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Σ-Algebras, T (Σ,X)

A signature is Σ = {f1, f2, . . . , fm}
each function symbol fi and has an arity ni ≥ 0.

A Σ-algebra is A = (A, fA
1 , f

A
2 , . . . , f

A
m) where fA

i : Ani → A.

A Σ-term is an expression built from Σ and X .

The term algebra T (Σ,X) = is the Σ-algebra of all Σ terms.
The “free Σ-algebra” generated by X .
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Identities

An identity is a pair of terms (ℓ, r). We write ℓ ≈ r .

ℓ = the left-hand-side
r = the right-hand-side

+

+

x y

z ≈
+

x +

y z

Fix an algebra A. A substitution is 𝜎 : X → A.

A satisfies the identity ℓ ≈ r if 𝜎(ℓ) = 𝜎(r) for all 𝜎 Notation: A |= ℓ ≈ r

𝜎 : (x, y, z) ↦→ (5, 2, 6), then 𝜎(
+

+

x y

z) = 13, 𝜎(
+

x +

y z

) = 13.
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Semantic Consequence

Fix a set of identities E.

An identity s ≈ t is a semantic consequence of E if:

For every Σ-algebra A: if A |= E then A |= s ≈ t

We write ≈E for the semantic consequences of E.

It turns out that we can describe ≈E in terms of reductions.
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The Reduction Relation

Review in class the reduction →E .
∗→E and ∗↔ extend →E and are:

Reflexive t ∗→E t; ∗↔ is also Symmetric

Transitive s ∗→E t, t ∗→E u implies s ∗→E u.

Congruence If s1
∗→E t1, . . . , sn

∗→E tn then:
f

s1 · · · sn

∗→E
f

t1 · · · tn

Closed under substitutions1 If s → t ∈ E, then 𝜎(s) ∗→E 𝜎(t) for all 𝜎

Theorem [Birkoff] ≈E is the same as ↔∗
E

1𝜎 is a substitution 𝜎 : X → T (Σ,X).
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The Word Problem

Fix Σ,E.

The Word Problem: given s, t, decide whether s ≈E t

Decidable cases: semigroup, monoids, groups, lattices

Undecidable cases: Matijasevič’s strange identities; combinatory logic.

Dan Suciu CSE599d: Advanced QP Winter 2026 7 / 36



Review E-Graphs Volcano/Cascades

A Special Case

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s, t are also grounded) is decidable.
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Relational Algebra v.s. a Σ-algebra

Σ = {𝜎,Π,Z,∪,−}. However:

Some operations are undefined: R ∪ S when R,S have different schemas.

Some operations have parameters: 𝜎p (R) where p is some predicate.

Template identities: R ZA=B S ≈ S ZB=A R for every choice of A,B.

Could fix the theory. Volcano/Cascades just ignore these rough spots.
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No Complete Identities for Relational Algebra!

Query equivalence, Q ≡ Q′, means: Q(D) = Q′(D) for any database D.

Fact There is no r.e.2 E for which ≈E coincides with ≡.

Because:
Q ≡ Q′ is undecidable

≈E is r.e.

≡ is co-r.e.

If ≈E conicides with ≡, then they were decidable

2Recursively enumerable (e.g. templates).
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E-Graphs
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Overview

E-graphs are keeping all intermediate steps of a rewrite sequence
s → s1 → s2 → · · · in a compact data structure.

This part is based on the book [Baader and Nipkow, 1999] and the egg
paper [Willsey et al., 2021].
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Term Graph

Term Graph is a DAG sharing common subexpressions:

g

f f

a a

g

f f

a

g

f

a
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E-Graph

An E-graph G consists of:

A set of E-classes c1, c2, . . .,

. . . where each E-class c is a set of E-nodes c = {v1, v2, . . .},

. . . and each e-node is a pair (f , (ci1 , . . . , cik )) where
f ∈ Σ, ci1 , . . . , cik are E-classes, and k = the arity of f .
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E-Graphs

gf

a

f g

b

C1=

C2=

C3=

C4=

Each class c represents a set of terms:

terms(c3) = a,

terms(c4) = b

terms(c2) = {f (b), g(a, a)}

terms(c1) = {f (f (b)), f (g(a, a)), g(f (b), b), g(g(a, a), b)}

terms(G) = the set of all terms represented by all E-classes.
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Congruence Closure

gf

a

C1=

fg

C2=

cb

f

terms(c1) = ????

terms(c2) = ????

Common term g(b, f (b))

gf

a

f

cb

f

Congruence closure of the E-graph

We inferred: f (a) = f (c)
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Congruence Closure

An E-graph defines the following relation on terms(G):

s ∼G t if exists E-class c such that s, t ∈ terms(c)

We say that G is closed under congruence if ∼G is a congruence on terms(G):

∼G is an equivalence relation, and

if f (s1, . . . , sn), f (t1, . . . , tn) ∈ terms(G)
and s1 ∼G t1, s2 ∼G t2, . . ., then f (s1, . . . , sn) ∼G f (t1, . . . , tn).

Congruence closure algorithm: modifies G to ensure that ∼G is a congruence.
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Approaches to the Word Problem
Input: E, s, t Question: is s ≈E t?

TRS approach s →E s1 →E s2 →E · · ·
t →E t1 →E t2 →E · · ·

Common term?
Then s ≈E t.

E-graph approach encode many derivations in the E-graph:

s > u1 > u2 > u3 > u4 > · · ·

u5 >

>

u6 >

>

>

· · ·

u7
∨

> u8

∧

>
< · · ·

t > · · ·

Both approaches assume that E is directed.
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Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s ≡E t:

Initialize the E-graph with s, t.

Find (ℓ, r) ∈ E such that ℓ “matches” the E-graph.
Meaning: ∃ class c, substitution 𝜎, s.t. 𝜎(ℓ) ∈ terms(c).

Add 𝜎(r) to G, c := c ∪ {root(𝜎(r))}.

Perform congruence closure

Repeat.

When (and if!) it terminates, check s ∼G t

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 36



Review E-Graphs Volcano/Cascades

Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s ≡E t:

Initialize the E-graph with s, t.

Find (ℓ, r) ∈ E such that ℓ “matches” the E-graph.
Meaning: ∃ class c, substitution 𝜎, s.t. 𝜎(ℓ) ∈ terms(c).

Add 𝜎(r) to G, c := c ∪ {root(𝜎(r))}.

Perform congruence closure

Repeat.

When (and if!) it terminates, check s ∼G t

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 36



Review E-Graphs Volcano/Cascades

Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s ≡E t:

Initialize the E-graph with s, t.

Find (ℓ, r) ∈ E such that ℓ “matches” the E-graph.
Meaning: ∃ class c, substitution 𝜎, s.t. 𝜎(ℓ) ∈ terms(c).

Add 𝜎(r) to G, c := c ∪ {root(𝜎(r))}.

Perform congruence closure

Repeat.

When (and if!) it terminates, check s ∼G t

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 36



Review E-Graphs Volcano/Cascades

Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s ≡E t:

Initialize the E-graph with s, t.

Find (ℓ, r) ∈ E such that ℓ “matches” the E-graph.
Meaning: ∃ class c, substitution 𝜎, s.t. 𝜎(ℓ) ∈ terms(c).

Add 𝜎(r) to G, c := c ∪ {root(𝜎(r))}.

Perform congruence closure

Repeat.

When (and if!) it terminates, check s ∼G t

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 36



Review E-Graphs Volcano/Cascades

Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s ≡E t:

Initialize the E-graph with s, t.

Find (ℓ, r) ∈ E such that ℓ “matches” the E-graph.
Meaning: ∃ class c, substitution 𝜎, s.t. 𝜎(ℓ) ∈ terms(c).

Add 𝜎(r) to G, c := c ∪ {root(𝜎(r))}.

Perform congruence closure

Repeat.

When (and if!) it terminates, check s ∼G t

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 36



Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]

E = g(x) ≈ f (f (x))

f (f (x)) ≈ g(x)

Check g(f (a)) ≈E f (g(a))

Stuck! Need to close E under symmetry

a

f

g

𝑐1

𝑐2

𝑐3

g(x) → f (f (x))

𝜎(x) = c2
Insert f (f (c2))

a

f

g f

f

New

E-class,

E-node

New

E-node

f (f (x)) → g(x)

𝜎(x) = c3
Insert g(c3) a

f

g f

f g

New

E-node

g(f (a)) ∈ terms(c1) and also f (g(a)) ∈ terms(c1)

Hence g(f (a)) ∼G f (g(a)) which implies g(f (a)) ≈E f (g(a)).
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Review E-Graphs Volcano/Cascades

Discussion (1/2)

The Equality Saturation Algorithm ensures that s ∼G t implies s ≈E t.

Converse fails for multiple reasons:

E is treated as asymmetrically and may fail to trigger.

∼G is an equivalence relation only on terms(G).
Called Partial Equivalence Relation, PER; also partial congruence.
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Discussion (2/2)

E-graphs can avoid some non-terminating reductions:,
E.g. commutativity:

b

+ +

a

Non-termination can still happen, e.g. g(x) ≈ g(f (x)):
Leads to g(a) ≈ g(f (a)) ≈ g(f (f (a))) ≈ · · ·

Direction of the identities in E may affect termination: e.g. g(f (x)) ≈ g(x).

No good theory exists for understanding termination.
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Review E-Graphs Volcano/Cascades

Special Case: Grounded Identities

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s, t are also grounded) is decidable.

Proof Initialize E-graph with s, t, and all sub-terms of terms E.

Make E symmetric: ℓ →E r and r →E ℓ.

Equality saturation never needs to insert new E-nodes in G

Hence the congruence closure algorithm terminates
and ∼G is the same as ∗↔E on terms(G) (because E is symmetric).
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Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]
E = f (f (a)) ≈ a

f (f (f (a))) ≈ a
Check if f (a) ≈E a

a

f

f

f

f (f (f (a))) → a
a

f

f

f

f (f (a)) → a
aff

f

f (f (f (a))) → a

af ⇐ aff f
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Review E-Graphs Volcano/Cascades

Volcano/Cascades
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Review E-Graphs Volcano/Cascades

Overview

Lecture mostly based on [Ding et al., 2024]

Volcano:
Introduced in [Graefe, 1994]; more details [McKenna, 1993]
Logical rules: equality saturation; physical rules: branch-and-bound.

Cascades
Introduced in [Graefe, 1995]; more details [Xu, 1998]
Combines the two phases of Volcano.
Adoption: SQLServer, Calcite, CockroachDB
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Review E-Graphs Volcano/Cascades

Terminology (1/2)

Logical Property of an expression: e.g. estimated cardinality

Physical Property of an expression: interesting sort order, partition.

Logical Operators e.g. Z, 𝜎, Γ, Z . . .

Physical Operators e.g. HashJoin, MergeJoin, IndexScan, . . .

Enforcers e.g. Sort, Partition.
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Review E-Graphs Volcano/Cascades

Terminology (2/2)

Rule = (CheckPattern, Transform):

Transformation rule, e.g. R Z S → S Z R

Implementation rule, e.g. R Z S → R HashJoin S

Memo = E-Graph

Group or Class = E-Class

Expression = E-Node
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Review E-Graphs Volcano/Cascades

Volcano

1. Generation Phase: repeatedly applies transformation rules until saturation.

2. Cost Analysis Phase: applies implementation rules, using a cost Limit
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The Memo

select *

from R, S, T

where R.B=S.B

    and S.C=T.C

    and R.A = 3

    and T.D = 5

R(A,B), S(B,C), T(C,D)
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Review E-Graphs Volcano/Cascades

Volcano: Generation Phase

[Ding et al., 2024] Top Down equality saturation:

Small bug: GenerateLogicalExpr should have Rules as parameter.
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Review E-Graphs Volcano/Cascades

Volcano: Cost Analysis Phase

FindBestPlan: Logical Expression ↦→ Physical plan

FindBestPlan(Group, Limit) by example:

For each Expr ∈ Group Z

g1 g2

Apply an implementation rule
HashJoin

g1 g2
Cost = 100

FindBestPlan(g1, Limit − 100) HashJoin

g3 g2
Cost = 2100

FindBestPlan(g2, Limit − 2100) HashJoin

g3 g4
Cost = . . .

Whenever Cost > Limit stop and return NULL
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Review E-Graphs Volcano/Cascades

Volcano: Cost Analysis Phase (Very Simplified)

Function FindBestPlan(Group, Limit)
if Limit ≤ 0 then return Null;
Plan, Cost := LookUpMemo(Group)
if Cost ≠ Null then

if Cost ≤ Limit then return Plan,Cost ;
else return NULL;

Cost := ∞;
for Expr ∈ Group, r ∈ ImplementationRules(Expr) do
Pln, Cst := r .Op, r .Cost ; // Start new plan with r .Op
for Grp ∈ Children(Expr) do
Pln, Cst += FindBestPlan(Grp, Limit − Cst)

if Success all children? then Plan, Cost, Limit := Pln, Cst, Cst;;
InsertMemo(Group, Plan, Cost)
return (Plan, Cost)
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Review E-Graphs Volcano/Cascades

Volcano: Cost Analysis Phase (Visual Representation)

Group

Expr . . . Expr

Rule . . . Rule

Child1 Child2 . . .

. . .

. . .

Limit1 ≥ Limit2 ≥ Limit3 ≥ · · ·

When Cost > Limit, prune the search.
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Review E-Graphs Volcano/Cascades

Discussion

Generation phase is straightforward: saturate the whole E-Graph.

Cost-analysis phase: prunes the search based on cost. In addition:

▶ Store applicable implementation rules in a set of Moves

▶ Sort Moves by “promise”, to find better plans first.

▶ Early stopping is possible, e.g. timeout.

A physical expression may have multiple version, with different properties.
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Review E-Graphs Volcano/Cascades

Cascades

Will discuss only at a very high level.

Cascades makes the following changes to Volcano:

Handles transformation and implementation rules in the same phase.

Replaces recursive call with stack-based processing: allows control over
the order of operations.

Breaks down each rule application into smaller steps, each becomes a
separate task, to be placed on the stack.

This allows for a more aggressive cost-based pruning.

Dan Suciu CSE599d: Advanced QP Winter 2026 35 / 36



Review E-Graphs Volcano/Cascades

Discussion

Volcano/Cascades: complex, but clean foundation in E-Graphs

Lots of additional heuristics:
▶ Simplification rules: apply E1 → E2, then delete E1

▶ Macro rules: e.g. StarJoin(R1, . . . ,Rn) → DPccp

Systems implementing Cascades: SQLServer, Orca (Greenplum), Calcite.

Other systems: Postgres (DP), Catalyst/Spark (greedy).
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