CSE 599E

Introduction to Brain-Computer Interfacing

Instructor: Rajesh Rao

TA: Sam Sudar

The Matrix (1999)

Firefox(1982)

Spiderman 2 (2004)

Hollywood fantasy apart, why would we want to engineer such devices?

Treating neurological conditions

Can we build devices to help people with neurological disabilities?

Neurons Communicate through Electrical Activity

Example: Cochlear Implants for the Deaf

Cochlear implants have improved hearing ability in about 190,000 deaf children and adults

1. Microphone

3. Sound processor

5. FM radio transmitter

6 7 8

6. Receiver & Stimulator

7. Electrode array

From: http://www.deafblind.com/cochlear.html

Example: Deep Brain Stimulation (DBS) for Parkinson's Disease

Implanted device electrically stimulates parts of the brain to help reduce tremors, rigidity, and other symptoms

> Videos: Before DBS After DBS

Such devices are examples of "brain-computer interfaces" or BCIs

This Course (CSE 599E)

 Goal: Provide an overview of the field of brain-computer interfacing

Class web page:

- http://www.cs.washington.edu/599e
- The course will include:
 - Introductory Lectures
 - Invited Speakers
 - Student-Led Discussion of Research Papers

Who are we?

Workload

- No exams or homeworks
- Paper presentation: You and a selected colleague from class will work as a team to present 2-3 selected papers on an assigned day
 - See schedule on website for list of papers
 - Team members/days selected by staff (this week)
 - Presentations should use slides and/or board
- Final project: You will work with 1-2 other colleagues on a "mini-research" project
 - BCI experiment/BCI data analysis/Literature survey
 - Project presentation on May 31
 - Project write-up due on June 3

Grading

- Credit/No Credit (CR/NC) only
- Grade based on:
 - Student team presentation of assigned papers
 - Final team project completion
 - Participation in on-line/in-class discussions

Enuff logistics, let's get started...

INVASIVE BCI IN ANIMALS

Movement direction can be predicted from motor cortex activity

Robot arm-hand control using motor cortical activity

(Video from Schwartz lab, Pittsburgh)

Non-Invasive BCIs: Electroenchephalography (EEG)

EEG (recording from scalp)

Picture courtesy of Wadsworth Center

Rick Owens 2012 Collection

EEG is noisy but correlates with brain activity

Beta waves (14-18 Hz): Associated with alertness and heightened mental activity

(From Scientific American, 1996)

<u>Alpha waves (8-12 Hz)</u>: Associated with unfocusing attention (*relaxation*)

(From Scientific American, 1996)

Using EEG for BCI: Two Types of Responses

- Event Related Desynchronization or Synchronization (ERD/ERS):
 - Change in power in specific frequency-bands

Evoked Potentials (EPs)

 Stereotypical response caused by a stimulus (e.g., P300)

Using ERD for BCI

- Extract band power features (8-12Hz)
- Train a classifier to classify ERD for different imagined movements (e.g., left hand vs. foot movement)
- Use trained classifier to classify new data for moving a cursor or robot

Navigating a Virtual World using Imagined Movements

Robotic "Avatar" based on P300 BCI

(J. Neural Engineering, 2008)

INVASIVE BCI IN HUMANS

Invasive BCIs: Electrocorticography (ECoG)

ECoG (brain surface)

Patient Population and Setup

(photo courtesy Seattle Times)

- Patients implanted for localization of seizure
- Experiments at bedside in 7-10 days between surgeries

Electrocorticographic (ECoG) Recording

- 8x8 array or strip of platinum electrodes
 - 1.2 to 2.3mm diameter
 - Separated by 3mm to 1cm
- Several hundred thousand neurons beneath each electrode

<section-header><section-header>Imagined movements activate similar
areas as actual movementsActual Hand MovementImagined Hand MovementImagined Fand MovementImagined Fand Movement

(Miller et al., PNAS, 2010) Activation for imagery is weaker than activation for actual movements. However...

What we will learn the rest of the quarter

- What brain responses and algorithms are used in:
 - Invasive BCIs in animals and humans
 - Semi-Invasive BCIs in humans
 - Non-Invasive BCIs in humans
 - Stimulating/Bidirectional BCIs in humans and animals
- What are some of the major BCI applications?
- What are the ethics of brain-computer interfacing?

Next Class: Primer on Neuroscience and Brain Recording/Stimulation

To do:

Browse class website

 Links to papers and notes for next class will be added on Schedule webpage