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Introduction – Why Kalman Filtering? 
•  Incorporates information on the prior state of the system 

•  Mitigates the negative effects of noise on model 
•  Bayesian; estimates uncertainty 

• Efficient and easy to update 
•  Can (hopefully) be extended to an online setting 
•  Requires minimal training data 



Methods 
• Prerecorded neural data 

•  Extracellular recordings from 100 electrode array 
•  Recorded from M1 in macaques 
•  Two tasks 

•  Pursuit tracking 
•  Pinball 

• Markov assumptions for Kalman filter: 

• Recursive equation for posterior: 



Methods cont. 
•  Likelihood 

•  Generative model for the activity of the population 

•  Temporal Prior 
•  Assumes the state evolves according to linear Gaussian model 

•  Joint Probability Distribution (given Markov assumptions) 



Results – Reconstructed Trajectories (Fig. 3) 



Results – System State Components (Fig. 4) 



Results – Optimal Delay/Orders for Pinball Task (Tables 2/3) 



Results – Optimal Delay for Pursuit Task (Table 4) 



Results – Performance vs Number of Neurons and 
Training Data Length (Figure 6) 



Results – Comparison to Other Methods (Table 6) 



Conclusions 
• More accurate than other models 

•  Population vectors 
•  Linear filters 

• More efficient than linear filtering 
•  Less susceptible to overfitting than linear filtering 
• Estimates full kinetic state vector 
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Introduction – Motivation 
•  To determine how M1 encodes naturalistic multijoint 

movements 
•  To improve upon studies that restrict movement to limited 

space/dimensions 



Methods – Experimental (Fig. 1A) 
• Recorded from M1 upper 

limb area in macaque 
• Used a 96 electrode 

extracellular array 
• Recorded motion using 

infrared capture of 29 
reflective markers 
•  25 total degrees of freedom 



Methods – Experimental cont. 



Methods – Model 
•  Linear state space model for zeroth order kinematics 
• Offline training 

•  60% of data for training 
•  20% for validation 
•  20% for testing 

• Determined firing rate 100 ms overlapping time bins 
• Recursive formulation for hidden state update rule: 

• Output: 



Results – Dimensionality (Fig. 3B) 

•  10 principal components were sufficient to account for 95% of 
the variance 
•   10 dimensional control signal 



Results – Firing Rate/Joint Angle 
Correlation (Fig. 3C) 



Results – Neural Correlation for Sets of 
Kinematic Parameters (Fig. 4) 



Results – Semipartial Correlation for Model 
Neurons (Supplemental Table 2/Fig. 5) 



Results – Lag Distribution (Supplemental Fig. 3) 



Results – Reconstruction Accuracy 



Results – Comparison to Previous 
Studies (Supplemental Table 3) 



Results – Index of Kinematic Selectivity 
(Fig. 6) 

Index of Kinematic Selectivity 
(Arm): 



Results – Correlation and Error 
Distributions (Fig. 8) 



Results – Measured and Decoded 
Kinematic Variables (Fig. 9B) 



Results – Correlation Coefficients for 
Decoded Kinematic Variables (Fig. 9C) 



Conclusion 
• Achieved a decoding accuracy for each DoF similar to 

previous methods 
• Accurate with relatively small number of neurons 

•  Neuron selection does not appear to be crucial 

•  Individual neurons in the M1 arm/hand area represent 
unrelated and weakly correlated kinematic parameters 



Limitations 
• M1 might not encode kinematic parameters directly 

•  Might encode muscle information instead 

• Did not explore the ability to reconstruct individual finger 
motion 

• Did not include sensory feedback in model 
• Might not be easy to extend the model to desired 

movement of paralyzed individuals 
• Each DoF state is evolved independently of the other 

DoFs 


