CSES599d: Advanced Query Processing

Lecture 12: Modern Approaches to Yannakakis’
Algorithm

Dan Suciu

University of Washington

Announcements

o HW3 due: Friday Feb. 27

Dan Suciu CSE599d: Advanced QP Winter 2026 2/41

Review of YA

Winter 2026 3/41

Review of YA Limitations of YA Bloom Filter e Lookup and Expand

[e] le]ele]e]e)

Acyclic Query

Q is acyclic if it admits a join tree, which is a tree T where:

@ The nodes in T are in 1-1 correspondence with the atoms in Q.

o T satisfies the running intersection property: for any variable, the set of
nodes that contain it forms a connected component.

Dan Suciu CSE599d: Advanced QP Winter 2026 4/41

Review of YA Bloom Filter o _ookup and Expand

[e]e] lele]ele)

YA for a Boolean Query

Choose a root of the join tree.

@ Traverse the tree bottom-up and set R; := R; < Rcnita()-

Ryroot = 0 then return FALSE. Otherwise return TRUE.

Runtime: O(]IN]|)

Dan Suciu CSE599d: Advanced QP Winter 2026 5/41

Review of YA

Bloom Filter Lookup and Expand
0008000 [000000

Semijoin Reduction Algorithm
Yannakakis® algorithm for full semi-join reduction of an acyclic query Q.
@ Traverse the tree bottom-up and set R; := R < Rchita()-

o Traverse the tree top-down and set R; := R;

parent(/)-
Runtime: O(]IN|)

Winter 2026 6/41

Review of YA Bloom Filter
[e]e]e]e] Tele] [[e]e]e

okup and Expand

YA for a Full Conjunctive Query

Phase 1: Semijoin Reduction.

@ Traverse the tree bottom-up and set R; := Rj < Rchita()-

@ Traverse the tree top-down and set R; := R; > Rparent (i)

Dan Suciu CSE599d: Advanced QP Winter 2026 7141

Review of YA

[e]e]e]e] Jele)

YA for a Full Conjunctive Query
Phase 1: Semijoin Reduction.

@ Traverse the tree bottom-up and set R; := Rj < Rchita()-

@ Traverse the tree top-down and set R; := R; > Rparent (i)

Phase 2: Join Computation. Initialize Outg := {()} (empty tuple).
@ Traverse the tree top-down and set Out; := Out;_1 > R;.

Return Out,,.

Runtime: O(|IN| + |OUT|)

Dan Suciu CSE599d: Advanced QP Winter 2026

7/41

Review of YA

[e]e]e]e] Jele)

YA for a Full Conjunctive Query

Phase 1: Semijoin Reduction.

@ Traverse the tree bottom-up and set R; := Rj < Rchita()-

° T parent(/)-

Phase 2: Join Computation. Initialize Outg := {()} (empty tuple).
@ Traverse the tree top-down and set Out; := Out;_1 > R;.

Return Out,,.

Runtime: O(|IN| + |OUT|)

Dan Suciu CSE599d: Advanced QP Winter 2026

7/41

Review of YA Bloom Filter
00000e0 [e]e]e]e]e [e]e]e

okup and Expand

GYO Acyclicity Test (Graham a Yu—szoyoglu)
Repeat:
@ Remove an isolated variable (i.e. occurs in only one atom).
@ Remove an ear (i.e. atom contain in another atom).

Q is a acyclic iff result is one empty edge.

Dan Suciu CSE599d: Advanced QP Winter 2026 8/41

Review of YA Limitations of YA Bloom Filter e Lookup and Expand

000000e

Summary
@ YA runs in time O(|IN| + |OUT|).
@ Semijoin reduction: first up, then down.
@ Only for acyclic queries.
@ Most SQL queries in practice are acyclic.

Main attraction today: Query Robustness

Dan Suciu CSE599d: Advanced QP Winter 2026 9/41

Limitations of YA

[Jelele]e}

Limitations of Yannakakis’® Algorithm

Dan Suciu CSE599d: Advanced QP Winter 2026 10/41

Limitations of YA

O@000

Limitations

@ Requires additional (semi)-joins: joins are expensive!

@ Requires a rigid join order.

CSE599d: Advanced QP Winter 2026 11/41

Limitations of YA Bloom Filter o Lookup and Expand

[e]e] lele}

Additional Joins

N\ N\\

/
R] T(z,u) D</N‘\K
(x,y) SN PAEAN
w s S5(y,z) x T(z,u) 3
‘ R 7N\ s /]} 7\ N
S(y, z) (xy) /b‘ \ (v.2) T(zu) X Rixy) = S(pz) «

| N VAN
‘ S(y,z) T(z,u) R(xy) S(y,z) T(zu) Rlxy x
PN /

T(z,u) S(y2) Tlzw S(52) Tizw)
Figure 2: Semijoin plans induced by YA on join tree J3(Fig.1a).
Left: pass two and three combined. Right: all three passes.

[Bekkers et al., 2025]

Dan Suciu CSE599d: Advanced QP Winter 2026 12/41

Limitations of YA Bloom Filter kup and Expand
00000 0000000

Rigid Join Order
Not every query plan without cross-products ensures optimality:

R(A,B,0) N

S(A,B) T(B,C) - RGB.C)
S(A,B) T(B,C)
A join tree (acyclic query)
Not optimal [Zhao et al., 2025]:

R={(1,1,1),(2.1,2),..., (n,1,n)}
S={(1,1),21),..., (n, 1)}
T={(1,1),(1,2),..., (1.m}

For optimality: every join must be an edge in the join tree

Dan Suciu CSE599d: Advanced QP Winter 2026 13/41

Limitations of YA

[e]e]ele]]

Approaches to Make YA Practical

@ Use Bloom filters [Zhao et al., 2025]

@ New physical operators: Lookup and Expand [Birler et al., 2024]

@ Nested relations (factorized databases) [Bekkers et al., 2025]

Many others that we won’t discuss.

Dan Suciu CSE599d: Advanced QP Winter 2026 14741

Bloom Filters
00000000000000

Bloom Filters

CSE599d: Advanced QP Winter 2026 15/41

Bloom Filters
0@000000000000

Overview

We follow [Zhao et al., 2025]

@ Replace semi-joins with a Bloom filter.

o Allow more flexibility for choosing a query plan.

Dan Suciu CSE599d: Advanced QP Winter 2026 16/41

Bloom Filters up and Expand

000000000000 00

Quick Review

A = array of m bits; hi, ..., hg independent hash functions.
o Insert(v): set A[h;j(v)] :=1, fori =1,k.
@ Test(v): return A;_q 4 A[hi(V)].

@ One-sided guarantee: if Test(v) = 0 then v was not inserted.

For optimal FPR ¢ : k :% In2 £ =exp (—% In? 2)

Dan Suciu CSE599d: Advanced QP Winter 2026 17/41

Bloom Filters _ookup and Expand

000@0000000000

Main Heuristics

Instead of a semijoin:
compute a Bloom filter on S, use it to probe R:

If |R| = |S| then is better than

because & = exp (—% In? 2)

Dan Suciu CSE599d: Advanced QP Winter 2026 18/41

Bloom Filters

000080000000 00

Choosing a Join Trees

Ideal: all semi-joins are from small to large. Not always possible:

Join Graph Transfer Graph Transfer Schedule

Forward Pass
a s T
2.TXR
Backward Pass
N S
4.RXT

Fig. 2. An example of the Small2Large algorithm in the original Predicate Transfer

Dan Suciu CSE599d: Advanced QP Winter 2026

19/41

Bloom Filters
00000@00000000

Alternative Characterization of Join Trees

Let G be the query graph of Q what is that?

Dan Suciu CSE599d: Advanced QP Winter 2026 20/41

Bloom Filters
00000@00000000

Alternative Characterization of Join Trees

Let G be the query graph of Q what is that?

The weight of an edge (R, S) in G
is the number of common attributes:

(w(R,S) = |attrs(R) N attrs(S)] |

Dan Suciu CSE599d: Advanced QP Winter 2026 20/41

Bloom Filters

00000®00000000

Alternative Characterization of Join Trees

Let G be the query graph of Q what is that?
.) R(A,B,C)
The weight of an edge (R, S) in G
is the number of common attributes:
AB BC
(w(R,S) = |attrs(R) N attrs(S)] |
S(4,B) —5 T(B,C)

Dan Suciu CSE599d: Advanced QP Winter 2026 20/41

Bloom Filters

00000®00000000

Alternative Characterization of Join Trees

Let G be the query graph of Q what is that?
.) R(A,B,C)
The weight of an edge (R, S) in G
is the number of common attributes:
AB BC
(w(R,S) = |attrs(R) N attrs(S)] |
S(4,B) —5 T(B,C)

Theorem A tree T € G is a join tree iff T is a maximal spanning tree of G.

(Proof on next slides)

Dan Suciu CSE599d: Advanced QP Winter 2026 20/41

Bloom Filters
000000@0000000

Proof (in class)

Which trees are join trees, and what are their weights?
R(A,B,C) R(A,B,C) R(A,B,C)
AB BC AB BC

S(A,B) T(B,C) S4By —2——1(8,0) S(4,B)—2——18,0)

CSE599d: Advanced QP Winter 2026 21/41

Bloom Filters
000000@0000000

Proof (in class)

Which trees are join trees, and what are their weights?
R(A,B,C) R(A,B,C) R(A,B,C)
AB BC AB BC

S(A,B) T(B,C) S4By —2——1(8,0) S(4,B)—2——18,0)

What is the weight of a join tree? of a non-join tree?

Dan Suciu CSE599d: Advanced QP Winter 2026 21/41

Bloom Filters
000000@0000000

Proof (in class)

Which trees are join trees, and what are their weights?

R(4,B,0) R(4,B,0) R(4,B,0)

S(A,B) T(B,C) S(4,B) —2——1(8,0) 5(4,B) ————T(B,C)
What is the weight of a join tree? of a non-join tree?

>iarity(R;) — |Vars(Q)| for JT, strictly smaller otherwise

Dan Suciu CSE599d: Advanced QP Winter 2026 21/41

of YA Limitations of YA Bloom Filters Lookup and Expand

0000000e000000

Choosing a Join Tree

Run Prim’s algorithm for computing a maximal spanning tree.
Break ties in favor of larger relations.

Algorithm 1: LargestRoot
Input: join graph G,
Output: tree T
1 T « @; R « all relations; R” < {Rmax};
2 while R’ # R do
3 Find an edge e = {R, S} € E(G,) with the largest weight such that
ReR\R’,S € R’ Choose the edge with the largest R to break ties;
4 Add e to T with direction from R to S;
5 R — R U{R};
6 end
7 returnT;

At each tie we can choose between multiple join trees.

Dan Suciu CSE599d: Advanced QP Winter 2026

22/41

Bloom Filters Lookup and Expand

00000000e00000 [¢]

Choosing a Query Plan

The standard optimizer searches for an optimal bushy plan.

Problem: not every bushy plan guarantees optimality in the sense of YA.

Need to restrict all subplans to be safe.

Dan Suciu CSE599d: Advanced QP Winter 2026 23/41

Bloom Filters
[e]e]e]e]e 000000000e0000

Safe Join Order

Q' = a subquery (subset of atoms) of Q.

Q' is safe if for every fully reduced DB, | Q' (DB) = Iyrs(q7) (Q(DB))

This implies |Q’(DB)| < |Q(DB))|.

Dan Suciu CSE599d: Advanced QP Winter 2026 24/41

Bloom Filters Lookup and Expand
[e]e]e]e]e 000000000e0000 0000000 000000

Safe Join Order

Q' = a subquery (subset of atoms) of Q.

Q' is safe if for every fully reduced DB, | Q' (DB) = Iyrs(q7) (Q(DB))

This implies |Q’(DB)| < |Q(DB))|.

Q=R(A,B,C) ~ S(A,B) « T(B,C), Q' = S(A,B) = T(B, C) unsafe

We want every subplan to be safe

Dan Suciu CSE599d: Advanced QP Winter 2026 24/41

Bloom Filters Lookup and Expand

0000000000 e000 [¢]

Testing for Safety

o Compute a maximal spanning tree Ty for Q.

o Compute a maximal spanning tree T’ for Q'.

e Extending T’ to maximal spanning tree T for Q.

o If weight(To) = weight(T) then Q' is safe.

Dan Suciu CSE599d: Advanced QP Winter 2026 25/41

Bloom Fi
0000000000080

Putting it Together (by Example Only)

D] R:reduced table

movie_keyword movie_info movie_info Forward Pass
4.5M 15M

l | 1. movie_keyword X keyword

2. movie._keyword i title movie_infoR

3. movie_info IX movie_keyword
movie_keyword
© Backward Pass
- / / '\\ 4. movie_keyword X movie_info > titleR
[title] [keyword] © @ 5. keyword I movie_keyword / \

2.5M 134K keyword title 6. title XX movie_keyword

(b) Semi-Join Phase movie_keywordR keyword?
(a) Join Graph
(c) Join Phase

CSE599d: Advanced QP Winter 2026 26/41

Bloom Filters
000000000000 e0

Putting it Together (by Example Only)

titleR

X
movie_infoR / \ X
| /
X
N

movie_keywordR keyword? Join Phase

[® Transfer Phase
(Somoee] -2 () (s
CreateBF | > ProbeBF ProbeBF

CreateBF | -» | ProbeBF
ProbeBF

v

|
|
| |
T (e ®
movie_info |
| | title
movie_keyword o
keyword
Dan Suciu CSE599d: Advanced QP

Winter 2026 27/41

Limitations of YA Bloom Filters kup and Expand

000000000000 0e

Discussion

@ Bloom filter approach to YA: simple idea, more efficient than semijoins.

@ But requires heavy engineering to incorporate in existing query engines.

Dan Suciu CSE599d: Advanced QP Winter 2026 28/41

Lookup and Expand
@000000

Lookup and Expand

CSE599d: Advanced QP Winter 2026 29/41

Lookup and Expand
0@00000

Overview

Goal: implement YA with minimum changes to an existing engine

[Birler et al., 2024]

CSE599d: Advanced QP Winter 2026 30/41

Limitations of Y . Lookup and Expand

[e]e] le]elele)

Review: Hash-Join

1 # Hash table build

2 ht = {}

3 for k, v in buildInput:

4 ht[k] = v

5

6 # Hash table probe

7 for k, v in probelnput:

8 iterator = ht.find(k) # Lookup
9 if not iterator.done():

10 do: # Expand

11 produce (k, *iterator)
12 iterator.step()

13 while not iterator.done()

The probe phase has two steps: ‘ Lookup ‘ and ‘ Expand ‘

Make them separate operators!

Dan Suciu CSE599d: Advanced QP

Winter 2026

31/41

Lookup and Expand

[e]e]e] Jelele)

Lookup and Expand

returns pointer to the hash table entry, or NULL
traverses the list at that entry.

1 def lookup_consume(produce, tuple, hashTable):
2 # Look for the key in the hash table

3 iterator = hashTable.find(tuple.key)

4 if iterator.done():

5 return

6 # Return tuple and iterator over matches

7 produce (tuple, iterator)

8

9 def expand_consume(produce, tuple):

10 # Extract the iterator from the tuple
11 currentMatch = tuple.iterator

12 do: # Loop over all matches

13 produce (tuple, *currentMatch)

14 currentMatch.step()

15 while not currentMatch.done()

(This is the push-based API from the Query Compiler paper in 544)

Dan Suciu CSE599d: Advanced QP Winter 2026 32/41

Examples

/
X
AN
R, R
(@b)

R, R
Figure 3: Threeway join, equivalent Lookup & Expand, and
Lookup pushdown.

X
/

R R

R,

/6

Expand
N
", Lookup

R,

Lookup and Expand

[e]e]e]e] Jele)

Figure 2: Binary hash join and equivalent Lookup & Expand

©®
N

N

®) e

/N
R,

CSE599d: Advanced QP

Winter 2026

33/41

>d F

lation

Lookup and Expand
00000e0

Example

9
o)
AN { o
I N (CRDAS
@ b\ o R, O
R, Ry /™ SN
@b () R, R, R, R,
Figure 4: Threeway join, equivalent Lookup & Expand, and
Expand pullup.

Dan Suciu CSE599d: Advanced QP Winter 2026 34/41

Limitations of YA Bloom Filter o Lookup and Expand

000000

Discussion

o Lookup/Expand become independent operators, allows most freedom for
the query optimizer.

@ May still need to impose restrictions if we want the guarantees of YA.

Dan Suciu CSE599d: Advanced QP Winter 2026 35/41

Nested Relations

®00000

Nested Relations

CSE599d: Advanced QP Winter 2026 36/41

Bloom Filters up and Expand Nested Relations

O®@0000

Main Idea

Represent the result of a join in a nested relations.

This idea is called factorized databases [Olteanu and Zavodny, 2015]

This postpones the cross products inherent in a join, potentially leading to the
benefit of YA.

Dan Suciu CSE599d: Advanced QP Winter 2026 37/41

Nested Relations

[e]e] Je]e]e]

Nested Relations

Nested schema: set of attributes and/or nested schemas.

x| {y} {u, {v}}
Nested relation with S Tm
schema 10 n
111 5 k
{X’ {y}’ {Ua {V}}} b n
p
2

Nested Relational Algebra is Relational Algebra plus two operators:

‘nestx Axyr - {x,{y}} ‘ a.k.a. group-by or y.

unnest, : {x,{y}} — {x,y} aka. u

Dan Suciu CSE599d: Advanced QP Winter 2026 38/41

Bloom Filter up and Expand Nested Relations
0000000 000800

Example: Using NRA for YA

R(x,y) = S(y,z) » T(z,u)

Several factorized representations are possible for the output:

P(y,z,{u}) :=S(y,z) »; nest,T(z,u)
F(x,{y,{z,{u}}}) :=R(x,y) »<y nest, (P)

For the query answer, unnest F.

Dan Suciu CSE599d: Advanced QP Winter 2026 39/41

Bloom Filter up and Expand Nested Relations
0000000 000800

Example: Using NRA for YA

R(x,y) = S(y,z) » T(z,u)

Several factorized representations are possible for the output:

P(y,z,{u}) :=S(y,z) »; nest,T(z,u) P(y,z,{u}) := [same]
F(x,{y.{z,{u}}}) :=R(x,y) =y nest,(P) F({x},y.{z,{u}}) :=nest,R(x,y) »¢y nest,P

For the query answer, unnest F.

Dan Suciu CSE599d: Advanced QP Winter 2026 39/41

Nested Relations

[e]e]e]e] Jo]

Example: Using NRA for YA

Huy
B
XYz U
@ 1 gz u
2e({z {u}) Xy U
z nxt| {u} & = (hg, 2p+3G) |
hd w
Tz 02 2 heigio(1,2) iz upy
2z 012 2 Y2 (2,2) x1 oy oz = 0
: x z =(836.b
3z 00 0 Y3+ (4,1) Y h‘gu)w #2620
423 03 1 (B) —_—
Tx gz 2 2 b=[123]
2 x ys z3| 3 1
‘ 3 x3 ys z3| 3 1
e F
n =5 A e
z| {u
@ v e .
(F) 2 z1 1 Y
! 2 :; o ; z f=l124 X Y& @) C= (3.0
hd w
©) —
ys 23 (u3) i% 22 ‘3’ ‘; Tx w1 2 c=101,23]
¥ = 2 xz 4 1
ys
3x3 Y341
G=(h,Zg)

hg:zi - (2,2)
230 (3,1)

& = (hg, 2p+3G)

Tz 02 2 hggo (1,2
2z 0|2 2 yo e (2,2)
52z 000 y3 o (4,1)
4z3 03 1
Dan Suciu Winter 2026 40/41

Bloom Filters up and Expand Nested Relations

[e]e]e]e]e]]

Main Takeaways

@ Renewed interest in YA comes from the quest for robust query processing:
less sensitive to cardinality estimation erros.

@ Surprisingly, SQL Server already supports YA, without knowing!
hfill[Zhao et al., 2026]

Dan Suciu CSE599d: Advanced QP Winter 2026 41/41

K]
[
[
]
]

Bekkers, L., Neven, F., Vansummeren, S., and Wang, Y. R. (2025).

Instance-optimal acyclic join processing without regret: Engineering the yannakakis algorithm in column stores.
Proc. VLDB Endow., 18(8):2413-2426.

Birler, A., Kemper, A., and Neumann, T. (2024).

Robust join processing with diamond hardened joins.

Proc. VLDB Endow., 17(11):3215-3228.

Olteanu, D. and Zavodny, J. (2015).

Size bounds for factorised representations of query results.
ACM Trans. Database Syst., 40(1):2:1-2:44.

Zhao, H., Tian, Y., Alotaibi, R., Ding, B., Bruno, N., Camacho-Rodriguez, J., Papadimos, V., Judrez, E. C., Galindo-Legaria, C. A., and
Curino, C. (2026).

I can’t believe it’s not yannakakis: Pragmatic bitmap filters in microsoft SQL server.

In 16th Conference on Innovative Data Systems Research, CIDR 2026, Chaminade, CA, USA, January 18-21, 2026. www.cidrdb.org.

Zhao, J., Su, K., Yang, Y., Yu, X., Koutris, P., and Zhang, H. (2025).

Debunking the myth of join ordering: Toward robust SQL analytics.
Proc. ACM Manag. Data, 3(3):146:1-146:28.

‘Winter 2026 41/41

	Review of YA
	Limitations of YA
	Bloom Filters
	Lookup and Expand
	Nested Relations

