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CSE 599E 

 

Lecture 4:  

Signal Processing and  

Machine Learning for BCI 
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Whatôs on the menu? 

F Signal Processing 
Spike sorting 

Frequency analysis 

Wavelets 

Time domain analysis 

Bayesian Filtering, Kalman and Particle filtering 

F Machine Learning 
Regression: Linear regression, Neural networks 

Classification: LDA, SVM 

Cross Validation 
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Components of Brain-Computer Interfacing 

 

Classification 

or Regression 
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Feature Extraction and Signal Processing 



5 R. Rao, 599E: Lecture 4 

Invasive Recording: Spike Sorting 

Sorting by Amplitude 

Sorting using Window 

Discriminators 
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Signal Processing for Semi-Invasive and Non-

Invasive Recordings 
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Example: ECoG Signal 

Rest Period Hand movement 

Slow oscillations 

have disappeared 

 

Faster fluctuations 

are apparent 
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Decomposing a signal into components: 

Frequency domain analysis 
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Example of Frequency Domain (Fourier) Analysis 

Signal as a 

function of 

time 

Signal as a 

function of 

frequency 
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Fourier Analysis 

F Express any signal as an infinite sum of sines and cosines  

 

 

 

 

F Obtain each ñFourier coefficientò via correlation with signal: 
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Amplitude and Power Spectra 

 

 

F Amplitude Spectrum 

 

F Power Spectrum 

 

F  Fast Fourier transform (FFT): Efficient way of computing 

coefficients and power spectrum 
For signal with T time points, runs in time approximately T log T 

 

22

2

1
)( nn banA +=

)(
4

1
)()(

222

nn banAnP +==

22 ++++++= )2sin()sin()2cos()cos(
2

)( 2121
0 tbtbtata

a
ts wwww

12 R. Rao, 599E: Lecture 4 

ECoG Signal Ą Power Spectrum 

Low- and High-Frequency Band 

(LFB/HFB) ñfeaturesò can be used to 

detect hand movement 
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Problem with Fourier Analysis  

F Sines and cosines occupy an 

infinite temporal extent 

F Fourier transform does a poor 

job of representing finite and 

non-periodic signals, and 

signals with sharp peaks and 

discontinuities 
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Wavelets 

F Represent signals as 

linear combinations 

of finite basis 

functions called 

wavelets 

F Each wavelet is a 

scaled and translated 

copy of a single 

mother wavelet 

F Allows multi-

resolution analysis 

Example Mother Wavelets 
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Example: Wavelet Decomposition of EEG 

(Hinterberger et al., 2003) 
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Autoregressive (AR) Models 

F Natural signals tend to be correlated over time 

F Predict the next measurement based on past few values: 

 

F Adaptive Autoregressive (AAR) model uses time-varying 

set of coefficients ai,t: 

 

 

F The ai,t capture local statistics of signal and can be used as 

features for classification in a BCI 
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Bayesian Filtering:  

Kalman filters and Particle filters 
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Bayesô Rule 

normalizer

prior likelihood
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Example: Estimating brain state from neural data 

F Suppose we measure ECoG signal z 

 

 

 

 

F What is P(HandMovement|z)? 
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Causal vs. Diagnostic Reasoning 

F P(HandMovement|z) is diagnostic. 

F P(z|HandMovement) is causal. 

F Often causal knowledge is easier to obtain or learn. 

F Bayes rule allows us to convert causal knowledge to 

diagnose events: 
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Hand Movement Example 

F P(z|HM) = 0.6     P(z|×HM) = 0.3 

F P(HM) = P(×HM) = 0.5 
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If z is measured, it raises the probability of hand 

movement from 0.5 to 0.67 

From past data 

22 R. Rao, 599E: Lecture 4 

Combining Measurements over Time 

F Suppose we make another measurement z2. 

F How can we integrate this new measurement? 

F More generally, how can we estimate 

P(x| z1...zn )? 
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Bayesian Filtering 
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From previous time step!  

Bayesô Rule 
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Kalman Filtering 

F State linearly evolves according to: 

F Measurement linearly related to state: 

F nt and mt are zero-mean Gaussian noise with covariance 

matrices Q and R respectively 

F Bayesian filtering: 

 

 

F Because everything is Gaussian and linear, posterior is also 

Gaussian: 
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Kalman Filter Equations 

F Prediction from one time step to next: 

 

 

F Correction upon measuring zt: 

 

 

F ñKalmanò gain                           dictates how much weight to 

give to prediction error                 versus prediction  
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Kalman Filter: Prediction and Correction Cycle  
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Kalman filter assumes linear and Gaussian 

model  

 

How do we handle non-linearity and multi-

modal distributions? 
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EnteréParticle Filtering 

Samples approximate 
posterior probability 
distribution  

New measurement provides  
importance weights  
 

Importance sampling  
 
Prediction step and  
new samples 
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Spatial Filtering (across electrodes) and 

Feature Extraction 
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Spatial filtering: Simple Techniques 

F Bipolar filtering  

 
 

F Laplacian filtering  

 
 

F Common Average 

Re-referencing 
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What if you are faced with thisé 

http://people.brandeis.edu/~sekuler/imgs/rwsEEG.jpg 
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Reducing Dimensionality of Input Data 

High Density EEG Recording 

Can we extract and use a small set of features rather than 

the large number of input channels? 

http://people.brandeis.edu/~sekuler/imgs/rwsEEG.jpg 
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Principal Component Analysis (PCA) 

F Convert high-dimensional 

input into a small set of 

linear ñfeaturesò 
Eg., 256 EEG channels Ą  

    10 ñfeaturesò 

F Features determined by 

directions in data with 

maximal variance 

F Data can be reconstructed 

(with some error) by linear 

combination of features 

 

Example: 2D to 1D  
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Principal Component Analysis (PCA) 

F Suppose each of the N data points is L-dimensional 
Form L x L data covariance matrix A 

 

 

 

F Compute eigenvectors of A Ą these are the ñfeatureò vectors 

or spatial filters 

F Pick N largest eigenvalues and use their eigenvectors as your 

features/filters 
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Example: PCA for images of faces 

F PCA extracts the 

eigenvectors v1, v2, v3, 

... vK of covariance 

matrix A 

F Each one of these 

vectors is a direction in 

image space 
What do these look like? 
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Low Dimensional Representation and Reconstruction 

Filtering: Input is converted to eigenvector coordinates using dot 

products (ñprojectionò): 

ä 

Reconstructed image 

Compressed representation  
(K usually much smaller than size of input) 

Input 
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PCA applied to EEG 

(Jung et al., 1998) 

5 of the 22 

Eigenvectors 

 

a1 
a2 

(spatial filters 
for EEG 
channels) 
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Independent Component Analysis (ICA) 

F PCA produces a matrix V of eigenvectors (columns of V) 

such that the output a is uncorrelated: 

 

F ICA tries to find a matrix  W of filters (columns of W) such 

that the output a is statistically independent: 

 

F ICA assumes sources are linearly mixed to produce x 

F ICA can be used to recover the ñindependent sourcesò of 

mixed brain signals such as EEG 
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ICA for unmixing EEG signals 

http://sccn.ucsd.edu/~scott/icons/TimeCourseFig_web.jpg 
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ICA for Artifact Removal in EEG 

(Jung et al., 1998) 


