Machine Learning for BCI
The whirlwind tour

CSE599e: Brain-Computer
Interfaces

CSE599e: Brain Computer Interfaces

Liberally inspired by

http://autonlab.org/tutorials
(Andrew W. Moore’s slides on
all things data-mining)

CSE599e: Brain Computer Interfaces

Outline

e Supervised Learning: Regression
— Linear, polynomial.
— RBFs, perceptrons, multilayer networks.
e Supervised Learning: Classification
— Linear classifiers, max margin, kernels.
— NN-based classifiers.
e Cross-validation
— Model selection, preventing overfitting.

’ CSE599e: Brain Computer Interfaces

Why?

e Dominant paradigms in BCI literature

— Correlate instantaneous hand position with
neural firings = regression. (Invasive BCIs)

— Guess whether you're thinking tomatoes or
oranges = classification. (EEG BCIs)

e In each case, we have example data.
— Supervised learning.

’ CSE599e: Brain Computer Interfaces

Linear Regression

X y
1 3.1
2 6.4
3.1 (8.7

0.7 |2
Assumption: Output is a linear function of input, i.e.,
Y;= WX;+noise,
where noise is independent, gaussian, unknown

fixed variance.

’ CSE599e: Brain Computer Interfaces

Linear Regression

Thus, y; are drawn from N(wx;, 62).
Likelihood of data (y;, x;) for a given w,
mply; [w, x) Le,

M, exp(-0.5 (y. - WXi))Z/O'Z
Maximize the likelihood of data given w.
i.e., maximize: 2, -0.5(y;-wx;)?/c?

i.e., minimize: 2, (y; —wx;)?

Easy to show that w =X x, y, / = (x)?

’ CSE599e: Brain Computer Interfaces

Multivariate regression

Suppose inputs are vectors. We assume:
y = WTX + noise.
We can write the data points as:

Xi1 Xqg - Y1
01]
Then, maximum likelihood w is

w = (XTX)1(XTY)

’ CSE599e: Brain Computer Interfaces

Linear regression: constants

What if data does not
go through origin?

Simple hack for adding
constant term:
y=WwWX+cC

Any guesses?

’ CSE599e: Brain Computer Interfaces

Linear Regression: constants

e Add a dummy input fixed at 1.

X y 2, |2 y
1 81 |—1 [1 |1 81
2 [11.4 1 |2 [11.4
3.1 [13.7 1 3.1 [13.7
0.7 |7 1 |07 |7

Learn the regression function y = w'z + noise.

’ CSE599e: Brain Computer Interfaces

Regression with Polynomials

¢ Quadratic, polynomial functions:
— Same trick: replace input by extended-input

X1 [XY 4 12| 243 | - | Y

2
Xy [X |Yi Xig | Xi2 | (Xi1)* | XinXiz | Vi

¢ Again, learn the model y = w'z + noise.

’ CSE599e: Brain Computer Interfaces

Regression with Polynomials

¢ Quadratic, polynomial functions:
— Same trick: replace input by extended-input

X1 [X | Y :

Xi1 | Xi2 1Yi

\

e Again, learn the n| Example: Quadratic Regression

’ CSE599e: Brain Computer Interfaces

Radial Basis Functions

e Create features that are some function of
the entire input vector, e.g.,
z; = KernelFunction(|x; — ¢|/y;)

e ¢, s and y; s are constant (will revisit).

e Idea: the kernel functions have reasonable
overlap, and cover the interesting regions
of input space.

’ CSE599e: Brain Computer Interfaces

RBFs: an example

Function: y = 2z, + 3.8z, + 2.3z,

, , <Data Point y,

Basis Functions z,, z,, z,
G

With ¢, y; known, this is standard linear regression.
How to select ¢; and y;?
Answer: Gradlient Descert.

’ CSE599e: Brain Computer Interfaces

Perceptrons
Another view of linear regression:
%‘
Input x e > |—— OutputO

What if output E is not the expected value (y)?

Learning rule: w, — w, - n (O-Y) X

(where n is the /learning rate)
Intuition: Use error to appropriately correct w.
Guarantee: Will converge to ML estimate of w.

’ CSE599e: Brain Computer Interfaces

Perceptrons: Learning rule(s)

e Essentially performing gradient descent:
W, — W, - n &(error)/dw,

e Possibly useful for incremental update.

e Idea generalizes to larger networks.

o Useful analogy to brain’s learning
mechanisms.

’ CSE599e: Brain Computer Interfaces

Sigmoid Perceptrons

e Add a sigmoid to the output:

w
Input x w\kl‘@ ~ Out(x) = g(w'x)

Suitable for classification g(@) = 1_@
— Output is (almost) binary. 1+e
— Gradient descent guaranteed to
converge, even with sigmoid. ,.9@

— Performs well in practice.

L
’ CSE599e: Brain Computer Interfaces

Multilayer Networks

Perceptron can only express limited class of functions:
out(x) = g(wT x)
Solution: Chain individual nodes together:
Out(x) = g(Z; w; g(Z Wy X;))

\G\

A
K X9
Y

Learning is by adaptation of gradient descent—
back-propagate errors down the network.

’ CSE599e: Brain Computer Interfaces

Linear classifiers

Data x; are points in n-
dimensional space, with
labels +1/-1

Choose a plane (w, b)
separating them.

Then, for any point x, label(x) = sign(w' x + b)
Note: can use magnitude of output too, as a
‘neasure of plus-ousity.

CSE599e: Brain Computer Interfaces

Linear classifiers: LDA

Assume each class is a
gaussian cloud

N(ukl zk)l k = 112

Define w as follows:
w =2y, - Hy)

Easy to compute.
Works if data is sufficiently low-dimensional.

* CSE599e: Brain Computer Interfaces

Support Vector Machines

“Margin”

Choose “thickest
hyperplane” for w.

Intuitively seems like a
good pick, avoids
Veor,” outlier problems.

O/'S/,
Can be shown: margin = 2/ wTw

Maximize margin subject to the followin .
WX, +b > +1 for classl points, \ 20lved with

wTx, +b < -1 for class2 points. | Quadratic

Programming.
* CSE599e: Brain Computer Interfaces

10

How to choose C?
’ CSE599e: Brain Computer Interfaces

SVMs: Soft Margin

© .
) \E What about outliers?
"o’ Allow errors &,
How to control errors?
° e Trade off margin with errors.

Minimize wTw + C %, §; subject to:

wWix, +b + &, > +1 for classl points,

w'x +b -§,<-1 for class2 points,

SVMs: Using Kernels

Remember trick used for polynomial regression?
— Replace inputs with functions of inputs:

X « ®(x)
Compute a large-margin /inear classifier in the
“higher-dimensional space” of ®.

Kernel trick: we only ever need to look at
scalar products of points. ®(x;)®(x,)

Kernel trick: define a kernel function k(xés/),
e.g., P(x)D(y) = k(x,y) = exp(-(x-y)*/20
Can use (almost) arbitrary kfs, where the
equivalent ® space cannot be represented.

’ CSE599e: Brain Computer Interfaces

11

Multiclass Classifiers

e Guesses?

e Train M classifiers (for M-class problem)
— class1 vs not-class1, and so on.
— combine classifier outputs.
e Train M(M-1)/2 classifiers:
— class1 vs class2 for every pair.
— combine classifier outputs.

’ CSE599e: Brain Computer Interfaces

Cross-validation

Linear Regression

Quadratic Regression

I Squiggly-Regression

i‘\ Holdout point

Question: Which line? The squiggly overfits the data.

Answer: Hold out some of the points, evaluate
performance on the held-out points. (This is what we
want it to do in practice)

What if points are (un)lucky?

’ CSE599e: Brain Computer Interfaces

12

Cross-validation

¢ Rinse-repeat-cycle: for each choice of holdout
set, do:
— Do regression on remaining points.
— Evaluate error on held-out points.
— add to total error score.
e Choose model with least generalization error.

e Leave-one-out: each pointis used as a holdout
set.

o K-fold: Split data into k blocks, each block is
used as holdout set.

’ CSE599e: Brain Computer Interfaces

CV for classification

e Choose model with least generalization
error.

— Can also use to choose parameter of the
model (e.g., remember the cost tradeoffs in
SVM classifier?)

— Try a range of values (usually exponentially
increasing).

— Pick parameter value with least CV error.

’ CSE599e: Brain Computer Interfaces

13

Fin

References:
http://autonlab.org/tutorials

(Andrew W. Moore)

CSE599e: Brain Computer Interfaces

14

