

Setup 2 datasets Simulation Premotor cortex measurements 3 methods PV Linear Regression ("optimal linear estimation") Particle Filter

Real Neuron Measurements

- "258 neurons in the subregion of ventral premotor cortex referred to by Gentilucci et al. (1998) as "region F4," collected individually in 258 separate experiments from four rhesus monkeys"
- It's described in Reina and Schwartz 03

Real Data Collection Setup

- Cube corners "center-out" task
- subdivide into 100 bins. (Extra credit. How can we stop doing this?)
- Ellipse task
- Subdivide each of 5 loops into 100 bins
- Both tasks: pretend all 258 measurements from one trial, use average velocity as ground truth

Population Vector
• Velocity at time t
$$\hat{v}_t^{(PV)} = \sum_{j=1}^N w_{t,j} d_j$$

• N neurons
• Preferred directions d
• Weights w (for firing rates y)
 $w_{t,j} = (y_{t,j} - \bar{y}_j)/(y_j^{(max)} - y_j^{(min)})$

Choosing PF parameters Preferred directions d estimated from center-out task Everything else from first 3 loops of ellipse task "using standard Poisson-family generalized linear models (McCullagh and Nelder 89)"

TABLE 2. De	ecoding errors for ver	ntral premotor corte:	x data
summarized a	cross time		
	PV	OLE	PF
ISE	6.245	2.362	0.886

Particle Filter

PF is general method for conditional density propagation through time

We wish we had: $P(x_t | z_t)$

Bayes' Rule: $P(x_t \mid z_t) = \frac{P(z_t \mid x_t)P(x_t)}{P(z_t)}$

For time t, observations z_t , and state or value x_t

Particle Filter

PF is general method for conditional density propagation through time

We wish we had: $P(x_t | z_t)$

Bayes' Rule:
$$P(x_t | z_t) = \frac{P(z_t | x_t)P(x_t)}{yawn}$$

For time t, observations z_t , and state or value x_t

Particle FilterPF is general method for conditional density propagation through timeWe wish we had: $P(x_t | z_t)$ Bayes' Rule: $P(x_t | z_t) = \frac{P(z_t | x_t)P(x_t | x_{t-1})}{yawn}$ For time t, observations z_t , and state or value x_t

