ′)

Lemma 3.17 The relations →∗ and →r have the following properties:

(a) (p, γ) →∗ (p′, γ′) if and only if 〈p, γ〉 ⇒∗ 〈p′, γ′v〉 for some v ∈ Γ∗.

(b) Moreover, (p, γ) →r (p′, γ′) if and only if 〈p, γ〉 ⇒r 〈p′, γ′v〉.

Proof:
“⇒”: Assume (p, γ) −→

i
(p′, γ′). We proceed by induction on i.

(a) Basis. i = 0. In this case, (p, γ) = (p′, γ′), thus 〈p, γ〉 ⇒∗ 〈p′, γ′〉.
Step. i > 0. Then there exist p′′, γ′′ such that (p, γ) → (p′′, γ′′)
and (p′′, γ′′) −−−→

i−1
(p′, γ′). From the induction hypothesis, there ex-

ists u such that 〈p′′, γ′′〉 ⇒∗ 〈p′, γ′u〉. Since (p, γ) → (p′′, γ′′) we have
〈p, γ〉 ⇒∗ 〈p′′, γ′′w〉 (for some w ∈ Γ∗), hence 〈p, γ〉 ⇒∗ 〈p′, γ′uw〉.

78

(b) Basis. i = 0. In this case (p, γ) →r (p′, γ′) cannot hold.

Step. i > 0. In the proof of (a) we had (p, γ) → (p′′, γ′′) −−−→
i−1

(p′, γ′).
In order for (p, γ) →r (p′, γ′) to hold, either (p′′, γ′′) →r (p′, γ′) holds
or (p, γ) 1−→ (p′′, γ′′). In the first case, (by the induction hypothesis)
〈p′′, γ′′〉 ⇒r 〈p′, γ′u〉 holds and hence 〈p, γ〉 ⇒r 〈p′, γ′uw〉.
In the second case (p, γ) 1−→ (p′′, γ′′) implies that there exists a rule
〈p, γ〉 ↪→ 〈p1, v1γ

′′w〉, and either p ∈ G or 〈p1, v1〉 ⇒r 〈p′′, ε〉 holds.
If p ∈ G, we have 〈p, γ〉 ⇒r 〈p1, v1γ

′′w〉. Otherwise 〈p1, v1γ
′′w〉 ⇒r

〈p′′, γ′′w〉 holds. By (a) we have 〈p′′, γ′′〉 ⇒∗ 〈p′, γ′u〉. Again, in both
cases we have 〈p, γ〉 ⇒r 〈p′, γ′uw〉.

“⇐”: Assume 〈p, γ〉 =⇒
i

〈p′, γ′v〉. We proceed by induction on i.

(a) Basis. i = 0. In this case we have 〈p, γ〉 = 〈p′, γ′〉 and v = ε, and
(p, γ) →∗ (p, γ) holds trivially.

Step. i > 0. Then there exists some configuration 〈p′′, u〉 such that
〈p, γ〉 =⇒

1
〈p′′, u〉 ===⇒

i−1
〈p′, γ′v〉. There must be a rule 〈p, γ〉 ↪→ 〈p′′, u〉,

and moreover |u| ≥ 1. Let l denote the minimal length of the stack on
the path from 〈p′′, u〉 to 〈p′, γ′v〉. Then u can be written as u′′γ1u

′ where
|u′| = l − 1. Furthermore, there exists p′′′ such that 〈p′′, u′′〉 ⇒∗ 〈p′′′, ε〉
and, since u′ has to remain on the stack for the rest of the path, v is of
the form v′u′ for some v′ ∈ Γ∗. This means that 〈p′′′, γ1〉 =⇒

j
〈p′, γ′v′〉

for j < i. By the induction hypothesis, (p′′′, γ1) →∗ (p′, γ′). Also, we
have (p, γ) → (p′′′, γ1), hence (p, γ) →∗ (p′, γ′).

(b) Basis. i = 0. 〈p, γ〉 ⇒r 〈p′, γ′v〉 is impossible in zero steps.

Step. i > 0. In the step of (a), either 〈p, γ〉 ⇒r 〈p′′, u〉 or 〈p′′, u〉 ⇒r

〈p′, γ′v〉 holds. The first case implies p ∈ G. Then it holds that
(p, γ) 1−→ (p′′′, γ1) and (p′′′, γ1) →∗ (p′, γ′), thus (p, γ) →r (p′, γ′).

In the second case 〈p′′, u〉 ⇒r 〈p′, γ′v〉 holds. Either we have 〈p′′, u′′〉 ⇒r

〈p′′′, ε〉, then (p, γ) 1−→ (p′′′, γ1), or (p′′′, γ1) ⇒r 〈p′, γ′v′〉, then by the
induction hypothesis we have (p′′′, γ1) →r (p′, γ′). In both cases we get
the desired result.

�

We can now prove the following theorem.

79

Theorem 3.7 Let BP be a Büchi pushdown system, and let G be the asso-
ciated head reachability graph. A head 〈p, γ〉 of BP is repeating if and only
if the node (p, γ) is in a strongly connected component of G which has an
internal 1-labelled edge (i.e. an edge connecting two nodes of the SCC).

Proof: Let 〈p, γ〉 ∈ Rep, i.e. there exists v ∈ Γ∗ such that 〈p, γ〉 ⇒r 〈p, γv〉.
By Lemma 3.17, this is the case if and only if (p, γ) →r (p, γ). From
the definition of →r it follows that there are (p′, γ′) and (p′′, γ′′) such that
(p, γ) →∗ (p′, γ′) 1−→ (p′′, γ′′) →∗ (p, γ). Then (p, γ), (p′, γ′), and (p′′, γ′′) are
all in the same strongly connected component, and this component contains
a 1-labelled edge. Conversely, whenever (p, γ) is in a component with such
an edge, (p, γ) →r (p, γ) holds. �

Implementation To compute the repeating heads, we proceed in two
phases. In the first phase, the cases for which 〈p, w〉 ⇒∗ 〈p′, ε〉 (resp. ⇒r)
holds are computed, which allows us to construct G. In the second phase, we
identify the strongly connected components in G. The latter is achieved by
Tarjan’s algorithm [40] which takes linear time in the size of G.

Problem (III) can be solved by two methods, one involving pre∗, the
other post∗. To avoid redundant computations, we can adapt the first phase
to the method being used.

3.2.2 The pre∗ method

Algorithm 4 in Figure 3.9 constructs G from information obtained while
computing pre∗ on the set Lε := { 〈p, ε〉 | p ∈ P }. Every resulting transition
(p, γ, p′) signifies that 〈p, γ〉 ⇒∗ 〈p′, ε〉 holds. However, we also need the
information whether 〈p, γ〉 ⇒r 〈p′, ε〉. To this end, we enrich the alphabet
of the automaton; instead of transitions of the form (p, γ, p′) we now have
transitions (p, [γ, b], p′) where b is a boolean. The meaning of a transition
(p, [γ, 1], p′) should be that 〈p, γ〉 ⇒r 〈p′, ε〉. In the algorithm G(p) yields 1
if and only if p ∈ G.

Termination: Termination follows from the fact that the pre∗ algorithm
terminates – we just have a larger alphabet.

80

Algorithm 4
Input: a Büchi pushdown system BP = (P, Γ, ∆, c0, G)
Output: the edges of the graph G = (P × Γ, {0, 1},→)

1 rel := ∅; trans := ∅; ∆′ := ∅;
2 for all 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ do
3 trans := trans ∪ {(p, [γ,G(p)], p′)};
4 while trans 	= ∅ do
5 pop t = (p, [γ, b], p′) from trans;
6 if t /∈ rel then
7 rel := rel ∪ {t};
8 for all 〈p1, γ1〉 ↪→ 〈p, γ〉 ∈ ∆ do
9 trans := trans ∪ {(p1, [γ1, b ∨ G(p1)], p

′)};
10 for all 〈p1, γ1〉 b′↪−→ 〈p, γ〉 ∈ ∆′ do
11 trans := trans ∪ {(p1, [γ1, b ∨ b′], p′)};
12 for all 〈p1, γ1〉 ↪→ 〈p, γγ2〉 ∈ ∆ do
13 ∆′ := ∆′ ∪ {〈p1, γ1〉 b∨G(p1)

↪−−−−−→ 〈p′, γ2〉};
14 for all (p′, [γ2, b

′], p′′) ∈ rel do
15 trans := trans ∪ {(p1, [γ1, b ∨ b′ ∨ G(p1)], p

′′)};
16
17 for all 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆ do add (p, γ)

G(p)−−−→ (p′, γ′);
18 for all 〈p, γ〉 b↪−→ 〈p′, γ′〉 ∈ ∆′ do add (p, γ) b−→ (p′, γ′);
19 for all 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ ∆ do add (p, γ)

G(p)−−−→ (p′, γ′);

Figure 3.9: Computing the head reachability graph with the pre∗ method.

81

Correctness: The first phase of the algorithm computes pre∗(Lε). The
only modification to the algorithm for pre∗ is the addition of the boolean
indicators. We have already proved the correctness of the normal pre∗ algo-
rithm. Applying Lemmas 3.1 and 3.2 we get that 〈p, γ〉 ⇒∗ 〈p′, ε〉 if and only
if a transition (p, [γ, b], p′) is produced for some b. It remains to show that a
transition (p, [γ, 1], p′) emerges if and only if 〈p, γ〉 ⇒r 〈p′, ε〉.
“⇒”: We consider the circumstances under which 1-labelled transitions can
be added to trans.

• Originally, the automaton contains no transitions at all.

• In line 3, we have 〈p, γ〉 ↪→ 〈p′, ε〉 and p ∈ G. Hence, 〈p, γ〉 ⇒r 〈p′, ε〉.

• In line 9, we have 〈p1, γ1〉 ↪→ 〈p, γ〉 and (p, [γ, b], p′). For b ∨ G(p1) to
be 1, either b = 1 (which means 〈p, γ〉 ⇒r 〈p′, ε〉) or p1 ∈ G (which
means 〈p1, γ1〉 ⇒r 〈p, γ〉). In both cases we get 〈p1, γ1〉 ⇒r 〈p′, ε〉.

• In line 11, there is a transition (p, [γ, b], p′), and the existence of the rule
means 〈p1, γ1〉 ↪→ 〈p2, γ2γ〉, (p2, [γ2, b

′′], p), and b′ = G(p1)∨ b′′ for some
p2, γ2. In other words, 〈p1, γ1〉 ⇒ 〈p2, γ2γ〉 ⇒∗ 〈p, γ〉 ⇒∗ 〈p′, ε〉. If b∨ b′

is true, either b = 1 (meaning 〈p, γ〉 ⇒r 〈p′, ε〉), or p1 ∈ G (meaning
〈p1, γ1〉 ⇒r 〈p2, γ2γ〉), or b′′ = 1 (meaning 〈p2, γ2γ〉 ⇒r 〈p, γ〉).

• In line 15, the situation is similar to the preceding case, only the roles
of p, γ and p2, γ2 are reversed.

“⇐”: If 〈p, γ〉 ⇒r 〈p′, ε〉 holds, then by definition there exists 〈g, u〉 such that
〈p, γ〉 ==⇒

i1
〈g, u〉 ==⇒

i2
〈p′, ε〉 where i1 ≥ 0, i2 ≥ 1. We prove the property by

induction on i := i1 + i2.

Basis. i = 0. By definition, 〈p, γ〉 ⇒r 〈p′, ε〉 cannot hold if i = 0.

Step. i > 0. Then we can find a configuration 〈p′′, w〉 such that 〈p, γ〉 =⇒
1

〈p′′, w〉 ===⇒
i−1

〈p′, ε〉 holds. Then p′′ w−→∗ p′ in Apre∗ .
Either p ∈ G so that 〈p, γ〉 ⇒r 〈p′′, w〉 holds. Then the addition rule of

the pre∗-algorithm leads to (p, [γ, 1], p′).
Otherwise 〈p′′, w〉 ⇒r 〈p′, ε〉 holds. Then |w| ≥ 1 since at least one step

must occur. In the case |w| = 1 let w = γ1. By the induction hypothesis,
(p′′, [γ1, 1], p′) is in rel . Then (p, [γ, 1], p′) will be added in line 9.

82

In the case |w| = 2 let w = γ1γ2. There exists p′′′ such that 〈p′′, γ1〉 ⇒∗

〈p′′′, ε〉 and 〈p′′′, γ2〉 ⇒∗ 〈p′, ε〉. The length of both derivations will be at
most i − 1, and we conclude that the algorithm must find transitions of
the form (p′′, [γ1, b1], p

′′′) and (p′′′, [γ2, b2], p
′). Either 〈p′′, γ1〉 ⇒r 〈p′′′, ε〉,

then by the induction hypothesis b1 = 1. Otherwise 〈p′′′, γ2〉 ⇒r 〈p′, ε〉 and
b2 = 1. Depending on which transition is processed first by the algorithm,
(p, [γ, 1], p′) is added in line 11 or 15.

Notice that we get r′ = 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ ∆′ exactly if there is a rule
〈p, γ〉 ↪→ 〈p′′, γ′′γ′〉 ∈ ∆ and (p′′, [γ′′, b], p′) ∈ rel for some b which means
〈p′′, γ′′〉 ⇒∗ 〈p′, ε〉. Thus, by Definition 3.8 the existence of r′ is equivalent
to an edge in G whose label can be determined from b and p.

Complexity: Let nP = |P | and n∆ = |∆|. The first phase is essentially
the same as Algorithm 1 with an initially empty automaton; the addition of
boolean indicators on the arcs can only lead to a linear increase in both time
and space requirements. Therefore, Theorem 3.4 tells us that the first phase
takes O(n2

P n∆) time and O(nP n∆) space.
The rules of ∆ contribute O(n∆) nodes and edges to the size of G. As the

size of ∆′ is O(nP n∆), the total size of G is O(nP n∆), too. Determining the
strongly connected components is possible in linear time in the size of the
graph [40] and the same holds for searching each component for an internal
1-edge.

Theorem 3.8 Let BP = (P, Γ, ∆, c0, G) be a Büchi pushdown system. The
set of repeating heads Rep can be computed in O(n2

P n∆) time and O(nP n∆)
space where nP = |P | and n∆ = |∆|.

In the context of the model-checking problems presented earlier, we often
need the repeating heads to compute pre∗(Rep Γ∗). In this case we would
need two rounds of pre∗; the first on Lε (Algorithm 4), the second on Rep Γ∗.
Lε is represented by an automaton whose states and transitions are a subset
of those used for Rep Γ∗. Therefore, the transitions obtained in the first
round would also emerge in the second round (minus the boolean values).
This, and the special form of the automaton for Rep Γ∗ mean that the second
round can be very much simplified:

1. We start with the automaton obtained by Algorithm 4, but ignore all
boolean values on its transitions and on ∆′, and add a new state s
which is the only non-initial and final state.

83

2. For each 〈p, γ〉 ∈ Rep, add a transition (p, γ, s); for each γ ∈ Γ add
(s, γ, s).

3. Line 2 of Algorithm 1 has already been performed, so we leave it out.
In line 4, t always has the form (p, γ, s). Lines 7 to 12 can be simplified
as follows:

for 〈p1, γ1〉 ↪→ 〈p, γ〉 ∈ (∆ ∪ ∆′) do
trans := trans ∪ {(p1, γ1, s)};

for 〈p1, γ1〉 ↪→ 〈p, γγ2〉 ∈ ∆ do
trans := trans ∪ {(p1, γ1, s)};

In the second loop, we do not need to add rules to ∆′; they would
have the form 〈p1, γ1〉 ↪→ 〈s, γ2〉 and could only lead to (p1, γ1, s) which
we’re adding anyway. Similarly, lines 11 and 12 from Algorithm 1 can
be removed because they also lead to (p1, γ1, s).

4. The time and space taken up by Steps 2 and 3 is O(|∆| · |Q|).

3.2.3 The post∗ method

To solve the question whether the initial configuration 〈p0, w0〉 satisfies an
LTL formula ϕ, we can also check if post∗({〈(p0, q0), w0〉})∩Rep Γ∗ 	= ∅. This
question can be decided by the following procedure:

1. Compute the automaton Apost∗ which represents post∗({〈(p0, q0), w0〉}).

2. It suffices to construct G restricted to the reachable heads. A head
〈p, γ〉 is reachable if there exists a transition (p, γ, q) (for any state q)
in Apost∗ .

3. If the restriction of G to the reachable heads has a strongly connected
component with a 1-labelled edge, then 〈p0, w0〉 violates ϕ.

To construct G, we again need the information if 〈p, γ〉 ⇒∗ 〈p′, ε〉 holds for
certain p, p′ ∈ P , γ ∈ Γ. According to 3.4, this is the case if in Apost∗ we have
an ε-transition between p′ and qp,γ. To see if 〈p, γ〉 ⇒r 〈p′, ε〉 we can again
extend the transition with a boolean value. This is not presented in detail
here as the principle is very similar to that of Algorithm 4; the idea is to
annotate a transition p γ−→ qp,γ with 0 and update that value on subsequent
transitions to qp,γ depending on which rules were used to add them.

84

3.2.4 Summary of model-checking problems

Using the earlier results from this section we can now compute the complexity
of the problems (III) to (V). The following steps are necessary to solve the
model-checking problems for a given pushdown system P = (P, Γ, ∆, 〈p0, w0〉)
and a formula ϕ:

• Construct the Büchi automaton B = (Q, 2At(ϕ), δ, q0, F) corresponding
to the negation of ϕ.

• Compute the Büchi pushdown system BP as the product of B and P.
Let nP = |P |, n∆ = |∆|, nQ = |Q|, and nδ = |δ|. Then BP has
at most s := nP nQ control locations and r := n∆nδ rules and can be
computed in O(r) time.

In the pre∗ method (see Section 3.2.2) we proceed as follows:

• Compute the set of repeating heads Rep of BP . According to Theo-
rem 3.8, this takes O(rs2) time and O(rs) space.

• Compute the automaton Apre∗ accepting pre∗(Rep Γ∗) using the infor-
mation gathered in the previous step. This takes O(r) time and space.
A configuration 〈p, w〉 violates ϕ exactly if Apre∗ accepts 〈(p, q0), w〉.
Apre∗ = ((P ×Q) ∪ {s}, Γ,→A, P ×Q, {s}) has O(s) states and O(rs)
transitions.

The complexity of this procedure, which solves problems (III) (whether
the initial configuration satisfies ϕ) and (IV) (the global model-checking prob-
lem), is dominated by the time needed to compute the repeating heads and
the space needed to store Apre∗ . In the post∗ method (see Section 3.2.3) we
can also solve problem (III) like this:

• Let A be the automaton which accepts the configuration 〈(p0, q0), w0〉
of BP . This automaton has s initial states and |w0| transitions and
non-initial states.

• Let n2 be the number of different heads 〈p, γ〉 for which there is a rule
〈p′, γ′〉 ↪→ 〈p, γγ′′〉 ∈ ∆. According to Theorem 3.5, Apost∗ can be
constructed in O(rs · (|w0| + nQn2)) time and space.

85

• Using the information provided in the previous step we can construct
the (partial) head reachability graph and search it in O(rs) time and
space. The initial configuration violates ϕ exactly if a repeating head
is found.

This complexity of this second procedure is dominated by the time and
space for Apost∗ . We obtain the following results:

Theorem 3.9 The model-checking problem for the initial configuration and
the global model-checking problem can be solved in O(|P |2 · |∆| · |B|3) time and
O(|P | · |∆| · |B|2) space using the pre∗ method. The problem for the initial
configuration can be solved in O(|P | · |∆| · (|w0| + n2) · |B|3) time and space
using the post∗ method.

To solve problem (V), the global model-checking problem for reachable
configurations, we need some additional steps:

• In Apre∗ , rename the states (p, q0) into p for all p ∈ P and take P as
the new set of initial configurations. Define n2 as above.

• Compute post∗ (with respect to P, not BP) for the initial configura-
tion {〈p0, w0〉} Then, according to Theorem 3.5, Apost∗ can be computed
in O(nP n∆(|w0|+ n2)) time and space. Apost∗ has m := nP + |w0|+ n2

many states and O(nP n∆(|w0| + n2)) many transitions.

• Compute the intersection of Apre∗ and Apost∗ . The resulting automaton
Ainter accepts the set of reachable configurations violating ϕ. The
transitions of Ainter are computed as follows:

If (q, γ, q′) in Apre∗ and (r, γ, r′) in Apost∗ ,
then ((q, r), γ, (q′, r′)) in Ainter .

This intersection can be computed more efficiently if the following trick
is employed: First all the transitions (r, γ, r′) in Apost∗ are sorted into
buckets labelled γ. Then every transition of Apre∗ is multiplied with
the transitions in the respective bucket. The number of transitions
in each bucket is at most m2. Hence, the intersection can be com-
puted in O(rsm2) time and space. Alternatively, we can create buckets
for the transitions of Apre∗ which has s many states; we then obtain
O(s2nP n∆(|w0| + n2)) time and space for the intersection.

86

Theorem 3.10 The global model-checking problem for reachable configura-
tions can be solved in

O(|P | · |∆| · |B|3 · (|P | + |w0| + n2)
2) time

and O(|P | · |∆| · |B|2 · (|P | + |w0| + n2)
2) space

or in

O(|P |3 · |∆| · |B|3 · (|w0| + n2)) time

and O(|P |3 · |∆| · |B|2 · (|w0| + n2)) space.

Conclusion The work in this section evolved from the model-checking al-
gorithm in [9], which followed the same automata-theoretic approach using
pre∗ to solve problems (III) and (IV). Proposition 3.1 is taken from there; its
proof has been repeated (and rephrased) here for the sake of completeness.
The contribution of the algorithms presented here is twofold: the pre∗ method
is substantially better than the one from [9] which uses either O(|BP|5) time
and O(|BP|2) space, or O(|BP|3) time and space. The post∗ method is new
and often much faster in practice (see Section 5.5).

In [22] another algorithm was presented for deciding if the initial config-
uration satisfies a given LTL property, i.e. problem (III). (The problem of
obtaining a representation for the solution of (IV) was not discussed.) The
algorithm takes cubic time and also cubic space in the size of the pushdown
system. More precisely, it is based on a saturation routine which requires
Θ(|P|3 · |B|3) space. Observe that the space consumption is Θ, and not O.

Since the algorithms presented here are quadratic in |P | and only lin-
ear in |∆|, they specialize nicely to linear time and space for Basic Process
Algebras [31] which are essentially pushdown systems with only one control
location. More recently, LTL model-checking procedures for Hierarchical
State Machines, a model equally expressive as pushdown systems, have been
proposed [1, 6]. For a more detailed discussion of these, see Section 3.1.5.

3.3 Symbolic algorithms

Earlier on, pushdown systems were discussed as a model for sequential pro-
grams with variables of finite data types (see Section 2.3). We noticed that
for this to be practical we require a succinct representation for the system

87

because its size becomes exponential in the number of program variables. To
this end, we introduced the concept of symbolic pushdown systems in which
sets of rules are expressed as relations (for which we hope to find efficient
representations). This approach is hybrid in the sense that we do not en-
code the whole system as one large relation, but partition it into multiple
smaller relations. These come in the form of explicit rules to each of which
a (symbolic) relation is attached, see the discussion in Section 2.3.

This section discusses versions of the model-checking algorithms which
take advantage of such efficient representations. As a data structure for
these representations we use Binary Decision Diagrams (see Section 2.4). In
principle, however, the approach is amenable to any data structure which
represents sets and provides efficient implementations for standard set oper-
ations like union, intersection, and existential quantification (see below).

For the rest of the section, we fix a symbolic pushdown system P =
(P, Γ, ∆, c0) whose control locations and stack alphabet have the form

P = P0 × G and Γ = Γ0 × L .

Since we use BDDs to represent elements and subsets of G and L, we can
assume that G and L are the cross product of mG and mL boolean variables,
respectively:

G = {0, 1}mG and L = {0, 1}mL

Symbolic automata The reachability algorithms from Section 3.1 operate
on regular sets of configurations encoded by finite automata (Definition 3.2).
To adapt these algorithms to the symbolic case, we need an appropriate data
structure for the automata. We refer to the data structure presented below
as symbolic automata.

Let A = (Q0 × G, Γ,→, P0 × G,F), where Q0 ⊇ P0, be a P-automaton.
If q, q′ ∈ Q0 and γ ∈ Γ0, then we let

q γ−−→
[R]

q′

(where R ⊆ G × L × G) denote the set of transitions

{ (q, g)
(γ,l)−−−→ (q, g′) | (g, l, g′) ∈ G × L × G }.

If we hope that BDDs (or some other encoding) compactly represent elements
of G and L in P, it seems justified to hope that the same type of encoding

88

is succinct for the relation R above. Therefore, we choose to represent →
as a list of so-called symbolic transitions q γ−−→

[R]
q′ as above, i.e. triples from

Q0 × Γ0 × Q0 to which a BDD is attached.

3.3.1 Operations on sets and BDDs

The adaptation of the model-checking algorithms from Sections 3.1 and 3.2
is achieved by set-theoretic operations on the relations attached to symbolic
rewriting rules of PS and the transitions of PS-automata. Since the rela-
tions will be represented by BDDs, it is worth having a look at which these
operations are and what their BDD counterparts are.

A subset of G can be represented by a BDD with mG variables. Likewise,
a BDD with mL variables can represent a subset of L. To represent multi-
dimensional relations whose components can be elements of either G or L,
we need BDDs where the individual components are represented by pairwise
disjoint sets of BDD variables. We shall call these sets the signature of the
BDD. More precisely, suppose that a k-dimensional relation R is expressed
by a BDD R in such a way that the i-th component (1 ≤ i ≤ k) of the tuples
in R is represented by a set BDD variables Vi. Then we define sig(R) :=
(V1, . . . , Vk).

Union and Intersection Standard set operations like union and inter-
section have immediate counterparts in BDD operations; e.g. R1 ∪ R2 and
R1 ∩ R2 correspond to R1 ∨ R2 and R1 ∧ R2 if R1 and R2 are BDDs for
R1 and R2, respectively. In order for the result to be unambiguous, the
signatures of both BDDs need to be the same.

Join Another important operation is the join between two relations. For
instance, if R1 ⊆ S1 ×S2 and R2 ⊆ S2 ×S3, we may want to compute the set

R3 = { (x, z) | ∃y ∈ S2 : (x, y) ∈ R1 ∧ (y, z) ∈ R2 }.

The corresponding BDD operation involves conjunction and existential ab-
straction. If v is a BDD variable and R a BDD, then ∃v : R denotes
(R ∧ ¬v) ∨ (R ∧ v). We extend this notation so that ∃V : R means exis-
tential abstraction over all variables in the set V . Assume that R1 and R2

are BDDs for R1 and R2 with sig(R1) = (V1, V2) and sig(R2) = (V2, V3). A

89

BDD R3 for R3 is then obtained by computing

R3 = ∃V2 : (R1 ∧R2).

The signature of R3 is (V1, V3).

Relabelling In the example for joins, imagine that R3 holds the same type
of information as R1. In that case it would be practical if R3 had the same
signature as R1. We use an operation called relabelling for this:

Generally speaking, if W = {w1, . . . , wj} and Z = {z1, . . . , zj} are sets of
BDD variables and R is a BDD with sig(R) = (V1, . . . , Vl−1,W, Vl+1, . . . , Vk),
then we let R[W → Z] denote the BDD which is obtained from R by rela-
belling all nodes labelled by wi, 1 ≤ i ≤ j, to zi. The signature of R[W → Z]
is (V1, . . . , Vl−1, Z, Vl+1, . . . , Vk). In the example, the operation R3[V3 → V2]
would yield a BDD with signature (V1, V2).

If multiple components of R are changed simultaneously, we write a
comma-separated list, e.g. R[W1 → Z1, W2 → Z2, . . .].

In the following, let G0, G1, G2 be disjoint sets of mG BDD variables each,
and let L0, L1, L2, L3 be disjoint sets of mL BDD variables each. If we have
〈p, γ〉 ↪−→

[R]
〈p′, γ1, . . . , γn〉, where 0 ≤ n ≤ 2, we assume that a BDD which

represents R has the signature (G0, L0, G1, L1, . . . , Ln). For both pre∗ and
post∗, the abstract algorithms will be presented in terms of set operations
whereas the concrete algorithms will show their BDD counterparts. For the
latter, we will in fact remove the distinction between relations and the BDDs
representing them because each relation is represented by a BDD with one
particular signature which is therefore unambiguous.

3.3.2 Computing pre∗

Let A = (Q0 × G, Γ,→0, P0 × G,F) be a P-automaton for the regular set
of configurations C. Without loss of generality, we assume that A has no
transitions ending in an initial state. Section 3.1.1 showed a saturation pro-
cedure which computes → ⊇ →0, the transition relation of the automaton
recognizing pre∗(C):

If 〈p, γ〉 ↪→ 〈p′, w〉 and p′ w−→∗ q, then add p γ−→ q.

For symbolic representations, we instantiate the rule as follows:

90

(i) If 〈p, γ〉 ↪−→
[R]

〈p′, ε〉, then add p γ−−→
[R]

p′.

(ii) If 〈p, γ〉 ↪−→
[R]

〈p′, γ′〉 and p′ γ′−−−→
[R1]

q, then add p γ−−−→
[R′]

q where

R′ = { (g, l, g1) | ∃g0, l1 : (g, l, g0, l1) ∈ R ∧ (g0, l1, g1) ∈ R1 }.

(iii) If 〈p, γ〉 ↪−→
[R]

〈p′, γ′γ′′〉 and p′ γ′−−−→
[R1]

q′ γ′′−−−→
[R2]

q, then add p γ−−−→
[R′]

q where

R′ = { (g, l, g2) | ∃g0, l1, g1, l2 : (g, l, g0, l1) ∈ R

∧ (g0, l1, g1) ∈ R1 ∧ (g1, l2, g2) ∈ R2 }.

Notice that the operations required for cases (ii) and (iii) are joins between
the relations R, R1, and R2.

Algorithm 5 in Figure 3.10 is an implementation of this instantiation
of the saturation rule along the lines of Algorithm 1. We maintain two
structures for sets of transitions, rel and trans. For each triple (q, γ, q′),
where q, q′ ∈ Q0 and γ ∈ Γ0, rel(q, γ, q′) and trans(q, γ, q′) represent a set of
transitions which belong to →. trans contains transitions that still need to
be processed, and rel contains those that have already been processed.

Each relation in rel and trans is represented by a BDD with the signa-
ture (G1, L1, G2). The relabelling operations ensure that all newly computed
transitions have this common signature.

3.3.3 Computing post∗

Again, let A = (Q0 × G, Γ,→0, P0 × G,F) be a P-automaton for a regular
set of configurations C, and assume that A has no transitions leading to
initial states. We modify A into an automaton with ε-moves which accepts
post∗(C). Section 3.1.2 showed a method which adds both states and tran-
sitions to A, which we adapt to the symbolic case. Let Q′ ⊇ Q0 × G and
→ ⊇ →0 contain the states and transitions of Apost∗ , the P-automaton for
post∗(C). We proceed as follows:

• For each symbolic rule 〈p, γ〉 ↪−→
[R]

〈p′, γ′γ′′〉 we add to Q′ a set of new
states {qp′,γ′} × (G × L).

• The transition relation → becomes a little complicated since we must
adjust it to the new states and to ε-transitions. For instance, we write
p ε−−→

[R]
qp′,γ′ , where R ⊆ G × (G × L) to denote the set of transitions

{ (p, g) ε−→ (qp′,γ′ , g′, l′) | (g, g′, l′) ∈ R }.

91

Algorithm 5
Input: a symbolic pushdown system P = (P0 × G, Γ0 × L, ∆, c0);

a symbolic P-Automaton A = (Q0 × G, Γ0 × L,→0, P0 × G,F)
without transitions into initial states

Output: the transition relation → of Apre∗

1 procedure add trans (q, γ, q′, R)

2 begin

3 trans(q, γ, q′) := (trans(q, γ, q′) ∪ R) \ rel(q, γ, q′)

4 end

5

6 rel := ∅; trans := →0; ∆′ := ∅;
7 for all 〈p, γ〉 ↪−→

[R]
〈p′, ε〉 ⊆ ∆ do

8 add trans(p, γ, p′, R[G0 → G1, L0 → L1, G1 → G2]);

9 while trans 	= ∅ do

10 pick (q, γ, q′) s.t. trans(q, γ, q′) 	= ∅;
11 R := trans(q, γ, q′);

12 trans(q, γ, q′) := ∅;
13 rel(p′, γ′, q) := rel(p′, γ′, q) ∪ R;

14 for all 〈p′, γ′〉 ↪−−→
[R′]

〈q, γ〉 ⊆ (∆ ∪ ∆′) do

15 add trans(p′, γ′, q′, (∃G1 ∪ L1 : R ∧ R′) [G0 → G1, L0 → L1]);

16 for all 〈p′, γ′〉 ↪−−→
[R′]

〈q, γγ′′〉 ⊆ ∆ do

17 Rtmp := (∃G1 ∪ L1 : R ∧ R′) [G2 → G1, L2 → L1];

18 ∆′ := ∆′ ∪ 〈p′, γ′〉 ↪−−−→
[Rtmp]

〈q′, γ′′〉;
19 for all q′′ ∈ P0 s.t. rel(q′, γ′′, q′′) 	= ∅ do

20 R′′ := rel(q′, γ′′, q′′);

21 add trans(p′, γ′, q′′, (∃G1 ∪ L1 : Rtmp ∧ R′′) [G0 → G1, L0 → L1]);

22 return rel

Figure 3.10: pre∗ for the symbolic case.

92

The saturation rule from Section 3.1.2 can roughly be summarized as
follows:

If p γ−→∗ q and 〈p, γ〉 ↪→ 〈p′, w〉,
add transitions to create a path p′ w−→∗ q.

Earlier we noted that p γ−→∗ q ⇐⇒ p γ−→ q ∨ ∃q′ : p ε−→ q′ ∧ q′ γ−→ q.
Analogously, we write p γ−−→

[R]

∗ q below if for every triple (g, l, g′) ∈ R
we have

(p, g)
(γ,l)−−−→ (q, g′) ∨ ∃q′′, g′′ : (p, g) ε−→ (q′′, g′′)

(γ,l)−−−→ (q, g′)

∨ ∃p′, γ′, g′′, l′′ : (p, g) ε−→ (qp′,γ′ , g′′, l′′)
(γ,l)−−−→ (q, g′)

We instantiate the saturation rule for the following three cases, in which
we assume that q ∈ Q0:

(i) If 〈p, γ〉 ↪−→
[R]

〈p′, ε〉 and p γ−−−→
[R′]

∗ q, then add p′ ε−−−→
[R′′]

q, where

R′′ = { (g′, g′′) | ∃(g, l, g′) ∈ R, (g, l, g′′) ∈ R′ }.

(ii) If 〈p, γ〉 ↪−→
[R]

〈p′, γ′〉 and p γ−−−→
[R′]

∗ q, then add p′ γ′−−−→
[R′′]

q, where

R′′ = { (g′, l′, g′′) | ∃(g, l, g′, l′) ∈ R, (g, l, g′′) ∈ R′ }.

(iii) If 〈p, γ〉 ↪−→
[R]

〈p′, γ′γ′′〉 and p γ−−−→
[R′]

∗ q, then add p′ γ′−−−→
[R′′]

qp′,γ′
γ′′−−−→

[R′′′]
q,

where

R′′ = { (g′, l′, (g′, l′)) | ∃(g, l, g′, l′, l′′) ∈ R, (g, l, g′′) ∈ R′ }
R′′′ = { ((g′, l′), l′′, g′′) | ∃(g, l, g′, l′, l′′) ∈ R, (g, l, g′′) ∈ R′ }.

Three additional but very similar cases arise when q has the form qp′,γ′ ,
so that the set R′ in the three cases above is a subset of G × L × (G × L).

Again, notice that R′′ and R′′′ in cases (i) to (iii) are the result of join
operations. Algorithm 6 in Figure 3.11 is a post∗ procedure similar to Al-
gorithm 2. Again we use trans and rel to store transitions that we need to
examine. The procedure add trans is the same as in Algorithm 5.

We have three different types of states in Q′: initial states, states added by
the post∗ procedure, and other non-initial states. For efficiency reasons, the

93

signatures of the BDDs used to represent the transitions vary with the types
of states they connect. For a triple (q, γ, q′), where γ ∈ Γ0, the signatures of
rel(q, γ, q′) and trans(q, γ, q′) are:

(G0, L0, G2) if q ∈ P0, q′ ∈ (Q0 \ P0);
(G0, L0, G2, L3) if q ∈ P0 and q′ = qp′,y′ is a new state;
(G1, L1, L0, G2, L3) if q, q′ are new states;
(G1, L1, L0, G2) if q is a new state and q′ ∈ (Q0 \ P0);
(G1, L0, G2) if q, q′ ∈ (Q0 \ P0).

The signatures of rel(p, ε, q) and trans(p, ε, q) are:

(G0, G1) if q ∈ (Q0 \ P0);
(G0, G1, L1) if q = qp′,γ′ is a new state;

The relabelling operations in Algorithm 6 ensure that all newly computed
transitions have the appropriate signatures.

In line 20, the terms G0 ≡ G2 and L0 ≡ L3 denote BDDs which express
pairwise equivalence between the variables in G0 and G2, and L0 and L3,
respectively.

3.3.4 Problems of the symbolic approach

Section 3.2 presented a method for computing the repeating heads. The
method involves constructing a directed graph G whose nodes are the heads
of the pushdown system, and whose edges are labelled by 0 or 1. A compact
representation of the graph in the symbolic case is straightforward; if we let
(p, γ) b−−→

[R]
(p′, γ′) stand for the set of edges

{ ((p, g), (γ, l)) b−→ ((p′, g′), (γ′, l′)) | (g, l, g′, l′) ∈ R },

then the edges of G can be stored as a list of such sets.
While the mere construction of G can be carried out efficiently, the de-

composition into strongly connected components is more difficult. The al-
gorithm used to find the SCCs performs a depth-first search of the graph.
This involves looking at each individual node in the graph and following
each outgoing edge recursively. Looking the nodes and edges individually,
however, destroys all advantages of symbolic representations, whose strength
lies in processing large groups of nodes with a single operation. This is actu-
ally a well-known problem also encountered when model-checking finite-state

94

Algorithm 6
Input: a symbolic pushdown system P = (P0 × G, Γ0 × L, ∆, c0);

a symbolic P-Automaton A = (Q0 × G, Γ0 × L,→0, P0 × G,F)
recognizing C without transitions into initial states or ε-moves

Output: a P-automaton recognizing post∗(C)

1 Q′ := Q0 × G;
2 for all q ∈ Q0, γ ∈ Γ0, q′ ∈ Q0 do
3 if q γ−−→

[R]
0 q′ then

4 if q ∈ P0 then trans(q, γ, q′) := R; else rel(q, γ, q′) := R;
5 for all 〈p, γ〉 ↪−→

[R]
〈p′, γ′γ′′〉 ∈ ∆ do

6 Q′ := Q′ ∪ {qp′,γ′} × (G × L);
7 while trans 	= ∅ do
8 pick (p, γ, q) s.t. trans(p, γ, q) 	= ∅;
9 R := trans(p, γ, q);

10 trans(p, γ, q) := ∅;
11 rel(p, γ, q) := rel(p, γ, q) ∪ R;
12 if γ 	= ε then
13 for all 〈p, γ〉 ↪−−→

[R′]
〈p′, ε〉 ⊆ ∆ do

14 R′′ := (∃G0, L0 : R ∧ R′) [G1 → G0, G2 → G1, L3 → L1];
15 add trans(p′, ε, q, R′′);
16 for all 〈p, γ〉 ↪−−→

[R′]
〈p′, γ′〉 ⊆ ∆ do

17 R′′ := (∃G0, L0 : R ∧ R′) [G1 → G0, L1 → L0];
18 add trans(p′, γ′, q, R′′);
19 for all 〈p, γ〉 ↪−−→

[R′]
〈p′, γ′γ′′〉 ⊆ ∆ do

20 R′′ := (∃G0, L0, L2, G2, L3 : R ∧ R′)[G1 → G0, L1 → L0]
∧ (G0 ≡ G2) ∧ (L0 ≡ L3);

21 add trans(p′, γ′, qp′,γ′ , R′′);
22 Rtmp := (∃G0, L0 : R ∧ R′) [L2 → L0];
23 rel(qp′,γ′ , γ′′, q) := rel(qp′,γ′ , γ′′, q) ∪ Rtmp ;
24 for all p′′ s.t. rel(p′′, ε, qp′,γ′) 	= ∅ do
25 add trans(p′′, γ′′, q,∃G1, L1 : Rtmp ∧ rel(p′′, ε, qp′,γ′));
26 else
27 if Rtmp 	⊆ eps(p′, q) then
28 for all γ′′, q′ s.t. rel(q′, γ′′, q′) 	= ∅ do
29 add trans(p′, γ′′, q′,∃G1, L1 : R ∧ rel(q′, γ′′, q′));
30 return (Q′, Γ0 × L, rel , P0 × G,F)

Figure 3.11: post∗ for the symbolic case

95

systems. Section 5.2 discusses some possible approaches to alleviate the prob-
lem. None of the known methods can avoid a higher than linear complexity in
the size of the graph, which means that the model-checking problem for sym-
bolic systems has a worse asymptotic complexity than for normal systems.
In practice however, the advantages of having a more succinct representation
more than make up for this disadvantage.

In Section 3.1.6 we discussed a method for reconstructing a witness path
from a configuration c ∈ C to c′ ∈ post∗(C) by evaluating information gath-
ered during the computation of post∗(C). This method involves labelling each
transition with the rewrite rule that led to its addition. While this approach
can be transferred to the symbolic case, it is not necessarily desirable to do
so. Earlier on, we saw that the signatures of the BDDs in → can have up
to five dimensions. If we add the information for the reconstruction, we get
another two to four dimensions, which can not only require a large amount
of memory but also time, because subsequent operations in post∗ have to op-
erate on larger BDDs. A possible solution is to annotate the transitions with
less information which still allows to reconstruct a path, but at the expense
of some more computation during the reconstruction. This is discussed in
Section 5.3.

96

Chapter 4

Experiments with Moped

The various model-checking algorithms of Chapter 3 have been implemented
in a model-checking tool called Moped.1 This chapter first presents some
simple examples to demonstrate how the tool can be used, and then reports
on experimental results with a number of fairly large examples.

The input to the Moped tool consists of a system and a property. The sys-
tem is either directly specified as a pushdown system (in symbolic or explicit
form) or indirectly as a Boolean Program. The tool supports binary decision
diagrams (BDDs) as a representation for symbolic pushdown systems; opera-
tions on BDDs are implemented using the CUDD package [38]. The property
is either a reachability property or an LTL formula. The precise syntax of the
input languages and the properties is described in the Appendix. Moreover,
the user can influence the behaviour of the checker with a number of options,
e.g. by determining whether the pre∗ or the post∗ method should be used,
and a number of other things. The options are listed in Section A.4 of the
Appendix, and some of them are discussed in greater detail in Chapter 5.

The output of the checker is a yes/no answer – the given property ei-
ther holds for the system or it does not hold. Moreover, the answer may
be supported by a witness path (if a reachability property holds) or a coun-
terexample (if an LTL property does not hold). When a Boolean Program
is checked for reachability, the witness path may be printed in a number of
different formats in order to interact with other tools.

1The early stages of the work on Moped, which consisted of implementing the algo-
rithms developed in [9], were carried out by David Hansel.

97

4.1 Examples

Moped supports two separate languages for specifying the system – (sym-
bolic) pushdown systems and Boolean Programs (which are internally trans-
lated into pushdown systems). In this section, we show how to model the
‘plotter’ and ‘lock/unlock’ examples from Chapter 2 in these languages, and
how to use Moped to check some properties of them. In these examples,
input made by the user on the command line is marked by prefixing it with
a $ sign.

4.1.1 The plotter example

The ‘plotter’ example was introduced in Section 2.3 (see Figure 2.1). In the
following, we model this example in the language for pushdown systems.

Pushdown systems are defined as quadruples P = (P, Γ, ∆, c0) where P is
the set of control locations, Γ the stack alphabet, ∆ the set of rewrite rules,
and c0 the initial configuration. In Moped, a pushdown system is specified
by just the initial configuration c0 and a list of rewrite rules which make
up ∆. The control locations and the stack alphabet are defined implicitly
by the presence of identifiers in c0 and ∆, i.e. whenever an identifier appears
in a place where Moped expects a control location or a stack alphabet, the
checker’s internal representation of P contains a control location or stack
symbol with the respective name. Each rewrite rule may have a ‘label’, which
simply serves as a comment and is printed in witness/counterexample paths
which fire the rule. Like in the algorithms from Chapter 3, the right-hand
sides of the rules are restricted to two symbols.

The example in Figure 4.1 shows the translation of the plotter example
from Figure 2.3 into the input language of Moped. The first line fixes the
initial configuration as 〈q,main0〉, all other lines define the rewrite rules.
Everything following a # sign until the end of the line is treated as a comment.

We proposed that a desirable property of the plotter is that an upwards
movement is never immediately followed by a downward movement move-
ment. This can be expressed as an LTL property (see Section 2.5). In our
model, this can be verified by

$ moped plot.pds ’[](up0 -> (!down0 U up0 || right0))’

Here, [] is Moped’s rendering for the � (always) operator, -> means

98

(q <main0>)

procedure m

q <m0> --> q <m3> q <m0> --> q <m7>
q <m3> --> q <s0 m4> q <m4> --> q <right0 m5>
q <m5> --> q <m1> q <m5> --> q <m6>
q <m6> --> q <m0 m1> q <m7> --> q <up0 m8>
q <m8> --> q <m0 m2> q <m2> --> q <down0 m1>
q <m1> --> q <>

procedure s

q <s0> --> q <s2> q <s0> --> q <s3>
q <s2> --> q <up0 s4> q <s3> --> q <>
q <s4> --> q <m0 s5> q <s5> --> q <down0 s1>
q <s1> --> q <>

procedure main

q <main0> --> q <s0 main1> q <main1> --> q <>

procedures up, down, right

q <up0> --> q <> q <down0> --> q <>
q <right0> --> q <>

Figure 4.1: The plotter example in Moped’s syntax.

99

implication, and || stands for disjunction 2 The atomic propositions allowed
for pushdown systems are the control locations and stack symbols which
occur in the pushdown system. For instance, in the formula above the atomic
property up0 is true for configurations where the stack symbol up0 is on the
top of the stack.

With the invocation above, Moped would decide that the property holds
and would reply

YES

Alternatively, we might want to check whether the program always termi-
nates, which we can express by asking whether main1 is reached in every
execution. Moped would find that this is not the case because the proce-
dures m and s can recursively call each other forever:

$ moped plot.pds ’<>main1’

NO.

--- START ---

q <main0>

q <s0 main1>

q <s2 main1>

q <up0 s4 main1>

q <s4 main1>

q <m0 s5 main1>

--- LOOP ---

q <m3 s5 main1>

q <s0 m4 s5 main1>

q <s2 m4 s5 main1>

q <up0 s4 m4 s5 main1>

q <s4 m4 s5 main1>

q <m0 s5 s4 m4 s5 main1>

The counterexample is a run which begins with the configuration printed
after START and then repeats the part after LOOP forever. Notice that the
configuration at the end of the loop has the same head as the one immediately
before the loop begins. Indeed, main1 is never reached in this run.

2Actually, Moped uses Spin [25] to translate LTL formulas into Büchi automata; thus,
the format of LTL formulas is the same as Spin’s, and it is shown in detail in the Appendix.

100

4.1.2 The lock/unlock example

In Section 2.3 we also considered a program which uses boolean variables to
determine whether a lock is currently held by the program (see Figure 2.4).
We argued that such variables should be represented in some compact fash-
ion, for instance using BDDs. As mentioned before, Moped offers two input
languages for such systems. In this section, we show how to use the input
language for symbolic pushdown systems to model the lock/unlock example;
in Section 4.1.3 we show how to do the same with the language for Boolean
Programs.

In order to specify a symbolic pushdown system, the user must first define
a domain of global and local variables (called G and L, respectively). We
then take P := P0 × G and Γ := Γ0 × L where P0 and Γ0 are the ‘explicit’
control locations and stack symbols which are (again) implicitly defined by
their presence in the input. Variables can be of types boolean and integer (the
latter restricted to finite ranges), or arrays of both types. When variables
are defined, each rule listed in the input file becomes a symbolic rule. The
relations associated with the symbolic rules are given by boolean expressions
over the global and local variables, i.e. the relations are understood to be the
set of valuations which make the expressions true. This is exemplified by the
system in Figure 4.2 which is essentially Moped’s rendition of the pushdown
system in Figure 2.6.

The first three lines define the variables. The line

global bool l,r;

establishes the two global boolean variables, l and r. Moreover, the user can
assign a domain of local variables to each explicit stack symbol. The effect
of this is that if a set of variables V is assigned to symbol γ, then symbolic
rules involving γ may talk about the variables in V . In the example, the
domains are fixed in the next two lines:

local (g0) bool x;

local (main0,main1,. . .,main5) bool a,b;

This assigns the variable x to those (explicit) stack symbols which correspond
to function g and the variables a and b to those of function main. Notice that
the asymptotic complexity of the associated verification problems depends on
the size of the stack alphabet which is the cross product between the explicit
stack symbols and the domains of local variables assigned to them. Therefore,

101

global bool l,r;

local (g0) bool x;

local (main0,main1,main2,main3,main3a,main4,main5) bool a,b;

(q <main0>)

q <lock0> --> q <err> (l & l’)

q <lock0> --> q <lock1> (!l & !l’)

q <lock1> --> q <lock2> (l’)

q <lock2> --> q <> (l’==l)

q <err> --> q <err> (l’==l)

q <unlock0> --> q <err> (!l & !l’)

q <unlock0> --> q <unlock1> (l & l’)

q <unlock1> --> q <unlock2> (l’==l)

q <unlock2> --> q <> (!l’)

q <g0> --> q <> ((l’==l) & r’^x)

q <main0> --> q <main1> (!l’ & !a’ & (b’==b))

q <main1> --> q <main2> ((l’==l) & (a’==a) & (b’==b))

q <main2> --> q <lock0 main3> ((l’==l) & (a’’==a) & (b’’==b))

q <main3> --> q <g0 main3a> ((l’==l) & (x’==a)

& (a’’==a) & (b’’==b))

q <main3a> --> q <main4> ((l’==l) & (a’==a) & (b’==r))

q <main4> --> q <unlock0 main5> ((l’==l) & (a’’==a) & (b’’==b))

q <main5> --> q <> (l’==l)

Figure 4.2: The lock/unlock example in Moped’s syntax.

102

only the size of the largest domain of local variables matters. The ability to
specify multiple domains of local variables is thus a syntactic convenience,
but does not increase the asymptotic complexity of the associated verification
problems.

After the variables, the initial configuration is fixed as 〈q,main0〉. Since
no expression is given, the initial variable values are undetermined, i.e. ef-
fectively we have multiple initial configurations. The initial configuration is
followed by the symbolic rules, each of which is accompanied by a boolean
expression. Let us just consider one of them since all are very similar:

q <main3> --> q <g0 main3a>
((l’==l) & (x’==a) & (a’’==a) & (b’’==b))

In terms of the example program in Figure 2.4, this symbolic rule models a
call from main to function g, passing the value of main’s local variable a as an
argument to g. The parameter is called x within g. In the expression above,
unprimed identifiers (like l, a, b) refer to the local and global variables
on the left-hand side; observe that a and b are local variables associated
with main3. Singly primed global variables (l′) are associated with the right-
hand side control location. Singly primed local variables (x′) refer to the
first right-hand side stack symbol (g0 in this case), and doubly primed local
variables (a’’, b’’) refer to the second stack symbol. Effectively, the rule
stipulates that main3 may be replaced with g0 and main3a on the stack,
provided that the global variable l retains its value, the variable x (of g) gets
the value of a (of main), and the previous values of a and b are saved on the
stack. There is no condition about the value of r, therefore any combination
of pre- and post-values of r is allowed.

Suppose that we store the input in a file called lock.pds. Now, we might
be interested in checking whether the program can cause an error, i.e. whether
a lock occurs twice without an unlock in between, or an unlock occurs when
no lock is set, in which case the example should push the symbol err to the
top of the stack. The corresponding invocation of Moped would look like
this: like this:

$ moped -r lock.pds q:err

Here, the -r argument signifies that we want Moped to perform a reachability
analysis. Reachability formulas in Moped have the form ctrlid :stackid where
ctrlid is the name of a control location and stackid is the name of a stack

103

symbol. Since there is just one (explicit) control location q, we just have to
check for q:err. The tool would recognize that no error can occur in the
example and therefore respond with

NO.

Now, suppose one of the rules in main is replaced with another call to lock:

q <main1> --> q <lock0 main2> ((l’==l) & (a’’==a) & (b’’==b))

This would cause two lock operations in a row. If we store the changed file
as lock-error.pds, another invocation of Moped detects the error:

$ moped -r lock-error.pds q:err

YES.

However, we might want to know how the error is actually reached. Adding
-t to the options causes a witness path to be printed:

$ moped -rt lock-error.pds q:err

YES.

--- START ---

q (!l & !r) <main0 (!a & !b)>

q (!l & !r) <main1 (!a & !b)>

q (!l & !r) <lock0 main2 (!a & !b)>

q (!l & !r) <lock1 main2 (!a & !b)>

q (l & !r) <lock2 main2 (!a & !b)>

q (l & !r) <main2 (!a & !b)>

q (l & !r) <lock0 main3>

q (l & !r) <err main3>

[target reached]

The witness path shows an execution which enters the procedure lock twice;
on the first occasion, l is set to true, on the second occasion an error is
raised. Variable contents are printed as expressions; e.g. (l & !r) means
that l is true and r is false. Global variables are printed after the control
location, local variables along with the stack symbols (notice that lock has
no local variables in the example). Moreover, to avoid cluttering up the
output, Moped deliberately chooses not to output local variables of stack
symbols to which the trace will never return (see main3 in the example).

104

There is no explicit support in Moped to check for reachability of dif-
ferent categories of configurations. While in principle it would be easy to
add support for different sorts of reachability queries, the ability to check
for reachability of a ‘head’ 〈p, γ〉 is the most relevant for many practical
problems. But even in the current state of the tool, one could for instance
emulate regular languages as reachability targets by non-deterministically
allowing the pushdown system to enter the simulation of a finite automaton
which recognizes the languages by destructively reading the stack.

4.1.3 Lock/unlock example as a Boolean Program

For use in their SLAM project, Ball and Rajamani have created the language
of Boolean Programs [3, 5]. Moped supports Boolean Programs as a second
input language, which has two benefits: While Moped’s original input lan-
guage (see Sections 4.1.1 and 4.1.2) was designed to be as simple as possible
while enabling the user to specify every possible symbolic pushdown system,
its simplicity sometimes offers little comfort. Boolean Programs offer the
user the more familiar-looking syntax of a program with assignments, pro-
cedures which can take arguments and return values etc, and hence allow a
more natural specification for models derived from such systems. However,
the Boolean Program syntax does not allow arrays or integer variables.

A flavour of the syntax is given by Figure 4.3 in which the lock/unlock
example is formulated as a Boolean Program (see Figure 2.4 for the original
program and Figure 4.2 for its formulation in Moped’s other input language).
A complete description of the syntax of the language is given in the Appendix.

Statements in Boolean Programs may be labelled; for instance, in Fig-
ure 4.3, the statement in procedure error is labelled E. In reachability
queries, the user is expected to pass the name of a label. Mopedthen checks
if there is any execution that leads to the statement with the given label.
The label may be given in the form function:label or, omitting the function
name, label. The first form resolves ambiguities if the given label occurs in
multiple functions; if the second form is used, Moped automatically finds a
function in which the label is defined.

In the example above, we may want to check whether an error may be
raised by either lock or unlock. This is the case if and only if the label E in
error is reachable. The corresponding invocation of Moped is as follows:

$ moped -br lock.bp error:E 〈other options〉

105

decl l;

void error () bool g (x)

begin begin

E: goto E; return !x;

end end

void lock () void main ()

begin begin

if (l) then error(); fi decl a,b;

l := T; l,a := F,F;

end lock();

b := g(a);

void unlock () unlock();

begin end

if (!l) then error(); fi

l := F;

end

Figure 4.3: The lock/unlock example as a Boolean Program.

106

In this example, -b indicates that the input is a Boolean Program. Inciden-
tally, we could have left out the error: bit because the label E occurs in only
one function.

4.2 Experiments

This section reports on experiments carried out with Moped. The experi-
ments were designed to test several aspects of the model-checker; the perfor-
mance of both the reachability and the LTL algorithms, and the performance
on different types of examples.

One of the motivations for studying pushdown systems instead of finite-
state systems is the ability to handle the infinities caused by recursive pro-
cedure calls. Thus, a natural test of Moped’s potential is to apply it to
models of some recursive algorithms, e.g. Quicksort. Results for checking
LTL properties on Quicksort and some other recursive algorithms are re-
ported in Section 4.2.1.

While Moped is capable of verifying arbitrary LTL properties, Ball and
Rajamani have presented an algorithm for checking reachability on Boolean
Programs [3]. Since this algorithm is implemented in a tool called Bebop, it
was naturally interesting to compare the performance of the two implemen-
tations (for a comparison on a more theoretical level, see Section 3.1.5). This
was first done on a family of artificial examples which was proposed in [3];
the results of this comparison are in Section 4.2.2.

A series of more meaningful tests and comparisons were carried out on a
large number of examples provided by Ball and Rajamani. These examples
were automatically derived abstractions of C programs (more specifically,
device drivers for the Windows operating system). These experiments are
discussed in Section 4.2.3.

Finally, some conclusions drawn from the results of the experiments are
discussed in Section 4.2.4.

4.2.1 Recursive algorithms

Since pushdown systems are strictly more expressive than finite-state sys-
tems, a natural application is to use them for problems which cannot be
modelled by the latter, for instance programs with recursive procedures. In
this section, this application is demonstrated by means of three examples: a

107

sorting algorithm (Quicksort), a procedure which turns an array into a ‘heap’
(Heapify), and a procedure which checks whether two terms can be unified
by variable substitution (Unify).

All three examples were modelled by hand as symbolic pushdown systems
and tested for different sets of parameters (for instance, by varying the size
of the array in Quicksort or Heapify). Varying these parameters allows to get
an idea of what is possible with the verification methods, i.e. how large the
examples are which can still be managed comfortably by the checker. For
the Quicksort example, we also compared the performance of Moped with an
exhaustive testing method.

We also used these examples to optimize the checker by testing some vari-
ants of the model-checking algorithms, for instance the question of backward
and forward computation. This section mostly concentrates on reporting the
final results of these optimization efforts; the impact of some of the options
is discussed in Chapter 5.

Quicksort The objective of Quicksort is to take an array of integer values
and sort it in ascending order. This is achieved by a divide-and-conquer
strategy: Some element of the array is picked as the ‘pivot’, and all elements
less or equal than the pivot are sorted to its ‘left’, all others to its ‘right’.
Then the array is split at the pivot and the problem is recursively solved
on the two halves. Figure 4.4 shows an implementation attempt at this
procedure. Two correctness properties which we might want to test for this
implementation are

• whether the program sorts correctly;

• whether it terminates in all executions.

To test the termination property, we can actually abstract from the array
contents and just observe the behaviour of the local variables. We then need
to replace the decision if a[hi] > piv by non-deterministic choice (except in
the first test, where we know that the outcome is false). A suitably abstracted
program is shown in Figure 4.5, where ∗ denotes non-deterministic choice.
Notice that the abstracted program overapproximates the possible executions
of the original implementation, which means that correctness of the former
implies the correctness of the latter.

We modelled the program from Figure 4.5 as a pushdown system, in
which an additional procedure main makes an initial call to the quicksort

108

void quicksort (int left,int right)

{
int lo,hi,piv;

if (left >= right) return;

piv = a[right]; lo = left; hi = right;

while (lo <= hi) {
if (a[hi] > piv) {

hi--;

} else {
swap a[lo],a[hi];

lo++;

}
}
quicksort(left,hi);

quicksort(lo,right);

}

Figure 4.4: Quicksort implementation, version 1.

void quicksort (int left,int right)

{
int lo,hi;

if (left >= right) return;

lo = left; hi = right;

while (lo <= hi) {
if (hi == right || ∗) {

lo++;

} else {
hi--;

}
}
quicksort(left,hi);

quicksort(lo,right);

}

Figure 4.5: Abstracted version of Quicksort.

109

local(qs0,qs1,qs2,qs3) int left(N), lo(N), hi(N), right(N);

(q <main0>)

q <main0> --> q <qs0 main1>

q <main1> --> q <main1>

q <qs0> --> q <> "reject"

(left >= right)

q <qs0> --> q <qs1> "init"

(left < right & left’ = left & right’ = right

& lo’ = left & hi’ = right)

q <qs1> --> q <qs1> "decrease hi"

(lo <= hi & (hi != right | lo != left)

& lo’ = lo & hi’ = hi-1

& left’ = left & right’ = right)

q <qs1> --> q <qs1> "increase lo"

(lo <= hi & lo’ = lo+1 & hi’ = hi

& left’ = left & right’ = right)

q <qs1> --> q <qs0 qs2> "left recursive call"

(lo > hi & left’ = left & right’ = hi

& lo’’ = lo & right’’ = right)

q <qs2> --> q <qs0 qs3> "right recursive call"

(left’ = lo & right’ = right)

q <qs3> --> q <>

Figure 4.6: Pushdown system corresponding to Figure 4.5.

procedure and waits for it to terminate. The values of left and right in the
initial call are chosen non-deterministically. The resulting pushdown system
is shown in Figure 4.6, where N is a symbolic constant which carries the
number of bits used to represent each integer variable.

Checking termination in this model is equivalent to checking whether the
initial call is completed in every run, i.e. whether main1 is reached. When
running Moped, it turns out that this is not the case because the program
contains an error. Inspection of the counterexample printed by Moped reveals
that the procedure can enter an infinite loop if the pivot element is the largest
element in which case all tests for a[hi] > piv will be negative, and the first

110

void quicksort (int left,int right)

{
int lo,eq,hi,piv;

if (left >= right) return;

piv = a[right]; lo = eq = left; hi = right;

while (lo <= hi) {
if (a[hi] > piv) {

hi--;

} else {
swap a[lo],a[hi];

if (a[lo] < piv) {
swap a[lo],a[eq];

eq++;

}
lo++;

}
}
quicksort(left,eq-1);

quicksort(lo,right);

}

Figure 4.7: Quicksort implementation, version 2.

recursive call has the same values for left and right as those with which
the procedure was entered. (The author actually produced this faulty version
by accident when he implemented the Quicksort algorithm in preparation for
these experiments.)

One possible fix for the error is to keep tabs on the elements which are
equal to the pivot and not to call the procedure recursively on them. Fig-
ure 4.7 shows a corrected program. Running Moped on the suitably corrected
abstracted model now yields that all executions in the model terminate (and,
since the model is an overapproximation, so do all executions of the program).

Having done this, we can try to verify the correctness of the sorting as
well. Doing so requires to add the array contents of the model; moreover,
after the system completes the initial call, we let execution branch to one
of two labels, ok and error, depending on whether the result is correct or

111

Quicksort randomized testing
K N M globals locals time memory time memory time

1 5 20 20 26 4.6 s 13.2 M 4.7 s 13.3 M 3.4 s
1 5 30 30 26 18.2 s 21.4 M 20.0 s 22.1 M 4965.5 s
1 6 40 40 31 53.5 s 52.7 M 56.6 s 54.1 M ?
1 6 60 60 31 247.3 s 219.5 M 252.6 s 223.7 M ?

2 4 8 16 22 10.2 s 14.9 M 15.6 s 14.8 M 0.1 s
2 4 10 20 22 74.3 s 41.6 M 122.6 s 54.6 M 2.5 s
2 4 12 24 22 493.2 s 207.5 M 849.5 s 284.6 M 46.2 s

3 3 6 18 18 13.7 s 15.0 M 33.4 s 20.1 M 0.4 s

4 4 6 24 24 64.4 s 43.7 M 174.9 s 74.1 M 28.6 s
4 4 7 28 24 449.4 s 197.5 M 2807.4 s 507.0 M 546.4 s

Figure 4.8: Run-times and memory consumption for Quicksort example.

not. These two labels lead to infinite loops to ensure that every execution is
an infinite run. (We omit printing the resulting pushdown system here, but
it is included in the distribution of Moped.) The system depends on three
parameters:

• N, the number of bits used to represent integer variables;

• M, the number of elements in the array (must be between 1 and 2N−2);

• K, the number of bits used to represent array elements.

In the model, the array contents are chosen non-deterministically before the
initial call, thus every possible combination of array values is allowed. The
formula <>ok now tests both the correctness of the sorting and the termina-
tion property. Running Moped reveals that the formula holds.

Figure 4.8 shows the running times and memory consumption for various
values of the symbolic constants. These numbers were obtained by running
the experiments on a Sun Ultra-60 machine with 1.5 GB of memory; the
BDD library used by Moped was CUDD version 2.3.0 [38]. Moreover, the
tool was instructed to use the post∗ method to check the formula (compare
Section 3.2.3). The columns ‘global’ and ‘local’ list the number of bits needed
to represent the global and local variables, respectively.

112

The two columns beneath the word ‘randomized’ state the results for a
variant of Quicksort in which the pivot element is not always chosen as the
rightmost element, but picked randomly from the interval that is about to be
sorted. (This decreases the expected time complexity of Quicksort and can
be modelled conveniently by nondeterminism.) The column ‘testing’ shows
the time needed for an exhaustive testing method which consists of a running
a program which generates all possible inputs, runs version 2 of the Quicksort
algorithm on all of them, and tests the result for correctness.

Looking at the numbers in Figure 4.8, it appears that the scalability
of the model-checker lessens as K, the number of bits per integer, increases.
This reflects the fact that the BDDs have to express increasingly complicated
relations between several multi-bit integer variables; this is discussed in some
more detail in Section 5.8. Still, for every fixed K the factor by which the run-
time increases when M is increased is less than the factor by which the number
of possible executions increases, thanks to the ability to store many states
very compactly and hence the ability to compute many runs simultaneously.
In other words, the model-checking method scales better than exhaustive
testing does; indeed, for all the largest instances in the experiments the
model-checker actually beats the time for exhaustive testing.

The bug in the first version which leads to non-termination can already
be detected with small values for the symbolic constants, so that the error
can be found by the checker almost immediately. The checker also produces
a useful counterexample which aids in fixing the bug. In this sense, although
the method cannot directly be used to show that the corrected algorithm
works for arbitrary values of the parameters, it serves as an example for the
usefulness of model-checking as a debugging technique. Incidentally, testing
would be an inappropriate method to detect the error because it cannot
distinguish between an execution that gets stuck and one that merely takes
very long.

Heapify In this problem, given a tree whose nodes carry integer values, we
want to convert the tree into a heap. A tree is a heap if each node is labelled
with a value which is larger than the value of its children. This procedure is
used, for instance, in sorting algorithms or priority queues.

For the Heapify problem, assume (w.l.o.g.) that the tree is binary. We
simulate the tree by means of an array in which the children of entry number n
are 2n+1 and 2n+2. The model involves three different recursive procedures:

113

pre∗ method post∗ method
K M globals locals time memory time memory

1 25 25 3 19.9 s 17.1 M 157.5 s 47.5 M
1 31 31 3 1239.9 s 311.4 M 6745.1 s 475.3 M
2 9 18 4 1.4 s 8.0 M 5.3 s 14.0 M
2 11 22 4 12.4 s 23.5 M 48.5 s 33.9 M
3 9 27 5 37.3 s 59.2 M 129.9 s 88.1 M
3 11 33 5 1938.1 s 858.4 M 5500.6 s 1198.3 M

Figure 4.9: Run-times and memory consumption for Heapify example.

• hfy, when called on node n brings the subtree below and including
node n into heap form. It does so by first calling itself recursively on
its child nodes (if any) and then brings node n to the right place by
calling adj.

• adj compares node n with its children. If node n is already larger
than its children, nothing needs to be done; otherwise the larger of the
children swaps its place with n and the procedure branches into this
child to restore its heap property.

• chk is called after the heapification process is complete and checks if
the resulting tree is indeed a heap. If so, it pushes the stack symbol
ok, otherwise error.

The complete model is not shown here; it is included in the Moped distri-
bution. Both the correctness of the result and the fact that the procedure
always terminates can be checked with the formula <>ok. Some experimental
results are shown in Figure 4.9; there, M is the number of nodes in the tree
(or array elements), and K is the number of bits available for the node labels.

The main observation of interest here is that this was the only example
in these experiments in which the pre∗ method has an advantage over the
post∗ method. In the other examples, pre∗ compares much worse. The issue
of pre∗ versus post∗ is discussed in greater detail in Section 5.5.

Unify Consider the class of terms which are made up of function symbols,
variables, and constants. Given two terms t1 and t2, the problem of uni-
fication consists of deciding whether there is a substitution from variables

114

into terms such that t1 and t2 are equal under this substitution, and if so,
compute the substitution.

We can handle Unify in a similar fashion to Heapify: If we restrict the
problem (w.l.o.g.) to functions with two arguments, then it can be por-
trayed as a binary tree and hence an array (albeit, admittedly, the modelling
becomes awkward within the constructs offered by the input language of
Moped). The model used in the experiments emulates the implementation
from [24], which does not perform an ‘occurs’ check, i.e. when determining a
term t as the substitution for x, it does not check whether x already occurs
in t. The implementation maintains a pointer for each variable; this pointer
is either a pointer to a subterm (i.e. an index into the array) or it is a ‘chain’
to another variable in case the two variables have the same substitution.

The model either pushes a nouni symbol if no unification is possible or an
ok symbol when it completes the unification. We can then check the formula
<>(ok || nouni) to test if the procedures terminates in every execution, or
whether it can get stuck (the absence of non-termination is not immediately
obvious, because the algorithm may have to recurse multiple times through
subterms which have been bound to some variable, and because variable
chains might form a loop). We cannot, however, test correctness in the sense
of whether the algorithm always finds a substitution if one exists.

We first handled the case where we have two variables, one constant, and
one function symbol. When the depth of the terms was limited to two, i.e.
such that terms can have the form f(g(a, x), h(b, y)), Moped managed to
verify the termination property in 70 seconds. The result was achieved using
the post∗ method and a slightly different variable ordering than in the other
two examples (see the discussion on variable ordering in 5.8). However, even
when just one term was allowed to have a depth of three, the verification
discovered an error that leads to an infinite loop. The error happens because
of the missing ‘occurs’ check. It took 276 seconds and 30 MB of memory to
find this error.

When an ‘occurs’ check was added to the model, the termination property
could be verified on the corrected model in 208 seconds. As an additional
test, we then allowed terms to have three variables, two constants, and three
function symbols. Checking termination for this larger set of terms still
succeeded, but took 102 minutes and 520 MB of memory. For these settings
the global variables in the model had 69 bits, and the local variables 16 bits.

115

4.2.2 A family of Boolean Programs

In the paper which introduced Boolean Programs and the Bebop checker [3],
Ball and Rajamani demonstrated the performance of their checker on a family
of constructed examples. These examples consist of n procedures, where n is
a parameter. Despite being simple and quite artificial (see the details below),
the examples prove some interesting points:

• Since no recursion is involved, the state space of the examples is finite.
However, typical finite-state approaches would flatten the procedure
call hierarchy, blowing up the program to an exponential size.

• The programs have exponentially many reachable states, yet reachabil-
ity can be solved in time linear in n. This serves to demonstrate the
usefulness of using pushdown systems in verification of programs: Not
only are they strictly more expressive than finite-state systems, but
they can exploit the modularity ingrained in a program’s procedural
structure.

• Finally, there are O(n) different variables in the program; however,
only a constant number of them are in scope at any given time. For
this reason the stack alphabet can be kept small, exploiting the locality
of the variable scopes.

The examples consists of one main function and n functions called leveli,
1 ≤ i ≤ n, for some n > 0. There is one global variable g. Function main

calls level1 twice. Every function leveli checks g; if it is true, it increments
a 3-bit counter to 7, otherwise it calls leveli+1 twice. Before returning,
leveli negates g. The checker is asked to find out if the labelled statement
in main is reachable, i.e. if g can end with a value of false. Since g is not
initialised, the checker has to consider both possibilities. Figure 4.10 shows
a sketch of the program.

Running times (on the Sun Ultra-60) for different values of n are listed
in the second column of the table in Figure 4.10. (In [3] results are reported
for up to n = 800 where the running time is four and a half minutes using
the CUDD package and one and a half minutes with the CMU package,
but unfortunately the paper does not say on which machine. The author
understands that current versions of Bebop may solve the problem a good
deal more quickly.)

116

decl g;

void main()

begin

level1();

level1();

if (!g) then

reach: skip;

else

skip;

fi

end

n time ‘generous’

200 0.50 s 1.51 s
400 0.94 s 8.26 s
600 1.46 s 17.10 s
800 1.99 s 34.84 s

1000 2.41 s 56.81 s
2000 4.85 s 233.62 s
5000 13.63 s 1654.08 s

void leveli()

begin

decl a,b,c;

if(g) then

a,b,c := 0,0,0;

while(!a|!b|!c) do

if (!a) then

a := 1;

elsif (!b) then

a,b := 0,1;

elsif (!c) then

a,b,c := 0,0,1;

fi

od

else

leveli+1(); leveli+1();

fi

g := !g;

end

Figure 4.10: Boolean Program example from [3] and results.

117

More interesting is the question of space consumption. Moped has a
peak number of 263 live BDD nodes, independently of n. On the contrary,
Bebop’s space consumption for BDDs increases linearly. The reason of this
difference is that the BDDs involved require only four variables (one for the
global variable g and three for the 3-bit counter of some procedure). Moped’s
default behaviour is to encode all local variables with the same BDD variables
(see Section 5.9), therefore the very same BDDs nodes are used all the time.

The results in [3] show a running time which is quadratic in n (when
it should be linear). The reason for this is that Bebop uses separate BDD
variables to encode the local variables of all the functions and thus uses O(n)
different BDD variables; however, no BDD has more than a constant number
of variables. This triggers an inefficiency in some of the functions in the BDD
packages (both CMU and CUDD), for instance the function for relabelling
BDDs. It turns out that these functions take linear time in the number of
BDD variables, which is O(n), even when the size of the BDDs is independent
of n (so that one would expect the time consumption of the operations to
be independent of n, too). Since O(n) such operations are required to solve
the reachability query, the overall time consumption becomes quadratic. It
turns out that if Moped is instructed to use separate BDD variables for the
locals like Bebop does, the same problem occurs (unsurprisingly, since Moped
also uses CUDD). The results with this encoding are listed in Figure 4.10 in
the column marked ‘generous’. Likewise, the authors of Bebop report that
when Bebop was instructed to use Moped’s encoding, its running time was
reduced to linear. The question of how the allocation of program variables to
BDD variables affects the model-checking times is discussed in more detail
in Section 5.9.

4.2.3 Abstractions of C programs

The performance of Moped was tested on a large number of examples pro-
vided by the authors of SLAM [4], Tom Ball and Sriram Rajamani. These
examples were created as abstractions of C programs by the SLAM toolkit.
The aim of SLAM is to verify temporal safety properties (roughly speaking,
the class of properties which express that ‘something bad does not happen’)
on C programs. Since this problem is undecidable in general, the process
may not terminate; however, it has been successfully used to validate correct
interface usage in device drivers. We briefly explain how the process works:

Given a C Program P and a temporal safety property ϕ, the toolkit first

118

synchronizes P with an automaton for ϕ to end up with a program P ′. This
construction has the property that the original program P satisfies ϕ if and
only if a certain label L is reachable in P ′. The latter is then checked by a
process of iterative refinement which consists of three steps:

1. In the i-th iteration, the program P ′ is first abstracted into a Boolean
Program Bi which safely overapproximates the possible behaviours
of P ′. The abstraction is made with respect to a set of predicates Ei

which occur as boolean variables in Bi and which express properties
of P ′. For instance, if Ei contains the predicate x > 0, then Bi would
contain the variable {x > 0}, and the instructions in Bi would repro-
duce the effect which their counterparts in P ′ have on the validity of
the predicate (non-determinism is used if it turns out to be impossi-
ble whether some instruction validates or invalidates a predicate, hence
the characterization of Bi as an overapproximation). The more pred-
icates Ei contains, the better the approximation gets. An initial set
of predicates E1 is derived from ϕ; in subsequent iterations, the set of
predicates is extended by the results of step 3. The abstraction step is
implemented by a program called c2bp.

2. In the second step, the program Bebop checks whether L is reachable
in Bi. If L turns out to be unreachable, we can conclude that L is also
unreachable in P ′ (because Bi is an overapproximation) and hence ϕ
holds.

3. If in the previous step L is reachable through some path p, one has to
check whether p is also a feasible path in P ′ or whether it it ‘spurious’,
i.e. whether it is just due to the overapproximation. This is determined
by a program called Newton. If Newton determines that the path
is feasible, then ϕ does not hold and p is a counterexample. If p is
spurious, then Newton finds an ‘explanation’ for this and extends the
set of predicates in such a way that the path becomes impossible in
subsequent iterations.

In this context, Moped can be used to implement step 2. The examples
used in the experiments came from four different groups:

• a regression test suite of 64 small programs designed to test various
features of the C language;

119

• four Windows NT device drivers which were checked for correct lock
acquisition/release sequences;

• one driver which was checked for conformance to a state machine for
I/O request packet completion;

• a group of large Boolean Programs derived from a serial driver.

In every single example, Bebop and Moped agreed on the result of the reach-
ability analysis, i.e. whether the label in question was reachable or not, which
gives the authors of both tools some confidence in the correctness of their
checkers. In all the tests, Moped performed better than Bebop by a signifi-
cant amount. By comparing several aspects of the implementations of both
checkers, we were able to identify some of the reasons for this. Moreover,
Moped’s output was made compatible with that of Bebop so that it became
possible to run the SLAM process with Moped in Bebop’s place.

The following paragraphs provide more details on the findings. All run-
ning times were measured on a machine with a 800 Mhz Pentium-3 CPU
and 512 MB of RAM. Unless noted otherwise, the checkers were run with
the default options and with error trace generation for the Newton tool, i.e.
the way they would be used in a SLAM process.

Regression test suite The test suite consisted of 64 small C programs
(between 30 and 150 lines of code) designed to test the ability of the SLAM
tools to cope with language features such as structure fields, pointer deref-
erences, dynamic memory allocation and others. Running these examples
through SLAM resulted in 178 iterations in total. Figure 4.11 shows var-
ious statistics of these experiments. Average and maximum numbers are
computed over all 178 runs.

The running time is the sum of all 178 running times (in seconds). The
numbers show that Moped is faster by a factor of more than 4. The figures
on memory consumption are taken from statistics provided by the CUDD
package (which both checkers use). The number “memory in use” is given in
megabytes, the numbers of BDD nodes in thousands. An interesting pattern
emerges: Moped uses less memory and has a lower peak number of BDD
nodes, but in fact it has a higher peak number of live BDD nodes. Normally,
this should cause a higher overall memory consumption for Moped. It is not
clear what causes this oddity, in particular because both checkers use CUDD’s
standard parameters for garbage collection and other activities relevant to

120

Bebop Moped

total running time 209.7 46.4
memory in use avg/max 4.4 9.0 4.3 6.8
peak BDD nodes avg/max 12.1 273 7.1 145
peak live BDD nodes avg/max 1.8 40 4.3 105
BDD variables avg/max 65.9 465 59.6 362

average maximum

global variables 1.3 10
max local variables 6.6 36
max arguments 2.4 8
max return values 1.7 6

Figure 4.11: Statistics for regression test suite.

memory consumption. Finally, we list the number of different BDD variables
managed by CUDD. The numbers here differ because the two checkers have
different strategies for relating BDD variables to program variables (see the
discussion of this in Section 5.9).

The second part of the table gives more details about the nature of the
Boolean Programs which were checked. It lists information about the num-
bers of global (boolean) program variables, and the maximum numbers of
local variables. The latter includes formal parameters, local variables de-
clared at the beginning of the function and those declared ‘on the fly’. These
two factors determine how many BDD variables will occur in the BDDs. The
last two lines concern the maximum number of arguments and the maximum
number of return values.3 These two numbers are interesting because calls
to functions with arguments, or return statements with return values corre-
spond to parallel assignments between groups of BDD variables. Therefore,
calls and returns with many arguments can easily translate to huge BDDs
and render the checking process practically infeasible if the variable ordering
is inappropriate.

3This means that for each program, we first determined the maximum number of local
variables/arguments/return values over all functions; then we computed the average and
maximum of those numbers over all 178 examples.

121

Bebop Moped

total running time 944.2 88.5
memory in use avg/max 10.7 13.1 7.6 12.8
peak BDD nodes avg/max 286.8 437 161.7 470
peak live BDD nodes avg/max 67.6 169 100.5 267
BDD variables avg/max 1894.1 2289 864.2 1028

average maximum

global variables 5.5 16
max local variables 40.5 58
max arguments 9.9 12
max return values 12.0 15

Figure 4.12: Statistics for the four drivers (lock/unlock property).

Locking/unlocking sequences The second set of Boolean Programs was
derived from four Windows NT drivers. These drivers need to acquire and
release so-called ‘spin locks’ from the kernel. It is an error to acquire a lock
twice in a row without releasing it, or to release it when it is not acquired.
Four drivers with between 2200 and 7600 lines of code were checked for
correct lock/unlock sequences. Checking the drivers took 32 iterations in
total (between 1 and 16 iterations per driver). The results of running both
checkers on the 32 resulting Boolean Programs are listed in Figure 4.12.
Moped was faster by a factor of more than 10. The same pattern as before
emerges in the memory usage; Moped uses less memory despite using more
live BDD nodes.

Request packet completion When the operating system wants a driver
to perform a specific operation it invokes a certain ‘dispatch routine’ of the
driver and passes to it information about the request. The driver must either
process the request immediately or may queue it for later processing. In both
cases the driver must adhere to a certain protocol which involves, e.g., calling
certain kernel functions in the right order (the details are out of scope here).
The protocol can be described with a state machine and be formulated as
a safety property. One of the drivers from the previous group of examples
(with 4855 lines of code) was checked for conformance with this property,
which took 16 iterations. Figure 4.13 lists the results of the checking, which

122

Bebop Moped

total running time 7615.1 142.4
memory in use avg/max 24.9 32.1 14.9 21.9
peak BDD nodes avg/max 928.5 1368 551.4 956
peak live BDD nodes avg/max 685.4 1126 330.2 841
BDD variables avg/max 3962.4 4077 1707.9 1765

average maximum

global variables 17.1 18
max local variables 45.5 48
max arguments 18.0 18
max return values 18.0 18

Figure 4.13: Statistics for iscsiprt driver (request packet completion).

are similar in nature to the previous results. It should be noted that part of
Moped’s advantage in running time is due to the generation of error traces.
Bebop tries to generate the shortest error trace whereas Moped just generates
some error trace (not necessarily the shortest). When the checkers were run
without error trace generation, Bebop’s time was reduced to about 30% of
the time quoted in Figure 4.13.

Large examples The four largest Boolean Programs on which we con-
ducted experiments were derived from a serial driver (with almost 27000
lines of code). These presented potentially high challenges because some of
the functions in the Boolean Programs had large numbers of arguments and
return values (see Figure 4.14). Nevertheless, Moped managed to find er-
ror traces in all of them in times between 11 and 14 seconds each. Again, it
should be noted that Bebop is handicapped by its slow error trace generation.
Generating the traces alone turned out to account for about 2500 seconds
alone, which is probably just due to an oversight in the implementation but
not to a fundamental difference between the checkers.

Computing the whole state space In the examples above, most of the
time the outcome of the reachability analysis was positive due to the nature
of the SLAM process, which rules out spurious error traces until a real error
or no error is found. Finding an error trace, however, can often be done by

123

Bebop Moped

total running time 3488.1 50.7
memory in use avg/max 24.4 25.9 23.2 25.5
peak BDD nodes avg/max 601.6 682 489.8 632
peak live BDD nodes avg/max 143.8 225 231.0 265
BDD variables avg/max 10439.2 10461 7049.0 7070

average maximum

global variables 28.0 28
max local variables 325.6 334
max arguments 22.0 22
max return values 27.0 27

Figure 4.14: Statistics for serial driver.

exploring only a small part of the reachable state space. Out of curiosity, we
also explored how long it took to compute all reachable states: For the four
drivers and the lock/unlock properties, the 32 programs took just 94 seconds
(hardly more than before), for the request packet completion property it
took 1996 seconds for all 16 programs (14 times more), and for the four
serial driver examples it took 157 seconds (about 4 times more).

Trace generation While Bebop and Moped always came to the same
conclusion about whether the label in question was reachable or not, they
gave different error traces. Bebop always generates the shortest error trace,
whereas Moped’s default behaviour does not have such a guarantee. When
experimenting with the four drivers (32 programs), we found that Moped’s
error traces were, on average, about one third longer than Bebop’s; in the
largest single deviation Moped’s trace was three times as long. The trade-
off between higher running-time and shorter trace generation is discussed in
more detail in Section 5.4.

Running Moped inside SLAM In the results reported above, both
checkers were run on the same set of Boolean Programs so that the results
are directly comparable. These programs were obtained by first running the
SLAM process with Bebop, then taking the resulting programs and checking
them a second time with Moped.

124

An obviously interesting experiment was to plug Moped into the SLAM
toolkit in Bebop’s place, and to see whether Moped’s different trace genera-
tion would affect the process. We first tried this out with the regression suite.
All 64 examples could be verified; for three examples the process took one
iteration less with Moped than it had with Bebop; for six examples it took
one iteration more, and for one example it took two iterations more. The
effect on the overall running time was negligible, however, because the ex-
amples were so small. Including the time for running the other SLAM tools,
running SLAM on all examples of the regression suite took about 5 minutes
and 40 seconds.

Unfortunately, no conclusive data could be gained from trying this process
with the drivers. In one driver, the initial iteration showed that the label
was not reachable, so no trace was created. In another driver, the number
of iterations increased from two to four, but the overall running time of the
process still decreased because Moped solved the four reachability problems
quickly enough. In the other two drivers and in the check for request packet
completion, Moped’s error traces caused Newton to report a potential null
pointer dereference in the driver, which ended the verification process. In
the limited time available for carrying out the experiments, this issue could
not be resolved.

Differences When comparing the algorithms on which the reachability
analysis of the two checkers is based, it turns out that they are in fact very
similar. This point is argued more precisely in Section 3.1.5. Also, both use
the same BDD library and the same method for determining the variable
ordering (which Moped in fact borrows from Bebop, see also Section 5.8).
However, the differences in running time are considerable, and a discussion
of implementation details with the authors of Bebop led to insights about
some of the reasons:

• Part of the reachability analysis consists of computing the effects of
functions (i.e. the relation between arguments and return values) which
must be ‘fed back’ into the control flow of the callers. This can be done
in two modes, ‘eager’ and ‘lazy’ (see Section 3.1.5). Moped uses lazy
evaluation which saves some time. A comparison to an ‘eager’ version
of Moped is carried out in Section 5.6.

• The checkers use different strategies for relating program variables to
BDD variables; in general, Moped uses less BDD variables. Because

125

some BDD operations take time proportional to the number of BDD
variables in the manager (see Section 4.2.2), this accounts for some of
the savings; see also Section 5.9.

• Bebop generates shortest error traces, whereas Moped’s default be-
haviour is to generate the first trace it finds in depth-first search. How-
ever, the shortest trace generation is bought at a higher running time.
This is discussed in more detail in Section 5.3.

Possible improvements There is still plenty of room to improve the per-
formance. Some ideas are listed below:

• The nature of the SLAM process means that quite often we have a cou-
ple of ‘yes’ instances (in which the label is reachable) before one ‘no’
instance. Therefore, the process can be sped up a lot by optimizing the
algorithms towards finding the error trace as quickly as possible. Find-
ing an error trace often requires exploration of only a small part of the
state space. In fact, in quite a few examples most of the time is spent
building the BDDs for the transition relations whereas the reachability
analysis itself is very quick. Thus, a natural improvement would be
to build the transition relations only ‘on demand’, i.e. only when the
corresponding statement is actually reached during the search.

• For the same reasons, the search could benefit from being ‘smarter’.
Currently both checkers simply examine every transition they find un-
til they happen upon the error label. It would be interesting to try
out techniques which explore the control flow of the program first and
identify ‘promising’ paths which are then treated preferentially in the
search.

• A large part of the statements in the Boolean Program examples are
actually skip statements. Many other statements are parallel assign-
ments with just a few variables. The BDDs which express the transition
relations for these statements change just the left-hand side variables
and copy the pre-values into the post-values for all other variables.
When reachability is propagated over these statements, the accompa-
nying BDD operation is a join (with existential quantification) and a
relabelling, both over a full set of global and local variables. Instead,
one could represent the transition relation for these statements with

126

BDDs which express just the variables which are changed, and perform
the existential quantification and relabelling over just these variables.
In the case of skip statements, this would amount to simply copying
the BDD of reachable valuations from the program point before the
statement to the program point after it.

• Both checkers can perform some optimizations on the Boolean Pro-
grams which lead to smaller BDD sizes (e.g. by identifying dead vari-
ables). However, in both checkers, these techniques interfere with their
error trace generation. However, it appears that the two techniques
can be combined with a little extra work, see Section 5.7.

4.2.4 Conclusions

The experiments conducted in the previous sections show that the model-
checking methods are efficient enough to succeed on systems with a couple of
dozens or even a few hundreds of binary variables. The recursive algorithms
verified in Section 4.2.1 could not have been handled with finite-state meth-
ods. In the Boolean Program examples, the ability to handle recursion was
of lesser importance, but pushdown systems proved to be a convenient and
natural model for handling procedures. As the examples from Section 4.2.2
show, they can be vastly more efficient than finite-state methods even when
recursion is ruled out.

To the author’s knowledge, Moped is currently the only model-checker
which can handle LTL efficiently for large-scale pushdown systems. The only
other implementation which could theoretically be used for this purpose is
Alfred by Daniel Polanský [35], which is a model-checker for the alternation-
free mu-calculus. However, this checker may have exponential run-time even
for some formulas of LTL, and it has no support for symbolic representations.
For reachability, which is a subset of LTL, an alternative implementation
exists in Bebop. The results show that Moped performs clearly better than
Bebop on reachability properties. We have identified some differences in the
algorithms which account for part of the performance gap, and have listed
some ideas which can increase the running times even further.

The recursive algorithms from Section 4.2.1 and the abstractions of C pro-
grams from Section 4.2.3 have quite different characteristics; for instance, the
latter have a much larger control flow and involve far more BDD variables.
However, they appear to constitute easier problems. While this may seem

127

surprising at first glance, there are in fact good reasons why this should be
so. Control flow only contributes a linear factor to the complexity of the
algorithms, and BDD operations contribute by far the largest part to the
overall running time and memory consumtion. In the recursive algorithms
(Quicksort, Heapify, Unify), the BDDs have to express quite complicated re-
lationships between several integer variables (e.g. in Quicksort we swap two
entries in the array whose indices are given by other variables) and there is
little redundancy between them (e.g. in the array sorted by Quicksort the
array entries have no relation to each other, except that in the end they are
sorted). In contrast, the Boolean Program examples often express less com-
plicated relations. Many instructions are simply the skip statement, others
are parallel assignments in which the right-hand sides typically have sim-
ple forms. Also, the boolean variables express predicates, some of which are
contradictory (e.g. {x=0}, {x=1}, {x=2}), which places additional restrictions
on the reachable state space. Moreover, the properties which we checked for
the recursive algorithms were true, but to verify this Moped had to search
the entire reachable state space. In the Boolean Program examples, most of
the time the outcome of the reachability analysis was positive, so the search
could be aborted before the entire reachable state space was computed.

The results presented in this chapter were achieved through experiment-
ing with a number of different settings and options in the checker. We could
establish a set of settings which were superior for most examples and which
were therefore made the default in Moped. These settings are discussed in
detail in Chapter 5.

128

Chapter 5

Implementation aspects

Chapter 3 analyzes the model-checking algorithms from an asymptotic point
of view. However, it is well-known that asymptotic complexity often tells
little about how algorithms perform in practice, and in an actual implemen-
tation the programmer has many design choices and fine-tuning options for
special cases which can have a drastic effect on their efficiency. During the
implementation of Moped efforts have been made to explore some of these
options. The experimental results listed in Chapter 4 are the result of this
exploration; in the following, some of the design choices and their effects are
discussed.

5.1 A data structure for transition tables

The algorithms for pre∗ and post∗ are at the heart of the model-checker. We
discuss data structures for pre∗ here as it makes the presentation slightly
easier, but it is straightforward to transfer the ideas to post∗. Section 3.1.3
discussed data structures only as far as was necessary to prove the complexity
results; here we provide some more details. Studying Algorithm 1 (for pre∗,
reproduced in Figure 5.1 for easier reference) reveals that our data structures
must provide for the following operations:

1. Given a pair q, γ, we want to traverse all rules with q, γ on the right-
hand side (lines 7 and 9).

2. The set trans contains the automaton transitions which still need to
be processed. The operations needed for trans are adding a transition

129

Algorithm 1

1 rel := ∅; trans := (→0); ∆′ := ∅;
2 for all 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ do trans := trans ∪ {(p, γ, p′)};
3 while trans 	= ∅ do
4 pop t = (q, γ, q′) from trans;
5 if t /∈ rel then
6 rel := rel ∪ {t};
7 for all 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ (∆ ∪ ∆′) do
8 trans := trans ∪ {(p1, γ1, q

′)};
9 for all 〈p1, γ1〉 ↪→ 〈q, γγ2〉 ∈ ∆ do

10 ∆′ := ∆′ ∪ {〈p1, γ1〉 ↪→ 〈q′, γ2〉};
11 for all (q′, γ2, q

′′) ∈ rel do
12 trans := trans ∪ {(p1, γ1, q

′′)};
13 return rel

Figure 5.1: The pre∗ algorithm (same as Figure 3.3).

(lines 2, 8, 12), emptiness check (line 3), and finding and removing a
transition (line 4). Also, we want membership test to avoid duplicate
entries; imagine that all additions to trans are preceded by a member-
ship test.

3. The set rel contains all transitions which have been processed. We
need operations for membership test (line 5) and adding a transition
(line 6). Moreover, given a pair q′, γ2 (where γ2 occurs in a rule of the
form 〈p, γ〉 ↪→ 〈p′, γ1γ2〉), we want to find all transitions of the form
(q′, γ2, q

′′) (line 11).

As far as item 1 goes, we already suggested in Section 3.1.3 that all rules
of the form 〈p, γ〉 ↪→ 〈p′, γ′w〉, w ∈ Γ ∪ {ε}, be put into a bucket labelled
by (p′, γ′), and to organise the buckets in a hash table. If we add rules to ∆′

(line 10), we can simply drop the new rule into the appropriate bucket in
constant time.

Also in Section 3.1.3 we suggested that rel be implemented as a hash
table, and trans as a stack. To avoid duplicate entries in trans, we also
suggested to keep a second hash table which holds the elements of trans.
Actually, we can get away without all these duplicities. We just need one
hash table with an integrated stack. This is done as follows: The hash table

130

stores the set rel ∪ trans. To each transition t in the hash table we associate
a pointer pt. If t is in trans , then pt points to the next element in the
stack, or nil if it is the last element. We keep a special pointer named stack
which points to the first element in the stack. It is now clear that adding
a transition, emptiness check, and finding and removing a transition can be
done in constant time.1 Because we never want to process any transition
twice, we can actually replace membership test in trans by membership test
in rel∪trans and implement it with a hash table lookup. This also eliminates
the need for the test in line 5.

Lines 4 to 6 are now implemented as follows: We take t to be the transition
pointed to by stack , then set stack := pt . Now we are free to use pt for other
means. The only operation we still lack is to find the transitions of the form
(q′, γ2, q

′′) in rel for a given pair q′, γ2. Our solution is to keep a linked list
for each pair, e.g. to have a pointer pq′,γ2 which points to the first element in
the list. Assume that t = (q′, γ2, q

′′) for some q′′. As we ‘move’ t from trans
to rel , we simply set pt := pq′,γ2 and have pq′,γ2 point to t (in this order).
Now line 11 can be implemented by simply traversing the list of transitions
starting at pq′,γ2 . The pointers to the start of the linked lists can be either
initialized to nil at the beginning of the algorithm or be created on demand
and kept in a hash table.

5.2 Symbolic cycle detection

In Section 3.2 we pointed out that model-checking LTL on pushdown sys-
tems requires finding a set of so-called repeating heads, which in turn re-
duces to identifying strongly connected components with a 1-labelled edge
(henceforth called 1-components) in the head reachability graph. However,
the classical algorithm for finding these components by Tarjan [40] is not
suitable for graphs with a symbolical representation. The reason is that Tar-
jan’s algorithm uses depth-first search which considers each node individually
whereas the strength of symbolic representations lies in dealing with poten-
tially very large sets of states at a time. Symbolic algorithms for finding the
1-components have worse complexity bounds than depth-first search, but in
practice they perform much better on very large graphs.

1Actually we can also implement a LIFO queue here, or even a priority queue (albeit
possibly at a cost).

131

Symbolic cycle detection is a well-known problem for which several solu-
tions have been proposed (see, for instance, the comparative surveys in [23,
36]). So far, no algorithm is universally regarded as the best; some have
incomparable complexity estimations depending on different characteristics
of the graphs. They are thus heuristics each of which can outperform the
others on certain examples. For the experiments we picked some algorithms
which are representative of different classes of heuristics (based on their per-
formance in [23, 36]). We also considered how the particular nature of our
examples could be used to speed up the process. This led to two optimiza-
tions: partitioning and a preprocessing step.

Partitioning The head reachability graph has a partitioned edge relation.
If the control locations have the form P0×G and the stack alphabet the form
Γ0×L, the graph is represented by a set of symbolic edges (p, γ) b−−→

[R]
(p′, γ′)

where p, p′ ∈ P0, γ, γ′ ∈ Γ0, b ∈ {0, 1} and R ⊆ (G × L) × (G × L);
if (g, l, g′, l′) ∈ R, then ((p, g), (γ, l)) b−→ ((p′, g′), (γ′, l′)) is an edge in the
graph.

We could also encode b into R, but keeping it explicit allows us to rule out
parts of the graph which are guaranteed not to have 1-components: First,
we obtain a simplified, explicit graph by dropping the relations R from the
symbolic edges (in terms of program analysis, this leaves us with the control
flow and Büchi state information). The resulting graph is an overapprox-
imation, but we can conveniently use Tarjan’s algorithm on it to identify
potential 1-components. We can then narrow down the symbolic search to
these potential 1-components.

Instead of Tarjan’s algorithm, finite-state model-checkers often use a more
memory-efficient method by Courcoubetis et al [14] to identify cycles. How-
ever, this method is not useful for our purposes at this point because it stops
at the first cycle it finds and in particular does not identify the components,
but only individual cycles.

Example We consider the Quicksort example once more. In our experi-
ments, we modelled the algorithm with the system in Figure 4.6. The for-
mula �ok was used to check that every execution reaches the label ok , which
signifies that the sorting procedure has terminated and the result is sorted
correctly.

The left half of Figure 5.2 shows the Büchi automaton for the negation

132

{ok}

∅, {ok}

q0

q1

∅

q1, ok

q0, qs0

1

q0, main0

q0, main1

11

q0, ok q0, error

q0, qs1

0

0

1

q0, qs2

q0, qs3

1

1

1

1

11

1

Figure 5.2: Left: Büchi automaton for ¬(�ok). Right: Simplified graph for
the product of the Büchi automaton and the Quicksort example.

of this formula. The model-checking procedure synchronizes this Büchi au-
tomaton with the pushdown system and derives the head reachability graph
from the synchronized system. The right half of the figure shows the reach-
able part of the simplified graph obtained in this case (see Definitions 3.6
and 3.8 for details on how the graph is constructed). Potential 1-components
are indicated by dotted circles.

In the following we assume that we have already identified a potential
1-component and that we restrict our symbolic search efforts to the edges
within this component. Moped implements a number of different methods
for the symbolic search and a preprocessing step, which can be combined
with any of the methods.

Preprocessing The preprocessing step identifies and removes trivially ir-
reversible transitions. In a symbolic edge

(p, γ) b−−→
[R]

(p′, γ′)

133

the set R is a relation between the pre-values and the post-values of tuples
of variables. We say that R contains a trivially irreversible transition if
a variable can increase in R, but cannot decrease in any transition in the
potential 1-component that (p, γ) and (p′, γ′) belong to (or vice versa). Such
transitions cannot form part of a cycle and can be removed.

Checking whether a variable can increase or decrease is easy; for a boolean
variable whose pre- and post-values are represented by the BDD variables v
and v′, respectively, we merely quantify away all BDD variables other than v
and v′ and inspect the resulting (small) BDD. For integer variables, which are
represented by multiple BDD variables, we first perform this kind of check
for the BDD variable which represents the most significant bit (and remove
the transitions found to be trivially irreversible), then repeat the procedure
in descending order of significance.

Methods The following paragraphs briefly describe the four methods avail-
able for detecting cycles. Except for the first method, they work by comput-
ing sets of states in the head reachability graph G restricted to the potential
1-component currently under consideration.

• Transitive closure Conceptually the simplest method, this computes
the transitive closure of the transition relation, i.e. →∗. However, →∗

is potentially very large and the operations to compute it, though few,
are expensive, usually making this an inefficient method.

• Xie-Beerel method [43] This is basically a divide-and-conquer strat-
egy for identifying components in symbolically represented graphs. It
is based on the observation that if we pick any node n of the graph,
post∗({n})∩pre∗({n}) is an SCC. If two nodes of this set are connected
by a 1-labelled edge, we have found a 1-component. Otherwise, the
graph is subdivided into post∗({n})\pre∗({n}) and (P ×Γ)\post∗({n})
and the search continues recursively on these smaller graphs.

• Emerson-Lei method [17] Often considered the standard method
for symbolic cycle-detection, this algorithm computes the set of nodes
from which 1-components can be reached (the set is empty if no such
components exist). Thus, it gives us an overapproximation of the real
set of repeating heads Rep. However, it still suits our purposes: in the
pre∗ method, where we compute pre∗(Rep Γ∗), the ‘extra’ states would

134

be reached in the pre∗ step anyway, and in the post∗ method, where we
only consider the reachable heads, it is enough to know that a repeating
head exists.

• OWCTY method [23] Fisler et al proposed a variant of the Emerson-
Lei method which they call OWCTY (one-way catch-them-young). The
method computes the same set of nodes as Emerson-Lei but in a slightly
different fashion. Extensive experiments carried out in [23] suggest
that, although the Emerson-Lei method can outperform OWCTY on
certain examples, OWCTY performs better on a wider variety of ex-
amples.

Experiments We ran the methods with and without preprocessing on
various instances of the Quicksort, Heapify, and Unify examples from Sec-
tion 4.2.1. The running times in Figure 5.3 list the times it took to compute
the repeating heads only. Except for varying the method for computing the
repeating heads, all settings were the same as in Section 4.2.1. To make
the comparison more interesting, the instances we chose were those with the
largest running times. In Quicksort, we used the randomized variant; in
Unify, we ran the same tests as in Section 4.2.1, i.e. the first two runs were
on the faulty version without ‘occurs’ check where term depth two failed and
term depth three succeeded in finding an error, and the other two runs were
on the corrected version with ‘occurs’ check with a small number of variables,
constants and functions (2/1/1) and with a larger number (3/2/3).

As far as a comparison of the four cycle-detection methods is concerned,
the transitive closure method turned out not to be competitive (as could
be expected), in most cases failing to complete the tasks within an hour.
The other three algorithms performed about equally well in these examples.
Therefore, we show the time for just one of them (OWCTY) and compare
its performance with and without preprocessing.

The preprocessing manages to significantly reduce the time in Quicksort
and Heapify. A closer look at the examples reveals how the preprocessing
affects the computation times:

• In the Quicksort example most time goes into checking the potential
1-component which includes (q0, qs0), (q0, qs1), and (q0, qs2). Here
the preprocessing step detects that the variable left cannot decrease
and removes the steps which increase it (compare the pushdown system

135

with w/o
preprocessing

K N M Quicksort

1 6 60 17.8 s 339.2 s
2 4 12 68.3 s 630.7 s
3 3 6 3.1 s 13.1 s
4 4 7 59.3 s 1065.4 s

K M Heapify

1 31 0.03 s 0.08 s
3 11 0.29 s 0.71 s

with w/o
preprocessing

Unify w/o occurs

depth 2 3.3 s 3.3 s
depth 3 24.8 s 24.9 s

Unify with occurs

small (2/1/1) 11.2 s 11.1 s
large (3/2/3) 472.7 s 470.1 s

Figure 5.3: Times for computing repeating heads (OWCTY method).

in Figure 4.6). Similarly, the steps which decrease right are removed
because right cannot increase.

• The Heapify example models a binary tree with an array. Here the
preprocessing step recognizes that the recursive procedures which ma-
nipulate the tree always move downwards in the tree so that the vari-
able which holds the index of the array element to be processed never
decreases.

• The preprocessing step is not effective in the Unify example. In princi-
ple, Unify is similar to Heapify: it also models two binary trees with an
array and recursively descends through the trees. However, the mono-
tonicity of the recursive descent is broken when the algorithm has to
descend through subtrees which were previously fixed as the substitu-
tion of some variable.

The preprocessing step speeds up the methods for finding cycles because
it removes transitions which are guaranteed to be outside of cycles, thus
reducing the diameter of the graph, which is a factor in the complexity of
all four methods. It seems reasonable to expect that the preprocessing could
be beneficial in other examples with recursion or loops as well. Typically,
recursive procedures or loops exploit some kind of monotonicity property to
guarantee termination, e.g., if x1, . . . , xn are variables, then there is some
function g such that

136

• the value of g(x1, . . . , xn) never increases;

• at every point during execution of the procedure/loop, g(x1, . . . , xn)
must decrease eventually;

• termination is implied if g(x1, . . . , xn) goes below a certain value.

The preprocessing step can check the first condition if the monotonicity of g
somehow manifests itself in the monotonicity of single variables, as it does
in Quicksort or Heapify. If this is not the case, a user who has an idea
of how g might look like could ‘help’ the model-checker by introducing an
additional variable y and keeping the condition y := g(x1, . . . , xn) invariant
(albeit possibly at the cost of increasing the time needed by the pre∗/post∗

steps). There seems to be little reason not to use the preprocessing step;
even if it does not remove any transitions, it does not take a lot of time.

The examples cannot serve as a basis for a proper comparison between
Xie-Beerel, Emerson-Lei, and OWCTY. One reason is that we only test them
on weak systems [28], i.e. systems where the SCCs contain either only 1-edges
or only 0-edges. Tests on a wider variety of systems (like in [23]) would be
in order here to expose the differences.

To conclude, regardless of which method is employed for cycle detection
(except for transitive closure), it seems promising to use the preprocessing
step which removes the trivially irreversible transitions. Naturally, Moped
could also profit from future advances in symbolic cycle detection. Another
possible improvement would be to use an adaptive approach: once a poten-
tial 1-component has been identified, one could choose a specialized cycle
detection method based on an analysis of the structure of the component.
Specialized algorithms exist, for instance, for so-called weak and terminal
systems [7] which would apply for the examples we considered here.

5.3 Symbolic trace generation

The usefulness of model-checking for debugging purposes is greatly enhanced
if the model-checker is able to print an execution which exhibits a violation
of the property if one is found. The pre∗/post∗ algorithms compute the pre-
decessors/successors of a set of of configurations as the language accepted
by some finite automaton. Section 3.1.6 shows how the path from a pre-
decessor/successor of a set C back to some configuration of C can be re-
constructed by annotating the transitions of these automata with additional

137

information. Computing and storing the annotations does not increase the
asymptotic complexity of the algorithms. Here, we discuss practical issues of
reconstructing paths and generating the annotation for the case of symbolic
systems.

In Section 3.1.6, the annotation to the transitions in the finite automaton
contains the pushdown rule that was used to create it (plus an automaton
state if the transition causing the addition was a ‘composite’ transition in-
volving an ε-transition; here we concentrate on the rule only to keep matters
simple). For normal (non-symbolic) pushdown systems, this translates to
annotating each transition with a pointer to a memory structure contain-
ing some rule. For symbolic systems, it translates to expanding the BDDs
which represent the transition relations. For instance, assume that we have
a symbolic rule r := 〈p, γ〉 ↪−−→

[Rr]
〈p′, γ′〉. When computing post∗, if we have

p γ−−→
[R]

∗ q for some state q, we would normally add p′ γ′−−−→
[R′]

q, where

R′ = { (g′, l′, g′′) | ∃g, l : (g, l, g′, l′) ∈ Rr, (g, l, g′′) ∈ R }

When generating the annotation, we have to account for the fact that the tu-
ples in R′ may have been caused by different rules. Therefore the annotation
becomes a list of items (ri, Ri) where the tuples in the sets Ri are a partition
of R′ and such that ri caused the addition of the tuples in Ri. Moreover, if
we transfer the path reconstruction method verbatim, then we would have
to extend the relation in order to record the ‘origin’ of each tuple, e.g. the
addition in the example above would cause a list item (r, R′′) where

R′′ = { ((g′, l′, g′′), (g, l)) | (g, l, g′, l′) ∈ Rr, (g, l, g′′) ∈ R′ }.

Let us call this the complete method for reconstructing paths. Obviously, R′′

may have a rather larger representation than R′, and there is a penalty in
both time and memory for handling it. Instead, Moped uses an incomplete
method which eschews the computation of R′′ during the reachability analysis
at the expense of doing more work during trace generation.

Suppose that during reachability analysis we simply annotate (p′, γ′, q)
with a list of rules that has led to the addition of tuples in R′. Then, during
reconstruction, we could still identify a set of predecessors for any configu-
ration c which involves (p′, γ′, q). We need to pick one of them to continue
the reconstruction. However, we are no longer guaranteed to pick a configu-
ration which has been added to the automaton before c which destroys the
guarantee that the reconstruction will terminate.

138

no traces complete incomplete
time mem time mem time mem

Regression suite 45.9 s 568 t 65.3 s 931 t 46.4 s 765 t
Four drivers 78.2 s 2673 t 305.4 s 6003 t 88.5 s 3216 t
Iscsiprt driver 119.2 s 4192 t 425.6 s 10593 t 142.4 s 5283 t
Serial driver 44.9 s 813 t 91.2 s 1998 t 50.7 s 924 t

Figure 5.4: Time and memory consumption for trace generation methods.

The solution Moped uses is to ‘timestamp’ the added transitions. Thus,
the annotation becomes a list of items (ri, ci, Ri) where each Ri contains
just the tuples which were first added by ri, and ci is the value of a global
counter which is increased each time a list item is generated anywhere in the
automaton. The reconstruction procedure can then search the list and make
sure that it picks a predecessor configuration which was in the automaton
before the current configuration.

The incomplete method creates an annotation with smaller Ris, but the
list potentially contains many more items than in the complete method.
Experiments, however, show that the incomplete method works faster and
consumes less memory. The experiments were carried out on the Boolean
Programs from Section 4.2.3. These were chosen for the experiments be-
cause trace generation was important for them (since the traces would be
used to refine abstractions), because the traces that were generated could be
quite long, and because the running times were dominated by the reachabil-
ity and trace generation efforts. We compared the setting where no traces
(and no annotations) were generated with the two methods for generating
traces. Both time and memory in Figure 5.4 show the sums for each group of
examples; memory consumption is measured in thousands of peak live BDD
nodes.

The figures in the ‘no traces’ column include only resources needed for
reachability, the others include those for reachability, generation of the anno-
tation, and trace generation. Slightly surprisingly, the time for reachability
and generating the annotation in the incomplete method was marginally
less than the time for reachability when no traces were generated. This is
because the relations needed in the annotations are computed during reacha-
bility anyway, and when not generating traces these are thrown away to save

139

memory. Apparently this costs slightly more time than keeping them around
and allocating some extra memory for the rest of the annotation.

5.4 The cost of generating shortest traces

In Section 3.1.7 we showed how one can compute the length of a shortest path
from a set C to any configuration reachable from C by imposing a discipline
on the way automaton transitions are chosen for processing. The discipline
requires to maintain a priority queue for the transitions which are waiting
to be processed, and inserting a transition into this queue is asymptotically
more expensive than in the normal case where we use a stack.

Combining this technique with the one for reconstructing paths from
Sections 3.1.6 and 5.3 lets us generate the shortest path from C to any
configuration. It turns out that shortest paths do take noticeably longer
to compute than arbitrary paths, but for other reasons than the cost of
maintaining a priority queue. These reasons, which can be characterized as
edge splitting and breadth-first search, are discussed below.

Edge splitting In Sections 3.1.6 and 3.1.7 we showed that the only changes
required in order to make the post∗ algorithm compute shortest paths are to
compute a labelling for the transitions and to use a priority queue. Trans-
ferring these changes to the symbolic version of post∗ (Algorithm 6 in Sec-
tion 3.3.3) is not completely straightforward: In Algorithm 6 we maintain
two sets rel(q, γ, q′) and trans(q, γ, q′) with each triple q, γ, q′ to represent the
transitions that have already been processed and those which still need to
be. However, the tuples in rel(q, γ, q′) and trans(q, γ, q′) may be reached by
shortest paths of different lengths and may therefore carry different labels.
Therefore we need to partition the sets rel(q, y, q′) and trans(q, y, q′) so that
each element set of the partition has the same label, and we need to process
the element sets individually.

Breadth-first search The priority queue sorts transitions according to the
length of a shortest path that has led to their creation. This basically means
that we explore the reachable state space breadth-first. In the experiments
with Boolean Programs, this mode of search usually forced the checker to
explore a larger part of the state space before it found an error.

140

default mode shortest traces
time tr. sets length time tr. sets length

Regression suite 46.4 s 36732 3786 58.4 s 63717 3549
Four drivers 88.5 s 169315 16559 126.9 s 283100 11886
Iscsiprt driver 142.4 s 79591 13111 243.4 s 152959 8377
Serial driver 50.7 s 9488 3371 60.2 s 39877 2620

Figure 5.5: Comparison of default vs shortest trace generation.

Experiments Moped’s default mode for reachability analysis is to enqueue
transitions using a stack, which (roughly speaking) means a depth-first ex-
ploration of the state space, and to report the first trace found in this way.
We compared this method with the one for generating shortest traces in two
respects: the time required by both methods, and the length of the gener-
ated trace. The examples used for comparison were again the four groups of
Boolean Programs from Section 4.2.3. The table in Figure 5.5 lists the times
for reachability and trace generation, the number of transition sets which
were processed, and the length of the resulting trace.

On average, the shortest trace generation takes 50 percent more time
than the default method. The traces generated by the default method are, on
average, 40 percent longer than the shortest traces. Both numbers seem to be
acceptable trade-offs in practice. The time spent for managing operations on
the priority queue is marginal (less than a second in each group of examples),
so the increase in time is mostly due to the increased number of transition
sets which the shortest trace method must process (80 percent more).

To determine the source of the increase, we added edge splitting to the
default method and ran the examples again. This resulted in a 4 percent
increase in running time (for 17 per cent more transition sets). Therefore,
our conclusion is that the increase is largely due to breadth-first search.
We suspect that depth-first search is favourable for these examples because
they are control-flow intensive, and only few of the statements influence the
property that is being checked (e.g. the code may contain ‘switch’ statements
with multiple cases, but none of the actions in these cases influences the
property). This would increase the chance for a depth-first search to succeed,
whereas a breadth-first search has to go through many ‘useless’ branches of
the program.

141

default mode full reachability
pre∗ post∗ pre∗ post∗

Regression suite 58.5 s 46.4 s 51.0 s 48.4 s
Four drivers 128.8 s 88.5 s 139.7 s 167.0 s
Iscsiprt driver 1864.0 s 142.4 s 2239.3 s 4663.6 s
Serial driver 127.0 s 50.7 s 161.4 s 460.9 s

Figure 5.6: Comparison of backward (pre∗) and forward (post∗) methods on
Boolean Programs.

5.5 Backward versus forward computation

In Chapter 3 we have given solutions for both reachability and LTL model-
checking problems based on backward and forward search. The backward
solutions have a better complexity estimation, but the backward reachable
state space may be larger than the state space reachable through forward
search, forcing the backward methods to visit more states. We ran both
the backward and the forward methods on the examples to see which aspect
matters more in practice.

Reachability For the Boolean Programs, the forward method (using post∗)
was better than the backward (pre∗) method on all four groups of examples
by factors of 1.5, 13, and 2.5 on the various drivers. The numbers are listed
in the left half of the table in Figure 5.6. These were recorded using Moped’s
default mode for reachability analysis which is to stop the search as soon
as the result is known (i.e. when an error state has been reached from an
initial state, or vice versa, or otherwise when reachability analysis has been
completed without finding an error).

The large majority of the big examples (programs derived from drivers)
were ‘yes’ instances, in which the error label was reachable so that the search
could be aborted when the error was found. We ran another series of experi-
ments where the reachability analysis was completed regardless of the result.
The running times for these experiments are listed under “full reachability”
in Figure 5.6. In these examples, pre∗ was faster by factors of up to 2.5.
Curiously enough, however, pre∗ happened to be slower on the ‘no’ instances
where the full reachability analysis was actually necessary.

142

K N M post∗ pre∗

non-randomized
2 4 8 10.2 s 3493.0 s
3 3 6 13.7 s 1314.1 s

randomized
3 3 6 33.4 s 2811.8 s

Figure 5.7: Comparison of pre∗ and post∗ methods on Quicksort.

LTL model-checking For Quicksort (Section 4.2.1), the times for several
sets of parameters using the forward method are listed in Figure 4.8. The
backward method failed to terminate within an hour for most of the parame-
ter sets; those where it did terminate are listed in Figure 5.7. This example is
an extreme illustration of the point that the backward reachable state space
may be much larger than the forward reachable space; for instance, the vari-
able left is always less than or equal to eq, which is less than or equal to lo

and so on. The backwards search does not ‘know’ this, and therefore does a
lot of work in vain.

In Heapify (Section 4.2.1), however, the backward method was consis-
tently faster than the forward method (see the table in Figure 4.9). This
example has fewer restrictions to the forward reachable state space than
Quicksort, which explains why pre∗ can exploit its asymptotic advantage
much better.

For the Unify example, times and memory consumption for the forward
method are mentioned in Section 4.2.1. The backward method ran out of
memory (1.5 GB) in all the tests.

Conclusions As a conclusion, the forward methods seem to be preferable,
and they are used by default in Moped. The backward methods were always
slower with one exception (Heapify) and sometimes failed to terminate within
an hour when the forward method took only a couple of seconds. Even in
the one case where the forward method was better, the forward method still
terminated, being five times slower in the worst example.

In the Boolean Program examples, the backward (pre∗) method is slower
to find the first error, but faster to compute the complete (backward) reach-
able state space. This suggests that the backward method computes too

143

lazy eager

Regression suite 46.4 s 47.3 s
Four drivers 88.5 s 91.2 s
Iscsiprt driver 142.4 s 152.1 s
Serial driver 50.7 s 54.9 s

Figure 5.8: Running times for eager and lazy evaluation.

many transitions which do not lead towards the initial states. In fact, by
processing the rules with an empty right-hand side first, the pre∗ algorithm
effectively starts its computation at the return statements of all procedures
simultaneously and works its way forward from there. It may well be that one
can achieve better performance by tailoring the pre∗ algorithm to Boolean
Programs, and start at return statements only if a call to their procedure
has been shown to be backwards reachable from the error label. This could
be the subject of further research.

5.6 Eager versus lazy evaluation

In Section 3.1.5 we considered the case where a pushdown system is derived
from a Boolean Program and analyzed the actions of the post∗ algorithm in
terms of the program. Comparing this analysis with that of similar algo-
rithms [1, 3, 6] revealed that interactions between procedures can be evalu-
ated in two ways: lazy and eager.

Algorithm 2 from Section 3.1.4 uses lazy evaluation. To understand the
impact of the mode of evaluation on performance, let us consider an al-
ternative eager variant of post∗ (Algorithm 7 in Figure 5.6). The essential
difference to Algorithm 2 is the addition of lines 21 through 23; here the
‘procedure call’ rules are combined with the fact that the result of a proce-
dure call has been evaluated (represented by (p, ε, q)) to form new, ‘artificial’
rules. These new rules have the effect that was achieved by lines 17 and 18
in Algorithm 2.

The Boolean Program examples were used to compare the lazy and the
eager version. The resulting running times in seconds are listed in Figure 5.8.
The differences are minor, but eager evaluation is consistently slower at an
average of 5 percent. The slower performance of eager evaluation is expected

144

because it does too much work: Whenever the effect of a procedure is com-
puted, the effect is plugged into all possible call sites. Some of these call sites
are never visited, so the work done for them is in vain.

The concepts of lazy and eager evaluation can also be applied to backward
reachability. The algorithm presented for pre∗ (Algorithm 1 in Section 3.1.3)
uses eager evaluation. The author believes that that eager evaluation works
better for pre∗ – see the justification given at the beginning of Section 3.1.3
– but no experiments have been carried out to confirm this suspicion. There
seems to be little gain to be had from such a comparison, though, as backward
reachability is often slower than its forward counterpart (see Section 5.5), and
the expected small difference between eager and lazy evaluation is unlikely
to change this.

5.7 Variable optimizations

The model-checking of Boolean Programs could benefit from techniques to
reduce the size of the BDDs used to represent the programs. Ball and Ra-
jamani [3] proposed such techniques based on ideas known from compiler
optimization.

Mod/ref analysis Let x be a global variable and p be a procedure. Sup-
pose that neither p nor any of the procedures called by p (either directly or
transitively) modifies or references x. Then it is not necessary to record the
value of x inside p, provided that x is saved on the stack during any call to p.
This way, the BDDs representing statements of p need not mention the BDD
variables for x.

Moped implements this technique with the following addition: If p con-
tains a constrain statement (see the syntax description in the Appendix),
then the structure of its associated expression is examined. If the expression
contains a conjunctive clause of the form x = ′x, this clause merely preserves
the value of x and is not counted as a reference to x.

Live range analysis A variable x of a Boolean Program is said to be
dead at program point n if, on all paths starting at n, the value of x is
never used before x is modified. If x is dead at program point n, then the
program can discard the value of x when reaching n. In BDD terms, this
means that the transition relations of statements at n place no condition

145

Algorithm 7
Input: a pushdown system P = (P, Γ, ∆, c0);

a P-Automaton A = (Q, Γ,→0, P, F) without transitions into P
Output: the automaton Apost∗

1 trans := (→0) ∩ (P × Γ × Q);
2 rel := (→0) \ trans; Q′ := Q; F ′ := F ; ∆′ := ∅;
3 for all 〈p, γ〉 ↪→ 〈p1, γ1γ2〉 ∈ ∆ do
4 Q′ := Q′ ∪ {qp1,γ1};
5 for all q ∈ Q′ do eps(q) := ∅;
6 while trans 	= ∅ do
7 pop t = (p, γ, q) from trans;
8 if t /∈ rel then
9 rel := rel ∪ {t};

10 if γ 	= ε then
11 for all 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ ∆ do
12 trans := trans ∪ {(p′, ε, q)}
13 for all 〈p, γ〉 ↪→ 〈p′, γ1〉 ∈ (∆ ∪ ∆′) do
14 trans := trans ∪ {(p′, γ1, q

′)};
15 for all 〈p, γ〉 ↪→ 〈p′, γ1γ2〉 ∈ ∆ do
16 trans := trans ∪ {(p′, γ1, qp′,γ1)};
17 rel := rel ∪ {(qp′,γ1 , γ2, q)};
18 else
19 for all (q, γ′, q′) ∈ rel do
20 trans := trans ∪ {(p, γ′, q′)};
21 if q = qp1,γ1 ∈ Q′ \ Q then
22 for all 〈p2, γ2〉 ↪→ 〈p1, γ1γ3〉 ∈ ∆ do
23 ∆′ := ∆′ ∪ {〈p2, γ2〉 ↪→ 〈p, γ3〉};
24 if q ∈ F ′ then F ′ := F ′ ∪ {p′};
25 return (Q′, Γ, rel , P, F ′)

Figure 5.9: A ‘eager’ variant of post∗.

146

none mod/ref live range both

Regression suite 45.9 s 44.1 s 45.0 s 43.5 s
Four drivers 78.2 s 75.5 s 67.4 s 66.7 s
Iscsiprt driver 119.2 s 114.9 s 105.4 s 101.7 s
Serial driver 44.9 s 48.7 s 50.5 s 49.5 s

Figure 5.10: Comparison of variable optimizations.

on the pre/post values of x so that their BDDs become smaller. Moped
implements this technique for local variables; this requires an inspection of
just the statements of the respective procedure.

Experimental results We tested the impact of the optimizations on the
Boolean Program examples both individually and in combination. The run-
ning times are listed in Figure 5.10; these do not include time for trace gen-
eration (see below for the reason). Both optimizations managed to reduce
the time for the model-checker, although not dramatically (up to 15 percent
combined). In the serial driver examples their use was counterproductive
because for these large programs the time taken to compute the information
needed for the optimizations could not be made up during the relatively short
reachability analysis.

Unfortunately, the optimizations conflict with trace generation: When
the pushdown model discards dead variables or saves global variables on
the stack (and discards them until they are retrieved), the mechanics of the
model are no longer a completely faithful representation of the semantics of
the underlying Boolean Program. As a result, an error trace may for instance
change the value of a variable from 0 to 1 although the program does not
warrant such a change. Although such incidents are ‘harmless’ in the sense
that they do not lead to false error reports, they may confuse users who are
reading the trace. They also confuse Newton, the SLAM tool which checks
whether traces are spurious (see Section 4.2.3).

The incompatibility between the optimizations and trace generation is not
a fundamental problem – if the model-checker keeps track of which variables
are discarded at which points in the model, then the trace can be corrected.
The checker can go through the trace step by step starting at its initial
configuration; if a variable changes its value in the trace when it is in a

147

discarded state, then the change is ‘illegal’ and the variable must retain its
value. However, at the time of writing such a correction is not implemented
in Moped; hence, it is not recommended to use the optimizations when traces
are required.

5.8 Variable ordering

It is well known that the performance of BDD-based algorithms is very sen-
sitive to variable ordering. This section describes the factors which were
essential in obtaining good variable order for the examples. We discuss the
issues of arrays and integer variables in the ‘academic’ examples (Quick-
sort, Heapify, Unify), and a dependency-based ordering mechanism for the
Boolean Programs.

Arrays The Quicksort, Heapify, and Unify examples use scalar variables
(booleans or integers, the latter represented by multiple BDD variables), and
arrays. Typically, scalar variables are used as indices in the array, or used for
comparison with array elements. We shall argue that it is better for arrays
to occur after the scalar variables in the variable ordering.

Consider, for instance, the expression a[i] = p where a is an array with
M elements and i and p are scalars. Moreover, let us assume that p and the
elements of a have K bits such that they have a range between 1 and D := 2K .
Figure 5.11 shows a schematic view of two BDDs for the expression; black
nodes indicate the 1-leaf, and edges to the 0-leaf are not shown. The first
BDD assumes the ordering i, p, a (the scalar variables before the array), the
second a, i, p (vice versa).

Let us compare the width of the BDDs (i.e. the maximum number of
nodes at the same level) as a measure of their sizes. For both cases, the
width is indicated by the number of grey nodes. Under the first ordering,
the width is M · D because the BDD has to branch into a different case
for each possible value of i and p. In the lower part of the first BDD, the
paths to the 1-leaf ensure that the array element selected by i indeed has the
same value as p which requires K BDD nodes in each of the M ·D cases. In
the second ordering, the BDD has to split into DM different cases, one for
every possible array content – each case allows a different set of combinations
between i and p to reach the 1-leaf.

148

...

...

...

...

...

...

...

...

.........

...

...

...

a[M] = 1a[1] = 1 a[M] = Da[1] = D

p = D

i = Mi = 1

p = 1 p = 1 p = D

a[1] = 1

a[2] = 1a[2] = 1

a[1] = D

a[2] = D a[2] = D

a[M] = 1 a[M] = D

p = 1 p = D

i = M
i = 1 i = 1

Figure 5.11: BDDs for a[i] = p with orderings i, p, a (above) and a, i, p (be-
low).

Under the first ordering, the number of nodes required for the expression is
linear in M , under the second ordering it is exponential. Similar results could
be obtained, e.g., for expressions of the form a[i] = a[j]. In the experiments,
using the first type of ordering was essential to avoid running out of memory
for most examples.

Integers When integer variables are represented by multiple BDD vari-
ables, it is usually beneficial to order the BDD variables from most to least
significant bit; this minimizes the BDDs used to represent arithmetic com-
parisons. If several integer variables are present in a program, we have two
choices for the ordering: blockwise, i.e. first all BDD variables for the first
integer, then all for the second integer etc, or interleaved, i.e. first the most
significant bit for all integers, then the second most etc. until the least sig-
nificant bit (given the result of the previous paragraph, we first interleave all
scalar variables and then the arrays).

In the experiments, blockwise or interleaved ordering made no apprecia-

149

blockwise interleaved

K N M Quicksort

2 4 12 66.8 s 493.2 s
3 3 6 20.1 s 13.7 s
4 4 6 654.8 s 64.4 s
4 4 7 ∗ 449.4 s

K M Heapify

2 11 14.4 s 11.8 s
3 9 646.3 s 36.0 s
3 11 ∗ 1938.1 s

blockwise interleaved

Unify w/o occurs

depth 2 61.5 s 112.7 s
depth 3 249.5 s 579.2 s

Unify with occurs

small (2/1/1) 181.3 s 556.3 s
large (3/2/3) 6126.5 s ∗

Figure 5.12: Blockwise and interleaved ordering of arrays.

ble difference for the scalar variables. For the arrays, both ordering modes
had advantages and disadvantages, depending on the nature of the examples.
Figure 5.12 lists some results; asterisks indicate that the experiment ran out
of memory. Blockwise ordering was better for the Unify examples; in the
Quicksort and Heapify examples interleaved ordering outperforms blockwise
ordering as K, the number of bits used for representing integers, increases.
This can be explained with the observation that these two examples compute
permutations (i.e., the BDDs in the automata express a relation between the
original array contents and the resulting contents, the latter being a permu-
tation of the former), and that interleaved ordering can express permutations
with smaller BDDs.

Boolean Programs The requirements for the Boolean Program examples
are different from the ‘academic’ examples. The issues discussed above do
not matter, since Boolean Program have only scalar boolean variables, but
no arrays or integers. However, the programs may contain hundreds of such
variables, so finding a good ordering for them is still important. To this aim,
Moped employs a heuristic borrowed from Bebop [3].

The heuristic determines a variable ordering based on dependency analy-
sis. We say that program variable a1 depends on program variable a2 if and
only if the program contains at least one statement where a1 is computed as
the value of an expression e which contains a2. In Boolean Programs, this

150

can happen in three cases:

• there is an assignment a1 := e;

• a1 is a formal parameter of a function f , and f is called with expres-
sion e as an argument in the place for a1;

• a1 takes a return value from a function call, and the callee contains a
return statement which specifies e in the place for a1.

The ordering tries to incorporate two ideas:

(i) if two or more variables have a dependency relation with each other,
they should be placed close to each other in the ordering.

(ii) each variable should be placed after those variables upon which it de-
pends.

Concretely, the heuristic comprises the following steps:

1. Assign a BDD variable to each program variable (see Section 5.9).

2. Build the dependency graph. The dependency graph is a directed graph
with one node for each BDD variable; if program variable a1 depends
on a2, then there is an edge from the BDD variable for a1 to the BDD
variable for a2.

3. If there is a cyclic dependency, remove any one of the edges which form
part of a cycle. Repeat this until all cycles have been eliminated.

4. Compute the weight of each node as the number of its (transitive)
children. Sort the nodes in descending order of weight. Mark all nodes
as unvisited.

5. As long as there are unvisited nodes left, pick an unvisited node v with
maximal weight. Start a depth-first traversal of the graph at v, limit-
ing the traversal to previously unvisited nodes. During the traversal,
add the associated BDD variables to the ordering in postorder fashion.
Mark all visited nodes as such. Repeat this step until all nodes have
been visited (and all variables added to the ordering).

151

heuristic input order

Regression suite 46.4 s 47.6 s
Four drivers 88.5 s 153.5 s
Iscsiprt driver 142.4 s 270.5 s
Serial driver 50.7 s ∗

Figure 5.13: Effect of variable ordering heuristic.

Idea (ii) is reflected in sorting nodes by weight; if a1 depends on a2, then
(barring removed edges) the weight of a1 will be larger than that of a2, and
adding variables in postorder places a2 ahead of a1. Idea (i) is reflected by
using depth-first traversal (instead of simply sorting nodes/BDD variables in
ascending order of weight which would also satisfy idea (ii)).

Figure 5.13 details how the heuristic affected computation times; we com-
pare it against ‘input order’, i.e. the case where the variable orderings simply
follow the order of declarations. As one could expect, the ordering hardly
matters on the small regression suite examples. Most drivers proved surpris-
ingly independent of the variable ordering as, on average, the heuristic only
reduced their running time by half. The heuristic did make a huge differ-
ence for the serial drivers, however, as the input-based ordering ran out of
memory on two of the four examples in that group. Closer analysis revealed
that this happens because these examples contain functions with fairly large
numbers of arguments and return values (see Figure 4.14). These may result
in parallel assignments between two large groups of variables, and the BDDs
for these are only manageable with good orderings.

5.9 Variable mapping strategies

Each procedure in a Boolean Program has its own set of local variables.
Similarly, the input language for symbolic pushdown systems allows sets of
stack symbols to be associated with different sets of local variables. This
section concerns the question of how the local variable spaces should be
represented symbolically. Moped employs three different strategies:

• “avaricious”: As we have seen, the complexity of the associated model-
checking problems depends only on the size of the largest local variable

152

space. This method determines the number of bits necessary to rep-
resent the largest local variable set and uses only that many BDD
variables (i.e. no more BDD variables than absolutely necessary).

• “generous”: Allocate a fresh set of BDD variables for each set of local
variables.

• “by name”: This mode is a compromise between the two others: if two
local variables in different sets have the same name and type, they are
represented by the same BDD variables. The motivation for this mode
is that variables of the same name and type often perform the same
tasks.

Notice that none of these modes changes the asymptotic complexity of
any of the algorithms (at least theoretically, see below) because the num-
ber of different BDD variables which occur in any individual BDD is not
changed, we just change the way different sets are represented. The advan-
tage of using fewer BDD variables is that if the same BDD variables are used
to represent multiple program variables, then less memory may be needed
because of node sharing in the BDD library. Another important point is
that the performance of some BDD libraries deteriorates when they have to
manage large numbers of variables even if BDD sizes do not increase. These
two points are demonstrated to an extreme extent on a family of examples in
Section 4.2.2. On the other hand, an advantage of using more BDD variables
is that it becomes easier to determine a good variable ordering. In terms of
the heuristic presented in Section 5.8, a generous allocation strategy leads
to a sparse dependency graph, an avaricious strategy to a dense graph with
possibly many cycles.

We compare the strategies by their performance on the Boolean Pro-
gram examples. The results on time and memory consumption are detailed
in Figure 5.14 (the figures for memory list the average in each group; the
proportions between average and maximum were always roughly the same
between the three methods).

The numbers demonstrate the pros and cons of the methods mentioned
above; memory consumption is generally lower the less variables are used,
and fewer variables also speed up the BDD operations. However, the avari-
cious method ran out of memory in two of the four serial driver examples
(the largest examples in the tests) because no sufficiently good variable or-
dering could be determined anymore (compare also the failures on the same

153

avaricious by name generous

Regression suite 44.8 s 4.3 M 46.4 s 4.3 M 46.8 s 4.3 M
Four drivers 87.0 s 7.0 M 88.5 s 7.6 M 91.0 s 9.4 M
Iscsiprt driver 132.5 s 12.4 M 142.4 s 14.9 M 162.6 s 23.5 M
Serial driver ∗ ∗ 50.7 s 23.2 M 64.8 s 41.3 M

Figure 5.14: Effect of variable mapping strategies.

examples in Section 5.8).
Based on these experiments, the ‘by name’ method appears to be the most

favourable, and it has been chosen as the default in Moped. The avaricious
method fails on the largest group of examples, and the generous method takes
much longer on the examples in Section 4.2.2. Apart from these, however,
the differences between the three methods are not dramatic.

154

Chapter 6

Regular Valuations

In this chapter we revisit the model-checking problem for LTL and pushdown
systems. In Chapter 3 we stated that the problem is undecidable for arbitrary
valuations, i.e., the functions that map the atomic propositions of a formula
to the sets of pushdown configurations which satisfy them. However, it was
shown that the problem remains decidable for simple valuations, which are
completely determined by the control location and the topmost stack symbol.
Here, we extend the solution to regular valuations which depend on regular
predicates over the complete stack content.

This extension is motivated by several applications, for instance interpro-
cedural data-flow analysis. Here, regular valuations can be used to compute
data-flow information which dynamically depends on the history of proce-
dure calls. A second application area are systems with checkpoints. In these
systems computation is suspended at certain points to allow for a property
of the stack content to be checked; resumption of the computation depends
on the result of this inspection. This allows, for instance, to model programs
with security checks in which certain actions are allowed only if the proce-
dures on the stack have appropriate permissions. A third application allows
to extend the model-checking algorithms from Chapter 3 to the stronger
logic CTL∗.

The solutions for regular valuations are based on a reduction to the case
of simple valuations, which allows to re-use most of the theory from Chap-
ter 3. However, special attention is payed to ensuring the efficiency of the
reduction. Using regular valuation increases the complexity of the model-
checking algorithms. The factor by the complexity increases depends on the
size of the finite automata which express the regular predicates. A straight-

155

forward reduction and analysis would yield a cubic blowup for problems (III)
and (IV) and even a quadric blowup for problem (V), see Theorems 3.9
and 3.10. However, by modifying the algorithms slightly and by exploiting
special properties of the constructions the blowup can be reduced to a linear
factor in terms of both time and space.

In principle, two different techniques can be used for this purpose; one
works by extending the control locations, the other by extending the stack
alphabet. Both techniques lead to the same asymptotic (linear) blowup;
however, the technique of extending the stack alphabet works for regular
valuations in general whereas that of extending the control locations works
only for a restricted subclass.

Following the presentation of the techniques, the potential applications
are examined in more detail in Sections 6.4, 6.5, and 6.6. Finally, Section 6.7
takes another look at the complexity of the methods. The algorithms are
polynomial in the size of a deterministic finite automaton which encodes the
regular valuations. Since this automaton is the product of the automata
which encode the individual atomic propositions, its worst-case size can be
considered exponential in the size of the input. However, it can be shown that
there exist lower bounds for these problems which imply that no polynomial
solution exists.

6.1 Regular Valuations

In Section 3.2 we introduced the concept of valuations to provide the formal
meaning of an LTL formula in the context of a transition system. Given a
formula ϕ and a pushdown system P = (P, Γ, ∆, c0), a valuation function
ν : At(ϕ) → 2Conf (P) assigns to each atomic proposition the configurations
which satisfy it. We define the class of regular valuations as follows:

Definition 6.1 Let P = (P, Γ, ∆, c0) be a pushdown system and ϕ an LTL
formula. A valuation ν : At(ϕ) → 2P×Γ∗

is regular if ν(A) is a regular set for
every A ∈ At(ϕ) and does not contain any configuration with empty stack.

The requirement that configurations with empty stack cannot satisfy any
atomic proposition simplifies the following presentation. Since we can always
extend a pushdown system with an artificial ‘bottom-of-stack’ symbol, the
requirement is not a real restriction. Since regular sets can be infinite, we

156

need to represent regular valuations by finite means. We fix an adequate
representation for our purposes.

Definition 6.2 A finite automaton A = (Q, Γ,→, q0, F) is deterministic if
for each pair q ∈ Q, γ ∈ Γ there is at most one q′ ∈ Q such that q γ−→ q′.
We call A backward deterministic if for each pair q ∈ Q, γ ∈ Γ there is at
most one q′ ∈ Q such that q′ γ−→ q.

Notation Let ν be a regular valuation. For every atomic proposition A and
control location p, we denote by Mp

A a deterministic finite-state automaton
over the alphabet Γ with a total transition function and satisfying

ν(A) = { 〈p, w〉 | p ∈ P,wR ∈ L(Mp
A) }

where wR denotes the reverse of w.

Hence, A is true at 〈p, w〉 if and only if the automaton Mp
A enters a

final state after reading the stack contents bottom-up. Since ν(A) does not
contain any configuration with empty stack, the initial state of Mp

A is not
accepting.

For simple valuations, the model-checking problems (III) to (V) proposed
in Section 2.5 reduce to constructing a Büchi pushdown system BP as the
product of P and a Büchi automaton for the negation of the formula, and to
solving various reachability problems on BP (see Section 3.2). Our objectives
therefore are to provide analogous methods for the case of regular valuations.
We show that one can actually reduce the problem to model-checking simple
valuations.

In the next two sections we fix a pushdown system P = (P, Γ, ∆, 〈p0, w0〉),
an LTL formula ϕ, and a regular valuation ν. The Büchi automaton which
corresponds to ¬ϕ is denoted by B = (R, 2At(ϕ), η, r0, G). Let At(ϕ) =
{A1, . . . , An}, and let Mp

Ai
= (Qp

i , Γ,→i,p, s
p
i , F

p
i) be the deterministic finite

automaton associated to (Ai, p) for all p ∈ P and 1 ≤ i ≤ n.
We present two techniques for model-checking with regular valuations.

Both of them reduce the problem to model-checking with simple valuations
and in both cases, the idea is to encode the Mp

Ai
automata into the structure

of P and simulate them on the fly during the computation of P. In practice,
some of the Mp

Ai
automata can be identical. Of course, it is unnecessary

to simulate the execution of the same automaton within P twice, and the

157

constructions should reflect this. For simplicity, we assume that whenever
i 	= j or p 	= q, then the Mp

Ai
and Mq

Aj
automata are either identical or

have disjoint sets of states. So, let {M1, . . . ,Mm} be the set of all Mp
Ai

automata where 1 ≤ i ≤ n and p ∈ P (hence, if some of the Mp
Ai

automata
are identical, then m < n · |P |), and let Qj be the states of Mj for each
1 ≤ j ≤ m. The Cartesian product Q1 × · · · ×Qm is denoted by States . For
given r ∈ States, p ∈ P , and 1 ≤ i ≤ n, we denote by rp

i the element of
Qp

i which appears in r (observe that we can have rp
i = rq

j even if i 	= j or
p 	= q). The vector of initial states (i.e., the only element of States where each
component is the initial state of some Mp

Ai
) is denoted by s. Furthermore,

we write r γ−→M t if rp
i

γ−→i,p tp
i for all 1 ≤ i ≤ n and p ∈ P .

Remark 6.1 (On the complexity measures) The size of an instance of
the model-checking problem for pushdown systems and LTL with regular val-
uations is given by |P|+ |ϕ|+ |νϕ|, where |νϕ| is the total size of all employed
automata. However, in practice we usually work with small formulas and a
small number of simple automata (see Sections 6.4 and 6.5); therefore, we
measure the complexity of our algorithms in |B| and |States| rather than in
|ϕ| and |νϕ|. In general, however, B and States can be exponentially larger
than ϕ and νϕ. This allows for a detailed complexity analysis whose results
better match the reality because |B| and |States| often stay small. Section 6.7
provides some lower bounds which show that all algorithms developed in this
paper are also essentially optimal from the point of view of worst-case anal-
ysis.

6.2 Technique 1 – extending the finite control

The idea behind this technique is to evaluate the truth value of the atomic
propositions A1, . . . , An on the fly by storing the product of Mp

Ai
automata in

the finite control of P and updating the vector of states after each transition
according to the change of stack contents. We will use the assumptions that
the Mp

Ai
automata are deterministic, have total transition functions, and

read the stack bottom-up. However, we also need one additional assumption
to make the construction work:

Each automaton Mp
Ai

is also backward deterministic.

158

This assumption is truly restrictive – there are quite simple regular languages
which cannot be recognized by finite-state automata which are both deter-
ministic and backward deterministic, e.g. the language { ai | i > 0 }.

We define a pushdown system P ′ = (P ′, Γ, ∆′, c′0) where P ′ = P ×States,
c′0 = 〈(p0, r), w0〉, and r is the unique state determined by s

wR
0−−→∗

M r. The
transition rules ∆′ contain a rule 〈(p, r), γ〉 ↪→P ′ 〈(p′,u), w〉 if and only if the
following conditions hold:

• 〈p, γ〉 ↪→P 〈p′, w〉,

• there is t ∈ States such that t γ−→M r and t wR−−→∗
M u.

Observe that due to the backward determinism of Mp
Ai

there is at most one t
with the above stated properties; and thanks to determinism and the totality
of →i,p we further obtain that for given 〈p, γ〉 ↪→P 〈p′, w〉 and r ∈ States there
is exactly one u ∈ States such that 〈(p, r), γ〉 ↪→P ′ 〈(p′,u), w〉. From this it
follows that |∆′| = |∆| · |States|.

We shall call a configuration 〈(p, r), w〉 of P ′ consistent if s wR−−→∗
M r.

In other words, 〈(p, r), w〉 is consistent if and only if r ‘reflects’ the stack
contents w. Let 〈p, w〉 be a configuration of P and 〈(p, r), w〉 be the (unique)
associated consistent configuration of P ′. Now we can readily confirm that

(A) if 〈p, w〉 ⇒P 〈p′, w′〉, then 〈(p, r), w〉 ⇒P ′ 〈(p′,u), w′〉 where 〈(p′,u), w′〉
is the unique consistent configuration associated with 〈p′, w′〉;

(B) if 〈(p, r), w〉 ⇒P ′ 〈(p′,u), w′〉, then 〈(p′,u), w′〉 is consistent and TP has
a transition 〈p, w〉 ⇒P 〈p′, w′〉.

As the initial configuration of P ′ is consistent, we see due to (B) that each
reachable configuration of P ′ is consistent. Moreover, due to (A) and (B) we
also have the following:

(C) let 〈p, w〉 be a configuration of P (not necessarily reachable) and let
〈(p, r), w〉 be its associated consistent configuration of P ′. Then the
parts of TP and TP ′ which are reachable from 〈p, w〉 and 〈(p, r), w〉,
respectively, are isomorphic.

We define the simple valuation ν ′ by

ν ′(Ai) = { 〈(p, r), w〉 | (p, r) ∈ P ′, rp
i ∈ F p

i , w ∈ Γ+ }

159

for all 1 ≤ i ≤ n. Due to (C) it is easy to see that for all p ∈ P and w ∈ Γ∗

we have

〈p, w〉 |=ν ϕ ⇐⇒ 〈(p, r), w〉 |=ν′
ϕ such that s wR−−→∗

M r (∗)

We observed that |P ′| = |P | · |States| and |∆′| = |∆| · |States|. Applying
Theorems 3.9 and 3.10 näıvely, we obtain that using Technique 1, the model-
checking problems (III) and (IV) can be solved in cubic time and quadratic
space (w.r.t. |States|), and that problem (V) takes quadric time and space.
However, closer analysis reveals that we can do much better:

Theorem 6.1 Let n2 be the number of different pairs (p′, γ′) ∈ P × Γ such
that a rule 〈p, γ〉 ↪→P 〈p′, γ′γ′′〉 exists. Technique 1 (extending the finite
control) gives us the following bounds on the model-checking problems with
regular valuations:

1. Problems (III) and (IV) can be solved in O(|P |2 · |∆| · |States| · |B|3)
time and O(|P | · |∆| · |States| · |B|2) space.

2. Problem (V) can be solved in either O(|P | · |∆| · (|P | + |w0| + n2)
2) ·

|States| · |B|3) time and O(|P | · |∆| · (|P |+ |w0|+ n2)
2) · |States| · |B|2)

space, or O(|P |3 · |∆| · (|w0|+n2) · |States| · |B|3) time and O(|P |3 · |∆| ·
(|w0| + n2) · |States| · |B|2) space.

In other words, all problems take only linear time and space in |States|. We
skip the (somewhat lengthy) proof here; it is given in full detail in [20].

6.3 Technique 2 – extending the stack

An alternative approach to model-checking with regular valuations is to store
the vectors of States in the stack of P. This technique works without any
additional limitations, i.e., we do not need the assumption of backward de-
terminism of Mp

Ai
automata.

Let P ′ = (P, Γ′, ∆′, 〈p0, w
′
0〉) be a pushdown system where Γ′ = Γ×States,

and the set of transition rules ∆′ is determined as follows:

• 〈p, (γ, r)〉 ↪→P ′ 〈p′, ε〉 ⇐⇒ 〈p, γ〉 ↪→P 〈p′, ε〉

• 〈p, (γ, r)〉 ↪→P ′ 〈p′, (γ′, r)〉 ⇐⇒ 〈p, γ〉 ↪→P 〈p′, γ′〉

160

• 〈p, (γ, r)〉 ↪→P ′ 〈p′, (γ′,u)(γ′′, r)〉 ⇐⇒ 〈p, γ〉 ↪→P 〈p′, γ′γ′′〉∧r γ′′−−→M u

If w0 = γn . . . γ1, the initial stack content is w′
0 = (γn, tn) . . . (γ1, t1) where

ti, 1 ≤ i ≤ n, are the unique states defined by s
γ1...γi−1−−−−−→∗

M ti.
Intuitively, the reason why we do not need the assumption of backward

determinism in this approach is that the stack carries complete information
about the computational history of the Mp

Ai
automata.

A configuration 〈p, (γk, rk) . . . (γ1, r1)〉 is called consistent if and only if
r1 = s and rj

γj−−→M rj+1 for 1 ≤ j < k. The simple valuation ν ′ is given by

ν ′(Ai) = { 〈p, (γ, r)w〉 | p ∈ P, γ ∈ Γ, w ∈ Γ′∗, ∃qf ∈ F p
i : rp

i
γ−→i,p qf }

It is easy to see that 〈p, γk . . . γ1〉 |=ν ϕ ⇐⇒ 〈p, (γk, rk) . . . (γ1, r1)〉 |=ν′
ϕ

where 〈p, (γk, rk) . . . (γ1, r1)〉 is consistent.

Theorem 6.2 Technique 2 (extending the stack) gives us the same bounds
on the model-checking problems with regular valuations as Technique 1, i.e.:

1. Problems (III) and (IV) can be solved in O(|P |2 · |∆| · |States| · |B|3)
time and O(|P | · |∆| · |States| · |B|2) space.

2. Problem (V) can be solved in either O(|P | · |∆| · (|P | + |w0| + n2)
2) ·

|States| · |B|3) time and O(|P | · |∆| · (|P |+ |w0|+ n2)
2) · |States| · |B|2)

space, or O(|P |3 · |∆| · (|w0|+n2) · |States| · |B|3) time and O(|P |3 · |∆| ·
(|w0| + n2) · |States| · |B|2) space.

Proof: Since |∆′| = |∆| · |States| (using the fact that each Mp
Ai

is de-
terministic), we can compute a P-automaton A = (P ∪ {s}, Γ′,→, P, {s})
of size O(|P | · |∆| · |States| · |B|2) in O(|P |2 · |∆| · |States| · |B|3) time and
O(|P |·|∆|·|States|·|B|2) space such that A recognizes all configurations of P ′

which violate ϕ (see Theorem 3.9); then, to solve problem (III), we just look
if A accepts 〈p0, w

′
0〉. The problem with A is that it can also accept inconsis-

tent configurations. Fortunately, it is possible to perform a synchronization
with the reversed Mp

Ai
automata. We define

A′ = ((P ∪ {s}) × States ∪ P, Γ,→′, P, {s, s})

where →′ is defined as follows:

• if g
(γ,r)−−−→ h and r γ−→M t, then (g, t) γ−→′ (h, r);

161

• if (p, r) γ−→ (g, t), p ∈ P , then p γ−→′ (g, t).

Notice that A′ has the same asymptotic size as A since in every transition t
is uniquely determined by r and γ. Now, we can easily prove (by induction
on k) that for every configuration 〈p, (γk, rk) . . . (γ1, r1)〉 we have

p
(γk,rk)...(γ1,r1)−−−−−−−−−→∗ q where rj

γj−−→M rj+1 for all 1 ≤ j < k

if and only if

(p, r) γk...γ1−−−−→′∗ (q, r1) where rk
γk−−→M r

From this we immediately obtain that A′ indeed accepts exactly those con-
figurations of P which violate ϕ. Moreover, the size of A′ and the time and
space bounds to compute it are the same as for A which proves the first part
of the theorem.

To solve problem (V), one can try out the same strategies as in Theo-
rem 6.1. Again, it turns out that the most efficient way is to synchronize A′

with the P-automaton R which recognizes all reachable configurations of P.
Employing the same trick as in Theorem 6.1 (i.e., sorting transitions of R
into buckets according to their labels), we obtain that the size of the syn-
chronized automaton is O(|P | · |∆| · (|P | + |w0| + n2)

2 · |States| · |B|2) and it
can be computed in O(|P | · |∆| · (|P |+ |w0|+ n2)

2 · |States| · |B|3) time using
O(|P | · |∆| · (|P | + |w0| + n2)

2 · |States| · |B|2) space. Using the alternative
method (sorting transitions of A′ into buckets instead and exploiting deter-
minism) we get an automaton of size O(|P |3 · |∆| · (|w0|+ |n2|) · |States| · |B|2)
in O(|P |3 · |∆| · (|w0|+ |n2|) · |States| · |B|3) in time and O(|P |3 · |∆| · (|w0|+
|n2|) · |States| · |B|2) space. �

Incidentally, none of the techniques would work (even with worse com-
plexity bounds) if we drop the requirement that the Mp

Ai
automata be de-

terministic. For instance, checking the formula �ϕ could fail if a valuation
automaton can choose between an accepting and a non-accepting state, thus
permitting a run in which no configuration seems to satisfy ϕ.

Both solutions can be combined with the concept of symbolic pushdown
systems in Section 3.3. Since both techniques take the same asymptotic time
it would be interesting to compare their efficiency in practice (for cases where
both techniques can be used).

162

6.4 Interprocedural Data-Flow Analysis

In Section 2.3 we discussed how pushdown systems can serve as a model
for the behaviour of a sequential program with procedures. In this model,
the program is translated into a pushdown system in such a way that each
control point of the program corresponds to one particular stack symbol. The
topmost stack symbol of a configuration in the pushdown system corresponds
to the current program point (and to the instruction which is to be executed),
and the stack carries information about the history of procedure calls.

Hence, efficient analysis techniques for pushdown automata can be ap-
plied to some problems of interprocedural data-flow analysis [19, 39]. Many
of the well-known properties of data-flow analysis can be expressed in LTL
and verified by a model-checker. For instance, in Section 2.5 we argued that
the formula

(¬usedY U defY) ∨ (�¬usedY)

can express that a program variable Y is dead. Information like this is used in
program optimization since the values of dead variables may be ‘forgotten’ by
the program. Regular valuations become useful even in this simple example
– if we have a language with dynamic scoping (e.g., LISP), we cannot resolve
to which Y the instruction Y := 3 at a program point n refers to without
examining the stack of activation records (the Y refers to a local variable Y
of the topmost procedure in the stack of activation records which declares
it). Hence, usedY and defY would be interpreted by regular valuations in
this case.

6.5 Pushdown Systems with Checkpoints

Another area where regular valuations find a natural application is the anal-
ysis of recursive computations with local security checks. Modern program-
ming languages contain methods for performing run-time inspections of the
stack of activation records, and processes can thus take decisions based on
the stack contents. An example is the class AccessController implemented
in Java Development Kit 1.2 which offers the method checkPermission to
check whether all methods stored in the stack are granted a given permission.
If not, the method rises an exception.

Here, we discuss a formal model of such systems called pushdown systems
with checkpoints, inspired by Jensen et al [26] who deal with the same prob-

163

lem. The model presented here is more general, however. The model of [26]
is suitable only for checking safety properties, does not model data-flow, and
forbids mutually recursive procedure calls, whereas our model has none of
these restrictions. Properties of pushdown systems with checkpoints can be
expressed in LTL and we provide an efficient model-checking algorithm for
LTL with regular valuations.

Definition 6.3 A triple C = (P, ξ, η) is a pushdown system with check-
points if

• P = (P, Γ, ∆, c0) is a pushdown system.

• ξ ⊆ P × Γ is a set of checkpoints. Each checkpoint (p, α) is imple-
mented by its associated deterministic finite-state automaton Mp

α =
(Qp

α, Γ,→p,γ , s
p
γ , F

p
γ). For technical convenience, we assume that →p,γ

is total, sp
γ 	∈ F p

γ , and L(Mp
γ) ⊆ {wγ | w ∈ Γ∗ }.

• η : ∆ → {+,−, 0} is a function which partitions the set of transition
rules into positive, negative, and independent ones. We require that
if (p, γ) is not a checkpoint, then all rules of the form 〈p, γ〉 ↪→ 〈p′, v〉
are independent.

The function η determines whether a rule can be applied when an inspection
of the stack at a checkpoint yields a positive or negative result, or whether
it is independent of such tests. Using positive and negative rules, we can
model systems which perform if-then-else commands where the condition
is based on dynamic checks; hence, these checks can be nested to an arbitrary
level. The fact that a rule 〈p, γ〉 ↪→ 〈p′, w〉 is positive, negative, or indepen-
dent is denoted by 〈p, γ〉 ↪→+ 〈p′, w〉, 〈p, γ〉 ↪→− 〈p′, w〉, or 〈p, γ〉 ↪→0 〈p′, w〉,
respectively.

To C we associate a unique transition system TC = (Conf (P),→, c0)
whose set of states is Conf (P), whose root is c0, and whose transition relation
is the least relation ⇒ satisfying the following:

• if 〈p, γ〉 ↪→+ 〈p′, v〉 and wRγ ∈ L(Mp
γ), then 〈p, γw〉 ⇒ 〈p′, vw〉;

• if 〈p, γ〉 ↪→− 〈p′, v〉 and wRγ 	∈ L(Mp
γ), then 〈p, γw〉 ⇒ 〈p′, vw〉;

• if 〈p, γ〉 ↪→0 〈p′, v〉 and w ∈ Γ∗, then 〈p, γw〉 ⇒ 〈p′, vw〉.

164

Some natural problems for pushdown processes with checkpoints are listed
below.

• The reachability problem: given a pushdown system with checkpoints,
is a given configuration reachable?

• The checkpoint-redundancy problem: given a pushdown system with
checkpoints and a checkpoint (p, γ), is there a reachable configuration
where the checkpoint (p, γ) is (or is not) satisfied?

This problem is important because redundant checkpoints can be safely
removed together with all negative (or positive) rules, declaring all
remaining rules as independent. Thus, one can decrease the runtime
overhead.

• The global safety problem: given a pushdown system with checkpoints
and a formula ϕ of LTL, do all reachable configurations satisfy ϕ?

An efficient solution to this problem allows to make experiments with
checkpoints with the aim of finding a solution with a minimal runtime
overhead.

It is quite easy to see that all these problems (and others) can be encoded by
LTL formulas and regular valuations. For example, to solve the reachability
problem, we take a predicate A which is satisfied only by the configuration
〈p, w〉 whose reachability is in question (the associated automaton Mp

A has
|w| + 1 states) and then check the formula �(¬A). This formula in fact
says that 〈p, w〉 is unreachable; reachability itself is not directly expressible
in LTL (we can only say that 〈p, w〉 is reachable in every run). However,
it does not matter because we can simply negate the answer of the model-
checking algorithm.

In the following we show how to model-check LTL for pushdown systems
with checkpoints. Let C = (P, ξ, η) be a pushdown system with checkpoints,
where P has the form (P, Γ, ∆, 〈p0, w0〉). We define a pushdown system
P ′ = (P × {+,−, 0}, Γ, ∆′, 〈(p0, 0), w0〉) where ∆′ is the least set of rules
satisfying the following (for each x ∈ {+,−, 0});

• if 〈p, γ〉 ↪→+ 〈(p′, +), w〉 ∈ ∆, then 〈(p, x), γ〉 ↪→ 〈p′, w〉 ∈ ∆′;

• if 〈p, γ〉 ↪→− 〈(p′,−), w〉 ∈ ∆, then 〈(p, x), γ〉 ↪→ 〈p′, w〉 ∈ ∆′;

• if 〈p, γ〉 ↪→0 〈(p′, 0), w〉 ∈ ∆, then 〈(p, x), γ〉 ↪→ 〈p′, w〉 ∈ ∆′.

165

Intuitively, P ′ behaves in the same way as the underlying pushdown sys-
tem P of C, but it also remembers which kind of rule (positive, negative,
independent) was used to enter the current configuration. However, we need
to exclude runs in which P ′ ‘cheats’ by executing a positive/negative rule
when the associated checkpoint condition is violated/satisfied.

Let ϕ be an LTL formula, and let ν be a regular valuation for At(ϕ)
on configurations of C (see Definition 6.1). Let Check , Neg , and Pos be
fresh atomic propositions which do not appear in ϕ. We define a regular
valuation ν ′ for configurations of P ′ as follows:

• If A ∈ At(ϕ), let ν ′(A) = { 〈(p, x), w〉 | 〈p, w〉 ∈ ν(A), x ∈ {+,−, 0} }.
Hence, the automaton M(p,x)

A is the same as the automaton Mp
A for

each x ∈ {+,−, 0}.

• ν ′(Check) =
⋃

(p,γ)∈ξ{ 〈(p, x), γw〉 | wRγ ∈ L(Mp
γ), x ∈ {+,−, 0} }.

Hence, for each x ∈ {+,−, 0}, M(p,x)
Check is the product automaton (con-

structed out of all Mp
γ) which accepts the union of all L(Mp

γ). Notice

that we need to compute a product because M(p,x)
Check has to be deter-

ministic.

• ν ′(Neg) = { 〈(p,−), w〉 | p ∈ P, w ∈ Γ+ }. Hence, M(p,−)
Neg is an au-

tomaton with two states which accepts Γ+.

• ν ′(Pos) = { 〈(p, +), w〉 | p ∈ P, w ∈ Γ+ }.

Now we can readily confirm the following:

Theorem 6.3 Let 〈p, w〉 be a configuration of C. We have that

〈p, w〉 |=ν ϕ ⇐⇒ 〈(p, 0), w〉 |=ν′
(ψ =⇒ ϕ)

where ψ ≡ �((Check =⇒ X (¬Neg)) ∧ (¬Check =⇒ X (¬Pos))).

Proof: It suffices to observe that

〈p, w〉 = 〈p1, w1〉 → 〈p2, w2〉 → 〈p3, w3〉 → · · ·

is an infinite path in TC if and only if

〈(p, 0), w〉 = 〈(p1, x1), w1〉 → 〈(p2, x2), w2〉 → 〈(p3, x3), w3〉 → · · ·

166

is an infinite path in TP ′ satisfying ψ. Indeed, ψ ensures that all transitions
in the latter path are consistent with possible checkpoints in the former path.
As all atomic propositions which appear in ϕ are evaluated identically for
pairs 〈pi, wi〉 and 〈(pi, xi), wi〉 (see the definition of ν ′ above), we conclude
that both paths either satisfy or do not satisfy ϕ. �

The previous theorem in fact says that the model-checking problem for
LTL and pushdown systems with checkpoints can be reduced to the model-
checking problem for LTL and ‘ordinary’ pushdown systems. As the formula
ψ is fixed and the atomic propositions Check , Neg , and Pos are regular,
we can evaluate the complexity bounds for the resulting model-checking al-
gorithm using Theorems 6.1 and 6.2. Let At(ϕ) = {A1, . . . , An}, and let
N = {M1, . . . ,Mm} be the set of all Mp

Ai
automata. Let States be the

Cartesian product of the sets of states of all Mp
γ automata and the au-

tomata of N . Let B be a Büchi automaton which corresponds to ¬ϕ. Let
P = (P, Γ, ∆, 〈p0, w0〉) be the underlying pushdown system of C, and let n2

be the number of different pairs 〈p′, γ〉 such that ∆ has a rule of the form
〈p, γ〉 ↪→ 〈p′, γ′γ′′〉. Now we can state the theorem:

Theorem 6.4 We have the following bounds on the model-checking problems
for LTL with regular valuations and pushdown systems with checkpoints:

1. Problems (III) and (IV) can be solved in O(|P |2 · |∆| · |States| · |B|3)
time and O(|P | · |∆| · |States| · |B|2) space.

2. Problem (V) can be solved in either O(|P | · |∆| · (|P | + |w0| + n2)
2 ·

|States| · |B|3) time and O(|P | · |∆| · (|P | + |w0| + n2)
2 · |States| · |B|2)

space, or O(|P |3 · |∆| · (|w0| + |n2|) · |States| · |B|3) time and O(|P |3 ·
|∆| · (|w0| + |n2|) · |States| · |B|2) space.

Proof: We apply Theorem 6.3, which says that we can instead consider
the problem for the pushdown system P ′, the formula ψ =⇒ ϕ, and the
valuation ν ′. The Büchi automaton which corresponds to ¬(ψ =⇒ ϕ) can
be obtained by synchronizing B with the Büchi automaton for ψ, because
¬(ψ =⇒ ϕ) ≡ (ψ ∧ ¬ϕ). As the formula ψ is fixed, the synchronization
increases the size of B just by a constant factor. Hence, the automaton for
¬(ψ =⇒ ϕ) is asymptotically of the same size as B. The same can be said
about the sizes of P ′ and P , and about the sizes of ∆′ and ∆. Moreover, if we
collect all the automata which represent the atomic predicates At(ψ =⇒ ϕ)

167

and consider the state space of their product, we see that it has exactly the
size 2 · States because all of the automata associated to Pos and Neg are the
same and have only two states. �

6.6 Model-checking CTL∗

In this section, we apply the model-checking algorithm to the logic CTL∗

which extends LTL with existential path quantification [15]. More precisely,
CTL∗ formulas are built according to the following abstract syntax equation:

ϕ ::= tt | A | ¬ϕ | ϕ1 ∧ ϕ2 | Eϕ | Xϕ | ϕ1 U ϕ2

where A ranges over the atomic propositions (interpreted, say, by a regular
valuation represented by a finite automaton of size |States|).

We adapt a model-checking procedure from the domain of finite-state
systems. In finite-state systems, model-checking CTL∗ can be reduced to
LTL by checking subformulas of ϕ in ascending order of their nesting depth
of existential path quantifiers [16]. The procedure consists of the following
iteration:

• Pick any subformula of the form E ϕ′, where ϕ′ itself does not contain
any E-operators. Then ϕ′ is actually a formula of LTL.

• Apply a model-checking algorithm for LTL on ¬ϕ′ which discovers the
set of states Sϕ′ which violate ¬ϕ′. These states are starting points for
a run which satisfies ϕ, hence the states in Sϕ′ satisfy E ϕ′.

• Replace all occurrences of E ϕ′ in ϕ by a fresh atomic proposition whose
valuation is exactly the set of states Sϕ′ .

The procedure is repeated until ϕ itself is reduced to a formula without
E-operators which can be verified with a model-checking algorithm for LTL.

This method can be transferred to the case of pushdown systems. Notice
that the LTL algorithm on an E-free subformula ¬ϕ′ returns an automaton
Mϕ′ which accepts the regular set of configurations which satisfy E ϕ′. We
can then replace all occurrences of E ϕ′ by a fresh atomic proposition whose
valuation is given by Mϕ′ .

Let us review the complexity of this procedure. For the rest of this sub-
section fix a pushdown system P = (P, Γ, ∆, c0). Given an E-free formula ϕ′,

168

let B = (R, 2At , η, r0, G) be a Büchi automaton corresponding to ϕ′, and let
|States| be the size of the Mp

Ai
automata which encode the regular valuations

of propositions in At .

In general we can only use Technique 2, i.e. extending the stack. Let Mϕ

be the automaton (obtained by Technique 2) which accepts exactly the con-
figurations satisfying E ϕ′. Observe that Mϕ is non-deterministic, reads the
stack top-down, and has O(|P | · |R| · |States|) states. We need to modify the
automaton before we can use it as an encoding for the regular valuation of
E ϕ. More precisely, we need to reverse the automaton (i.e. make it read the
stack bottom-up) and then determinize it. Reversal does not increase the
size, and due to the determinism of Mp

Ai
in bottom-up direction the deter-

minization increases only the ‘P × R part’ of the states. Thus, we get an
automaton M′

ϕ of size O(|States| · 2|P |·|R|).

To check subformulas of higher nesting depth (of E-operators) we replace
E ϕ by a fresh atomic proposition Aϕ. With (Aϕ, p) we associate the au-
tomaton Mp

Aϕ
which is a copy of M′

ϕ where the sets of accepting states are
defined as

F p
ϕ = { (q, s) | q ∈ 2P×R, (p, r0) ∈ q, s ∈ States }.

The cross product of these new automata with the ‘old’ Mp
Ai

automata again
has the size O(|States| · 2|P |·|R|), since we need just one copy of the new
automaton, and all reachable states are of the form ((q, s), s) where q ∈ 2P×R

and s ∈ States.

As nesting depth increases, we repeat the procedure: First we produce
a deterministic valuation automaton by taking the cross product of the au-
tomata for the atomic propositions and those derived from model-checking
formulas of lower nesting depth. Then we model-check the subformula cur-
rently under consideration, and reverse and determinize the resulting au-
tomaton. By the previous arguments, each determinization only blows up
the non-deterministic part of the automaton. Therefore, after each stage the
size of the valuation automaton increases by a factor of 2|P |·|Bi| where Bi is a
Büchi automaton for the subformula under consideration.

With this in mind, we can compute the complexity for formulas of arbi-
trary nesting depth. Let B1, . . . ,Bn be the Büchi automata corresponding
to the individual subformulas of a formula ϕ. Adding the times for check-
ing the subformulas and using Theorem 6.2 we get that the model-checking

169

procedure takes at most

O
(
|P |2 · |∆| · |States| · 2|P |·Σn

i=1|Bi| ·
n∑

i=1

|Bi|3
)

time and

O
(
|P | · |∆| · |States| · 2|P |·Σn

i=1|Bi| ·
n∑

i=1

|Bi|2
)

space. The algorithm hence remains linear in both |∆| and |States|.
The essential ideas contained in this method were already proposed by

Finkel et al in [22], but without any complexity analysis. Also, the presenta-
tion in [22] did not discuss the issue of having to use deterministic automata
for the valuations.

The algorithm of Burkart and Steffen [12] for the µ-calculus on pushdown
systems, applied to CTL∗ formulas which are in the second level of the al-
ternation hierarchy, would yield an algorithm which is cubic in |∆|. On the
other hand, the performance of the two algorithms in terms of the formula is
less clear since their techniques differ in an interesting way. In [12], the expo-
nential blowup occurs because configurations are extended with a ‘context’
which indicates the subformulas which will be true once the topmost sym-
bol is removed from the stack. In our case, the exponential blowup occurs
because we need to determinize finite automata. However, these automata
are derived from Büchi automata which are usually constructed by a tableau
method that labels states with certain subformulas. Therefore, the complex-
ity estimations of the two algorithms might be related in a subtle fashion
which would be interesting to examine.

More recently, Benedikt et al [6] have proposed a method for model-
checking CTL∗ on hierarchical state machines (see Section 3.1.5). Their
algorithm is also linear in the number of edges whose size corresponds to ∆;
however, it works only for single-exit state machines whose expressive power
is equal to that of pushdown systems with only one control location.

6.7 Lower Bounds

In previous sections we established upper bounds for the model-checking
problem for pushdown systems (with and without checkpoints) and LTL with
regular valuations. The algorithms are polynomial in |P|+ |B|+ |States|, but

170

not in |P|+ |ϕ|+ |νϕ|, which can be regarded as the real size of the problem
instance (see Remark 6.1). We also discussed why it makes sense to use these
parameters; typical formulas and their associated Büchi automata are small,
and the size of B is actually more relevant (a model-checking algorithm whose
complexity is exponential just due to the blowup caused by the transforma-
tion of ϕ into B is usually efficient in practice). The same can be said about
|States| – in Sections 6.4 and 6.5 we have seen that there are interesting
practical problems where the size of |States| does not explode. Neverthe-
less, from the point of view of worst-case analysis, where the complexity is
measured in the size of the problem instance, the algorithms are exponential.
A natural question is whether this exponential blowup is indeed necessary,
i.e., whether we could in principle solve the model-checking problems more
efficiently by some other technique. However, one can show that this is not
the case, because all of the considered problems are EXPTIME-hard, even
in rather restricted forms.

At this point, we only state the results and briefly discuss their relevance.
The technical proofs of the theorems can be found in [20].

We start with the natural problems for pushdown systems with check-
points mentioned in the previous section (the reachability problem, the check-
point redundancy problem, etc). All of them are polynomially reducible
to the model-checking problem for pushdown systems with checkpoints and
LTL with regular valuations and therefore are solvable in EXPTIME. The-
orem 6.5 says that this strategy is essentially optimal, because even the
reachability problem provably requires exponential time.

Theorem 6.5 The reachability problem for pushdown systems with check-
points (even with just three control states and without negative rules) is
EXPTIME-complete.

From Theorem 6.5 we can easily deduce the following result for LTL:

Theorem 6.6 The model-checking problem (III) for pushdown systems with
checkpoints (even with just three control states and no negative rules) is
EXPTIME-complete even for a fixed LTL formula �(¬fin) where fin is
an atomic predicate interpreted by a simple valuation ν.

It follows that model-checking LTL for pushdown systems with check-
points is EXPTIME-complete in the size of the system even when we have

171

only simple valuations (recall that the problem is polynomial for systems
without checkpoints).

Finally, we consider the complexity of model-checking for (ordinary) push-
down systems and LTL formulas with regular valuations. First, realize that
if we take any fixed formula and a subclass of pushdown systems where the
number of control states is bounded by some constant, the model-checking
problem is decidable in polynomial time. Theorem 6.7 says that if the num-
ber of control states is not bounded, the model-checking problem becomes
EXPTIME-complete even for a fixed formula.

Theorem 6.7 The model-checking problem (III) for pushdown systems and
LTL formulas with regular valuations is EXPTIME-complete even for a
fixed formula (�correct) =⇒ (�¬fin).

172

Chapter 7

Conclusion

The main contribution of the thesis is the development of model-checking
algorithms for pushdown systems both in theory and in practice. The prob-
lems we have considered were already known to be decidable in polynomial
time [9, 22], but no implementation for these solutions was available. The
algorithms developed herein improve the previously known bounds, and an
implementation has been provided. The implementation has been success-
fully tested on large examples taken from an industrial setting, and the tests
have provided insights into practical aspects of designing a model-checker for
software verification.

The work can be continued and improved in several aspects. For reach-
ability checking on Boolean Programs, Section 4.2.3 suggests some concrete
improvements which are likely to improve performance even further. More-
over, one could extend the existing implementation to other types of symbolic
representations besides BDDs. For instance, Number Decision Diagrams [8]
are used to represent finite and infinite sets of integer vectors; it would be
interesting to see whether they can be used more efficiently than BDDs in
examples which use integer variables (like Quicksort etc).

One weakness of pushdown systems is that they do not allow to model
parallelism. Linear-time temporal logic becomes undecidable for systems
which allow both parallel composition and procedure calls [31]. For reach-
ability, the addition of parallel composition (even without synchronization)
lifts the associated problems into different complexity classes. Polynomial
reachability algorithms exist for PA-processes [21], which could be charac-
terized as pushdown systems with parallel composition, but with only one
control location. However, if the latter restriction is lifted, reachability be-

173

comes NP-complete, and even EXPSPACE-hard if synchronization between
processes is also allowed [31]. Therefore, it is not straightforward to extend
the algorithms for pushdown systems with parallel composition (and main-
tain efficiency at the same time). It would be worthwhile to try and identify
useful special cases and limitations which allow to use parallel composition
while maintaining efficiency in practice (or decidability, in the case of LTL).

Finally, in a recent development a new application for pushdown systems
has been proposed. Jha and Reps [27] suggest that model-checking pushdown
systems can be used to solve a number of certificate-analysis problems in
authorization. In this context, certificates grant permissions to access certain
resources and define principals who may apply for permissions. A set of
certificates can be interpreted as a pushdown system, and so algorithms for
the latter can be used to answer questions such as “Is a given principal allowed
to access a given resource?” or “Do all authorizations for a given resource
involve a certificate signed by a certain principal?” Using extensions similar
to shortest traces, one can also solve ‘quantified’ problems such as “How
long does a specific authorization last?” or “How trustworthy is a given
authorization?” Exploring these matters in more detail promises to be an
interesting line of future work.

174

Appendix A

Moped tool description

This appendix describes some technical details of the Moped tool, i.e. the
languages used for specifying systems and formulas, and options which the
user can pass to the tool to influence its behaviour.

Section A.1 describes the syntax and semantics of the language used
for specifying symbolic pushdown systems. Section A.2 gives the syntax
of Boolean Programs. The format and meaning of reachability queries and
LTL formulas is shown in Section A.3, and Section A.4 lists the options.

A.1 Syntax for pushdown systems

Formally, we defined a pushdown system as a quadruple (P, Γ, ∆, c0). For
pushdown systems in Moped, P always has the form P0×G and Γ always has
the form Γ0 × L, where G and L are domains of global and local variables,
respectively. To describe such a system, it is only necessary to define the rules
∆ and the initial configuration c0; the sets P0 and Γ0 are defined implicitly,
i.e. whenever an identifier occurs in a place where an element of P0 or Γ0 is
expected, then the identifier is included in the appropriate set. To define the
syntax of the input language more precisely, we use the following conventions:

• Keywords are global, local, bool, int, define, A, and E.

• An identifier is any alphanumeric string, i.e. a letter followed by a
sequence of letters and digits (where the underscore counts as a letter),
except for keywords. Case is significant.

175

• A string is a sequence of characters other than quotes (") and newlines
which are surrounded by quotes.

• A number is any non-empty sequence of digits.

• Whitespace characters are newlines, spaces and tab characters and are
ignored (except in strings and insofar as they separate identifiers and
numbers).

• Any string starting with a percent sign (%) or a hash character (#)
(unless these appear in a string) and ending with a newline is a comment
and is ignored.

• Any keywords and other recognized tokens are enclosed in quotes in
the syntax description below.

• We adopt the following grammatic meta-rules: If x is a non-terminal,
then x–list is a sequence of zero or more occurrences of x, and x–clist
is a sequence of one or more comma-separated occurrences of x.

A description of a pushdown system consists of four sections: Definitions
of constants, variable declarations, the initial configuration, and the rewrite
rules:

pds ::
definition–list vardecl initconfig rule–list

We use two grammar rules for identifiers simply to make clear that the iden-
tifiers in question stand for control locations and stack symbols, respectively.

ctrlid ::

identifier

stackid ::

identifier

Definitions of constants Each definition establishes a symbolic integer
constant.

definition ::

define identifier constexpr

176

Note: A definition is ignored if the identifier in question has already
been the subject of an earlier constant definition, either by a definition or by
passing a -D option to Moped(see Section A.4). Once the definition has been
read, any occurrence of the newly defined identifier is in fact treated as an
occurrence of the number represented by the constexpr part. A constexpr is
an expression consisting of integer constants and basic arithmetic operators.

constexpr ::

constexpr "+" constexpr
| constexpr "-" constexpr
| constexpr "*" constexpr
| constexpr "/" constexpr
| constexpr "<<" constexpr
| "(" constexpr ")"

| number

Variable declarations The declarations consist of a global and a local
part:

vardecl ::
globaldecl localdecl–list

The global declarations are either empty or a list of variable declarations:

globaldecl ::
ε

| global var–list

The domain of global variables is spanned by the variables in var–list (see
below), or a singleton set if omitted. A localdecl also includes a list of iden-
tifiers:

localdecl ::
local "(" stackid–clist ")" var–list

Each stackid is interpreted as an explicit stack symbol whose domain of local
variables is given by var–list. It is illegal for a stack symbol to occur in two
different localdecl elements.

Variables can be of type boolean or integer, or arrays thereof:

177

var ::

bool boolident–clist ";"
| int intident–clist ";"

boolident ::
identifier optdim

intident ::
identifier optdim "(" constexpr ")"

optdim ::

ε
| "[" constexpr "]"

| "[" constexpr "," constexpr "]"

The range of each integer variable is given by the integer constant in paren-
theses; if that constant evaluates to k, then the range is 0 . . . 2k−1. If optdim
is empty, then the variable in question is scalar, otherwise it is an array. If
the brackets contain a single constexpr of value m, then the array has m en-
tries indexed by 0 . . . m− 1. If two values m and n are given, then we expect
n ≥ m, and the array has n − m + 1 entries indexed by m . . . n.

Initial configuration As initial configurations, the input language allows
configurations with a single stack symbol:

initconfig ::

"(" ctrlid "<" stackid ">" ")"

optexpr ::

ε
| "(" expr ")"

Although having just one initial stack symbol may seem more restrictive at
first sight compared to the usual definition, it does not really lose any gener-
ality. One could actually simulate even regular sets of initial configurations
by starting with an ‘artificial’ initial configuration with just one symbol, and
introducing additional rules to simulate a finite automaton, which builds up
the possible stack contents before the ‘real’ pushdown system starts. The
initial values of the global and local variables can be any value of G or L,
respectively.

178

Rewrite rules Each rule defines a labelled symbolic rewrite rule.

rule ::

explicitpart optlabel optexpr

optlabel ::
ε

| string

explicitpart ::
ctrlid "<" stackid ">" "-->" ctrlid "<" ">"

| ctrlid "<" stackid ">" "-->" ctrlid "<" stackid ">"

| ctrlid "<" stackid ">" "-->" ctrlid "<" stackid stackid ">"

Thus, the stack contents on the right-hand side are limited to length two.
The label is optional and only used in printing witnesses or counterexamples.
The optexpr is a boolean expression which denotes a relation of global and
local variables:

optexpr ::

ε
| "(" expr ")"

expr ::

expr "|" expr
| expr "&" expr
| expr "==" expr
| expr "^" expr
| "!" expr
| "(" expr ")"

| A quant expr
| E quant expr
| variable
| intterm compop intterm

The first couple of branches represent the usual logical connectives. The rules
with A and E are universal and existential quantification:

quant ::
identifier "(" constexpr "," constexpr ")"

179

An A/E rule corresponds to conjunction/disjunction of the terms which are
obtained by replacing every occurrence of identifier in expr with each of the
values between (and including) the two constants in turn. The remaining
three rules govern the use of boolean and integer variables. A variable is an
identifier followed by zero, one, or two primes and optionally followed by an
index enclosed in brackets:

variable ::

identifier primes optindex

primes ::
ε| "’" | "’’"

optindex ::

ε
| "[" intterm "]"

A variable can occur in two places; directly in place of an expr, or inside an
intterm (see below). In the first case its identifier must be a global or local
variable declared as bool. It is an error for a scalar variable to be followed
by an index, or for an array variable not to. Unprimed identifiers refer to the
global and local variables on the left-hand side, singly primed identifiers to
the right-hand side control location and the first stack symbol (if present),
and doubly primed identifiers to the second stack symbol (if present). A
local variable may occur in an expression with zero (one, two) primes if it
is in the domain associated with the left-hand side (first, second right-hand
side) explicit stack symbol. The last rule for expr allows two integer-valued
terms to be compared by the usual arithmetic operators:

intterm ::

intterm "+" intterm
| intterm "-" intterm
| intterm "*" intterm
| intterm "/" intterm
| intterm "<<" intterm
| variable
| quantifier
| number

quantifier ::

180

identifier

compop ::

"<" | "<=" | "=" | "!=" | ">=" | ">"

The identifier of a variable inside an intterm must be of type int. The rules
for scalars and arrays are the same as for boolean variables. An identifier
used in place of a quantifier must have been declared in an A- or E-clause
which includes the intterm it occurs in.

All binary operators which occur in expr, intterm, and constexpr clauses
associate to the left. The order of precedence is as follows, from highest to
lowest:

"<<"

"*", "/"
"+", "-"
"!"

"&"

"|"

"^"

"=="

A, E

Semantics We now give the precise semantics of the input language. All
occurrences of constexpr can be evaluated statically to an integer constant.
The operators +,-,*,/ have their usual arithmetic meanings, and << stands
for “shift left”, i.e. m << n = m · 2n. In the following, we represent each
constexpr by the constant it evaluates to.

We give the semantics in terms of a symbolic pushdown system; in doing
so, we deviate a little from the usual definition by defining a set of initial
configurations C0. However, this does not make any significant difference in
practice. The symbolic pushdown system defined by the input has the form

(P0 × G, Γ0 × L, ∆S, C0)

in which P0 is the set of all identifiers which occur in place of a ctrlid, and
Γ0 is the set of all identifiers which occur in place of a stackid. The sets
G and L, depend on the contents of the vardecl part. Let us associate a ‘size’
with each declaration which represents the number of bits needed for each
variable.

181

• A declaration of the form “bool x;” creates a scalar boolean variable
and has size 1. In the following, we set range(x) := {0, 1}.

• A declaration of the form “bool x[m];” creates an array of boolean
variables with indices 0 . . . m − 1; its size is m. likewise, a declaration
“bool x[m,n];” creates an array with indices m, . . . , n, and the size
is n − m + 1. Again, we set range(x) := {0, 1}.

• A declaration of the form “int x(k);” creates a scalar integer variable
with range(x) := {0, . . . , 2k − 1}, and the size is k.

• A declaration of the form “int x[m](k);” creates an array of integers
with range(x) := {0, . . . , 2k − 1}; the array has indices 0, . . . ,m − 1
and the size is m · k. In the case “int x[m,n](k);” the indices are
m, . . . , n and the size (n − m + 1) · k.

If a boolident–clist or intident–clist contains more than one element, we treat
them as several individual declarations of the same type; allowing multiple
elements in the list merely adds syntactical convenience. Now, let m be the
result of summing up the sizes of all declarations in globaldecl, or 0 if globaldecl
is empty. We set G := {0, 1}m. Moreover, we can construct a bijection fg

between G and the valuations of the global variables. For the presentation
of the semantics, we introduce for every scalar global variable x a function

〈x〉sG : G → range(x)

which extracts the value of x from the valuation corresponding to its argu-
ment. Analogously, we use a function 〈x〉iG for every global array x and every
index i of x. If we have a localdecl of the form

local "(" stackid–clist ")" var–list

then we set dom(γ) to the set of all variables declared in var–list and size(γ)
to the sum of the sizes of their declarations, for all γ ∈ Γ0 which occur in the
stackid–clist (we assume dom(γ) = ∅ and size(γ) = 0 for all γ ∈ Γ0 which
do not occur in any localdecl). If n = max{ size(γ) | γ ∈ Γ0 }, then we set
L := {0, 1}n. It is then obvious that for every γ ∈ Γ0 we can construct a
surjective function fγ from L into the valuations of the variables in dom(γ).
Like for the global variables, we introduce functions 〈x〉sγ for every scalar
x ∈ dom(γ) and 〈x〉iγ for every index i of an array x ∈ dom(γ) to extract the
value of x (or x[i]) from the valuations which correspond to elements of L.

182

The precise construction of fg, fγ (and hence 〈·〉) is actually flexible and is
not discussed here. In the case of BDDs, this issue boils down to the questions
how BDD variables should be allocated to variables in the pushdown systems,
and which ordering should be used on the BDD variables. These issues are
discussed to some extent in Chapter 5.

We are now in a position to give the semantics of rewrite rules. Even
though the semantics may look complicated at first, it is actually fairly nat-
ural, and all operations on boolean expressions and variables correspond
directly to certain BDD operations.

For every rule in the parse tree whose explicitpart has the form

p1 <γ> --> p2 <w>

where w contains the stackids on the right, ∆S contains a rewrite rule

〈p1, γ〉 ↪−→
[R]

〈p2, w〉
where R = G×L×G×L|w| if the corresponding optexpr is empty. Otherwise
we determine R by means of three functions [[·]], 〈〈·〉〉, and val . [[·]] maps exprs
to sets of tuples, 〈〈·〉〉 evaluates intterms, and val extracts values from tuples.
We start with the latter:

1. For every variable v which occurs in the parse tree, let xv be its iden-
tifier, pv the number of primes, and tv the intterm inside its optindex
part if the latter is not empty. Given a tuple h ∈ G×L×G×L|w| and
a ‘substitution set’ S, we define valSγw(v)(h) as 〈xv〉id(k), where

i =

{
s if xv is scalar

〈〈tv〉〉Sγw(h) if xv is an array

d =

G if xv is global

γ if pv = 0, xv ∈ dom(γ)

γ1 if pv = 1, |w| ≥ 1, w = γ1w
′, xv ∈ dom(γ1)

γ2 if pv = 2, |w| = 2, w = γ1γ2, xv ∈ dom(γ2)

k =

g if xv is global, pv = 0, h = (g, l, g′, . . .)

g′ if xv is global, pv = 1, h = (g, l, g′, . . .)

l if pv = 0, xv ∈ dom(γ), h = (g, l, g′, . . .)

l′ if pv = 1, |w| ≥ 1, w = γ1w
′, xv ∈ dom(γ1), h = (g, l, g′, l′, . . .)

l′′ if pv = 2, |w| = 2, w = γ1γ2, xv ∈ dom(γ2), h = (g, l, g′, l′, l′′)

183

2. Let t be an intterm in the parse tree, h a tuple from G×L×G×L|w|, and
S a ‘substitution set’. We inductively define 〈〈t〉〉Sγw(h) on the structure
of t:

• The arithmetic operators have the same function as in constexpr;
thus, if op is one of +,-,*,/,<<, then

〈〈t1 op t2〉〉Sγw(h) = 〈〈t1〉〉Sγw(h) op 〈〈t2〉〉Sγw(h).

• If t is a variable, then 〈〈t〉〉Sγw(h) = valSγw(t)(h).

• If t is a quantifier, then 〈〈t〉〉Sγw(h) = i if t/i ∈ S.

• If t is a number, then simply 〈〈t〉〉Sγw(h) = t.

3. Finally, we can complete the semantics with the [[·]] function, which
defines subsets of G×L×G×L|w|. Given an expr e and a ‘substitution
set’ S, [[e]]Sγw is inductively defined by the following equations:

• [[e1 | e2]]
S
γw = [[e1]]

S
γw ∪ [[e2]]

S
γw

• [[e1 & e2]]
S
γw = [[e1]]

S
γw ∩ [[e2]]

S
γw

• [[e1 == e2]]
S
γw = ([[e1]]

S
γw ∩ [[e2]]

S
γw) ∪ ([[!e1]]

S
γw ∩ [[!e2]]

S
γw)

• [[e1 ˆ e2]]
S
γw = [[!(e1 == e2)]]

S
γw

• [[!e]]Sγw = (G × L × G × L|w|) \ [[e]]Sγw

• [[(e)]]Sγw = [[e]]Sγw

• [[A q (m,n) e]]Sγw =
⋂n

i=m [[e]]
S∪{q/i}
γw

• [[E q (m,n) e]]Sγw =
⋃n

i=m [[e]]
S∪{q/i}
γw

• If e is of the form variable, then

[[e]]Sγw = {h ∈ G × L × G × L|w| | valSγw(e)(h) = 1 }.

• All comparison operators in compop have their usual meanings
("!=" being the rendering for 	=). Thus, if op is a compop, then

[[t1 op t2]]
S
γw = {h ∈ G × L × G × L|w| | 〈〈t1〉〉Sγw(h) op 〈〈t2〉〉Sγw(h) }.

184

We set R := [[optexpr]]∅γw. If R cannot be evaluated because some subexpres-
sion is not defined, then the input contains an error.

Finally, the initial configurations are defined by the initconfig part of the
parse tree. If p is the ctrlid and γ the stackid in initconfig, the set C0 of
initial configurations is:

{ 〈(p, g), (γ, l)〉 | g ∈ G, l ∈ L }

A.2 Syntax of Boolean Programs

At the time of writing, published descriptions for the syntax of Boolean Pro-
gram are missing some of its features. Therefore, an up-to-date description
is provided here. A formal semantics is not given as the meaning of the
language constructs should be fairly clear anyway, and we have already de-
scribed how to translate programs with procedures into pushdown systems
(see Section 2.3), which is more or less precisely what Moped does internally.

To define the syntax formally, we re-use most of the conventions for push-
down systems. We use the following conventions:

• We use the same rules as in pushdown systems for numbers, whitespace,
and the meta-rules for lists; all keywords and other recognized tokens
are enclosed in quotes in the syntax description below.

• An identifier here is either any alphanumeric string (underscore count-
ing as a letter) other than a keyword, or a sequence of characters other
than space, newline, or }, enclosed by curly braces {,}. Case is signifi-
cant.

• Comments begin with // and extend to the end of the line.

Essentially, a Boolean Program consists of a set of procedures. One pro-
cedure must be named main and it is in this procedure that execution begins.
Global variables can be declared at the top of the program. Their values are
undetermined at the beginning of the program, i.e. they can be either true
or false.

bp ::

decl–list function–list

185

Since all variables in the program are of type boolean, a declaration is
simply a list of variable names:

decl ::
decl identifier–clist ";"

The name of a function is given by an identifier; no two functions may
have the same name. A function may take zero or more parameters and
may return zero or more boolean values (this is defined by the functype).
The local variable space of a function consists of the parameters and other
variables declared inside funcbody (see next paragraph).

function ::

functype identifier funcparams funcbody

functype ::

void

| bool

| bool "<" number ">"

funcparams ::
"(" ")"

| "(" identifier–clist ")"

The body of a function starts with declarations of its local variables (apart
from the parameters). However, additional local variables are implicitly de-
clared ‘on the fly’ when they occur in the body of the function. A local
variable may ‘shadow’ a global variable. The declarations can be followed by
a so-called enforce clause. If present, the (boolean-valued) expression inside
the enforce clause is a constraint on the global and local variables. Every
statement within the procedure is allowed to execute only if the constraint
is satisfied. Initially, the local variables can take on any values permitted by
the enforce clause.

funcbody ::

begin decl–list enforce statement–list end

enforce ::

ε
| enforce expr ";" ;

186

Expressions are made up of the boolean constants true and false (denoted
T, F, or 1, 0, respectively), from identifiers and logical connectives. An iden-
tifier must be a global variable or a local variable of the function in which
the expression appears. Parentheses are for grouping expressions. The logi-
cal connectives are listed in order of precedence, from highest to lowest; they
represent negation, equality, inequality, conjunction, exclusive-or (equivalent
to inequality), disjunction, and implication. Alternative notations for some
operators are ∼ for negation, && for conjunction, and || for disjunction.

expr ::

T | F | 1 | 0

| identifier
| "(" expr ")"

| "!" expr
| expr "=" expr
| expr "!=" expr
| expr "&" expr
| expr "^" expr
| expr "|" expr
| expr "=>" expr

Every statement can optionally be preceded by a ‘label’ which allows the
statement to be addressed as the target of a goto statement. A label must be
unique within a function. The individual types of statements are discussed
below.

statement ::
optlabel stmt

optlabel ::
ε

| identifier ":"

stmt ::
assign

| call
| skip
| print
| ifstmt

187

| whilestmt
| assertion
| goto
| return

The first type of statement is parallel assignment. In the grammar rule
below, both lists must have the same number of items. The identifiers may
be global variables or local variables of the current function. The identifier
which occurs in i-th position on the left-hand side will be assigned to the
i-th expression on the right-hand side.

assign ::

identifier–clist ":=" choose-expr–clist ";"

A choose-expr is either an expr or an schoose construct. A term of the form
schoose[e1, e2] yields true if e1 is true, false if e1 is false and e2 is true, or
is undetermined otherwise.1

choose-expr ::

expr
| schoose "[" expr "," expr "]"

The next type of statement is procedure call. If the callee function is of
type void, i.e. it does not return any values, then the call statement must be
of the first form in the grammar rule below. If the callee returns n values,
n ≥ 0, then the statement must be of the second form, and the number of
identifiers (global or local variables) on the left-hand side must match the
number of return values. In both cases, the number of expressions listed as
arguments must match the number of parameters that the function takes.
The identifier denotes the name of the callee; forward references are allowed.

call ::
identifier arguments ";"

| identifier–clist ":=" identifier arguments ";"

arguments ::

1The motivation for schoose is that c2bp abstracts C code into Boolean Programs in
which the variables express predicates of the C program. c2bp generates a statement of the
form p:=schoose[e1, e2] if e1 is a sufficient criterion for predicate p to be true and e2 is a
sufficient criterion for p to be false. Sometimes, however, there is not enough information
to determine p, in which case it is allowed to go either way.

188

"(" ")"

| "(" choose-expr–clist ")"

skip is an ‘empty’ statement which does nothing. The print statement is
ignored by Moped and treated just like skip.

skip ::

skip ";"

print ::
print "(" choose-expr–clist ")" ";"

The ifstmt has the usual meaning. If the decider is satisfied, execution
branches into the part after then. Otherwise the decider expressions in the
elseif parts are tested, and if all fails, then the elsepart is executed (if present).

ifstmt ::
if "(" decider ")" then statement–list elseif–list elsepart fi

elseif ::
elsif "(" decider ")" then statement–list

elsepart ::
ε

| else statement–list

The truth value of a decider is either given by an expression, or is non-
deterministic (*,?).

decider ::

"*" | "?"

| expr

A whilestmt iterates over its statement–list as long as its decider is true.

whilestmt ::
while "(" decider ")" do statement–list od

Besides enforce, there are three more statements to ensure ‘consistency
conditions’ on the variables: assume allows control to continue if the decider
is true; other paths will be silently aborted. The assert statement has the
same meaning (in Bebop it also prints an error message when the decider

189

is false, but not in Moped). The constrain statement includes a ‘freeform’
expression which involves the pre- and post-values of the variables; control is
allowed to pass the statement and change the variables in such a fashion that
their valuations before and after the statement satisfy the expression (very
much in the same spirit as the expressions in input language for pushdown
systems). In addition to the usual syntax, an expr inside the decider of a
constraint statement may contain subexpressions of the form "’" identifier
to refer to the post-values of variables.

assertion ::

assume "(" decider ")" ";"

| assert "(" decider ")" ";"

| constrain "(" decider ")" ";"

A goto statement transfers control to the statement labelled with the
given identifier. A goto statement cannot cross function boundaries.

goto ::

goto identifier ";"

A return statement terminates the execution of a function and returns
control back to its caller. If the function returns values, then the second
form of the rule below has to be used, and the number of items in the list of
expressions must match the number of return values.

return ::

return ";"

| return choose-expr–clist ";"

A.3 Specifying properties

Moped can perform both reachability analysis and LTL model-checking. In
this section we show how to specify properties in Moped. The usage has been
demonstrated on some examples in Section 4.1.

Reachability properties When the input to Moped is a pushdown system
as described in Section A.1, the form of a reachability formula is

pds–reachform ::

ctrlid ":" stackid

190

where the ctrlid and stackid are a pair (p, γ) ∈ P0 ×Γ0. A reachability query
for (p, γ) decides the property

post∗(C0) ∩ { 〈(p, g), (γ, l) w〉 | g ∈ G, l ∈ L, w ∈ (Γ0 × L)∗ } 	= ∅

In other words, is there an initial configuration from which a configuration
is reachable in which p is the control location and γ is on top of the stack,
with arbitrary variable contents.

There is no explicit support in Moped to check for reachability of dif-
ferent categories of configurations. While in principle it would be easy to
add support for different sorts of reachability queries, the ability to check
for reachability of a ‘head’ 〈p, γ〉 is the most relevant for many practical
problems. But even in the current state of the tool, one could for instance
emulate regular languages as reachability targets by non-deterministically
allowing the pushdown system to enter the simulation of a finite automaton
which recognizes the languages by destructively reading the stack.

For reachability checks on Boolean Programs, the user is expected to pass
the name of a label. Moped then checks if there is any execution that leads
to the statement with the given label. The label may be given in the form
function:label or, omitting the function name, label. The first form resolves
ambiguities if the given label occurs in multiple functions; if the second form
is used, Moped finds a function in which the label is defined. (Notice that
Moped will pick the first function it finds which contains the label, the user
should make sure to use this syntax only if the label is unambiguous.)

LTL model-checking Moped relies on Spin [25] to translate LTL formulas
into Büchi automata; thus, the format of LTL formulas is taken from there:

ltlform ::

"true" | "false"

| proposition
| ltlform "&&" ltlform
| ltlform "||" ltlform
| ltlform "->" ltlform
| ltlform "<->" ltlform
| "!" ltlform
| "[]" ltlform
| "<>" ltlform
| "X" ltlform

191

| ltlform "U" ltlform
| ltlform "V" ltlform
| "(" ltlform ")"

Basic operands are "true", "false", and atomic propositions. Atomic
propositions are slightly different for the two input languages, see below.
The logical connectives are, listed above in this order, logical and, logical
or, implication, equivalence, and negation. The temporal operators are �

(rendered as "[]"), � (rendered as "<>"), the usual X and U operators and
V , the dual of U .

In the context of pushdown systems the allowed atomic propositions are
the identifiers which occur in place of any ctrlid or stackid in the system. If r
is such an identifier, then the atomic proposition r is true of the configurations

{ 〈p, (r, l)w〉 | p ∈ (P0 × G), l ∈ L,w ∈ (Γ0 × L)∗ }
∪ { 〈(r, g), w〉 | g ∈ G, w ∈ (Γ0 × L)+ }

When model-checking LTL on Boolean Programs, the syntax for LTL
formulas is basically the same as for pushdown systems; only the atomic
propositions are different. Atomic propositions have the same format as in
reachability queries, i.e. function:label or simply label; an atomic proposition
is true of all program states in which execution has arrived at the statement
with the given label.

A.4 Usage and options summary

This section provides a brief overview of Moped’s usage and its options. Some
examples of the usage have been discussed in Section 4.1. The effect of the
options will only be discussed briefly here, but pointers to more thorough
treatments are given. In general, the usage is as follows:

$ moped 〈modelfile〉 〈formula〉
Additional arguments starting with a minus sign are treated as options. Op-
tions can be combined, e.g. -b and -r can be abbreviated as -br.

The 〈modelfile〉 should be either a pushdown system or a Boolean Pro-
gram. The latter should be indicated by the -b option. The 〈formula〉 is
either an LTL formula or a reachability formula. Reachability queries are
indicated with the -r option; see Section A.3 for the syntax of formulas. The
available options can be grouped into five categories:

192

• options defining the task that Moped should solve;

• options influencing the methods which are applied;

• options concerning the use of BDD variables;

• special options for Boolean Programs;

• options which set Moped’s level of verbosity.

Below, the options are listed by category.

Setting the task

-b As already mentioned above, the user must supply this option to in-
dicate that a Boolean Program is checked; otherwise a symbolic push-
down system is assumed. The syntax of these languages has been de-
scribed in Sections A.1 and A.2. Supplying -b on the command line
also selects -m2v2 (see below) unless overridden by subsequent options.

-r The user must supply this to indicate that a reachability analysis should
be performed; the default is LTL model-checking. This influences the
way the given formula is interpreted, see Section A.3. Note: In the
terminology of Section 2.5, the reachability analysis corresponds to
problem (I), and LTL model-checking to problem (III).

-F In LTL model-checking, this indicates that 〈formula〉 should not be
taken as the LTL formula, but rather as the name of a file which already
contains the Büchi automaton for the negation of a formula. The Büchi
automaton must be in the format generated by Spin’s -f command.

-t Indicates that a witness path should be generated if a reachability
analysis is successful, or a counterexample if LTL model-checking comes
to a negative result. For reachability analyses on Boolean Programs
the witness path can be printed in different formats. The format is
determined by adding another letter:

-tP Default, same as just -t. Prints the witness as a path in the push-
down system which Moped generates from the Boolean Program
it receives as input.

193

-tN Outputs the witness path in a format which can be analyzed by
Newton (see Section 4.2.3).

-tX Outputs an XML trace. Rajamani has written a viewer which can
read these traces and display them in a graphical user interface.

-D When checking pushdown systems, this option defines a symbolic con-
stant which can be referenced in the input file, e.g. -DN=3 would define
the symbolic constant N to be 3. Such a definition overrides any other
definition of N in the input file, see also the discussion of definition in
Section A.1.

Selecting analysis methods

-p Reachability of a set of configurations C from the initial configuration c0

can be expressed as c0 ∈ pre∗(C) or post∗({c0}) ∩ C 	= ∅.2 We shall
call the first the pre∗ method and the second the post∗ method. We
have also explained so-called pre∗ and post∗ methods for checking LTL,
see Section 3.2. Using the -p option followed by a digit, the user can
specify which type of method should be used:

-p0 This instructs Moped to use the pre∗ method.

-p1 This instructs Moped to use the post∗ method.

-p2 This instructs Moped to use the post∗ method and stop when the
first witness/counterexample is found. This method is the default.

The pre∗ method has better asymptotic complexity, however in prac-
tice the post∗ method often performs better (see the discussion in Sec-
tion 5.5).

-q Determines the queueing strategy. When computing forward and back-
ward reachable sets of configurations, Moped picks the transition which
it processes from a worklist. The worklist can be organized in different
fashions:

-q0 Organizes the worklist as a stack, which effectively leads to depth-
first search. This is the default.

2The classes of sets C which can be specified in Moped is explained in Section A.3.

194

-q1 Organizes the worklist as a LIFO queue, which means breadth-
first search.

These options and their effects are explained in more detail in Sec-
tion 5.4.

-c Determines the method used for detecting accepting cycles when model-
checking LTL. The option is to be followed by one or more capital letters
which control two parameters: whether or not to use a preprocessing
step, and the method used to detect the cycles. More details on the
meaning of these options is given in Section 5.2.

-cT Preprocess by removing trivially irreversible transitions (default).

-cN Do not remove trivially irreversible transitions.

-cC Compute cycles with transitive closure method.

-cE Compute cycles with Emerson-Lei method.

-cO Compute cycles with OWCTY method (default).

-cX Compute cycles with Xie-Beerel method.

Multiple letters can be combined as in, e.g., -cEN.

Setting BDD options

-v In both input languages, we may have a number of different sets of
local variables. Therefore, different strategies for mapping the local
variables onto BDD variables are possible:

-v0 “avaricious”: Determine the number of bits necessary to repre-
sent the largest local variable set and use only that many BDD
variables (i.e. no more BDD variables than absolutely necessary).
This is the default for symbolic pushdown systems.

-v1 “generous”: Allocate a fresh set of BDD variables for each set of
local variables.

-v2 “by name”: This option is available only for Boolean Programs
and is the default for them. In this mode, if two local variables
in different sets have the same name, they are represented by the
same BDD variables.

195

The effects of these modes are discussed in some more detail in Sec-
tion 5.9.

-m Determines the variable ordering. The following options are available:

-m0 This is the default when checking symbolic pushdown systems.
BDD variables are ordered according to four rules, in the order
listed below. ‘Input order’ refers to the order in which the variables
appear in the declarations.

1. scalar variables come before array variables;

2. more significant bits of integers come before less significant
bits (boolean variables have just one bit with the least signif-
icance for this purpose);

3. variables with earlier appearance in the input order come be-
fore those with later appearances;

4. for globals, BDD variables from G0 come first, then G1, and
then G2; for locals, L0 comes first, then L2, L1, and L3.

-m1 This is an alternative option for symbolic pushdown systems; it is
almost like -m0, but rules 2 and 3 are swapped.

-m2 This becomes the default when Boolean Programs are checked.
The variable ordering is determined by dependency analysis be-
tween the program variables in the input, see Section 5.8.

-a This enables the automatic variable reordering feature of CUDD (de-
fault is to disable automatic reordering). The reordering operations
tend to take very long and thus have a hope of improving overall per-
formance only if Moped’s initial variable ordering turns out to be bad.
In the experiments reported in this thesis, the initial orderings always
turned out to be good enough so that the checker’s performance was
better with automatic reordering disabled. For experimental purposes,
the user may also specify -aa, which turns on automatic reordering only
while the input is parsed so that the BDD package may make some ini-
tial adjustments to the ordering based on the BDDs which represents
the pushdown system.

Special options for Boolean Programs

196

-o The performance of Moped on Boolean Programs can be improved
by making use of techniques from compiler optimization, for instance
by eliminating dead variables. This is explained in greater detail in
Section 5.7.

-o0 Do not use any optimizations (default).

-o1 Perform a mod/ref analysis on the global variables.

-o2 Perform a full ‘live range’ analysis for all local variables.

-o3 Use both optimizations.

If no digit is given after -o, then -o3 is assumed. Note: At the time
of writing, these optimizations will not work together with -tN and
-tX. However, this is not a fundamental incompatibility, again see Sec-
tion 5.7.

Verbosity

-s Sets the level of Moped’s verbosity. The option is to be followed by a
single digit which sets the level:

-s0 Silent mode; Moped merely outputs a yes/no answer and a trace,
if applicable.

-s1 Additionally prints progress and timing reports (default).

-s2 Additionally prints statistical information from the CUDD pack-
age about BDD usage at the end.

-s3 (and higher) These levels are only for debugging purposes.

197

198

Bibliography

[1] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state
machines. In Proc. CAV’01, LNCS 2102, pages 207–220. Springer, 2001.

[2] H. R. Andersen. An introduction to binary decision diagrams. Technical
report, IT University of Copenhagen, Apr. 1998. Lecture notes.

[3] T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean
programs. In SPIN 00: SPIN Workshop, volume 1885 of LNCS, pages
113–130. Springer, 2000.

[4] T. Ball and S. Rajamani. Boolean programs. a model and process for
software analysis. Technical Report MSR-TR-2000-14, Microsoft Re-
search, 2000.

[5] T. Ball and S. Rajamani. Automatically validating temporal safety
properties of interfaces. In SPIN 01: SPIN Workshop, volume 2057 of
LNCS, pages 103–122. Springer, 2001.

[6] M. Benedikt, P. Godefroid, and T. W. Reps. Model checking of unre-
stricted hierarchical state machines. In Automata, Languages and Pro-
gramming, pages 652–666, 2001.

[7] R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for
model-checking of linear time logic properties. In Proceedings of CAV’99,
volume 1633 of LNCS, pages 222–235. Springer, 1999.

[8] B. Boigelot, J.-M. François, and L. Latour. The Liège Automata-
based Symbolic Handler (LASH), 2001. Beta version available from
http://www.montefiore.ulg.ac.be/∼boigelot/research/lash/.

199

[9] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of push-
down automata: Application to model checking. In Proc. CONCUR’97,
LNCS 1243, pages 135–150, 1997.

[10] R. Brown. Calendar queues: A fast O(1) priority queue implementation
for the simulation event set problem. Communications of the ACM,
31(10):1220–1227, 1988.

[11] R. E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEE Transactions on Computers, C-35(8):677–691, Aug. 1986.

[12] O. Burkart and B. Steffen. Model checking the full modal mu-calculus
for infinite sequential processes. In Proc. ICALP’97, volume 1256 of
LNCS, pages 419–429. Springer, 1997.

[13] E. Clarke and E. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Logics of Programs,
volume 131 of LNCS, pages 52–72. Springer, may 1981.

[14] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-
efficient algorithms for the verification of temporal properties. Formal
Methods in System Design, 1(2/3):275–288, 1992.

[15] E. Emerson. Temporal and modal logic. Handbook of Theoretical Com-
puter Science, B, 1991.

[16] E. Emerson and C. Lei. Modalities for model checking: Branching time
logic strikes back. Science of Computer Programming, 8(3):275–306,
1987.

[17] E. A. Emerson and C. Lei. Efficient model checking in fragments of the
propositional mu-calculus. In Proceedings of the First Annual Sympo-
sium of Logic in Computer Science, pages 267–278, 1986.

[18] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algo-
rithms for model checking pushdown systems. In Proceedings of CAV
2000, LNCS 1855, pages 232–247. Springer, 2000.

[19] J. Esparza and J. Knoop. An automata-theoretic approach to interpro-
cedural data-flow analysis. In Proceedings of FoSSaCS’99, volume 1578
of LNCS, pages 14–30. Springer, 1999.

200

[20] J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with regu-
lar valuations for pushdown systems. In Proceedings of TACS’01, volume
2215 of LNCS, pages 306–339. Springer, 2001.

[21] J. Esparza and A. Podelski. Efficient algorithms for pre∗ and post∗ on
interprocedural par allel flow graphs. In Proceedings of POPL ’00, 2000.

[22] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach
to model checking pushdown systems. Electronic Notes in Theoretical
Computer Science, 9, 1997.

[23] K. Fisler, R. Fraer, G. Kamhi, Y. Vardi, and Z. Yang. Is there a best
symbolic cycle-detection algorithm? In Proceedings of TACAS’01, vol-
ume 2031 of LNCS, pages 420–434. Springer, 2001.

[24] J. Henckel. An efficient linear unification algorithm, 1998. Published at
http://www.geocities.com/Paris/6502/unif.html.

[25] G. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997.

[26] T. Jensen, D. L. Métayer, and T. Thorn. Verification of control flow
based security properties. In IEEE Symposium on Security and Privacy,
pages 89–103, 1999.

[27] S. Jha and T. Reps. Analysis of SPKI/SDSI certificates using model
checking. In Computer Security Foundations Workshop, 2002. To ap-
pear.

[28] O. Kupferman and M. Vardi. Freedom, weakness, and determinism:
From linear-time to branching-time. In Proc. 13th IEEE Symposium on
Logic in Computer Science, June 1998.

[29] O. Kupferman and M. Vardi. An automata-theoretic approach to rea-
soning about infinite-state systems. In Proceedings of CAV 2000, LNCS
1855, pages 36–52. Springer, 2000.

[30] D. Long. CMU BDD package, 1993. http://emc.cmu.edu/pub.

[31] R. Mayr. Decidability and Complexity of Model Checking Problems for
Infinite-State Systems. PhD thesis, TU-München, 1998.

201

[32] K. L. McMillan. Symbolic Model Checking: an approach to the state
explosion problem. PhD thesis, Carnegie Mellon University, 1992.

[33] J. Obdržálek. Formal Verification of Sequential Systems with Infinitely
Many States. Master’s thesis, FI MU Brno, 2001.

[34] A. Pnueli. The temporal logic of programs. In Proceedings of 18th
Annual Symposium on Foundations of Computer Science, pages 46–57.
IEEE Computer Society Press, 1977.

[35] D. Polanský. Implementation of the modelchecker for pushdown systems
and alternation-free mu-calculus. Master’s thesis, FI MU Brno, 2000.

[36] K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic
algorithms for the computation of fair cycles. In Proceedings of FM-
CAD’00, volume 1954 of LNCS, pages 143–160. Springer, 2000.

[37] S. Schwoon. Moped – A Model-Checker for Pushdown Systems, 2002.
http://www7.in.tum.de/∼schwoon/moped.

[38] F. Somenzi. Colorado University Decision Diagram Package, 1998.
ftp://vlsi.coloradu.edu/pub.

[39] B. Steffen, A. Claßen, M. Klein, J. Knoop, and T. Margaria. The
fixpoint-analysis machine. In Proceedings of CONCUR’95, volume 962
of LNCS, pages 72–87. Springer, 1995.

[40] R. E. Tarjan. Depth first search and linear graph algorithms. In
SICOMP 1, pages 146–160, 1972.

[41] M. Y. Vardi and P. Wolper. Automata Theoretic Techniques for Modal
Logics of Programs. Journal of Computer and System Sciences, 32:183–
221, 1986.

[42] I. Walukiewicz. Pushdown processes: Games and model checking. In
Proceedings of CAV’96, volume 1102 of LNCS, pages 62–74. Springer,
1996.

[43] A. Xie and P. A. Beerel. Implicit enumeration of strongly connected
components. In Proceedings of ICCAD, pages 37–40, San Jose, CA,
1999.

202

