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Announcements

o HW3 due: Friday Feb. 27
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Acyclic Query

Q is acyclic if it admits a join tree, which is a tree T where:

@ The nodes in T are in 1-1 correspondence with the atoms in Q.

o T satisfies the running intersection property: for any variable, the set of
nodes that contain it forms a connected component.
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YA for a Boolean Query

Choose a root of the join tree.

@ Traverse the tree bottom-up and set R; := R; < Rcnita()-

Ryroot = 0 then return FALSE. Otherwise return TRUE.

Runtime: O(]IN]|)
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Bloom Filter Lookup and Expand
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Semijoin Reduction Algorithm
Yannakakis® algorithm for full semi-join reduction of an acyclic query Q.
@ Traverse the tree bottom-up and set R; := R < Rchita()-

o Traverse the tree top-down and set R; := R;

parent(/)-
Runtime: O(]IN|)
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okup and Expand

YA for a Full Conjunctive Query

Phase 1: Semijoin Reduction.

@ Traverse the tree bottom-up and set R; := Rj < Rchita()-

@ Traverse the tree top-down and set R; := R; > Rparent (i)
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YA for a Full Conjunctive Query
Phase 1: Semijoin Reduction.

@ Traverse the tree bottom-up and set R; := Rj < Rchita()-

@ Traverse the tree top-down and set R; := R; > Rparent (i)

Phase 2: Join Computation. Initialize Outg := {()} (empty tuple).
@ Traverse the tree top-down and set Out; := Out;_1 > R;.

Return Out,,.

Runtime: O(|IN| + |OUT|)
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YA for a Full Conjunctive Query

Phase 1: Semijoin Reduction.

@ Traverse the tree bottom-up and set R; := Rj < Rchita()-

° T parent(/)-

Phase 2: Join Computation. Initialize Outg := {()} (empty tuple).
@ Traverse the tree top-down and set Out; := Out;_1 > R;.

Return Out,,.

Runtime: O(|IN| + |OUT|)
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GYO Acyclicity Test (Graham a Yu—szoyoglu)
Repeat:
@ Remove an isolated variable (i.e. occurs in only one atom).
@ Remove an ear (i.e. atom contain in another atom).

Q is a acyclic iff result is one empty edge.
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Summary
@ YA runs in time O(|IN| + |OUT|).
@ Semijoin reduction: first up, then down.
@ Only for acyclic queries.
@ Most SQL queries in practice are acyclic.

Main attraction today: Query Robustness
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Limitations of Yannakakis’® Algorithm
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Limitations

@ Requires additional (semi)-joins: joins are expensive!

@ Requires a rigid join order.
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Additional Joins

N\ N\\
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Figure 2: Semijoin plans induced by YA on join tree J3(Fig.1a).
Left: pass two and three combined. Right: all three passes.

[Bekkers et al., 2025]

Dan Suciu CSE599d: Advanced QP Winter 2026 12/41



Limitations of YA Bloom Filter kup and Expand
00000 0000000

Rigid Join Order
Not every query plan without cross-products ensures optimality:

R(A,B,0) N

S(A,B) T(B,C) - RGB.C)
S(A,B) T(B,C)
A join tree (acyclic query)
Not optimal [Zhao et al., 2025]:

R={(1,1,1),(2.1,2),..., (n,1,n)}
S={(1,1),21),..., (n, 1)}
T={(1,1),(1,2),..., (1.m}

For optimality: every join must be an edge in the join tree
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Approaches to Make YA Practical

@ Use Bloom filters [Zhao et al., 2025]

@ New physical operators: Lookup and Expand [Birler et al., 2024]

@ Nested relations (factorized databases) [Bekkers et al., 2025]

Many others that we won’t discuss.
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Bloom Filters
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Overview

We follow [Zhao et al., 2025]

@ Replace semi-joins with a Bloom filter.

o Allow more flexibility for choosing a query plan.

Dan Suciu CSE599d: Advanced QP Winter 2026 16/41



Bloom Filters up and Expand

000000000000 00

Quick Review

A = array of m bits; hi, ..., hg independent hash functions.
o Insert(v): set A[h;j(v)] :=1, fori =1,k.
@ Test(v): return A;_q 4 A[hi(V)].

@ One-sided guarantee: if Test(v) = 0 then v was not inserted.

For optimal FPR ¢ : k :% In2 £ =exp (—% In? 2)
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Main Heuristics

Instead of a semijoin:
compute a Bloom filter on S, use it to probe R:

If |R| = |S| then is better than

because & = exp (—% In? 2)
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Bloom Filters
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Choosing a Join Trees

Ideal: all semi-joins are from small to large. Not always possible:

Join Graph Transfer Graph Transfer Schedule

Forward Pass
a s T
2.TXR
Backward Pass
N S
4.RXT

Fig. 2. An example of the Small2Large algorithm in the original Predicate Transfer
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Alternative Characterization of Join Trees

Let G be the query graph of Q what is that?
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Alternative Characterization of Join Trees

Let G be the query graph of Q what is that?

The weight of an edge (R, S) in G
is the number of common attributes:

(w(R,S) = |attrs(R) N attrs(S)] |
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Bloom Filters
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Alternative Characterization of Join Trees

Let G be the query graph of Q what is that?
. ) R(A,B,C)
The weight of an edge (R, S) in G
is the number of common attributes:
AB BC
(w(R,S) = |attrs(R) N attrs(S)] |
S(4,B) —5 T(B,C)
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Bloom Filters
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Alternative Characterization of Join Trees

Let G be the query graph of Q what is that?
. ) R(A,B,C)
The weight of an edge (R, S) in G
is the number of common attributes:
AB BC
(w(R,S) = |attrs(R) N attrs(S)] |
S(4,B) —5 T(B,C)

Theorem A tree T € G is a join tree iff T is a maximal spanning tree of G.

(Proof on next slides)
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Proof (in class)

Which trees are join trees, and what are their weights?
R(A,B,C) R(A,B,C) R(A,B,C)
AB BC AB BC

S(A,B) T(B,C) S4By —2——1(8,0) S(4,B)—2——18,0)
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Proof (in class)

Which trees are join trees, and what are their weights?
R(A,B,C) R(A,B,C) R(A,B,C)
AB BC AB BC

S(A,B) T(B,C) S4By —2——1(8,0) S(4,B)—2——18,0)

What is the weight of a join tree? of a non-join tree?

Dan Suciu CSE599d: Advanced QP Winter 2026 21/41



Bloom Filters
000000@0000000

Proof (in class)

Which trees are join trees, and what are their weights?

R(4,B,0) R(4,B,0) R(4,B,0)

S(A,B) T(B,C) S(4,B) —2——1(8,0) 5(4,B) ————T(B,C)
What is the weight of a join tree? of a non-join tree?

>iarity(R;) — |Vars(Q)| for JT, strictly smaller otherwise
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Choosing a Join Tree

Run Prim’s algorithm for computing a maximal spanning tree.
Break ties in favor of larger relations.

Algorithm 1: LargestRoot
Input: join graph G,
Output: tree T
1 T « @; R « all relations; R” < {Rmax};
2 while R’ # R do
3 Find an edge e = {R, S} € E(G,) with the largest weight such that
ReR\R’,S € R’ Choose the edge with the largest R to break ties;
4 Add e to T with direction from R to S;
5 R — R U{R};
6 end
7 returnT;

At each tie we can choose between multiple join trees.
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Choosing a Query Plan

The standard optimizer searches for an optimal bushy plan.

Problem: not every bushy plan guarantees optimality in the sense of YA.

Need to restrict all subplans to be safe.
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Safe Join Order

Q' = a subquery (subset of atoms) of Q.

Q' is safe if for every fully reduced DB, | Q' (DB) = Iyrs(q7) (Q(DB))

This implies |Q’(DB)| < |Q(DB))|.

Dan Suciu CSE599d: Advanced QP Winter 2026 24/41



Bloom Filters Lookup and Expand
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Safe Join Order

Q' = a subquery (subset of atoms) of Q.

Q' is safe if for every fully reduced DB, | Q' (DB) = Iyrs(q7) (Q(DB))

This implies |Q’(DB)| < |Q(DB))|.

Q=R(A,B,C) ~ S(A,B) « T(B,C), Q' = S(A,B) = T(B, C) unsafe

We want every subplan to be safe
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Testing for Safety

o Compute a maximal spanning tree Ty for Q.

o Compute a maximal spanning tree T’ for Q'.

e Extending T’ to maximal spanning tree T for Q.

o If weight(To) = weight(T) then Q' is safe.
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Putting it Together (by Example Only)

D] R:reduced table

movie_keyword movie_info movie_info Forward Pass
4.5M 15M

l | 1. movie_keyword X keyword

2. movie._keyword i title movie_infoR

3. movie_info IX movie_keyword
movie_keyword
© Backward Pass
- / / '\\ 4. movie_keyword X movie_info > titleR
[ title ] [ keyword ] © @ 5. keyword I movie_keyword / \

2.5M 134K keyword title 6. title XX movie_keyword

(b) Semi-Join Phase movie_keywordR  keyword?
(a) Join Graph
(c) Join Phase
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Putting it Together (by Example Only)

titleR

X
movie_infoR / \ X
| /
X
N

movie_keywordR keyword? Join Phase

[ ® Transfer Phase
(Somoee] -2 () (s
CreateBF | > ProbeBF ProbeBF

CreateBF | -» | ProbeBF
ProbeBF

v

|
|
| |
T (e ®
movie_info |
| | title
movie_keyword o
keyword
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Discussion

@ Bloom filter approach to YA: simple idea, more efficient than semijoins.

@ But requires heavy engineering to incorporate in existing query engines.
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Lookup and Expand
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Overview

Goal: implement YA with minimum changes to an existing engine

[Birler et al., 2024]
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Review: Hash-Join

1 # Hash table build

2 ht = {}

3 for k, v in buildInput:

4 ht[k] = v

5

6 # Hash table probe

7 for k, v in probelnput:

8 iterator = ht.find(k) # Lookup
9 if not iterator.done():

10 do: # Expand

11 produce (k, *iterator)
12 iterator.step()

13 while not iterator.done()

The probe phase has two steps: ‘ Lookup ‘ and ‘ Expand ‘

Make them separate operators!
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Lookup and Expand

returns pointer to the hash table entry, or NULL
traverses the list at that entry.

1 def lookup_consume(produce, tuple, hashTable):
2 # Look for the key in the hash table

3 iterator = hashTable.find(tuple.key)

4 if iterator.done():

5 return

6 # Return tuple and iterator over matches

7 produce (tuple, iterator)

8

9 def expand_consume(produce, tuple):

10 # Extract the iterator from the tuple
11 currentMatch = tuple.iterator

12 do: # Loop over all matches

13 produce (tuple, *currentMatch)

14 currentMatch.step()

15 while not currentMatch.done()

(This is the push-based API from the Query Compiler paper in 544)
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Figure 3: Threeway join, equivalent Lookup & Expand, and
Lookup pushdown.
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Figure 2: Binary hash join and equivalent Lookup & Expand
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Example

9
o)
AN { o
I N (CRDAS
@ b\ o R, O
R, Ry /™ SN
@b () R, R, R, R,
Figure 4: Threeway join, equivalent Lookup & Expand, and
Expand pullup.
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Discussion

o Lookup/Expand become independent operators, allows most freedom for
the query optimizer.

@ May still need to impose restrictions if we want the guarantees of YA.
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Nested Relations
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Main Idea

Represent the result of a join in a nested relations.

This idea is called factorized databases [Olteanu and Zavodny, 2015]

This postpones the cross products inherent in a join, potentially leading to the
benefit of YA.
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Nested Relations

Nested schema: set of attributes and/or nested schemas.

x| {y} {u, {v}}
Nested relation with S Tm
schema 10 n
111 5 k
{X’ {y}’ {Ua {V}}} b n
p
2

Nested Relational Algebra is Relational Algebra plus two operators:

‘nestx Axyr - {x,{y}} ‘ a.k.a. group-by or y.

unnest, : {x,{y}} — {x,y} aka. u
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Example: Using NRA for YA

R(x,y) = S(y,z) » T(z,u)

Several factorized representations are possible for the output:

P(y,z,{u}) :=S(y,z) »; nest,T(z,u)
F(x,{y,{z,{u}}}) :=R(x,y) »<y nest, (P)

For the query answer, unnest F.
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Example: Using NRA for YA

R(x,y) = S(y,z) » T(z,u)

Several factorized representations are possible for the output:

P(y,z,{u}) :=S(y,z) »; nest,T(z,u) P(y,z,{u}) := [same]
F(x,{y.{z,{u}}}) :=R(x,y) =y nest,(P) F({x},y.{z,{u}}) :=nest,R(x,y) »¢y nest,P

For the query answer, unnest F.
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Example: Using NRA for YA

Huy
B
XYz U
@ 1 gz u
2e({z {u}) Xy U
z nxt| {u} & = (hg, 2p+3G) |
hd w
Tz 02 2 heigio(1,2) iz upy
2z 012 2 Y2 (2,2) x1 oy oz = 0
: x z =(836.b
3z 00 0 Y3+ (4,1) Y h‘gu)w #2620
423 03 1 (B) —_—
Tx gz 2 2 b=[123]
2 x ys z3| 3 1
‘ 3 x3 ys z3| 3 1
e F
n =5 A e
z| {u
@ v e .
(F) 2 z1 1 Y
! 2 :; o ; z f=l124 X Y& @) C= (3.0
hd w
©) —
ys 23 (u3) i% 22 ‘3’ ‘; Tx w1 2 c=101,23]
¥ = 2 xz 4 1
ys
3x3 Y341
G=(h,Zg)

hg:zi - (2,2)
230 (3,1)

& = (hg, 2p+3G)

Tz 02 2 hggo (1,2
2z 0|2 2 yo e (2,2)
52z 000 y3 o (4,1)
4z3 03 1
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Main Takeaways

@ Renewed interest in YA comes from the quest for robust query processing:
less sensitive to cardinality estimation erros.

@ Surprisingly, SQL Server already supports YA, without knowing!
hfill[Zhao et al., 2026]

Dan Suciu CSE599d: Advanced QP Winter 2026 41/41



K]
[
[
]
]

Bekkers, L., Neven, F., Vansummeren, S., and Wang, Y. R. (2025).

Instance-optimal acyclic join processing without regret: Engineering the yannakakis algorithm in column stores.
Proc. VLDB Endow., 18(8):2413-2426.

Birler, A., Kemper, A., and Neumann, T. (2024).

Robust join processing with diamond hardened joins.

Proc. VLDB Endow., 17(11):3215-3228.

Olteanu, D. and Zavodny, J. (2015).

Size bounds for factorised representations of query results.
ACM Trans. Database Syst., 40(1):2:1-2:44.

Zhao, H., Tian, Y., Alotaibi, R., Ding, B., Bruno, N., Camacho-Rodriguez, J., Papadimos, V., Judrez, E. C., Galindo-Legaria, C. A., and
Curino, C. (2026).

I can’t believe it’s not yannakakis: Pragmatic bitmap filters in microsoft SQL server.

In 16th Conference on Innovative Data Systems Research, CIDR 2026, Chaminade, CA, USA, January 18-21, 2026. www.cidrdb.org.

Zhao, J., Su, K., Yang, Y., Yu, X., Koutris, P., and Zhang, H. (2025).

Debunking the myth of join ordering: Toward robust SQL analytics.
Proc. ACM Manag. Data, 3(3):146:1-146:28.

‘Winter 2026 41/41



	Review of YA
	Limitations of YA
	Bloom Filters
	Lookup and Expand
	Nested Relations

