CSE599d: Advanced Query Processing

Lecture 8: Extensible Query Optimizers

Dan Suciu

University of Washington

Review

CSE599d: Advanced QP Winter 2026 2/36

Review

0O@0000000

>-Algebras, T(Z, X)

A signature is X = {fy,fo, ..., fm}
each function symbol f; and has an arity n; > 0.

A Z-algebrais A = (A, fA, A, ...) where fI.A AT A

,1929

A X-term is an expression built from X and X.

The term algebra T (X, X) = is the X-algebra of all X terms.
The “free X-algebra” generated by X.

Dan Suciu CSE599d: Advanced QP Winter 2026 3/36

Review

[e]e] lele]ele]e]e]

Identities

An identity is a pair of terms (£, r). We write £ ~ r.

¢ = the left-hand-side L
r = the right-hand-side X;\y T y/+\z

Fix an algebra A. A substitutionis o : X — A.

‘A satisfies the identity £ = r if o(£) = o (r) for all o ‘ Notation: A =€ ~r

o (x,y,2) — (5,2,6), then o(7y =13, o) =13.
Y 7

Dan Suciu CSE599d: Advanced QP Winter 2026 4/36

Review
[e]e]e] lelelelele)

Volcano/Cascad

Semantic Consequence
Fix a set of identities E.

An identity s ~ t is a semantic consequence of E if:

For every X-algebra A: ‘ifA =EthenAl=s~t ‘

We write ~g for the semantic consequences of E.

It turns out that we can describe ~g in terms of reductions.

Dan Suciu CSE599d: Advanced QP Winter 2026 5/36

The Reduction Relation

Review in class the reduction —g.

* *

—f |and | & |extend —F and are:

o is a substitution o : X — T(Z, X).

Dan Suciu CSE599d: Advanced QP Winter 2026 6/36

Review
[e]e]e]e] Telelele)

The Reduction Relation

Review in class the reduction —g.

* *

—f |and | & |extend —F and are:

Reflexive t i>E t; S s also Symmetric

.o, . * * . . *
Transitive s —g t,t —¢ u implies s —¢ u.

o is a substitution o : X — T(Z, X).

Dan Suciu CSE599d: Advanced QP Winter 2026 6/36

Review

[e]e]e]e] elelele]

The Reduction Relation

Review in class the reduction —g.

* *

—f |and | & |extend —F and are:

Reflexive t i>E t; S s also Symmetric

.o, . * * . . *
Transitive s —g t,t —¢ u implies s —¢ u.

f . f

Congruence If sq —*>E H,...,8n —*>E ththen: T~ = T

s1 sn t th

o is a substitution o : X — T(Z, X).

Dan Suciu CSE599d: Advanced QP Winter 2026 6/36

Review

[e]e]e]e] elelele]

The Reduction Relation

Review in class the reduction —f.

*
—E

and

%
4

extend — £ and are:

Reflexive t i>E t; S s also Symmetric

.o, . * * . . *
Transitive s —g t,t —¢ u implies s —¢ u.

f

f
T h

Congruence If sq —*>E H,...,8n —*>E ththen: T i>,:- T~
t-

st s

Closed under substitutions' If s — t € E, then o7 (s) Se o (t) for all o

*

Theorem [Birkoff] ~f is the same as < E

o is a substitution o : X — T(Z, X).

Dan Suciu CSE599d: Advanced QP Winter 2026 6/36

Review i-Grap! Volcano/Cascad

[e]e]e]ele] lelele]

The Word Problem

Fix 2, E.

The Word Problem: given s, t, decide whether s =g ¢

Decidable cases: semigroup, monoids, groups, lattices

Undecidable cases: Matijasevic’s strange identities; combinatory logic.

Dan Suciu CSE599d: Advanced QP Winter 2026 7136

Review

[e]e]e]ele]e] lele]

A Special Case

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s,t are also grounded) is decidable.

Dan Suciu CSE599d: Advanced QP Winter 2026 8/36

Review

[e]e]e]ele]ele] Je]

Relational Algebra v.s. a X-algebra

Y ={o,I1,, U, —}. However:
@ Some operations are undefined: R U S when R, S have different schemas.
@ Some operations have parameters: o, (R) where p is some predicate.
o Template identities: R a-g S ~ S g4 R for every choice of A, B.

Could fix the theory. Volcano/Cascades just ignore these rough spots.

Dan Suciu CSE599d: Advanced QP Winter 2026 9/36

Review

[e]e]e]ele]ele]e]]

No Complete Identities for Relational Algebra!

Query equivalence, Q = Q’, means: Q(D) = Q’(D) for any database D.

Fact There is no r.e.2 E for which ~¢ coincides with =.

Because:
@ Q = Q' is undecidable

@ ~fpisre.
@ =is co-re.

o If ~¢ conicides with =, then they were decidable

ZRecursively enumerable (e.g. templates).

Dan Suciu CSE599d: Advanced QP Winter 2026 10/36

E-Graphs
©0000000000000

E-Graphs

CSE599d: Advanced QP Winter 2026 11/36

E-Graphs

0O@®000000000000

Overview

E-graphs are keeping all intermediate steps of a rewrite sequence
§ — 84 — Sp — -+ - in a compact data structure.

This part is based on the book [Baader and Nipkow, 1999] and the egg
paper [Willsey et al., 2021].

Dan Suciu CSE599d: Advanced QP Winter 2026 12/36

E-Graphs
00@00000000000

Term Graph

Term Graph is a DAG sharing common subexpressions:

Dan Suciu CSE599d: Advanced QP Winter 2026 13/36

E-Graphs

000@0000000000

E-Graph

An E-graph G consists of:

@ A setof E-classes ¢1,Co, .. .,

@ ... where each E-class c is a set of E-nodes ¢ = {vy,vo,...},

@ ...and each e-node is a pair (f, (¢, ...,Cj)) where
feZX cy,...,cj are E-classes, and k = the arity of f.

Dan Suciu CSE599d: Advanced QP Winter 2026 14/36

E-Graphs

0O000@000000000

Each class ¢ represents a set of terms:
terms(c3) = a,
terms(c4) = b

terms(cz) = {f(b),g(a,a)}

terms(cq) = {f(f(b)).f(g(a,a)).g(f(b),b).g(9(a,a). b)}

terms(G) = the set of all terms represented by all E-classes.

Dan Suciu CSE599d: Advanced QP Winter 2026 15/36

E-Graphs Volcano/(

[e]e]e]ele] lelelelele]e]e]e)

Congruence Closure

terms(cy) = 277?

terms(cp) = ?777?

Dan Suciu CSE599d: Advanced QP Winter 2026 16/36

E-Graphs

[e]e]e]ele] lelelelele]e]e]e)

Congruence Closure

terms(cq) = {f(a),g(b,f(b))}

terms(cp) = ?777?

Dan Suciu CSE599d: Advanced QP

Winter 2026

16/36

E-Graphs

[e]e]e]ele] lelelelele]e]e]e)

terms(cq) = {f(a),g(b,f(b))}

terms(cz) = {g(b,f(b)).f(c)}

Dan Suciu CSE599d: Advanced QP Winter 2026 16/36

E-Graphs

[e]e]e]ele] lelelelele]e]e]e)

Congruence Closure

terms(cy) = {f(a),g(b,f(b))}
terms(cz) = {g(b,f(b)),f(c)}

Common term g(b, f(b))

Dan Suciu CSE599d: Advanced QP Winter 2026 16/36

E-Graphs

[e]e]e]ele] lelelelele]e]e]e)

terms(cy) = {f(a),g(b,f(b))} Congruence closure of the E-graph
terms(cz) = {g(b,f(b)),f(c)}

Common term g(b, f(b))

Dan Suciu CSE599d: Advanced QP Winter 2026 16/36

E-Graphs

[e]e]e]ele] lelelelele]e]e]e)

terms(cy) = {f(a),g(b,f(b))} Congruence closure of the E-graph
terms(cz) = {g(b,f(b)),f(c)} We inferred: f(a) = f(c)
Common term g(b, f(b))

Dan Suciu CSE599d: Advanced QP Winter 2026 16/36

E-Graphs
0O00000®0000000

Congruence Closure

An E-graph defines the following relation on terms(G):

‘ s ~g t if exists E-class ¢ such that s, t € terms(c) ‘

Dan Suciu CSE599d: Advanced QP Winter 2026 17/36

E-Graphs

0O00000®0000000

Congruence Closure

An E-graph defines the following relation on terms(G):

‘ s ~g t if exists E-class ¢ such that s, t € terms(c) ‘

We say that G is closed under congruence if ~g is a congruence on terms(G):

@ ~g is an equivalence relation, and

e iff(sq,...,8n),f(ty,...,ty) € terms(G)
and sy ~g }4,S2 ~g bo, ..., then f(s1,...,8p) ~g f(t,...,tn).

Dan Suciu CSE599d: Advanced QP Winter 2026 17/36

E-Graphs

0O00000®0000000

Congruence Closure

An E-graph defines the following relation on terms(G):

‘ s ~g t if exists E-class ¢ such that s, t € terms(c) ‘

We say that G is closed under congruence if ~g is a congruence on terms(G):

@ ~g is an equivalence relation, and

e iff(sq,...,8n),f(ty,...,ty) € terms(G)
and sy ~g }4,S2 ~g bo, ..., then f(s1,...,8p) ~g f(t,...,tn).

Congruence closure algorithm: modifies G to ensure that ~g is a congruence.

Dan Suciu CSE599d: Advanced QP Winter 2026 17/36

E-Graphs
[e]e]e]ele]ele] elele]ele]e)

Approaches to the Word Problem

Input: E, s, t Question: is S =g t?

Dan Suciu CSE599d: Advanced QP Winter 2026 18/36

E-Graphs
[e]e]e]ele]ele] elele]ele]e)

Approaches to the Word Problem

Input: E, s, t Question: is S =g t?

Common term?
S —fF s —E S2 —F
TRS approach t Of n oE @ SE Then s ~¢ t.

Dan Suciu CSE599d: Advanced QP Winter 2026 18/36

E-Graphs

[e]e]e]ele]ele] elele]ele]e)

Approaches to the Word Problem

Input: E, s, t Question: is S =g t?
Common term?
s —F S1 —F So —E cee
TRS approach t oe o oE ¢ o Then s ~¢ t.

‘ E-graph approach ‘ encode many derivations in the E-graph:

s uq us us Uy
us Ug ..
uz ug

Dan Suciu CSE599d: Advanced QP Winter 2026 18/36

E-Graphs Volcano/(

[e]e]e]ele]ele] elele]ele]e)

Approaches to the Word Problem

Input: E, s, t Question: is S =g t?
Common term?
s —F S1 —F So —E cee
TRS approach t oe o oE ¢ o Then s ~¢ t.

‘ E-graph approach ‘ encode many derivations in the E-graph:

s uq us us Uy
us Ug ..
uz ug

t—— -

Both approaches assume that E is directed.

Dan Suciu CSE599d: Advanced QP Winter 2026 18/36

E-Graphs
0O0000000e00000

Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s =¢ t:

Initialize the E-graph with s, t.

Dan Suciu CSE599d: Advanced QP Winter 2026 19/36

E-Graphs
0O0000000e00000

Solving the Word Problem with E-graphs
The Equality Saturation Algorithm To check s =¢ t:

Initialize the E-graph with s, t.

o Find (¢,r) € E such that ¢ “matches” the E-graph.
Meaning: 3 class ¢, substitution o, s.t. o7 (£) € terms(c).

Dan Suciu CSE599d: Advanced QP Winter 2026 19/36

E-Graphs
0O0000000e00000

Solving the Word Problem with E-graphs
The Equality Saturation Algorithm To check s =¢ t:

Initialize the E-graph with s, t.

o Find (¢,r) € E such that ¢ “matches” the E-graph.

Meaning: 3 class ¢, substitution o, s.t. o7 (£) € terms(c).

@ Add o (r) to G, ¢ := c U {root(co(r))}.

Dan Suciu CSE599d: Advanced QP Winter 2026

19/36

E-Graphs
0O0000000e00000

Solving the Word Problem with E-graphs
The Equality Saturation Algorithm To check s =¢ t:

Initialize the E-graph with s, t.

o Find (¢,r) € E such that ¢ “matches” the E-graph.

Meaning: 3 class ¢, substitution o, s.t. o7 (£) € terms(c).

@ Add o (r) to G, ¢ := c U {root(co(r))}.
@ Perform congruence closure

@ Repeat.

Dan Suciu CSE599d: Advanced QP Winter 2026

19/36

E-Graphs

0O0000000e00000

Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s =¢ t:

Initialize the E-graph with s, t.

o Find (¢,r) € E such that ¢ “matches” the E-graph.
Meaning: 3 class ¢, substitution o, s.t. o7 (£) € terms(c).

@ Add o (r) to G, ¢ := c U {root(co(r))}.
@ Perform congruence closure

@ Repeat.

When (and if!) it terminates, check

Dan Suciu CSE599d: Advanced QP Winter 2026 19/36

E-Graphs
000000000 e0000

Example from [Baader and Nipkow, 1999]

E =] g(x) ~f(f(x)) Check |g(f(a)) ~& f(g(a)) |
c]I,——]

)

C?:f_ _J}

I
<
~|

5

|
|
N

Dan Suciu CSE599d: Advanced QP Winter 2026 20/36

E-Graphs
000000000 e0000

Example from [Baader and Nipkow, 1999]

E =[g00 ~ F(F(x)) Check[g(F(a) ~¢ F(g(a)) |
c]I,——}

1N g(x) — f(f(x))

P

l_?JI o(x) =co

CT —} Insert f(f(c2))

I~

Dan Suciu CSE599d: Advanced QP Winter 2026 20/36

E-Graphs

000000000 e0000

Example from [Baader and Nipkow, 1999]

E =] g(x) = f(f(x))

_@J () = F(F(x))

gj}, o(x) =co
‘2 Insert f(f(cp))

Dan Suciu

Check|g(f(a)) ~¢ f(g(a))]

 —~ New
E-node
=)
Y-
MO

—F/
New
E-class,
E-node

1
|
-~

\

N\ 2

—=N
|

CSE599d: Advanced QP Winter 2026 20/36

E=[g00) ~f(f(x))

_@, 9(x) = F(F()

gj}, o(x) =co
‘2 Insert f(f(cp))

Dan Suciu

E-Graphs
000000000 e0000

Example from [Baader and Nipkow, 1999]

Check |g(f(a)) ~¢ f(g(a)) |
Stuck! Need to close E under symmetry

Ir____ Enode
[i)
o\
omO)
—
l_ J ‘
New
E-class,
E-node

-
|

1
|
-~

CSE599d: Advanced QP Winter 2026 20/36

E-Graphs

000000000 e0000

Example from [Baader and Nipkow, 1999]

E =] g(x) = f(f(x))
f(f(x)) ~ g(x)

N g(x) - f(f(x))

gj}, o(x) =co
‘2 Insert f(f(cp))

Dan Suciu

Check |g(f(a)) ~¢ f(g(a)) |
Stuck! Need to close E under symmetry

Ir____ Enode
[i)
o\
omO)
—
l_ J ‘
New
E-class,
E-node

-
|

1
|
-~

CSE599d: Advanced QP Winter 2026 20/36

E-Graphs

000000000 e0000

Example from [Baader and Nipkow, 1999]

E=[g00) ~f(f(x))
F(F(x)) ~ g(x)

Cr =2y
|

N g(x) - f(f(x))

_?J o(x) =co
‘2 Insert f(f(cp))

Dan Suciu

Check |g(f(a)) ~¢ f(g(a)) |
Stuck! Need to close E under symmetry

%Q--@S . f(f(x)) > g(x)
o
1@
T e
|

o(x) =c3
Insert g(c3)

CSE599d: Advanced QP Winter 2026 20/36

E-Graphs

000000000 e0000

Example from [Baader and Nipkow, 1999]

E=[g00) ~f(f(x))
F(F(x)) ~ g(x)

Cr =2y
|

N g(x) - f(f(x))

_?J o(x) =co
‘2 Insert f(f(cp))

Dan Suciu

Check |g(f(a)) ~¢ f(g(a)) |
Stuck! Need to close E under symmetry

%Q--@S . f(f(x)) > g(x)
o
1@
T e
|

o(x) =c3
Insert g(c3)

CSE599d: Advanced QP Winter 2026 20/36

E-Graphs

000000000 e0000

Example from [Baader and Nipkow, 1999]

E=[g00 ~ 1(i(x)) Check [g((a) ~¢ F(g(a)) |
f(f(x)) =~ g(x) Stuck! Need to close E under symmetry

CGr = E-node

W 900 — (7(0) %D__@X? F(f(x)) = g
ESN ' |

l_?) o(x) =co g? =7 o(x) =03
CT 1 Insert f(f(c2)) o e) Insert g(C3)

NS)l

g(f(a)) € terms(cy) and also f(g(a)) € terms(cy)

Hence g(f(a)) ~g f(g(a)) which implies g(f(a)) ~¢ f(g(a)).

Dan Suciu CSE599d: Advanced QP Winter 2026 20/36

E-Graphs

0000000000000

Discussion (1/2)

The Equality Saturation Algorithm ensures that s ~g t implies s ~¢ t.

Converse fails for multiple reasons:

o E istreated as asymmetrically and may fail to trigger.

@ ~g is an equivalence relation only on terms(G).
Called Partial Equivalence Relation, PER; also partial congruence.

Dan Suciu CSE599d: Advanced QP Winter 2026 21/36

E-Graphs

00000000000 e00

Discussion (2/2)
(® }
E-graphs can avoid some non-terminating reductions:, it‘
E.g. commutativity: ST
@ ®

Non-termination can still happen, e.g. g(x) = g(f(x)):
Leads to g(a) ~ g(f(a)) ~ g(f(f(a))) ~ - -

Direction of the identities in E may affect termination: e.g. g(f(x)) = g(x).

No good theory exists for understanding termination.

Dan Suciu CSE599d: Advanced QP Winter 2026 22/36

E-Graphs

0000000000000

Special Case: Grounded Identities

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s, t are also grounded) is decidable.

Dan Suciu CSE599d: Advanced QP Winter 2026 23/36

E-Graphs

0000000000000

Special Case: Grounded Identities

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s, t are also grounded) is decidable.

Proof Initialize E-graph with s, t, and all sub-terms of terms E.

Make E symmetric: £ —g rand r —g £.

Dan Suciu CSE599d: Advanced QP Winter 2026 23/36

E-Graphs

0000000000000

Special Case: Grounded Identities

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s, t are also grounded) is decidable.

Proof Initialize E-graph with s, t, and all sub-terms of terms E.
Make E symmetric: £ —g rand r —g £.
Equality saturation never needs to insert new E-nodes in G

Hence the congruence closure algorithm terminates
. * . .
and ~g is the same as <»>g on terms(G) (because E is symmetric).

Dan Suciu CSE599d: Advanced QP Winter 2026 23/36

E-Graphs
0000000000000 e

Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

Dan Suciu CSE599d: Advanced QP Winter 2026 24/36

E-Graphs
0000000000000 e

Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

=N
|
)

=)

J

=20 - =0

IN) L

,_
|

Dan Suciu CSE599d: Advanced QP Winter 2026 24/36

E-Graphs
0000000000000 e

Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

|
=)

J

Q=D
§

f(f(f(a) — a

=0 ~=0
1NN

,_
|

Dan Suciu CSE599d: Advanced QP Winter 2026 24/36

E-Graphs
0000000000000 e

Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

|
=)

J

Q=D
§

f(f(f(a) — a

=)

=20 - =0

IN) L

,_
|

Dan Suciu CSE599d: Advanced QP Winter 2026 24/36

E-Graphs
0000000000000 e

Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

|
=)

Q=D
§

J

J

f(f(f(a))) — a f(f(a)) — a

~=2
|
(A=)

Dan Suciu CSE599d: Advanced QP Winter 2026 24/36

E-Graphs
0000000000000 e

Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

|
=)

Q=D
§

J

J

f(f(f(a))) — a f(f(a)) — a

~=2
|
(A=)

Dan Suciu CSE599d: Advanced QP Winter 2026 24/36

E-Graphs

0000000000000 e

Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a))) ~ a
0 oo olole)
X f(f(f(a))) — a @ f(f(a)) — a

=20 - =0

XA
|
[N

IN) L
|
§

(S

f(f(f(a) — a

Dan Suciu CSE599d: Advanced QP Winter 2026 24/36

E-Graphs

0000000000000 e

Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

|
=)

5o

Q=D
§
BN

O

J

f(f(f(a))) — a f(f(a)) — a

=0 ~=0
1NN
i
|

,_
|

Dan Suciu CSE599d: Advanced QP Winter 2026 24/36

E-Graphs

0000000000000 e

Example from [Baader and Nipkow, 1999]

E=|f(f(a) ~a Check if| f(a) ~¢ a

f(f(f(a)) ~ a

|
=)

A -=2
)l
=
|

J

|
| |
=

f(f(f(a))) — a f(f(a)) — a

O
S

=)

=20 - =0

IN) L

(S

CSE599d: Advance: Winter 2026 24/36

Volcano/Ca es

®00000000000

Volcano/Cascades

CSE599d: Advanced QP Winter 2026 25/36

Volcano/Cascades
080000000000

Overview

Lecture mostly based on [Ding et al., 2024]

Volcano:

@ Introduced in [Graefe, 1994]; more details [McKenna, 1993]

@ Logical rules: equality saturation; physical rules: branch-and-bound.

Cascades
@ Introduced in [Graefe, 1995]; more details [Xu, 1998]
@ Combines the two phases of Volcano.
@ Adoption: SQLServer, Calcite, CockroachDB

Dan Suciu CSE599d: Advanced QP Winter 2026 26/36

Volcano/Cascades

O0@000000000

Terminology (1/2)

Logical Property of an expression: e.g. estimated cardinality
Physical Property of an expression: interesting sort order, partition.
Logical Operators e.g. <, o, I, 3«

Physical Operators e.g. HashJoin, MergeJoin, IndexScan,

Enforcers e.g. Sort, Partition.

Dan Suciu CSE599d: Advanced QP Winter 2026 27136

Volcano/Cascades

[e]e]e] le]elele]ele]e]e]

Terminology (2/2)
Rule = (CheckPattern, Transform):
@ Transformationrule,e.g. RS — SxR
@ Implementation rule,e.g. RS — R HashJoin S
Memo = E-Graph
Group or Class = E-Class

Expression = E-Node

Dan Suciu CSE599d: Advanced QP Winter 2026 28/36

E-Graph o Volcano/Ca es

[e]e]e]e] lelelelele]e]e]

Volcano

1. Generation Phase: repeatedly applies transformation rules until saturation.

2. Cost Analysis Phase: applies implementation rules, using a cost Limit

Dan Suciu CSE599d: Advanced QP Winter 2026 29/36

R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

The Memo mnd S oTe

andT.D=5

R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

The Memo mnd S oTe

andT.D=5

Initialize Memo
w/ one (naive)

R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

and S.C=T.C
| | The Memo and .-
[il/ ' ScanR] and T.D=5

Initialize Memo
w/ one (naive)

R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

The Memo and S.0-T.C

andT.D=5

[/1 [scanRr |]
~ = Initialize Memo

[‘/ 2) | SelectiA=3]1] w/ one (naive)

| S —

R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

and S.C=T.C
| The Memo and 8.C=T.
(1) | ScanR | andT.D=5
[U] i Initialize Memo
[Q/ Select[A=3] 1 \] w/ one (naive)
- plan @
[@ Scan S ‘] O-D_S
(4) [JoinB=82,3 | ©
[k{ - :] o/ X¢
(5) ScanT | et
o/ &) Mg -
o= /7T
6 Join[C=C] 4,5] @ \‘
7\ (S O4=3 O] T
[w Select[D=5] 6 \] S

o
R

R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

d S.C=T.C
_ The Memo :gd RA=3
[@ (scanR |] andTD=5
[Q/ | Select[A=3] 1 |]
@
[@ (Scan S]] O-D=5
[/Q) :Join[B=Ié] 2, 3\] . Nc
@ Scan T [; \
B
[@/ | Join[C=C] 4,5 |] / \
[QJ | Select[D=5] 6] JA, 3

R(A,B), S(B,C), T(C,D)

The Memo

[@ ' ScanR \]
- - Apply an
[@ Select[A=3] 1] optimization -
— - rule >
[Q/ Scan S] Op=
o= :
/&{ L— / X
@ ScanT | @
/ N\ [/ M B
[@ Join[C=C] 4,5]
- '\\“ (S _ ‘ O-A 3
[@ elect[D=5] 6] - S
@

R

select *

fromR,S, T

where R.B=S.B
and S.C=T.C
and RA=3
andT.D=5

R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

and S.C=T.C
- The Memo and 8.C=T.
[w ScanR |] andT.D=5
[\, Apply an
[@ Select[A=3] 1] optimization
——— - rule
[@ Scan S] X \
7\ P
[w Join[B=B] 2, 3 \] /
5) [scanT| @
b can M
[@/ ' Join[C=C] 4,5] \ T
— \ o o
[Q/ Select[D=5] 6 \] A=3 S

R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

d S.C=T.C

_ The Memo :zd R.A=3
[@ (scanR |] andTD=5
[Q/ | SelectjA=3] 1 |] .
[@ ' scans |] o) \
ORE=—0) /

@ /ScanT\

[@/ ' Join[C=C] 4,5] \

O
[QJ | Select[D=5] 6] JA,=3 S

®

(8 [seecp=5s | R

R(A,B), S(B,C), T(C,D) select *
fromR,S, T
where R.B=S.B

d S.C=T.C
- The Memo :gd R.A=3
[1) [seanR]] andTD=5
[@ ' Select[A=3] 1] ’
[@ {ScanSW]
O™ /

Scan T

6 | Join[C=C] 4,5 |]

G

)@
1
\

,C/w

' Select(D=5]6 | | Join[C=C] 4,8 |]

8) | Select[D=5]5 |] R

\
4

N Y
P\

)| ~)
4

R(A,B), S(B,C), T(C,D) select *
fromR, S, T
where R.B=S.B

The Memo ARAns

(1) [senr) | andTD=5
[@ (Select[A=3] 1 |]
[@ (Scan s |] NC \
[@ Join[B=B] 2, 3 |] /

[\ ()

) S

@ can T [>4
(o) womcci4s | "\ T

— - G, ©
[b Select[D=5]6 | Join[C=C] 4,8 j] O-A,_3 S
[/8\\ (Select[D=5] 5] R

R(A,B), S(B,C), T(C,D) select *
fromR, S, T
where R.B=S.B
The Memo ARAns
(1) [senr) | andTD=5
[@ (Select[A=3] 1 |]
[) @
[@ Scan S] NC
[@ Join[B=B] 2, 3 |]
2\ (Y @
5) Scan T
g — / Mg ®
[@/ Join[C=C] 4,5] @ Op=s5
7\ Ve N S O.A=3
[w Select[D=5]6 | Join[C=C] 4,8 j] | ® .
ya —————— @ :
[8\\ Select[D=5] 5] R S T

R(A,B), S(B,C), T(C,D)

(1 (sanr |
[Q/ ' Select[A=3] 1]
[Q/ /ScanS\]

~
/

| Join[C=C] 4,5]

G

The Memo

Apply another
rule

' Select(D=5]6 | | Join[C=C] 4,8 |]

\
y

N Y
P\
)| ~)

(8) ' Select[D=5] 5]

select *

fromR,S, T

where R.B=S.B
and S.C=T.C
and RA=3
andT.D=5

R(A,B), S(B,C), T(C,D)

The Memo
(1) [senr |
[(2) [soeotn=sii]]
((a) [sems | NB
D=1
Va -] (] (4
[UJ | Select[D=5]6 | | Join[C=C]4,8 | | Join[B=E] 2,9j] |
/"\\ (R r—— Q/R
OR"=0) OR=m)

select *

fromR,S, T

where R.B=S.B
and S.C=T.C
and RA=3
andT.D=5

N
4

Volcano/Cascades

000008000000

Volcano: Generation Phase

[Ding et al., 2024] Top Down equality saturation:

1: function GENERATELOGICALEXPR(LogEzpr, Rules) > Generation phase
2 for Child in inputs of LogEzpr do

3 if Group(Child) ¢ Memo then

4: GenerateLogical Expr(Child) > Update memo
5: MatchTransRule(LogExzpr, Rules)

6: function MATCHTRANSRULE(LogEzpr, Rules) > Apply transformation rules
7 for rule in Rules do

8 if rule matches LogEzpr then

9

NewLogExpr <+ Transform(LogEzpr,rule) > Update memo and
record the neighbors

10: GenerateLogical Ezpr(NewLogEzpr) > Only invoke if
NewLogEzpr is not previously in memo

Small bug: GeneratelLogicalExpr should have Rules as parameter.

Dan Suciu CSE599d: Advanced QP Winter 2026 30/36

Volcano/Cascades

O00000@00000

Volcano: Cost Analysis Phase
FindBestPlan: Logical Expression — Physical plan

FindBestPlan(Group,Limit) by example:

Dan Suciu CSE599d: Advanced QP Winter 2026 31/36

Volcano/Cascades

O00000@00000

Volcano: Cost Analysis Phase
FindBestPlan: Logical Expression — Physical plan

FindBestPlan(Group,Limit) by example:

@ For each Expr € Group e
1 2

Dan Suciu CSE599d: Advanced QP Winter 2026 31/36

Volcano/Cascades

Volcano: Cost Analysis Phase
FindBestPlan: Logical Expression — Physical plan

FindBestPlan(Group,Limit) by example:

>

@ For each Expr € Group e
1 2

. . HashJoin
@ Apply an implementation rule g
1

Dan Suciu CSE599d: Advanced QP

O00000@00000

Cost =100

Winter 2026

31/36

Volcano/Cascades

Volcano: Cost Analysis Phase
FindBestPlan: Logical Expression — Physical plan

FindBestPlan(Group,Limit) by example:

>

@ For each Expr € Group e

1 2
@ Apply an implementation rule ;%mj\j; Cost = 100
o FindBestPlan(gs,Limit — 100) 2 Cost=2100

Dan Suciu CSE599d: Advanced QP Winter 2026 31/36

Volcano/Cascades

Volcano: Cost Analysis Phase
FindBestPlan: Logical Expression — Physical plan

FindBestPlan(Group,Limit) by example:

>

@ For each Expr € Group e

@ Apply an implementation rule ;%mj\m;z Cost = 100
o FindBestPlan(gs,Limit — 100) 2 Cost=2100
@ FindBestPlan(gs,Limit — 2100) ;:/Shj%l Cost = ...

Dan Suciu CSE599d: Advanced QP Winter 2026 31/36

Volcano/Cascades

Volcano: Cost Analysis Phase
FindBestPlan: Logical Expression — Physical plan

FindBestPlan(Group,Limit) by example:

>

@ For each Expr € Group e

@ Apply an implementation rule ;%mj\m;z Cost = 100
o FindBestPlan(gs,Limit — 100) 2 Cost=2100
@ FindBestPlan(gs,Limit — 2100) ;:/Shj%l Cost = ...

@ Whenever Cost > Limit stop and return NULL

Dan Suciu CSE599d: Advanced QP Winter 2026 31/36

Volcano/Cascades

[e]e]e]e]e]ele] Jelele]e]

Volcano: Cost Analysis Phase (Very Simplified)

Function FindBestPlan(Group, Limit)

if Limit < O then return Null;

Plan, Cost := LookUpMemo(Group)

if Cost # Null then

if Cost < Limit then return Plan,Cost ;
else return NULL;

Cost := oo;
for Expr € Group, r € ImplementationRules(Expr) do
Pln,Cst :=r.0Op,r.Cost ; // Start new plan with r.Op

for Grp € Children(Expr) do
| Pln,Cst += FindBestPlan(Grp,Limit — Cst)
if Success all children? then Plan, Cost,Limit := P1n, Cst,Cst;;
InsertMemo(Group, Plan, Cost)
return (Plan, Cost)

Dan Suciu CSE599d: Advanced QP Winter 2026 32/36

Volcano/Cascades

0O0000000e000

Volcano: Cost Analysis Phase (Visual Representation)

Group

Expr... Expr

Rule ... Rule
Childy Childp

Limity > Limito > Limitg > ---

When Cost > Limit, prune the search.

Dan Suciu CSE599d: Advanced QP Winter 2026 33/36

Volcano/Cascades

000000000800

Discussion

@ Generation phase is straightforward: saturate the whole E-Graph.

o Cost-analysis phase: prunes the search based on cost. In addition:

> Store applicable implementation rules in a set of Moves
» Sort Moves by “promise”, to find better plans first.

> Early stopping is possible, e.g. timeout.

@ A physical expression may have multiple version, with different properties.

Dan Suciu CSE599d: Advanced QP Winter 2026 34/36

E-Graphs Volcano/Cascades

000000000080

Cascades

Will discuss only at a very high level.

Cascades makes the following changes to Volcano:
o Handles transformation and implementation rules in the same phase.

@ Replaces recursive call with stack-based processing: allows control over
the order of operations.

@ Breaks down each rule application into smaller steps, each becomes a
separate task, to be placed on the stack.

This allows for a more aggressive cost-based pruning.

Dan Suciu CSE599d: Advanced QP Winter 2026 35/36

Volcano/Cascades

0O0000000000e

Discussion

@ Volcano/Cascades: complex, but clean foundation in E-Graphs

o Lots of additional heuristics:
> Simplification rules: apply E; — Ep, then delete E4

» Macro rules: e.g. StarJoin(Ry,...,R,) — DPccp

o Systems implementing Cascades: SQLServer, Orca (Greenplum), Calcite.

@ Other systems: Postgres (DP), Catalyst/Spark (greedy).

Dan Suciu CSE599d: Advanced QP Winter 2026 36/36

Volcano/Ca:
00000000000

Baader, F. and Nipkow, T. (1999).

Term Rewriting and All That
Cambridge University Press, USA.

Ding, B., Narasayya, V. R., and Chaudhuri, S. (2024).
Extensible query optimizers in practice.

Found. Trends Databases, 14(3-4):186-402.

Graefe, G. (1994).

Volcano - an extensible and parallel query evaluation system.
IEEE Trans. Knowl. Data Eng., 6(1):120-135.

Graefe, G. (1995).

The cascades framework for query optimization.

IEEE Data Eng. Bull., 18(3):19-29.

McKenna, W. J. (1993).

Efficient Search in Extensible Query Optimization: The Volcano Optimizer Generator.
PhD thesis, University of Colorado-Boulder.

Willsey, M., Nandi, C., Wang, Y. R., Flatt, O., Tatlock, Z., and Panchekha, P. (2021).

egg: Fast and extensible equality saturation.
Proc. ACM Program. Lang., S(POPL):1-29.

T T 7 A 1

Xu, Y. (1998).
Efficiency in the Columbia Database Query Optimizer.

PhD thesis, Portland State University.

Winter 2026 36/36

	Review
	E-Graphs
	Volcano/Cascades

