

CSE599d: Advanced Query Processing

Lecture 9: Extensible Query Optimizers

Dan Suciu

University of Washington

Top-Down v.s. Bottom-Up

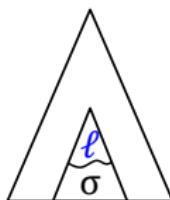
- Volcano/Cascades perform optimization Top-Down.
- Memoization can blur the distinction between top-down and bottom-up.
E.g. recall top-down v.s. bottom-up Dynamic Programming in Lecture 3:
 - ▶ Bottom up: iterate over subsets $S \subseteq \{R_1, \dots, R_n\}$, from smaller to larger.
 - ▶ Top down: partition a set into $S = S_1 \cup S_2$, process recursively S_1 and S_2 , memoize all results.

What are the pros and cons of Top-down v.s. Bottom-up?

Reduction v.s. Rule Application

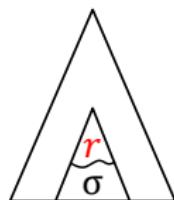
Top-down evaluation applies rules only at the top:

$$\ell \approx r$$

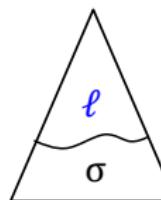


Reduction

→ E



Rule application



$$\sigma(\ell) \rightarrow \sigma(r)$$

Top-down optimizers use only rule application

Review: Volcano's Generation Phase

Function GenerateLogicalExpr(LogicalExpr)

```

if LogicalExpr in Memo then return Group(LogicalExpr);
for Child in children(LogicalExpr) do GenerateLogicalExpr(Child) ;
Insert(Group(LogicalExpr), Memo);
for r in Rules do
  if Matches(r, LogicalExpr) then
    NewLogicalExpr := Apply(r, LogicalExpr);
    GenerateLogicalExpr(NewLogicalExpr);

```

Volcano: Cost Analysis Phase

FindBestPlan: **Logical Expression** \mapsto **Physical plan**

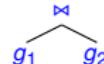
FindBestPlan(Group, Limit) by example:

Volcano: Cost Analysis Phase

FindBestPlan: Logical Expression \mapsto Physical plan

FindBestPlan(Group, Limit) by example:

- For each $\text{Expr} \in \text{Group}$

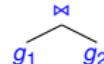
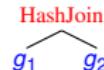


Volcano: Cost Analysis Phase

FindBestPlan: Logical Expression \mapsto Physical plan

FindBestPlan(Group, Limit) by example:

- For each $\text{Expr} \in \text{Group}$
- Apply an implementation rule



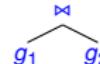
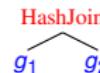
Cost = 100

Volcano: Cost Analysis Phase

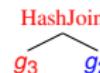
FindBestPlan: Logical Expression \mapsto Physical plan

FindBestPlan(Group, Limit) by example:

- For each $\text{Expr} \in \text{Group}$
- Apply an implementation rule
- $\text{FindBestPlan}(g_1, \text{Limit} - 100)$



Cost = 100



Cost = 2100

Volcano: Cost Analysis Phase

FindBestPlan: Logical Expression \mapsto Physical plan

FindBestPlan(Group, Limit) by example:

- For each $\text{Expr} \in \text{Group}$
- Apply an implementation rule
- $\text{FindBestPlan}(g_1, \text{Limit} - 100)$
- $\text{FindBestPlan}(g_2, \text{Limit} - 2100)$

Cost = 100

Cost = 2100

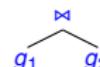
Cost = ...

Volcano: Cost Analysis Phase

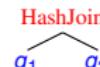
FindBestPlan: Logical Expression \mapsto Physical plan

FindBestPlan(Group, Limit) by example:

- For each $\text{Expr} \in \text{Group}$

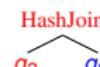


- Apply an implementation rule



Cost = 100

- FindBestPlan(g_1 , Limit - 100)



Cost = 2100

- FindBestPlan(g_2 , Limit - 2100)

Cost = ...

- Whenever Cost > Limit stop and return NULL

Discussion

- Volcano: separate logical and physical phase; both are recursive, top-down. Early pruning in the physical phase.
- Cascades: combine logical/physical phase, stack-based; more aggressive early pruning.
- LOTS of engineering/heuristics: simplification rules, macro rules, prioritize by “promise”.
- Wide adoption: SQLServer, Orca (Greenplum), Calcite, Cockroach Lab.

Complexity of Rule-Based Transformation

Overview

Join reordering: $\Sigma = \{\bowtie\}$

What is the complexity of a Transformation Based v.s. Dynamic Programming?

Two scenarios:

- Bushy plans with cross products¹ [Pellenkof et al., 1997]
- Bushy plans without cross products [Shanbhag and Sudarshan, 2014]

¹Equivalently: assume the query is fully connected.

Review: Space/Time Complexity of DP

n input relations R_1, R_2, \dots, R_n

- Space complexity (store all subsets S): ?????
- Time complexity (enumerate all disjoint subsets S_1, S_2): ?????

Review: Space/Time Complexity of DP

n input relations R_1, R_2, \dots, R_n

- Space complexity (store all subsets S): 2^n
- Time complexity (enumerate all disjoint subsets S_1, S_2): $?????$

Review: Space/Time Complexity of DP

n input relations R_1, R_2, \dots, R_n

- Space complexity (store all subsets S): 2^n
- Time complexity (enumerate all disjoint subsets S_1, S_2): 3^n

Review: Space/Time Complexity of DP

n input relations R_1, R_2, \dots, R_n

- Space complexity (store all subsets S): 2^n
More precisely: $2^n - 1$
- Time complexity (enumerate all disjoint subsets S_1, S_2): 3^n
More precisely: $3^n - 2 \cdot 2^n + 1$

Review: Space/Time Complexity of DP

n input relations R_1, R_2, \dots, R_n

- Space complexity (store all subsets S): 2^n
More precisely: $2^n - 1$
- Time complexity (enumerate all disjoint subsets S_1, S_2): 3^n
More precisely: $3^n - 2 \cdot 2^n + 1$
- DPccp: reduction to $O(n^2)$ and $O(n^3)$ when the query graph is a chain.

Complexity of Associativity and Commutativity

RS-B0 (Rule Set for Bushy trees)

Right Associativity:

$$(A \bowtie B) \bowtie C \rightarrow A \bowtie (B \bowtie C)$$

Left Associativity:

$$A \bowtie (B \bowtie C) \rightarrow (A \bowtie B) \bowtie C$$

Commutativity:

$$A \bowtie B \rightarrow B \bowtie A.$$

Problem Statement

Find the space/ time complexity for RS-B0 on R_1, \dots, R_n . Two scenarios:

- Explore all bushy plans.
- Explore bushy plans w/o cross products.

All Bushy Plans

Size of the Memo

n tables:

- 2^n E-classes
- 3^n E-nodes

abcd	$= [a] \bowtie [bcd]; [b] \bowtie [acd]; [c] \bowtie [abd];$ $[d] \bowtie [abc]; [ab] \bowtie [cd]; [ac] \bowtie [bd];$ $[ad] \bowtie [bc]; [bcd] \bowtie [a]; [acd] \bowtie [b];$ $[abd] \bowtie [c]; [abc] \bowtie [d]; [cd] \bowtie [ab];$ $[bd] \bowtie [ac]; [bc] \bowtie [ad].$
abc	$= [a] \bowtie [bc]; [b] \bowtie [ac]; [c] \bowtie [ab];$ $[bc] \bowtie [a]; [ac] \bowtie [b]; [ab] \bowtie [c].$
abd	$= [a] \bowtie [bd]; [b] \bowtie [ad]; [d] \bowtie [ab];$ $[bd] \bowtie [a]; [ad] \bowtie [b]; [ab] \bowtie [d].$
acd	$= [a] \bowtie [cd]; [c] \bowtie [ad]; [d] \bowtie [ac];$
acd	$= [cd] \bowtie [a]; [ad] \bowtie [c]; [ac] \bowtie [d].$
bcd	$= [b] \bowtie [cd]; [c] \bowtie [bd]; [d] \bowtie [bc];$ $[cd] \bowtie [b]; [bd] \bowtie [c]; [bc] \bowtie [d].$
ab	$= [a] \bowtie [b]; [b] \bowtie [a].$
ac	$= [a] \bowtie [c]; [c] \bowtie [a].$
ad	$= [a] \bowtie [d]; [d] \bowtie [a].$
bc	$= [b] \bowtie [c]; [c] \bowtie [b].$
bd	$= [b] \bowtie [d]; [d] \bowtie [b].$
cd	$= [c] \bowtie [d]; [d] \bowtie [c].$

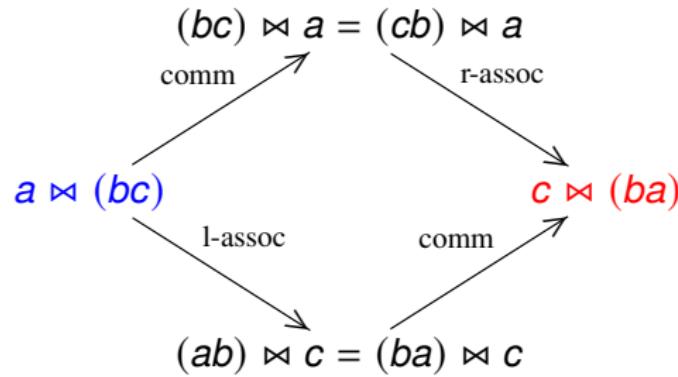
Space Complexity

The space complexity of a transformation-based system is $O(3^n)$

The time complexity may be higher, because of duplicated work.

Duplicated Work

Trivial duplicated work due to having two associativity rules:



A Better Rule-set

RS-B1 Keep only one associativity

Left Associativity:

$$A \bowtie (B \bowtie C) \rightarrow (A \bowtie B) \bowtie C$$

Commutativity:

$$A \bowtie B \rightarrow B \bowtie A.$$

The Search Graph

The Search Graph:

- Its nodes are the E-nodes of G .
- The edges are pairs of E-nodes (n_1, n_2) such that there is a transformation mapping n_1 to n_2 .

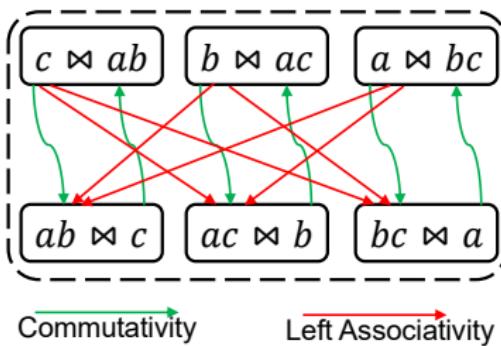
The edges of the search graph represent all steps of the algorithm.

Example

Fragment of the Search Graph consisting of the E-nodes in the E-class \boxed{abc}

6 nodes

12 edges



The children of $\boxed{c \bowtie ab}$ are E-classes \boxed{c} and \boxed{ab}

The E-class \boxed{ab} contains $\boxed{a \bowtie b}$ and $\boxed{b \bowtie a}$

Time Complexity of RS-B1

Count # of edges in E-Class(S), where $S \subseteq \{R_1, \dots, R_n\}$ has size k .

Commutativity $S_1 \bowtie S_2 \rightarrow S_2 \bowtie S_1$, for partitions $S = S_1 \cup S_2$.

$$2^k - 2$$

Left assoc $S_1 \bowtie (S_2 S_3) \rightarrow (S_1 S_2) \bowtie S_3$, for partitions $S = S_1 \cup S_2 \cup S_3$,

$$3^k - 2 \cdot 2^k + 1$$

Time Complexity of RS-B1

Count # of edges in E-Class(S), where $S \subseteq \{R_1, \dots, R_n\}$ has size k .

Commutativity $S_1 \bowtie S_2 \rightarrow S_2 \bowtie S_1$, for partitions $S = S_1 \cup S_2$.

$$2^k - 2$$

Left assoc $S_1 \bowtie (S_2 S_3) \rightarrow (S_1 S_2) \bowtie S_3$, for partitions $S = S_1 \cup S_2 \cup S_3$,

$$3^k - 2 \cdot 2^k + 1$$

Total edges = $\sum_{k=0, n} \binom{n}{k} (\dots) = O(4^n)$

Time complexity: $O(4^n)$

Need a better Rule Set!

A Better Rule Set (1/2)

RS-B2²

Rule set RS-B2:

- R_1 (Commutativity): $A \bowtie_0 B \rightarrow B \bowtie_1 A$
Disable application of R_1, R_2, R_3, R_4 on new operator \bowtie_1
- R_2 (Left Associativity):
 $A \bowtie_0 (B \bowtie_1 C) \rightarrow (A \bowtie_2 B) \bowtie_3 C$
Disable application of R_2, R_3, R_4 on new operator \bowtie_3
- R_3 (Right Associativity):
 $(A \bowtie_0 B) \bowtie_1 C \rightarrow A \bowtie_2 (B \bowtie_3 C)$
Disable application of R_2, R_3, R_4 on new operator \bowtie_2
- R_4 (Exchange):
 $(A \bowtie_0 B) \bowtie_1 (C \bowtie_2 D) \rightarrow (A \bowtie_3 C) \bowtie_4 (B \bowtie_5 D)$
Disable application of R_1, R_2, R_3, R_4 on new operator \bowtie_4

²From [Shanbhag and Sudarshan, 2014]; identical to the original [Pellenkoff et al., 1997]

A Better Rule Set (2/2)

“Disable application . . .” means only for current E-class.

RS-B2 revisited:

R_1 : Commutativity $A \bowtie B \rightarrow B \bowtie A$

R_2 : Left Associativity $A \bowtie (BC) \rightarrow (AB) \bowtie C$

R_3 : Right Associativity $(AB) \bowtie C \rightarrow A \bowtie (BC)$

R_4 : Exchange $(AB) \bowtie (CD) \rightarrow (AC) \bowtie (BD)$

R_1, R_2, R_3, R_4 : don't apply to \bowtie . R_2, R_3, R_4 : don't apply to \bowtie

Search Graph Revisited

Algorithm starts from an initial expression, then applies transformations.

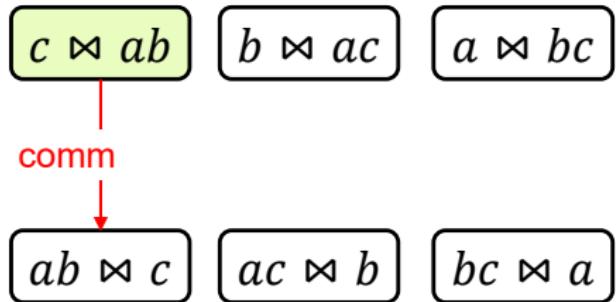
Example: starting from E-node $c \bowtie ab$, we generate the E-class abc as follows:

 $c \bowtie ab$ $b \bowtie ac$ $a \bowtie bc$ $ab \bowtie c$ $ac \bowtie b$ $bc \bowtie a$

Search Graph Revisited

Algorithm starts from an initial expression, then applies transformations.

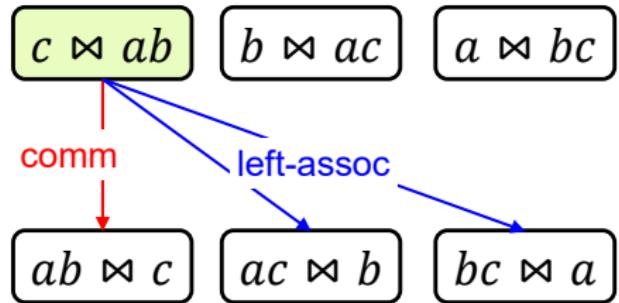
Example: starting from E-node $c \bowtie ab$, we generate the E-class abc as follows:



Search Graph Revisited

Algorithm starts from an initial expression, then applies transformations.

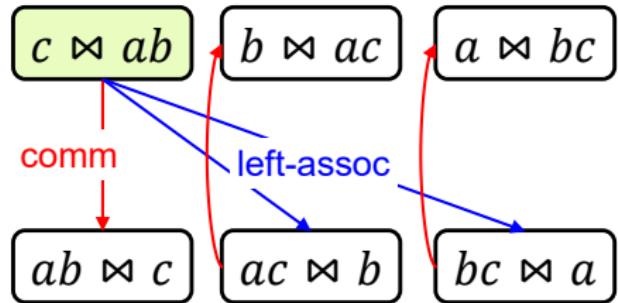
Example: starting from E-node $c \bowtie ab$, we generate the E-class abc as follows:



Search Graph Revisited

Algorithm starts from an initial expression, then applies transformations.

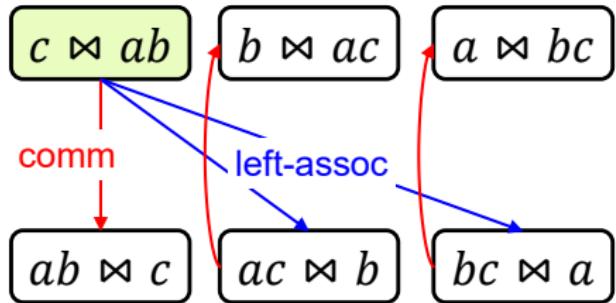
Example: starting from E-node $c \bowtie ab$, we generate the E-class abc as follows:



Search Graph Revisited

Algorithm starts from an initial expression, then applies transformations.

Example: starting from E-node $c \bowtie ab$, we generate the E-class abc as follows:



We didn't need Exchange! $(AB) \bowtie (CD) \rightarrow (AC) \bowtie (BD)$

Redundant????

Completeness of RS-B2

Theorem The rules RS-B2 are complete for generating all bushy plans

Completeness of RS-B2

Theorem The rules RS-B2 are complete for generating all bushy plans

Proof For any two partitions

$$S = S_1 \cup S_2 = S_3 \cup S_4$$

there exists a rewriting

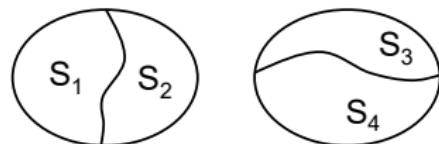
$$S_1 \bowtie S_2 \xrightarrow{*_{RS-B2}} S_3 \bowtie S_4$$

Completeness of RS-B2

Theorem The rules RS-B2 are complete for generating all bushy plans

Proof For any two partitions

$$S = S_1 \cup S_2 = S_3 \cup S_4$$



there exists a rewriting

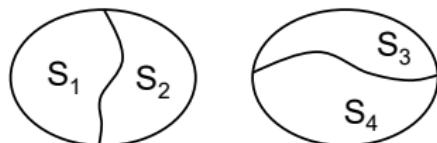
$$S_1 \bowtie S_2 \xrightarrow{*_{RS-B2}} S_3 \bowtie S_4$$

Completeness of RS-B2

Theorem The rules RS-B2 are complete for generating all bushy plans

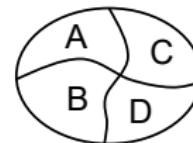
Proof For any two partitions

$$S = S_1 \cup S_2 = S_3 \cup S_4$$



there exists a rewriting

$$S_1 \bowtie S_2 \xrightarrow{*_{RS-B2}} S_3 \bowtie S_4$$

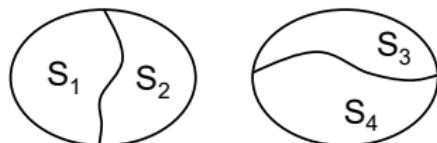


Completeness of RS-B2

Theorem The rules RS-B2 are complete for generating all bushy plans

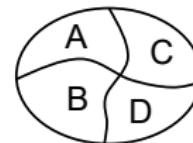
Proof For any two partitions

$$S = S_1 \cup S_2 = S_3 \cup S_4$$



there exists a rewriting

$$S_1 \bowtie S_2 \xrightarrow{*_{RS-B2}} S_3 \bowtie S_4$$



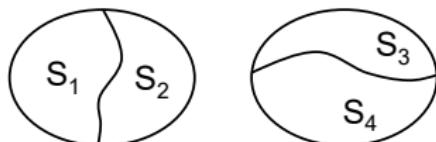
$$(AB) \bowtie (CD) \xrightarrow{*_{RS-B2}} (AC) \bowtie (BD)$$

Completeness of RS-B2

Theorem The rules RS-B2 are complete for generating all bushy plans

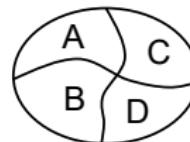
Proof For any two partitions

$$S = S_1 \cup S_2 = S_3 \cup S_4$$



there exists a rewriting

$$S_1 \bowtie S_2 \xrightarrow{*_{RS-B2}} S_3 \bowtie S_4$$



$$(AB) \bowtie (CD) \xrightarrow{*_{RS-B2}} (AC) \bowtie (BD)$$

Case 1: If A, B, C, D are non-empty, then use R_4 Exchange:

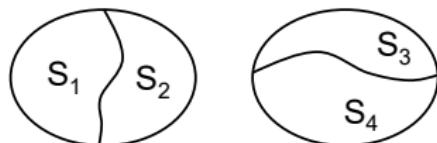
$$(AB) \bowtie (CD) \rightarrow (AC) \bowtie (BD)$$

Completeness of RS-B2

Theorem The rules RS-B2 are complete for generating all bushy plans

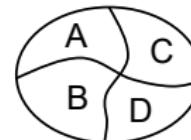
Proof For any two partitions

$$S = S_1 \cup S_2 = S_3 \cup S_4$$



there exists a rewriting

$$S_1 \bowtie S_2 \xrightarrow{*_{RS-B2}} S_3 \bowtie S_4$$



$$(AB) \bowtie (CD) \xrightarrow{*_{RS-B2}} (AC) \bowtie (BD)$$

Case 1: If A, B, C, D are non-empty, then use R_4 Exchange:

$$(AB) \bowtie (CD) \rightarrow (AC) \bowtie (BD)$$

Case 2: One is empty, e.g. $D = \emptyset$. Use the previous example:

$$(AB) \bowtie C \rightarrow_{\text{Right-ass}} B \bowtie (AC) \rightarrow_{\text{Comm}} (AC) \bowtie B$$

No Duplicate Work in RS-B2

Theorem RS-B2 generates each E-node exactly once

Proof Starting from $S_1 \bowtie S_2$ there are only two ways to reach $S_3 \bowtie S_4$:

$$S_1 \bowtie S_2 \rightarrow S_4 \bowtie S_3 \rightarrow S_3 \bowtie S_4$$

$$S_1 \bowtie S_2 \rightarrow S_3 \bowtie S_4$$

A simple case analysis (based on the sets A, B, C, D from before) shows that exactly one of these two ways is possible for any given S_3, S_4 .

Time and Space Complexity

Theorem The time and space complexity of transformation-based search using RS-B2 is $O(3^n)$.

Proof: there are 3^n E-nodes, and every E-node (other than those in the original expression) has exactly one incoming edge in the Search Graph.

No Cross Products

Overview

Restricting expressions to plans without cross products may reduce the search space significantly. Recall DPsub v.s.t DPccp.

Are the rule sets RS-B0, RS-B1, RS-B2 still complete if we restrict all expressions to be without cross products?

Notation

Fix a rule set RS.

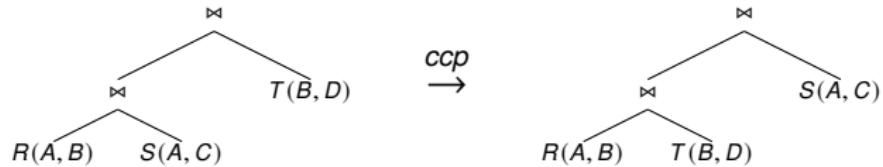
$s \xrightarrow{ccp} t$ means $s \xrightarrow{*} t$ and all intermediate steps are without cross product.

Notation

Fix a rule set RS.

$s \xrightarrow{ccp} t$ means $s \xrightarrow{*} t$ and all intermediate steps are without cross product.

Prove (in class):

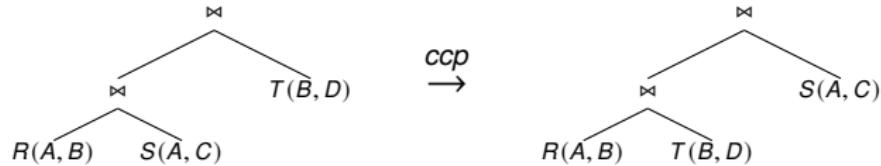


Notation

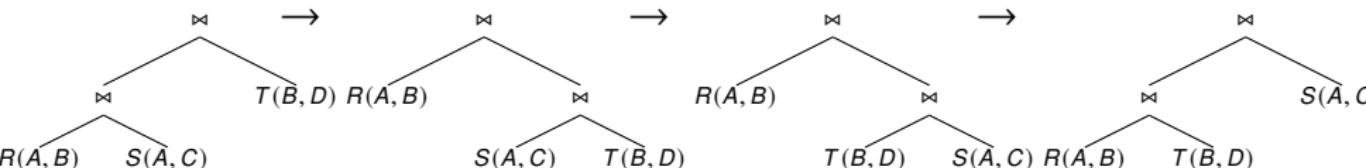
Fix a rule set RS.

$s \xrightarrow{ccp} t$ means $s \xrightarrow{*} t$ and all intermediate steps are without cross product.

Prove (in class):



This does not work:



Completeness of RS-B1 [Shanbhag and Sudarshan, 2014]

RS-B1: Commutativity and Left Associativity.

Theorem The rules RS-B1 are complete for bushy plans w/o cross product

Completeness of RS-B1 [Shanbhag and Sudarshan, 2014]

RS-B1: Commutativity and Left Associativity.

Theorem The rules RS-B1 are complete for bushy plans w/o cross product

Proof Fix any left-linear join tree w/o cross product:

$$t_0 = ((R_1 \bowtie R_2) \bowtie R_3) \bowtie \cdots \bowtie R_n$$

Completeness of RS-B1 [Shanbhag and Sudarshan, 2014]

RS-B1: Commutativity and Left Associativity.

Theorem The rules RS-B1 are complete for bushy plans w/o cross product

Proof Fix any left-linear join tree w/o cross product:

$$t_0 = ((R_1 \bowtie R_2) \bowtie R_3) \bowtie \cdots \bowtie R_n$$

Let t be any bushy plan w/o cross products

Lemma There exists a reduction $t \xrightarrow{ccp} t_0$ w/o cross products.

Proof on next slide

Completeness of RS-B1 [Shanbhag and Sudarshan, 2014]

RS-B1: Commutativity and Left Associativity.

Theorem The rules RS-B1 are complete for bushy plans w/o cross product

Proof Fix any left-linear join tree w/o cross product:

$$t_0 = ((R_1 \bowtie R_2) \bowtie R_3) \bowtie \cdots \bowtie R_n$$

Let t be any bushy plan w/o cross products

Lemma There exists a reduction $t \xrightarrow{ccp} t_0$ w/o cross products.

Proof on next slide

Corollary There exists a reduction $t_0 \xrightarrow{\text{ccp}} t$ w/o cross products.

Prove in class (using the lemma)

Proof of the Lemma

Let t_0, t be w/o cross product, and t_0 is left-linear. Then $t \xrightarrow{ccp} t_0$

Proof by induction on n .

Proof of the Lemma

Let t_0, t be w/o cross product, and t_0 is left-linear. Then $t \xrightarrow{ccp} t_0$

Proof by induction on n .

Let R_i be the sibling of R_1 in t :

$t = \cdots (R_1 \bowtie R_i) \cdots$

Proof of the Lemma

Let t_0, t be w/o cross product, and t_0 is left-linear. Then $t \xrightarrow{ccp} t_0$

Proof by induction on n .

Let R_i be the sibling of R_1 in t :

$$t = \cdots (R_1 \bowtie R_i) \cdots$$

Replace $R_1 \bowtie R_i$ with new symbol R_{1i} :

$$t' = \cdots R_{1i} \cdots$$

Proof of the Lemma

Let t_0, t be w/o cross product, and t_0 is left-linear. Then $t \xrightarrow{ccp} t_0$

Proof by induction on n .

Let R_i be the sibling of R_1 in t :

$$t = \cdots (R_1 \bowtie R_i) \cdots$$

Replace $R_1 \bowtie R_i$ with new symbol R_{1i} :

$$t' = \cdots R_{1i} \cdots$$

By induction: $t' \xrightarrow{ccp} ((R_{1i} \bowtie R_2) \bowtie R_3) \bowtie \cdots R_{i-1} \bowtie R_{i+1} \bowtie \cdots \bowtie R_n$

Proof of the Lemma

Let t_0, t be w/o cross product, and t_0 is left-linear. Then $t \xrightarrow{ccp} t_0$

Proof by induction on n .

Let R_j be the sibling of R_1 in t :

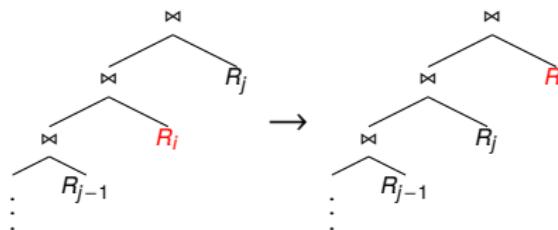
$$t = \cdots (R_1 \bowtie \textcolor{red}{R_j}) \cdots$$

Replace $R_1 \bowtie R_i$ with new symbol R_{1i} :

$$t' = \dots R_{1i} \dots$$

By induction: $t' \xrightarrow{ccp} ((R_{1i} \bowtie R_2) \bowtie R_3) \bowtie \dots R_{i-1} \bowtie R_{i+1} \bowtie \dots \bowtie R_n$

Move R_i up step by step:



for all $j < i$

Incompleteness of RS-B2 [Shanbhag and Sudarshan, 2014]

RS-B2: Rewrite system with restrictions $Q \xrightarrow{ccp} Q_2$ impossible.

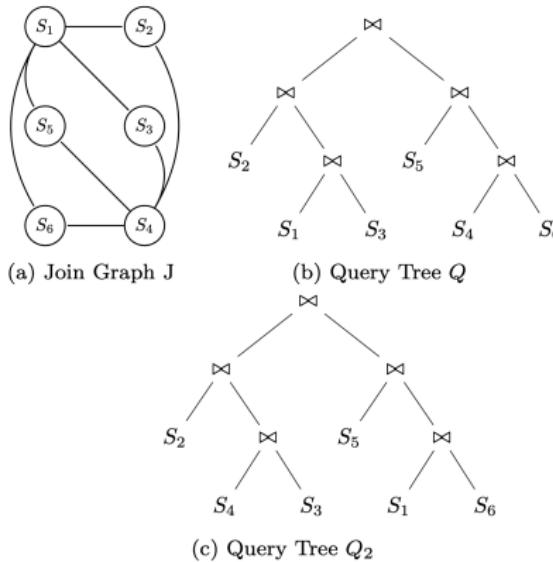


Figure 5: Incompleteness of RS-B2-CPS

Summary

Summary

- Extensible Query Optimizers make it easy to add new operators.:
 - ▶ Solve the Word Problem using the E-graphs.
 - ▶ Lots of extensions and clever engineering.
- Clever rule design can decrease the complexity, but it likely remains higher than Dynamic Programming.
- Why is the Memo always acyclic? Why is Volcano guaranteed to terminate?

Pellenkof, A., Galindo-Legaria, C. A., and Kersten, M. L. (1997).

The complexity of transformation-based join enumeration.

In Jarke, M., Carey, M. J., Dittrich, K. R., Lochovsky, F. H., Loucopoulos, P., and Jeusfeld, M. A., editors, VLDB'97, Proceedings of 23rd International Conference on Very Large Data Bases, August 25-29, 1997, Athens, Greece, pages 306–315. Morgan Kaufmann.

Shanbhag, A. and Sudarshan, S. (2014).

Optimizing join enumeration in transformation-based query optimizers.

Proc. VLDB Endow., 7(12):1243–1254.