Bidirectional interactions between the brain and implantable computers

Brain-computer interface to transform cortical activity to control signals for prosthetic arm

Adaptive control of cortical neurons is required to generate appropriate control signals

Fetz, Nature Neuroscience 2: 583, 1999

Volitional control of neural activity & recurrent brain-computer interfaces

 Volitional modulation of cortical neurons
 Volitional control of neural activity through biofeedback
 Volitional control of brain-computer and

brain-machine interfaces

4. Implanted recurrent brain-computer interface

Central input to many sensory cortex cells

Soso & Fetz, J. Neurophysiol. 41, 1090 – 1110, 1980

Cortical ECoG power with real and imagined movement

Miller, Ojemann, Rao et al, PNAS 107: 4430–4435, 2010

Cells are activated by visual imagery in amygdala, entorhinal cortex, hippocampus

Kreiman, Koch & Fried, Nature 408: 357, 2000

Cortical cells are activated by volitional shifts of attention

Kastner, Desimone, Ungerleiter et al, Neuron 22: 751, 1999

Many cortical areas activated by shifts of attention

Kastner et al, Neuron 22: 751, 1999

Volitional activation of neural activity

- 1. Volitional movements [real & imagined]
- 2. Preparatory activity
- 3. Activation of internal representations
- 4. Shifts of attention ["top down" signals]
- 5. Cognitive processing ["thinking"]
- 6. Directly evoked with biofeedback

Cortical cell activity controls biofeedback meter arm

Fetz, Science 163: 955-958, 1969

Monkey increases activity of new cell

Fetz & Baker, J. Neurophysiol 36:179-204, 1973

Independent control of neighboring neurons

Fetz & Baker, J. Neurophysiol 36:179-204, 1973

Conditioning cell and muscle activity

Fetz & Finocchio, Science 174:431-435, 1971

Isolated isometric EMG bursts Cell fires with biceps and wrist flexor

Fetz & Finocchio, Science 174:431-435, 1971

Motor cortex cells could be dissociated from muscles

Isometric biceps bursts

Isometric unit bursts

Active elbow flexion

Unit increase and muscles decrease

Fetz & Finocchio, Exp. Brain Res. 23:217-240, 1975

Basic biofeedback paradigm

Biofeedback conditioning of CNS activity [cf. "Biofeedback and Self-Control" Annuals 1970-77]

1. Single neurons

Motor units [human] Harrison 1962; Basmajian 1967 Motor cortex [monkey] Fetz 1969, 1973; Schmidt 1977 Midbrain [rat] Olds 1961, 1965

2. Spontaneous EEG & LFP

Cortical Alpha [human] Kamiya 1968; Sterman 1969
Hippocampal Theta [dog] Black 1970, 1972
Amygdala spindling [chimpanzee] Delgado 1970
3. Evoked potentials

Visual cortex [cat] Fox & Rudell 1968, 1970 Auditory cortex [human] Rosenfeld 1970 Spinal stretch reflex [monkey, rat] Wolpaw et al 1983

Basic BCI/BMI paradigm

Interfacing brain and computers

Modified from Leuthardt, et al *Neurosurgery* 59, 2007

The Neurochip implant for primates:

- Autonomous implant
- Neural and muscle recording
- Spike discrimination
- On-board processing
- Non-volatile memory
- Constant-current stimulator
- Infra-red link to PC
- Battery-powered

50 ms

Threshold

0.2 ms

50 µV

Window 1

Window 2

Mavoori, Jackson et al. J. Neurosci Meth. 148: 71,. 2005

Continuous recording of a single M1 neuron for 2 weeks.

Jackson et al, J. Neurophysiol, 97, 360-374, 2007

Stable unit recordings during free movement

Neural activity Unit pulses **Recurrent BCIs: Two types of applications**

1. Create artificial recurrent connections Brain adapts to consistent sensorimotor conditions and could learn to incorporate the R-BCI

2. Create synaptic (Hebbian) plasticity Spike-triggered stimulation strengthens synaptic connections

Artificial connections via Recurrent BCI: cortical spikes control FES of muscle

Activity of cortical cell triggers electrical stimulation of paralyzed muscles, allowing monkey to reach the force target

Moritz, Perlmutter Fetz, *Nature* **456: 639-42, 2008**

Two cortical units drive two muscles (flexor and extensor)

Moritz et al, Nature 456: 639-42, 2008

Cell tuning does not predict control of FES

Tuned neurons initially control cursor faster

But: the brain learns to use all neurons equally well to control FES with practice

Therefore: biofeedback triples population of useful neurons

Moritz et al, Nature 456: 639-42, 2008

Recurrent BCI allows cortical cell activity to control muscle stimulation

Utilizing muscles is more natural than prosthetic arm
 Chronically implanted circuit will allow relearning

Cortical activity could stimulate spinal cord

- 1. Stimulating spinal circuits recruits motor units in natural order
- 2. Spinal sites typically evoke co-ordinated movements
- 3. Effect of implant will be integrated with any remaining spinal function

Cortical activity could stimulate other brain sites

- 1. Test adaptation to artificial connections
- 2. Effect of implant may be integrated with ongoing brain function
- 3. Spike-triggered stimulation strengthens connections between sites

Plasticity example 1 Recurrent BCI connects neighboring motor cortex sites

Connector

Polyamide guide-tubes

tungsten wires

Jackson, Mavoori, Fetz, Nature 444: 56-60, 2006

1. Intracortical microstimulation (ICMS) mapping of motor output

2. A recurrent connection is implemented between cortical sites Nrec and Nstim

Spikes recorded at the Nrec electrode trigger stimuli delivered to the Nstim electrode after a pre-defined delay. (5ms)

This artificial connection operates continuously during free behavior and sleep

Average stimulation rate (red) during day and night

Spike Delay Stimulus artifact

Recording from Nrec electrode showing spike and stimulus artifact.

3. Post-conditioning ICMS testing shows changed output from Nrec

Modified cortical output persists for over 1 week post-conditioning

Changed output probably produced by Hebbian plasticity

Motor remapping caused by Neurochip conditioning may be explained by a timing-dependent Hebbian strengthening of pathways between synchronized Nrec and Nstim [or downstream sites]

Conditioning requires a coincidence of spikes and stimulation within approx. 50 ms.

Spike - stimulus interval (ms)

Pre-conditioning ICMS mapping:

Conditioning:

Post-conditioning ICMS mapping:

Jackson et al, Nature 444: 56-60, 2006

Summary of cortical conditioning experiments:

Pre-conditioning (deg)

Plasticity example 2 EMG-triggered cortical conditioning

Cortical sites are closely associated with corresponding muscles.

Can muscle activity serve as surrogate for cortical activity?

T. Lucas, 2009, unpublished Ph.D. thesis

Plasticity example 3: corticospinal connections

Corticomotoneuronal cells have correlational effects in STAs of EMG

Cheney & Fetz, J Neurophys 44:773-791, 1980

Muscle fields of CM cells

Cheney & Fetz, J Neurophys 44:773-791, 1980

Hebbian conditioning of CM pathway with Neurochip

Neurochip delivers spike-triggered intraspinal stimuli near terminals of CM cell during ~20 hours of free behavior

Nishimura, et al, unpublished

Neurochip conditioning enhances size of post-spike effects

Conditioning time: 22 hrs. Spike-stim delay 25 ms Mean stim. freq. 16.8/sec day 8.3 /sec night

Nishimura et al *unpublished* (SfN 2010)

Neurochip conditioning of CM cell output

Nishimura et al unpublished (SfN 2010)

Change in mean percent increase of PSF as function of spike-stimulus delay

Nishimura et al *unpublished* (SfN 2010)

Applications for Recurrent BCI

<u>Sou</u>	rces

Cortical neurons

Multiunit activity Field potentials EMG ECoG

Various sites

	<u>Transforms</u>	Targets
	Direct conversion	Muscles
y	Computed function	Spinal cord
	Neural network	Cortex
	Modifiable	Reward cente

Operant conditioning of EMG activity via Neurochip Pulses from biceps EMG trigger n. accumbens stimulation

EMG pulse rate during 5min periods of stim **on** and **off**

Average EMG pulse rate during 5min of stim on and off

Eaton, Zanos, Fetz, SfN Abstr, 2008

Proposal for a "cognitive prosthesis"

Berger et al, IEEE Eng Med Biol Mag 24, 30-44, 2005

Neural Prosthesis for Lost Cognitive Function

Strategy:

- 1. Biomimetic model/device that mimics signal processing function of hippocampal neurons/circuits
- 2. Implement model in VLSI for parallelism, rapid computational speed, and miniaturization
- 3. Multi-site electrode recording/stimulation arrays to interface biomimetic device with brain
- 4. Goal: to "by-pass" damaged brain region with biomimetic cognitive function

Berger et al, IEEE Eng Med Biol Mag 24, 30-44, 2005

Further reading...

EDITED BY THEODORE W. BERGER AND DENNIS L. GLANZMAN

TOWARD REPLACEMENT PARTS FOR THE BRAIN IMPLANTABLE BIOMIMETIC ELECTRONICS AS NEURAL PROSTHESES

Natural-Born Cyborgs

Minds. Technologies. and the Future of Human Intelligence

ANDY CLARK

Technologies are advancing exponentially

...Ray Kurzweil

Thanks to:

...and support from NIH; UW RRF; WTC; CDRF; ITHS; LSDF; Keck Foundation

Neurochip 2

1. Three differential input channels. Low cutoff: 1 Hz or 500 Hz High cutoff: 7.5 KHz or 2.5 KHz.

- 2. A-D conversion 8 or 12 bit; @ 256-24Ks/sec
- Removable flash memory: 1 GB. Records 35 hrs of 8bit LFP/ECoG/EMG @ 2 Ks/sec on 3 channels 16 hrs of unit data @ 12 Ks/sec plus 2 channels @ 2Ks/sec
- Bipolar stimulation switchable to 3 output channels [<20 μs]
 10 μa several ma [50 volt output for high-range stimulator]
- 5. Stimulus artifact suppression
- 6. Rechargeable battery [2 batteries for high stim]