Machine Learning for BCI The whirlwind tour

CSE599e: Brain-Computer Interfaces

CSE599e: Brain Computer Interfaces

Liberally inspired by

http://autonlab.org/tutorials(Andrew W. Moore's slides on all things data-mining)

Outline

- Supervised Learning: Regression
 - Linear, polynomial.
 - RBFs, perceptrons, multilayer networks.
- Supervised Learning: Classification
 - Linear classifiers, max margin, kernels.
 - NN-based classifiers.
- Cross-validation
 - Model selection, preventing overfitting.

CSE599e: Brain Computer Interfaces

Why?

- Dominant paradigms in BCI literature
 - Correlate instantaneous hand position with neural firings ⇒ regression. (Invasive BCIs)
 - Guess whether you're thinking tomatoes or oranges ⇒ classification. (EEG BCIs)
- In each case, we have *example data*.
 - Supervised learning.

Linear Regression

X	У
1	3.1
2	6.4
3.1	8.7
0.7	2

Assumption: Output is a linear function of input, i.e., $y_i = wx_i + noise_i$

where noise is independent, gaussian, unknown fixed variance.

CSE599e: Brain Computer Interfaces

Linear Regression

Thus, y_i are drawn from $N(wx_i, \sigma^2)$.

Likelihood of data (y_i, x_i) for a given w,

 Π_i p(y_i | w, x_i) *i.e.*,

 $\Pi_{i} \exp(-0.5 (y_{i} - wx_{i}))^{2}/\sigma^{2}$

Maximize the likelihood of data given w.

i.e., maximize: Σ_i -0.5(y_i-wx_i)²/ σ^2

i.e., minimize: $\Sigma_i (y_i - wx_i)^2$

Easy to show that $W = \sum x_i y_i / \sum (x_i)^2$

Multivariate regression

Suppose inputs are vectors. We assume:

$$y = \mathbf{w}^T \mathbf{x} + \text{noise.}$$

We can write the data points as:

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots \\ x_{i1} & x_{i2} & \dots \\ \dots & \dots \end{bmatrix}$$

$$Y = \begin{bmatrix} y_1 \\ \dots \\ y_i \\ \dots \end{bmatrix}$$

Then, maximum likelihood ${\bf w}$ is

$$\mathbf{w} = (\mathsf{X}^\mathsf{T}\mathsf{X})^{-1}(\mathsf{X}^\mathsf{T}\mathsf{Y})$$

CSE599e: Brain Computer Interfaces

Linear regression: constants

What if data does not go through origin?

Simple hack for adding constant term:

$$y = wx + c$$

Any guesses?

Linear Regression: constants

• Add a dummy input fixed at 1.

Х	У	
1	8.1	
2	11.4	
3.1	13.7	
0.7	7	

Z_1	z_2	У
1	1	8.1
1	2	11.4
1	3.1	13.7
1	0.7	7

Learn the regression function $y = w^Tz + noise$.

CSE599e: Brain Computer Interfaces

Regression with Polynomials

- Quadratic, polynomial functions:
 - Same trick: replace input by extended-input

• Again, learn the model $y = w^Tz + noise$.

- Quadratic, polynomial functions:
 - Same trick: replace input by extended-input

CSE599e: Brain Computer Interfaces

Radial Basis Functions

- Create features that are some function of the entire input vector, e.g.,
 - $z_i = KernelFunction(|x_i c_i|/\gamma_i)$
- c_i s and γ_i s are constant (will revisit).
- Idea: the kernel functions have reasonable overlap, and cover the interesting regions of input space.

RBFs: an example

With c_i , γ_i known, this is standard linear regression. How to select c_i and γ_i ?

Answer: Gradient Descent.

CSE599e: Brain Computer Interfaces

Perceptrons

Another view of linear regression:

Input x

What if output E is not the expected value (y)?

Learning rule: $w_k \leftarrow w_k - \eta$ (O- y) x_{ik} (where η is the *learning rate*)

Intuition: Use error to appropriately correct w. Guarantee: Will converge to ML estimate of w.

Perceptrons: Learning rule(s)

- Essentially performing gradient descent: $w_k \leftarrow w_k \text{ } \eta \text{ } \delta(\text{error})/\delta w_k$
- Possibly useful for incremental update.
- Idea generalizes to larger networks.
- Useful analogy to brain's learning mechanisms.

CSE599e: Brain Computer Interfaces

Sigmoid Perceptrons

• Add a sigmoid to the output:

$$w_1$$
 Ou w_k g

$$Out(x) = g(w^Tx)$$

Suitable for classification

- Output is (almost) binary.
- Gradient descent guaranteed to converge, even with sigmoid.
- Performs well in practice.

Multilayer Networks

Perceptron can only express limited class of functions: $out(x) = g(w^T x)$

Solution: Chain individual nodes together:

Out(x) =
$$g(\Sigma_i W_i g(\Sigma W_{ik} X_{ik}))$$

Learning is by adaptation of gradient descent back-propagate errors down the network.

CSE599e: Brain Computer Interfaces

Linear classifiers

Data x_i are points in n-dimensional space, with labels +1/-1

Choose a plane (w, b) separating them.

Then, for any point x, label(x) = $sign(w^T x + b)$ Note: can use *magnitude* of output too, as a measure of plus-ousity.

Linear classifiers: LDA

Assume each class is a gaussian cloud

$$N(\mu_k, \Sigma_k), k = 1,2$$

Define w as follows:

$$W = \Sigma^{-1}(\mu_2 - \mu_1)$$

Easy to compute.

Works if data is sufficiently low-dimensional.

CSE599e: Brain Computer Interfaces

Support Vector Machines

Choose "thickest hyperplane" for w.

Intuitively seems like a good pick, avoids outlier problems.

Can be shown: margin = $2/ w^T w$

Maximize margin subject to the following $W^Tx_i + b > +1$ for class1 points, Solved with for class2 points. $W^{T}x_{i} + b < -1$

Quadratic Programming.

SVMs: Using Kernels

- Remember trick used for polynomial regression?
 Replace inputs with functions of inputs:
 - $X \leftarrow \Phi(X)$
- Compute a large-margin *linear* classifier in the "higher-dimensional space" of Φ .
- Kernel trick: we only ever need to look at scalar products of points: Φ(x₁)·Φ(x₂)
- **Kernel trick:** define a *kernel function* k(x,y), e.g., $\Phi(x)\cdot\Phi(y)=k(x,y)=\exp(-(x-y)^2/2\sigma^2)$
- Can use (almost) arbitrary kfs, where the equivalent Φ space cannot be represented.

Multiclass Classifiers

- Guesses?
- Train M classifiers (for M-class problem)
 - class1 vs not-class1, and so on.
 - combine classifier outputs.
- Train M(M-1)/2 classifiers:
 - class1 vs class2 for every pair.
 - combine classifier outputs.

CSE599e: Brain Computer Interfaces

Cross-validation

Question: Which line? The squiggly *overfits* the data.

Answer: *Hold out* some of the points, evaluate performance on the held-out points. (This is what we want it to do in practice)

What if points are (un)lucky?

Cross-validation

- Rinse-repeat-cycle: for each choice of holdout set, do:
 - Do regression on remaining points.
 - Evaluate error on held-out points.
 - add to total error score.
- Choose model with least *generalization error*.
- Leave-one-out: *each point* is used as a holdout set.
- K-fold: Split data into k blocks, each block is used as holdout set.

CSE599e: Brain Computer Interfaces

CV for classification

- Choose model with least *generalization error*.
 - Can also use to choose *parameter* of the model (e.g., remember the cost tradeoffs in SVM classifier?)
 - Try a range of values (usually exponentially increasing).
 - Pick parameter value with least CV error.

Fin

References: http://autonlab.org/tutorials (Andrew W. Moore)

