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CSE 599E 

 

Lecture 4:  

Signal Processing and  

Machine Learning for BCI 
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What’s on the menu? 

F Signal Processing 
Spike sorting 

Frequency analysis 

Wavelets 

Time domain analysis 

Bayesian Filtering, Kalman and Particle filtering 

F Machine Learning 
Regression: Linear regression, Neural networks 

Classification: LDA, SVM 

Cross Validation 
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Components of Brain-Computer Interfacing 

 

Classification 

or Regression 
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Feature Extraction and Signal Processing 
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Invasive Recording: Spike Sorting 

Sorting by Amplitude 

Sorting using Window 

Discriminators 
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Signal Processing for Semi-Invasive and Non-

Invasive Recordings 
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Example: ECoG Signal 

Rest Period Hand movement 

Slow oscillations 

have disappeared 

 

Faster fluctuations 

are apparent 
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Decomposing a signal into components: 

Frequency domain analysis 

= 
 
 
 

+ 
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Recorded 

signal 

Increasing 

frequency 
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Example of Frequency Domain (Fourier) Analysis 

Signal as a 

function of 

time 

Signal as a 

function of 

frequency 
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Fourier Analysis 

F Express any signal as an infinite sum of sines and cosines  

 

 

 

 

F Obtain each “Fourier coefficient” via correlation with signal: 
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Amplitude and Power Spectra 

 

 

F Amplitude Spectrum 

 

F Power Spectrum 

 

F  Fast Fourier transform (FFT): Efficient way of computing 

coefficients and power spectrum 
For signal with T time points, runs in time approximately T log T 
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ECoG Signal  Power Spectrum 

Low- and High-Frequency Band 

(LFB/HFB) “features” can be used to 

detect hand movement 



13 R. Rao, 599E: Lecture 4 

Problem with Fourier Analysis  

F Sines and cosines occupy an 

infinite temporal extent 

F Fourier transform does a poor 

job of representing finite and 

non-periodic signals, and 

signals with sharp peaks and 

discontinuities 
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Wavelets 

F Represent signals as 

linear combinations 

of finite basis 

functions called 

wavelets 

F Each wavelet is a 

scaled and translated 

copy of a single 

mother wavelet 

F Allows multi-

resolution analysis 

Example Mother Wavelets 
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Example: Wavelet Decomposition of EEG 

(Hinterberger et al., 2003) 
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Autoregressive (AR) Models 

F Natural signals tend to be correlated over time 

F Predict the next measurement based on past few values: 

 

F Adaptive Autoregressive (AAR) model uses time-varying 

set of coefficients ai,t: 

 

 

F The ai,t capture local statistics of signal and can be used as 

features for classification in a BCI 
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Bayesian Filtering:  

Kalman filters and Particle filters 
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Bayes’ Rule 

normalizer

prior likelihood
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Example: Estimating brain state from neural data 

F Suppose we measure ECoG signal z 

 

 

 

 

F What is P(HandMovement|z)? 
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Causal vs. Diagnostic Reasoning 

F P(HandMovement|z) is diagnostic. 

F P(z|HandMovement) is causal. 

F Often causal knowledge is easier to obtain or learn. 

F Bayes rule allows us to convert causal knowledge to 

diagnose events: 
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Hand Movement Example 

F P(z|HM) = 0.6     P(z|HM) = 0.3 

F P(HM) = P(HM) = 0.5 
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If z is measured, it raises the probability of hand 

movement from 0.5 to 0.67 

From past data 
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Combining Measurements over Time 

F Suppose we make another measurement z2. 

F How can we integrate this new measurement? 

F More generally, how can we estimate 

P(x| z1...zn )? 
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Bayesian Filtering 
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Kalman Filtering 

F State linearly evolves according to: 

F Measurement linearly related to state: 

F nt and mt are zero-mean Gaussian noise with covariance 

matrices Q and R respectively 

F Bayesian filtering: 

 

 

F Because everything is Gaussian and linear, posterior is also 

Gaussian: 
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Kalman Filter Equations 

F Prediction from one time step to next: 

 

 

F Correction upon measuring zt: 

 

 

F “Kalman” gain                           dictates how much weight to 

give to prediction error                 versus prediction  
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Kalman Filter: Prediction and Correction Cycle  
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Kalman filter assumes linear and Gaussian 

model  

 

How do we handle non-linearity and multi-

modal distributions? 
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Enter…Particle Filtering 

Samples approximate 
posterior probability 
distribution 

New measurement provides 
importance weights 
 

Importance sampling 
 
Prediction step and  
new samples 
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Spatial Filtering (across electrodes) and 

Feature Extraction 
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Spatial filtering: Simple Techniques 

F Bipolar filtering 

 
 

F Laplacian filtering 

 
 

F Common Average 

Re-referencing 
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What if you are faced with this… 

http://people.brandeis.edu/~sekuler/imgs/rwsEEG.jpg 
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Reducing Dimensionality of Input Data 

High Density EEG Recording 

Can we extract and use a small set of features rather than 

the large number of input channels? 

http://people.brandeis.edu/~sekuler/imgs/rwsEEG.jpg 
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Principal Component Analysis (PCA) 

F Convert high-dimensional 

input into a small set of 

linear “features” 
Eg., 256 EEG channels   

    10 “features” 

F Features determined by 

directions in data with 

maximal variance 

F Data can be reconstructed 

(with some error) by linear 

combination of features 

 

Example: 2D to 1D  
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Principal Component Analysis (PCA) 

F Suppose each of the N data points is L-dimensional 
Form L x L data covariance matrix A 

 

 

 

F Compute eigenvectors of A  these are the “feature” vectors 

or spatial filters 

F Pick N largest eigenvalues and use their eigenvectors as your 

features/filters 
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Example: PCA for images of faces 

F PCA extracts the 

eigenvectors v1, v2, v3, 

... vK of covariance 

matrix A 

F Each one of these 

vectors is a direction in 

image space 
What do these look like? 
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Low Dimensional Representation and Reconstruction 

Filtering: Input is converted to eigenvector coordinates using dot 

products (“projection”): 

 

Reconstructed image 

Compressed representation  
(K usually much smaller than size of input) 

Input 
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PCA applied to EEG 

(Jung et al., 1998) 

5 of the 22 

Eigenvectors 

 

a1 
a2 

(spatial filters 
for EEG 
channels) 
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Independent Component Analysis (ICA) 

F PCA produces a matrix V of eigenvectors (columns of V) 

such that the output a is uncorrelated: 

 

F ICA tries to find a matrix  W of filters (columns of W) such 

that the output a is statistically independent: 

 

F ICA assumes sources are linearly mixed to produce x 

F ICA can be used to recover the “independent sources” of 

mixed brain signals such as EEG 
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ICA for unmixing EEG signals 

http://sccn.ucsd.edu/~scott/icons/TimeCourseFig_web.jpg 
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ICA for Artifact Removal in EEG 

(Jung et al., 1998) 
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Common Spatial Patterns (CSP) 

F Data is labeled with class to which each data vector belongs 
E.g., EEG obtained for right versus left hand imagery 

F CSP finds a matrix W of spatial filters (columns of W) where 

 

 such that the variance of the filtered data (components of 

vector a) for one class is maximized while the variance of 

the filtered data for the other class is minimized 

F CSP filters can significantly enhance discrimination ability 

between the two classes 
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CSP applied to EEG for Right/Left Hand Imagery 

http://www.sciencedirect.com/science/article/pii/S0165027007004657 

Right 

Left 

Less variance 
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Components of Brain-Computer Interfacing 

 

Classification 

or Regression 
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Outline 

F Regression 

Linear 

Backpropagation neural networks 

F Classification 

Linear classifiers 

Support vector machines 

F Cross-validation 

Model selection, preventing overfitting 
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Linear Regression 

x y 

1 3.1 

2 6.4 

3.1 8.9 

0.9 2 

y 

x 

Assumption: Output is a linear function of input, i.e.,  

yi= wxi + noise 

where noise is independent, gaussian, unknown fixed variance 

input 

output 
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Linear Regression 

Given: Data (yi, xi) where yi are drawn from N(wxi, 
2) 

Likelihood of data (yi, xi) for a given w is: 

     i p(yi | w, xi)    which is equal to 

     i exp( -0.5 (y
i
 – wxi))

2/
2 
     (ignoring constants) 

Goal: Maximize the likelihood of data given w 

i.e., maximize:   i  -0.5(yi-wxi)
2/2 

i.e., minimize:    i (yi –wxi)
2 

 

Can show that  w =  xi yi /  (xi)
2 
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But…typically, inputs in BCIs are 

vectors of multiple neurons’ 

activities, multiple EEG 

measurements, etc. 

 

Need Multivariate Regression 

Input vector 

Output 

(hand position) 
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Multivariate Linear Regression 

Suppose inputs xi are n-element vectors: yi =wTxi + noise 

Write the m inputs as rows of matrix and outputs yi as vector: 

 

 

Then, Y = Xw + noise 
 

Find maximum likelihood w by minimizing               over all data 

w = (XTX)-1XTY 
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Nonlinear Regression: Neural Networks 

Input nodes ae
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The most common 

activation function: 

 

Sigmoid function: 

Squashes wTu to be between 0 and 1.  

The parameter  controls the slope. 
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Want to learn a mapping from inputs to 

outputs, given training data (um,dm).  

How is w learned? 
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Multilayer Networks 

 

How do we learn these 

weights? 

Input u = (u1  u2 … uK)T  

Output v = (v1  v2 … vJ)
T;  Desired = d 
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Idea: “Backpropagation” Learning Rule 
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Backpropagation: 

Output Weights 
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Example Application in BCI 

(Nicolelis, 2001) 



55 R. Rao, 599E: Lecture 4 

Motivation: Why classification? 

F Many BCI applications require selecting 1 out of N 

commands or menu choices. E.g., 
Word spellers: select 1 out of 26 letters 

Menu with icons: select 1 out of N icons 

Semi-autonomous robot: select 1 out of N high-level commands 

F Classification techniques can used to classify a given brain 

signal into 1 of several classes 
Simplest case: 2 classes  binary classificiation 
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Binary Classification: Example 

Suppose BCI is used to move a 1D cursor left or right 

Want to use brain signals for Imagined left hand movement 

vs. Imagined right hand movement 

Data points for left hand movements (class C1) 

Data points for right hand 

movements (class C2) 

How do we classify new data points? 



57 R. Rao, 599E: Lecture 4 

Binary Classification: Linear Classifiers 

Find a line (in general, a 

hyperplane) (w, b) 

separating the two sets 

of data points: 

g(x) = wTx + b = 0, i.e., 

w1x1 +  w2x2 + b = 0 

For any new point x, choose: 

  class C1 if g(x) > 0 and class C2 otherwise 

x1 

x2 

g(x) = 0 

g(x) < 0 

g(x) > 0 

C1 
C2 
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Linear Discriminant Analysis (LDA) 

Assume each class is a 
Gaussian cloud   

P(x|Ci) = N(i, ),  i = 1,2 
 

w and b are computed as 
follows: 

w = -1(1 - 2) 

b = wT(1 + 2)/2 
 

 Can show that this is equivalent to log likelihood ratio test 
for class 1 versus class 2 

wTx + b = 0 C1 

C2 
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Actually, many possible separating lines… 

Which one is best? 
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Support Vector Machines (SVMs) 

Choose hyperplane with 
largest margin 

 

Facilitates generalization 
to new data points 

Can be shown: margin = 2/ wTw 

Maximize margin subject to the following constraints: 

    wTxi +b > +1      for class1 points, 
    wTxi +b < -1       for class2 points. 

“Margin” 

Solved with Quadratic 
Programming. 
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Overfitting and Generalization 

Question: Which line is the best fit?  
Squiggly line overfits the data Won’t generalize to new data 

Solution: Hold out  some of the points, test regression or 

classification performance on the held-out points 
What if points held out are bad (uncharacteristic of new data)?  

Linear Regression 
Quadratic Regression 

Squiggly-Regression 

Holdout point 
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Cross-Validation and Model Selection 

F Repeat for different subsets of held-out points:     
For each choice of held-out points: 

Fit model on remaining points 
Evaluate error on held-out points 
Add to total error score (this is the generalization 
error) 

F Choose model with least generalization error 
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Types of Cross-Validation 

F K-fold cross-validation: Split data into k blocks. 

Each block is used as hold out set. 

F Leave-one-out cross-validation: Each point is held 

out once, model trained on remaining points, tested 

on held out point, and cycle repeated for all points. 
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Next Class: 

Invasive BCIs – Early Studies 

 
Presenters: 

Shin Kira  

&  

Miah Wander 


