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>-Algebras, T(Z, X)

A signature is X = {fy,fo, ..., fm}
each function symbol f; and has an arity n; > 0.

A Z-algebrais A = (A, fA, A, ... ) where fI.A AT A

,1929

A X-term is an expression built from X and X.

The term algebra T (X, X) = is the X-algebra of all X terms.
The “free X-algebra” generated by X.
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Identities

An identity is a pair of terms (£, r). We write £ ~ r.

¢ = the left-hand-side L
r = the right-hand-side X;\y T y/+\z

Fix an algebra A. A substitutionis o : X — A.

‘A satisfies the identity £ = r if o(£) = o (r) for all o ‘ Notation: A =€ ~r

o (x,y,2) — (5,2,6), then o( 7y =13, o ) =13.
Y 7
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Volcano/Cascad

Semantic Consequence
Fix a set of identities E.

An identity s ~ t is a semantic consequence of E if:

For every X-algebra A: ‘ifA =EthenAl=s~t ‘

We write ~g for the semantic consequences of E.

It turns out that we can describe ~g in terms of reductions.
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The Reduction Relation

Review in class the reduction —g.

* *

—f |and | & |extend —F and are:

o is a substitution o : X — T(Z, X).
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The Reduction Relation

Review in class the reduction —g.

* *

—f |and | & |extend —F and are:

Reflexive t i>E t; S s also Symmetric

.o, . * * . . *
Transitive s —g t,t —¢ u implies s —¢ u.

o is a substitution o : X — T(Z, X).
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The Reduction Relation

Review in class the reduction —g.

* *

—f |and | & |extend —F and are:

Reflexive t i>E t; S s also Symmetric

.o, . * * . . *
Transitive s —g t,t —¢ u implies s —¢ u.

f . f

Congruence If sq —*>E H,...,8n —*>E ththen: T~ = T

s1 sn t th

o is a substitution o : X — T(Z, X).

Dan Suciu CSE599d: Advanced QP Winter 2026 6/36



Review

[e]e]e]e] elelele]

The Reduction Relation

Review in class the reduction —f.

*
—E

and

%
4

extend — £ and are:

Reflexive t i>E t; S s also Symmetric

.o, . * * . . *
Transitive s —g t,t —¢ u implies s —¢ u.

f

f
T h

Congruence If sq —*>E H,...,8n —*>E ththen: T i>,:- T~
t-

st s

Closed under substitutions' If s — t € E, then o7 (s) Se o (t) for all o

*

Theorem [Birkoff] ~f is the same as < E

o is a substitution o : X — T(Z, X).
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The Word Problem

Fix 2, E.

The Word Problem: given s, t, decide whether s =g ¢

Decidable cases: semigroup, monoids, groups, lattices

Undecidable cases: Matijasevic’s strange identities; combinatory logic.
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A Special Case

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s,t are also grounded) is decidable.
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Relational Algebra v.s. a X-algebra

Y ={o,I1,, U, —}. However:
@ Some operations are undefined: R U S when R, S have different schemas.
@ Some operations have parameters: o, (R) where p is some predicate.
o Template identities: R a-g S ~ S g4 R for every choice of A, B.

Could fix the theory. Volcano/Cascades just ignore these rough spots.
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No Complete Identities for Relational Algebra!

Query equivalence, Q = Q’, means: Q(D) = Q’(D) for any database D.

Fact There is no r.e.2 E for which ~¢ coincides with =.

Because:
@ Q = Q' is undecidable

@ ~fpisre.
@ =is co-re.

o If ~¢ conicides with =, then they were decidable

ZRecursively enumerable (e.g. templates).
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E-Graphs

CSE599d: Advanced QP Winter 2026 11/36




E-Graphs
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Overview

E-graphs are keeping all intermediate steps of a rewrite sequence
§ — 84 — Sp — -+ - in a compact data structure.

This part is based on the book [Baader and Nipkow, 1999] and the egg
paper [Willsey et al., 2021].
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E-Graphs
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Term Graph

Term Graph is a DAG sharing common subexpressions:
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E-Graphs
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E-Graph

An E-graph G consists of:

@ A setof E-classes ¢1,Co, .. .,

@ ... where each E-class c is a set of E-nodes ¢ = {vy,vo,...},

@ ...and each e-node is a pair (f, (¢, ...,Cj)) where
feZX cy,...,cj are E-classes, and k = the arity of f.
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E-Graphs
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Each class ¢ represents a set of terms:
terms(c3) = a,
terms(c4) = b

terms(cz) = {f(b),g(a,a)}

terms(cq) = {f(f(b)).f(g(a,a)).g(f(b),b).g(9(a,a). b)}

terms(G) = the set of all terms represented by all E-classes.

Dan Suciu CSE599d: Advanced QP Winter 2026 15/36



E-Graphs Volcano/(
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Congruence Closure

terms(cy) = 277?

terms(cp) = ?777?
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E-Graphs
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Congruence Closure

terms(cq) = {f(a),g(b,f(b))}

terms(cp) = ?777?
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terms(cq) = {f(a),g(b,f(b))}

terms(cz) = {g(b,f(b)).f(c)}
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E-Graphs
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Congruence Closure

terms(cy) = {f(a),g(b,f(b))}
terms(cz) = {g(b,f(b)),f(c)}

Common term g(b, f(b))
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E-Graphs
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terms(cy) = {f(a),g(b,f(b))} Congruence closure of the E-graph
terms(cz) = {g(b,f(b)),f(c)}

Common term g(b, f(b))
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E-Graphs
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terms(cy) = {f(a),g(b,f(b))} Congruence closure of the E-graph
terms(cz) = {g(b,f(b)),f(c)} We inferred: f(a) = f(c)
Common term g(b, f(b))
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Congruence Closure

An E-graph defines the following relation on terms(G):

‘ s ~g t if exists E-class ¢ such that s, t € terms(c) ‘
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E-Graphs
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Congruence Closure

An E-graph defines the following relation on terms(G):

‘ s ~g t if exists E-class ¢ such that s, t € terms(c) ‘

We say that G is closed under congruence if ~g is a congruence on terms(G):

@ ~g is an equivalence relation, and

e iff(sq,...,8n),f(ty,...,ty) € terms(G)
and sy ~g }4,S2 ~g bo, ..., then f(s1,...,8p) ~g f(t,...,tn).
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E-Graphs
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Congruence Closure

An E-graph defines the following relation on terms(G):

‘ s ~g t if exists E-class ¢ such that s, t € terms(c) ‘

We say that G is closed under congruence if ~g is a congruence on terms(G):

@ ~g is an equivalence relation, and

e iff(sq,...,8n),f(ty,...,ty) € terms(G)
and sy ~g }4,S2 ~g bo, ..., then f(s1,...,8p) ~g f(t,...,tn).

Congruence closure algorithm: modifies G to ensure that ~g is a congruence.
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Approaches to the Word Problem

Input: E, s, t Question: is S =g t?
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Approaches to the Word Problem

Input: E, s, t Question: is S =g t?

Common term?
S —fF s —E S2 —F
TRS approach t Of n oE @ SE Then s ~¢ t.
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Approaches to the Word Problem

Input: E, s, t Question: is S =g t?
Common term?
s —F S1 —F So —E cee
TRS approach t oe o oE ¢ o Then s ~¢ t.

‘ E-graph approach ‘ encode many derivations in the E-graph:

s uq us us Uy
us Ug ..
uz ug
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E-Graphs Volcano/(

[e]e]e]ele]ele] elele]ele]e)

Approaches to the Word Problem

Input: E, s, t Question: is S =g t?
Common term?
s —F S1 —F So —E cee
TRS approach t oe o oE ¢ o Then s ~¢ t.

‘ E-graph approach ‘ encode many derivations in the E-graph:

s uq us us Uy
us Ug ..
uz ug

t—— -

Both approaches assume that E is directed.
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E-Graphs
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Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s =¢ t:

Initialize the E-graph with s, t.
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Solving the Word Problem with E-graphs
The Equality Saturation Algorithm To check s =¢ t:

Initialize the E-graph with s, t.

o Find (¢,r) € E such that ¢ “matches” the E-graph.
Meaning: 3 class ¢, substitution o, s.t. o7 (£) € terms(c).
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Solving the Word Problem with E-graphs
The Equality Saturation Algorithm To check s =¢ t:

Initialize the E-graph with s, t.

o Find (¢,r) € E such that ¢ “matches” the E-graph.

Meaning: 3 class ¢, substitution o, s.t. o7 (£) € terms(c).

@ Add o (r) to G, ¢ := c U {root(co(r))}.
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Solving the Word Problem with E-graphs
The Equality Saturation Algorithm To check s =¢ t:

Initialize the E-graph with s, t.

o Find (¢,r) € E such that ¢ “matches” the E-graph.

Meaning: 3 class ¢, substitution o, s.t. o7 (£) € terms(c).

@ Add o (r) to G, ¢ := c U {root(co(r))}.
@ Perform congruence closure

@ Repeat.
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Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s =¢ t:

Initialize the E-graph with s, t.

o Find (¢,r) € E such that ¢ “matches” the E-graph.
Meaning: 3 class ¢, substitution o, s.t. o7 (£) € terms(c).

@ Add o (r) to G, ¢ := c U {root(co(r))}.
@ Perform congruence closure

@ Repeat.

When (and if!) it terminates, check
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Example from [Baader and Nipkow, 1999]

E =] g(x) ~f(f(x)) Check |g(f(a)) ~& f(g(a)) |
c]I,——]

)

C?:f_ _J}

I
<
~|

5

|
|
N
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Example from [Baader and Nipkow, 1999]

E =[g00 ~ F(F(x)) Check[g(F(a) ~¢ F(g(a)) |
c]I,——}

1N g(x) — f(f(x))

P

l_?JI o(x) =co

CT —} Insert f(f(c2))

I~
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Example from [Baader and Nipkow, 1999]

E =] g(x) = f(f(x))

_@J () = F(F(x))

gj}, o(x) =co
‘2 Insert f(f(cp))

Dan Suciu

Check|g(f(a)) ~¢ f(g(a)) ]

 —~ New
E-node
=)
Y-
MO

—F/
New
E-class,
E-node

1
|
-~

\

N\ 2

—=N
|
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E=[g00) ~f(f(x))

_@, 9(x) = F(F()

gj}, o(x) =co
‘2 Insert f(f(cp))

Dan Suciu

E-Graphs
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Example from [Baader and Nipkow, 1999]

Check |g(f(a)) ~¢ f(g(a)) |
Stuck! Need to close E under symmetry

Ir____ Enode
[ i)
o\
omO)
—
l_ J ‘
New
E-class,
E-node

-
|

1
|
-~
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Example from [Baader and Nipkow, 1999]

E =] g(x) = f(f(x))
f(f(x)) ~ g(x)

N g(x) - f(f(x))

gj}, o(x) =co
‘2 Insert f(f(cp))

Dan Suciu

Check |g(f(a)) ~¢ f(g(a)) |
Stuck! Need to close E under symmetry

Ir____ Enode
[ i)
o\
omO)
—
l_ J ‘
New
E-class,
E-node

-
|

1
|
-~
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Example from [Baader and Nipkow, 1999]

E=[g00) ~f(f(x))
F(F(x)) ~ g(x)

Cr =2y
|

N g(x) - f(f(x))

_?J o(x) =co
‘2 Insert f(f(cp))

Dan Suciu

Check |g(f(a)) ~¢ f(g(a)) |
Stuck! Need to close E under symmetry

%Q--@S . f(f(x)) > g(x)
o
1@
T e
|

o(x) =c3
Insert g(c3)
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Example from [Baader and Nipkow, 1999]

E=[g00) ~f(f(x))
F(F(x)) ~ g(x)

Cr =2y
|

N g(x) - f(f(x))

_?J o(x) =co
‘2 Insert f(f(cp))

Dan Suciu

Check |g(f(a)) ~¢ f(g(a)) |
Stuck! Need to close E under symmetry

%Q--@S . f(f(x)) > g(x)
o
1@
T e
|

o(x) =c3
Insert g(c3)
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Example from [Baader and Nipkow, 1999]

E=[g00 ~ 1(i(x)) Check [g((a) ~¢ F(g(a)) |
f(f(x)) =~ g(x) Stuck! Need to close E under symmetry

CGr = E-node

W 900 — (7(0) %D__@X? F(f(x)) = g
ESN ' |

l_?) o(x) =co g? =7 o(x) =03
CT 1 Insert f(f(c2)) o e ) Insert g(C3)

NS )l

g(f(a)) € terms(cy) and also f(g(a)) € terms(cy)

Hence g(f(a)) ~g f(g(a)) which implies g(f(a)) ~¢ f(g(a)).
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E-Graphs
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Discussion (1/2)

The Equality Saturation Algorithm ensures that s ~g t implies s ~¢ t.

Converse fails for multiple reasons:

o E istreated as asymmetrically and may fail to trigger.

@ ~g is an equivalence relation only on terms(G).
Called Partial Equivalence Relation, PER; also partial congruence.
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E-Graphs
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Discussion (2/2)
(® }
E-graphs can avoid some non-terminating reductions:, it‘
E.g. commutativity: ST
@ ®

Non-termination can still happen, e.g. g(x) = g(f(x)):
Leads to g(a) ~ g(f(a)) ~ g(f(f(a))) ~ - -

Direction of the identities in E may affect termination: e.g. g(f(x)) = g(x).

No good theory exists for understanding termination.
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Special Case: Grounded Identities

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s, t are also grounded) is decidable.
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Special Case: Grounded Identities

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s, t are also grounded) is decidable.

Proof Initialize E-graph with s, t, and all sub-terms of terms E.

Make E symmetric: £ —g rand r —g £.
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Special Case: Grounded Identities

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s, t are also grounded) is decidable.

Proof Initialize E-graph with s, t, and all sub-terms of terms E.
Make E symmetric: £ —g rand r —g £.
Equality saturation never needs to insert new E-nodes in G

Hence the congruence closure algorithm terminates
. * . .
and ~g is the same as <»>g on terms(G) (because E is symmetric).
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Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a
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Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

=N
|
)

=)

J

=20 - =0

IN) L

,_
|
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Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

|
=)

J

Q=D
§

f(f(f(a) — a

=0 ~=0
1NN

,_
|
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Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

|
=)

J

Q=D
§

f(f(f(a) — a

=)

=20 - =0

IN) L

,_
|
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Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

|
=)

Q=D
§

J

J

f(f(f(a))) — a f(f(a)) — a

~=2
|
(A=)
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Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

|
=)

Q=D
§

J

J

f(f(f(a))) — a f(f(a)) — a

~=2
|
(A=)
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Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a))) ~ a
0 oo olole)
X f(f(f(a))) — a @ f(f(a)) — a

=20 - =0

XA
|
[N

IN) L
|
§

(S

f(f(f(a) — a
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Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

|
=)

5o

Q=D
§
BN

O

J

f(f(f(a))) — a f(f(a)) — a

=0 ~=0
1NN
i
|

,_
|
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Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

|
=)

A -=2
)l
=
|

J

|
| |
=

f(f(f(a))) — a f(f(a)) — a

O
S

=)

=20 - =0

IN) L

(S
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Volcano/Cascades
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Overview

Lecture mostly based on [Ding et al., 2024]

Volcano:

@ Introduced in [Graefe, 1994]; more details [McKenna, 1993]

@ Logical rules: equality saturation; physical rules: branch-and-bound.

Cascades
@ Introduced in [Graefe, 1995]; more details [Xu, 1998]
@ Combines the two phases of Volcano.
@ Adoption: SQLServer, Calcite, CockroachDB
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Volcano/Cascades
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Terminology (1/2)

Logical Property of an expression: e.g. estimated cardinality
Physical Property of an expression: interesting sort order, partition.
Logical Operators e.g. <, o, I, 3«

Physical Operators e.g. HashJoin, MergeJoin, IndexScan,

Enforcers e.g. Sort, Partition.
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Volcano/Cascades
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Terminology (2/2)
Rule = (CheckPattern, Transform):
@ Transformationrule,e.g. RS — SxR
@ Implementation rule,e.g. RS — R HashJoin S
Memo = E-Graph
Group or Class = E-Class

Expression = E-Node
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Volcano

1. Generation Phase: repeatedly applies transformation rules until saturation.

2. Cost Analysis Phase: applies implementation rules, using a cost Limit
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R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

The Memo mnd S oTe

andT.D=5




R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

The Memo mnd S oTe

andT.D=5

Initialize Memo
w/ one (naive)




R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

and S.C=T.C
| | The Memo and .-
[il/ ' ScanR ] and T.D=5

Initialize Memo
w/ one (naive)




R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

The Memo and S.0-T.C

andT.D=5

[/1 [scanRr | ]
~ = Initialize Memo

[‘/ 2) | SelectiA=3]1 ] w/ one (naive)

| S —




R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

and S.C=T.C
| The Memo and 8.C=T.
(1) | ScanR | andT.D=5
[U ] i Initialize Memo
[Q/ Select[A=3] 1 \] w/ one (naive)
- plan @
[@ Scan S ‘ ] O-D_S
(4) [JoinB=82,3 | ©
[k{ - : ] o/ X¢
(5) ScanT | et
o/ &) Mg -
o= /7T
6 Join[C=C] 4,5 ] @ \‘
7\ ( S O4=3 O] T
[w Select[D=5] 6 \] S

o
R



R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

d S.C=T.C
_ The Memo :gd RA=3
[@ (scanR | ] andTD=5
[Q/ | Select[A=3] 1 | ]
@
[@ ( Scan S ] ] O-D=5
[/Q) :Join[B=Ié] 2, 3\] . Nc
@ Scan T [; \
B
[@/ | Join[C=C] 4,5 | ] / \
[QJ | Select[D=5] 6 ] JA, 3



R(A,B), S(B,C), T(C,D)

The Memo

[@ ' ScanR \ ]
- - Apply an
[@ Select[A=3] 1 ] optimization -
— - rule >
[Q/ Scan S ] Op=
o= :
/&{ L— / X
@ ScanT | @
/ N\ [ / M B
[@ Join[C=C] 4,5 ]
- '\\“ ( S _ ‘ O-A 3
[@ elect[D=5] 6 ] - S
@

R

select *

fromR,S, T

where R.B=S.B
and S.C=T.C
and RA=3
andT.D=5




R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

and S.C=T.C
- The Memo and 8.C=T.
[w ScanR | ] andT.D=5
[ \, Apply an
[@ Select[A=3] 1 ] optimization
——— - rule
[@ Scan S ] X \
7\ P
[w Join[B=B] 2, 3 \] /
5) [scanT| @
b can M
[@/ ' Join[C=C] 4,5 ] \ T
— \ o o
[Q/ Select[D=5] 6 \] A=3 S




R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

d S.C=T.C

_ The Memo :zd R.A=3
[@ (scanR | ] andTD=5
[Q/ | SelectjA=3] 1 | ] .
[@ ' scans | ] o) \
ORE=—0) /

@ /ScanT\

[@/ ' Join[C=C] 4,5 ] \

O
[QJ | Select[D=5] 6 ] JA,=3 S

®

(8 [seecp=5s | R




R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

d S.C=T.C
- The Memo :gd R.A=3
[ 1) [seanR] ] andTD=5
[@ ' Select[A=3] 1 ] ’
[@ {ScanSW ]
O™ /

Scan T

6 | Join[C=C] 4,5 | ]

G

)@
1
\

,C/w

' Select(D=5]6 | | Join[C=C] 4,8 | ]

8) | Select[D=5]5 | ] R

\
4

N Y
P\

)| ~ )
4




R(A,B), S(B,C), T(C,D) select *
fromR, S, T
where R.B=S.B

The Memo ARAns

(1) [senr) | andTD=5
[@ ( Select[A=3] 1 | ]
[@ (Scan s | ] NC \
[@  Join[B=B] 2, 3 | ] /

[ \ ()

) S

@ can T [>4
(o) womcci4s | "\ T

— - G, ©
[b  Select[D=5]6 | Join[C=C] 4,8 j] O-A,_3 S
[ /8\\ ( Select[D=5] 5 ] R




R(A,B), S(B,C), T(C,D) select *
fromR, S, T
where R.B=S.B
The Memo ARAns
(1) [senr) | andTD=5
[@ ( Select[A=3] 1 | ]
[ ) @
[@ Scan S ] NC
[@  Join[B=B] 2, 3 | ]
2\ ( Y @
5 ) Scan T
g — / Mg ®
[@/ Join[C=C] 4,5 ] @ Op=s5
7\ Ve N S O.A=3
[w  Select[D=5]6 | Join[C=C] 4,8 j] | ® .
ya —————— @ :
[ 8\\ Select[D=5] 5 ] R S T




R(A,B), S(B,C), T(C,D)

(1 (sanr |
[Q/ ' Select[A=3] 1 ]
[Q/ /ScanS\]

~
/

| Join[C=C] 4,5 ]

G

The Memo

Apply another
rule

' Select(D=5]6 | | Join[C=C] 4,8 | ]

\
y

N Y
P\
)| ~ )

(8) ' Select[D=5] 5 ]

select *

fromR,S, T

where R.B=S.B
and S.C=T.C
and RA=3
andT.D=5




R(A,B), S(B,C), T(C,D)

The Memo
(1) [senr |
[(2) [soeotn=sii]]
((a) [sems | NB
D=1
Va - ] ( ] ( 4
[UJ | Select[D=5]6 | | Join[C=C]4,8 | | Join[B=E] 2,9j] |
/"\\ (R r—— Q/R
OR"=0) OR=m)

select *

fromR,S, T

where R.B=S.B
and S.C=T.C
and RA=3
andT.D=5

N
4



Volcano/Cascades

000008000000

Volcano: Generation Phase

[Ding et al., 2024] Top Down equality saturation:

1: function GENERATELOGICALEXPR(LogEzpr, Rules) > Generation phase
2 for Child in inputs of LogEzpr do

3 if Group(Child) ¢ Memo then

4: GenerateLogical Expr(Child) > Update memo
5: MatchTransRule(LogExzpr, Rules)

6: function MATCHTRANSRULE(LogEzpr, Rules) > Apply transformation rules
7 for rule in Rules do

8 if rule matches LogEzpr then

9

NewLogExpr <+ Transform(LogEzpr,rule) > Update memo and
record the neighbors

10: GenerateLogical Ezpr(NewLogEzpr) > Only invoke if
NewLogEzpr is not previously in memo

Small bug: GeneratelLogicalExpr should have Rules as parameter.
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Volcano: Cost Analysis Phase
FindBestPlan: Logical Expression — Physical plan

FindBestPlan(Group,Limit) by example:
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Volcano: Cost Analysis Phase
FindBestPlan: Logical Expression — Physical plan

FindBestPlan(Group,Limit) by example:

@ For each Expr € Group e
1 2
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Volcano: Cost Analysis Phase
FindBestPlan: Logical Expression — Physical plan

FindBestPlan(Group,Limit) by example:

>

@ For each Expr € Group e
1 2

. . HashJoin
@ Apply an implementation rule g
1
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Cost =100
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Volcano: Cost Analysis Phase
FindBestPlan: Logical Expression — Physical plan

FindBestPlan(Group,Limit) by example:

>

@ For each Expr € Group e

1 2
@ Apply an implementation rule ;%mj\j; Cost = 100
o FindBestPlan(gs,Limit — 100) 2 Cost=2100
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Volcano: Cost Analysis Phase
FindBestPlan: Logical Expression — Physical plan

FindBestPlan(Group,Limit) by example:

>

@ For each Expr € Group e

@ Apply an implementation rule ;%mj\m;z Cost = 100
o FindBestPlan(gs,Limit — 100) 2 Cost=2100
@ FindBestPlan(gs,Limit — 2100) ;:/Shj%l Cost = ...
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Volcano: Cost Analysis Phase
FindBestPlan: Logical Expression — Physical plan

FindBestPlan(Group,Limit) by example:

>

@ For each Expr € Group e

@ Apply an implementation rule ;%mj\m;z Cost = 100
o FindBestPlan(gs,Limit — 100) 2 Cost=2100
@ FindBestPlan(gs,Limit — 2100) ;:/Shj%l Cost = ...

@ Whenever Cost > Limit stop and return NULL
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Volcano: Cost Analysis Phase (Very Simplified)

Function FindBestPlan(Group, Limit)

if Limit < O then return Null;

Plan, Cost := LookUpMemo(Group)

if Cost # Null then

if Cost < Limit then return Plan,Cost ;
else return NULL;

Cost := oo;
for Expr € Group, r € ImplementationRules(Expr) do
Pln,Cst :=r.0Op,r.Cost ; // Start new plan with r.Op

for Grp € Children(Expr) do
| Pln,Cst += FindBestPlan(Grp,Limit — Cst)
if Success all children? then Plan, Cost,Limit := P1n, Cst,Cst;;
InsertMemo(Group, Plan, Cost)
return (Plan, Cost)
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Volcano: Cost Analysis Phase (Visual Representation)

Group

Expr... Expr

Rule ... Rule
Childy  Childp

Limity > Limito > Limitg > ---

When Cost > Limit, prune the search.
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Discussion

@ Generation phase is straightforward: saturate the whole E-Graph.

o Cost-analysis phase: prunes the search based on cost. In addition:

> Store applicable implementation rules in a set of Moves
» Sort Moves by “promise”, to find better plans first.

> Early stopping is possible, e.g. timeout.

@ A physical expression may have multiple version, with different properties.
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Cascades

Will discuss only at a very high level.

Cascades makes the following changes to Volcano:
o Handles transformation and implementation rules in the same phase.

@ Replaces recursive call with stack-based processing: allows control over
the order of operations.

@ Breaks down each rule application into smaller steps, each becomes a
separate task, to be placed on the stack.

This allows for a more aggressive cost-based pruning.
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Discussion

@ Volcano/Cascades: complex, but clean foundation in E-Graphs

o Lots of additional heuristics:
> Simplification rules: apply E; — Ep, then delete E4

» Macro rules: e.g. StarJoin(Ry,...,R,) — DPccp

o Systems implementing Cascades: SQLServer, Orca (Greenplum), Calcite.

@ Other systems: Postgres (DP), Catalyst/Spark (greedy).
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