
CSE599d: Advanced Query Processing

Lecture 8: Extensible Query Optimizers

Dan Suciu

University of Washington

Review E-Graphs Volcano/Cascades

Review

Dan Suciu CSE599d: Advanced QP Winter 2026 2 / 36

Review E-Graphs Volcano/Cascades

Σ-Algebras, T (Σ,X)

A signature is Σ = {f1, f2, . . . , fm}
each function symbol fi and has an arity ni ≥ 0.

A Σ-algebra is A = (A, fA
1 , f

A
2 , . . . , f

A
m) where fA

i : Ani → A.

A Σ-term is an expression built from Σ and X .

The term algebra T (Σ,X) = is the Σ-algebra of all Σ terms.
The “free Σ-algebra” generated by X .

Dan Suciu CSE599d: Advanced QP Winter 2026 3 / 36

Review E-Graphs Volcano/Cascades

Identities

An identity is a pair of terms (ℓ, r). We write ℓ ≈ r .

ℓ = the left-hand-side
r = the right-hand-side

+

+

x y

z ≈
+

x +

y z

Fix an algebra A. A substitution is 𝜎 : X → A.

A satisfies the identity ℓ ≈ r if 𝜎(ℓ) = 𝜎(r) for all 𝜎 Notation: A |= ℓ ≈ r

𝜎 : (x, y, z) ↦→ (5, 2, 6), then 𝜎(
+

+

x y

z) = 13, 𝜎(
+

x +

y z

) = 13.

Dan Suciu CSE599d: Advanced QP Winter 2026 4 / 36

Review E-Graphs Volcano/Cascades

Semantic Consequence

Fix a set of identities E.

An identity s ≈ t is a semantic consequence of E if:

For every Σ-algebra A: if A |= E then A |= s ≈ t

We write ≈E for the semantic consequences of E.

It turns out that we can describe ≈E in terms of reductions.

Dan Suciu CSE599d: Advanced QP Winter 2026 5 / 36

Review E-Graphs Volcano/Cascades

The Reduction Relation

Review in class the reduction →E .
∗→E and ∗↔ extend →E and are:

Reflexive t ∗→E t; ∗↔ is also Symmetric

Transitive s ∗→E t, t ∗→E u implies s ∗→E u.

Congruence If s1
∗→E t1, . . . , sn

∗→E tn then:
f

s1 · · · sn

∗→E
f

t1 · · · tn

Closed under substitutions1 If s → t ∈ E, then 𝜎(s) ∗→E 𝜎(t) for all 𝜎

Theorem [Birkoff] ≈E is the same as ↔∗
E

1𝜎 is a substitution 𝜎 : X → T (Σ,X).
Dan Suciu CSE599d: Advanced QP Winter 2026 6 / 36

Review E-Graphs Volcano/Cascades

The Reduction Relation

Review in class the reduction →E .
∗→E and ∗↔ extend →E and are:

Reflexive t ∗→E t; ∗↔ is also Symmetric

Transitive s ∗→E t, t ∗→E u implies s ∗→E u.

Congruence If s1
∗→E t1, . . . , sn

∗→E tn then:
f

s1 · · · sn

∗→E
f

t1 · · · tn

Closed under substitutions1 If s → t ∈ E, then 𝜎(s) ∗→E 𝜎(t) for all 𝜎

Theorem [Birkoff] ≈E is the same as ↔∗
E

1𝜎 is a substitution 𝜎 : X → T (Σ,X).
Dan Suciu CSE599d: Advanced QP Winter 2026 6 / 36

Review E-Graphs Volcano/Cascades

The Reduction Relation

Review in class the reduction →E .
∗→E and ∗↔ extend →E and are:

Reflexive t ∗→E t; ∗↔ is also Symmetric

Transitive s ∗→E t, t ∗→E u implies s ∗→E u.

Congruence If s1
∗→E t1, . . . , sn

∗→E tn then:
f

s1 · · · sn

∗→E
f

t1 · · · tn

Closed under substitutions1 If s → t ∈ E, then 𝜎(s) ∗→E 𝜎(t) for all 𝜎

Theorem [Birkoff] ≈E is the same as ↔∗
E

1𝜎 is a substitution 𝜎 : X → T (Σ,X).
Dan Suciu CSE599d: Advanced QP Winter 2026 6 / 36

Review E-Graphs Volcano/Cascades

The Reduction Relation

Review in class the reduction →E .
∗→E and ∗↔ extend →E and are:

Reflexive t ∗→E t; ∗↔ is also Symmetric

Transitive s ∗→E t, t ∗→E u implies s ∗→E u.

Congruence If s1
∗→E t1, . . . , sn

∗→E tn then:
f

s1 · · · sn

∗→E
f

t1 · · · tn

Closed under substitutions1 If s → t ∈ E, then 𝜎(s) ∗→E 𝜎(t) for all 𝜎

Theorem [Birkoff] ≈E is the same as ↔∗
E

1𝜎 is a substitution 𝜎 : X → T (Σ,X).
Dan Suciu CSE599d: Advanced QP Winter 2026 6 / 36

Review E-Graphs Volcano/Cascades

The Word Problem

Fix Σ,E.

The Word Problem: given s, t, decide whether s ≈E t

Decidable cases: semigroup, monoids, groups, lattices

Undecidable cases: Matijasevič’s strange identities; combinatory logic.

Dan Suciu CSE599d: Advanced QP Winter 2026 7 / 36

Review E-Graphs Volcano/Cascades

A Special Case

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s, t are also grounded) is decidable.

Dan Suciu CSE599d: Advanced QP Winter 2026 8 / 36

Review E-Graphs Volcano/Cascades

Relational Algebra v.s. a Σ-algebra

Σ = {𝜎,Π,Z,∪,−}. However:

Some operations are undefined: R ∪ S when R,S have different schemas.

Some operations have parameters: 𝜎p (R) where p is some predicate.

Template identities: R ZA=B S ≈ S ZB=A R for every choice of A,B.

Could fix the theory. Volcano/Cascades just ignore these rough spots.

Dan Suciu CSE599d: Advanced QP Winter 2026 9 / 36

Review E-Graphs Volcano/Cascades

No Complete Identities for Relational Algebra!

Query equivalence, Q ≡ Q′, means: Q(D) = Q′(D) for any database D.

Fact There is no r.e.2 E for which ≈E coincides with ≡.

Because:
Q ≡ Q′ is undecidable

≈E is r.e.

≡ is co-r.e.

If ≈E conicides with ≡, then they were decidable

2Recursively enumerable (e.g. templates).
Dan Suciu CSE599d: Advanced QP Winter 2026 10 / 36

Review E-Graphs Volcano/Cascades

E-Graphs

Dan Suciu CSE599d: Advanced QP Winter 2026 11 / 36

Review E-Graphs Volcano/Cascades

Overview

E-graphs are keeping all intermediate steps of a rewrite sequence
s → s1 → s2 → · · · in a compact data structure.

This part is based on the book [Baader and Nipkow, 1999] and the egg
paper [Willsey et al., 2021].

Dan Suciu CSE599d: Advanced QP Winter 2026 12 / 36

Review E-Graphs Volcano/Cascades

Term Graph

Term Graph is a DAG sharing common subexpressions:

g

f f

a a

g

f f

a

g

f

a

Dan Suciu CSE599d: Advanced QP Winter 2026 13 / 36

Review E-Graphs Volcano/Cascades

E-Graph

An E-graph G consists of:

A set of E-classes c1, c2, . . .,

. . . where each E-class c is a set of E-nodes c = {v1, v2, . . .},

. . . and each e-node is a pair (f , (ci1 , . . . , cik)) where
f ∈ Σ, ci1 , . . . , cik are E-classes, and k = the arity of f .

Dan Suciu CSE599d: Advanced QP Winter 2026 14 / 36

Review E-Graphs Volcano/Cascades

E-Graphs

gf

a

f g

b

C1=

C2=

C3=

C4=

Each class c represents a set of terms:

terms(c3) = a,

terms(c4) = b

terms(c2) = {f (b), g(a, a)}

terms(c1) = {f (f (b)), f (g(a, a)), g(f (b), b), g(g(a, a), b)}

terms(G) = the set of all terms represented by all E-classes.

Dan Suciu CSE599d: Advanced QP Winter 2026 15 / 36

Review E-Graphs Volcano/Cascades

Congruence Closure

gf

a

C1=

fg

C2=

cb

f

terms(c1) = ????

terms(c2) = ????

Common term g(b, f (b))

gf

a

f

cb

f

Congruence closure of the E-graph

We inferred: f (a) = f (c)

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 36

Review E-Graphs Volcano/Cascades

Congruence Closure

gf

a

C1=

fg

C2=

cb

f

terms(c1) = {f (a), g(b, f (b))}

terms(c2) = ????

Common term g(b, f (b))

gf

a

f

cb

f

Congruence closure of the E-graph

We inferred: f (a) = f (c)

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 36

Review E-Graphs Volcano/Cascades

Congruence Closure

gf

a

C1=

fg

C2=

cb

f

terms(c1) = {f (a), g(b, f (b))}

terms(c2) = {g(b, f (b)), f (c)}

Common term g(b, f (b))

gf

a

f

cb

f

Congruence closure of the E-graph

We inferred: f (a) = f (c)

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 36

Review E-Graphs Volcano/Cascades

Congruence Closure

gf

a

C1=

fg

C2=

cb

f

terms(c1) = {f (a), g(b, f (b))}

terms(c2) = {g(b, f (b)), f (c)}

Common term g(b, f (b))

gf

a

f

cb

f

Congruence closure of the E-graph

We inferred: f (a) = f (c)

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 36

Review E-Graphs Volcano/Cascades

Congruence Closure

gf

a

C1=

fg

C2=

cb

f

terms(c1) = {f (a), g(b, f (b))}

terms(c2) = {g(b, f (b)), f (c)}

Common term g(b, f (b))

gf

a

f

cb

f

Congruence closure of the E-graph

We inferred: f (a) = f (c)

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 36

Review E-Graphs Volcano/Cascades

Congruence Closure

gf

a

C1=

fg

C2=

cb

f

terms(c1) = {f (a), g(b, f (b))}

terms(c2) = {g(b, f (b)), f (c)}

Common term g(b, f (b))

gf

a

f

cb

f

Congruence closure of the E-graph

We inferred: f (a) = f (c)

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 36

Review E-Graphs Volcano/Cascades

Congruence Closure

An E-graph defines the following relation on terms(G):

s ∼G t if exists E-class c such that s, t ∈ terms(c)

We say that G is closed under congruence if ∼G is a congruence on terms(G):

∼G is an equivalence relation, and

if f (s1, . . . , sn), f (t1, . . . , tn) ∈ terms(G)
and s1 ∼G t1, s2 ∼G t2, . . ., then f (s1, . . . , sn) ∼G f (t1, . . . , tn).

Congruence closure algorithm: modifies G to ensure that ∼G is a congruence.

Dan Suciu CSE599d: Advanced QP Winter 2026 17 / 36

Review E-Graphs Volcano/Cascades

Congruence Closure

An E-graph defines the following relation on terms(G):

s ∼G t if exists E-class c such that s, t ∈ terms(c)

We say that G is closed under congruence if ∼G is a congruence on terms(G):

∼G is an equivalence relation, and

if f (s1, . . . , sn), f (t1, . . . , tn) ∈ terms(G)
and s1 ∼G t1, s2 ∼G t2, . . ., then f (s1, . . . , sn) ∼G f (t1, . . . , tn).

Congruence closure algorithm: modifies G to ensure that ∼G is a congruence.

Dan Suciu CSE599d: Advanced QP Winter 2026 17 / 36

Review E-Graphs Volcano/Cascades

Congruence Closure

An E-graph defines the following relation on terms(G):

s ∼G t if exists E-class c such that s, t ∈ terms(c)

We say that G is closed under congruence if ∼G is a congruence on terms(G):

∼G is an equivalence relation, and

if f (s1, . . . , sn), f (t1, . . . , tn) ∈ terms(G)
and s1 ∼G t1, s2 ∼G t2, . . ., then f (s1, . . . , sn) ∼G f (t1, . . . , tn).

Congruence closure algorithm: modifies G to ensure that ∼G is a congruence.

Dan Suciu CSE599d: Advanced QP Winter 2026 17 / 36

Review E-Graphs Volcano/Cascades

Approaches to the Word Problem
Input: E, s, t Question: is s ≈E t?

TRS approach s →E s1 →E s2 →E · · ·
t →E t1 →E t2 →E · · ·

Common term?
Then s ≈E t.

E-graph approach encode many derivations in the E-graph:

s > u1 > u2 > u3 > u4 > · · ·

u5 >

>

u6 >

>

>

· · ·

u7
∨

> u8

∧

>
< · · ·

t > · · ·

Both approaches assume that E is directed.

Dan Suciu CSE599d: Advanced QP Winter 2026 18 / 36

Review E-Graphs Volcano/Cascades

Approaches to the Word Problem
Input: E, s, t Question: is s ≈E t?
TRS approach s →E s1 →E s2 →E · · ·

t →E t1 →E t2 →E · · ·
Common term?
Then s ≈E t.

E-graph approach encode many derivations in the E-graph:

s > u1 > u2 > u3 > u4 > · · ·

u5 >

>

u6 >

>

>

· · ·

u7
∨

> u8

∧

>
< · · ·

t > · · ·

Both approaches assume that E is directed.

Dan Suciu CSE599d: Advanced QP Winter 2026 18 / 36

Review E-Graphs Volcano/Cascades

Approaches to the Word Problem
Input: E, s, t Question: is s ≈E t?
TRS approach s →E s1 →E s2 →E · · ·

t →E t1 →E t2 →E · · ·
Common term?
Then s ≈E t.

E-graph approach encode many derivations in the E-graph:

s > u1 > u2 > u3 > u4 > · · ·

u5 >

>

u6 >

>

>

· · ·

u7
∨

> u8

∧

>
< · · ·

t > · · ·

Both approaches assume that E is directed.

Dan Suciu CSE599d: Advanced QP Winter 2026 18 / 36

Review E-Graphs Volcano/Cascades

Approaches to the Word Problem
Input: E, s, t Question: is s ≈E t?
TRS approach s →E s1 →E s2 →E · · ·

t →E t1 →E t2 →E · · ·
Common term?
Then s ≈E t.

E-graph approach encode many derivations in the E-graph:

s > u1 > u2 > u3 > u4 > · · ·

u5 >

>

u6 >

>

>

· · ·

u7
∨

> u8

∧

>
< · · ·

t > · · ·

Both approaches assume that E is directed.
Dan Suciu CSE599d: Advanced QP Winter 2026 18 / 36

Review E-Graphs Volcano/Cascades

Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s ≡E t:

Initialize the E-graph with s, t.

Find (ℓ, r) ∈ E such that ℓ “matches” the E-graph.
Meaning: ∃ class c, substitution 𝜎, s.t. 𝜎(ℓ) ∈ terms(c).

Add 𝜎(r) to G, c := c ∪ {root(𝜎(r))}.

Perform congruence closure

Repeat.

When (and if!) it terminates, check s ∼G t

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 36

Review E-Graphs Volcano/Cascades

Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s ≡E t:

Initialize the E-graph with s, t.

Find (ℓ, r) ∈ E such that ℓ “matches” the E-graph.
Meaning: ∃ class c, substitution 𝜎, s.t. 𝜎(ℓ) ∈ terms(c).

Add 𝜎(r) to G, c := c ∪ {root(𝜎(r))}.

Perform congruence closure

Repeat.

When (and if!) it terminates, check s ∼G t

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 36

Review E-Graphs Volcano/Cascades

Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s ≡E t:

Initialize the E-graph with s, t.

Find (ℓ, r) ∈ E such that ℓ “matches” the E-graph.
Meaning: ∃ class c, substitution 𝜎, s.t. 𝜎(ℓ) ∈ terms(c).

Add 𝜎(r) to G, c := c ∪ {root(𝜎(r))}.

Perform congruence closure

Repeat.

When (and if!) it terminates, check s ∼G t

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 36

Review E-Graphs Volcano/Cascades

Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s ≡E t:

Initialize the E-graph with s, t.

Find (ℓ, r) ∈ E such that ℓ “matches” the E-graph.
Meaning: ∃ class c, substitution 𝜎, s.t. 𝜎(ℓ) ∈ terms(c).

Add 𝜎(r) to G, c := c ∪ {root(𝜎(r))}.

Perform congruence closure

Repeat.

When (and if!) it terminates, check s ∼G t

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 36

Review E-Graphs Volcano/Cascades

Solving the Word Problem with E-graphs

The Equality Saturation Algorithm To check s ≡E t:

Initialize the E-graph with s, t.

Find (ℓ, r) ∈ E such that ℓ “matches” the E-graph.
Meaning: ∃ class c, substitution 𝜎, s.t. 𝜎(ℓ) ∈ terms(c).

Add 𝜎(r) to G, c := c ∪ {root(𝜎(r))}.

Perform congruence closure

Repeat.

When (and if!) it terminates, check s ∼G t

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]

E = g(x) ≈ f (f (x))

f (f (x)) ≈ g(x)

Check g(f (a)) ≈E f (g(a))

Stuck! Need to close E under symmetry

a

f

g

𝑐1

𝑐2

𝑐3

g(x) → f (f (x))

𝜎(x) = c2
Insert f (f (c2))

a

f

g f

f

New

E-class,

E-node

New

E-node

f (f (x)) → g(x)

𝜎(x) = c3
Insert g(c3) a

f

g f

f g

New

E-node

g(f (a)) ∈ terms(c1) and also f (g(a)) ∈ terms(c1)

Hence g(f (a)) ∼G f (g(a)) which implies g(f (a)) ≈E f (g(a)).

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]

E = g(x) ≈ f (f (x))

f (f (x)) ≈ g(x)

Check g(f (a)) ≈E f (g(a))

Stuck! Need to close E under symmetry

a

f

g

𝑐1

𝑐2

𝑐3

g(x) → f (f (x))

𝜎(x) = c2
Insert f (f (c2))

a

f

g f

f

New

E-class,

E-node

New

E-node

f (f (x)) → g(x)

𝜎(x) = c3
Insert g(c3) a

f

g f

f g

New

E-node

g(f (a)) ∈ terms(c1) and also f (g(a)) ∈ terms(c1)

Hence g(f (a)) ∼G f (g(a)) which implies g(f (a)) ≈E f (g(a)).

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]

E = g(x) ≈ f (f (x))

f (f (x)) ≈ g(x)

Check g(f (a)) ≈E f (g(a))

Stuck! Need to close E under symmetry

a

f

g

𝑐1

𝑐2

𝑐3

g(x) → f (f (x))

𝜎(x) = c2
Insert f (f (c2))

a

f

g f

f

New

E-class,

E-node

New

E-node

f (f (x)) → g(x)

𝜎(x) = c3
Insert g(c3) a

f

g f

f g

New

E-node

g(f (a)) ∈ terms(c1) and also f (g(a)) ∈ terms(c1)

Hence g(f (a)) ∼G f (g(a)) which implies g(f (a)) ≈E f (g(a)).

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]

E = g(x) ≈ f (f (x))

f (f (x)) ≈ g(x)

Check g(f (a)) ≈E f (g(a))
Stuck! Need to close E under symmetry

a

f

g

𝑐1

𝑐2

𝑐3

g(x) → f (f (x))

𝜎(x) = c2
Insert f (f (c2))

a

f

g f

f

New

E-class,

E-node

New

E-node

f (f (x)) → g(x)

𝜎(x) = c3
Insert g(c3) a

f

g f

f g

New

E-node

g(f (a)) ∈ terms(c1) and also f (g(a)) ∈ terms(c1)

Hence g(f (a)) ∼G f (g(a)) which implies g(f (a)) ≈E f (g(a)).

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]

E = g(x) ≈ f (f (x))
f (f (x)) ≈ g(x)

Check g(f (a)) ≈E f (g(a))
Stuck! Need to close E under symmetry

a

f

g

𝑐1

𝑐2

𝑐3

g(x) → f (f (x))

𝜎(x) = c2
Insert f (f (c2))

a

f

g f

f

New

E-class,

E-node

New

E-node

f (f (x)) → g(x)

𝜎(x) = c3
Insert g(c3) a

f

g f

f g

New

E-node

g(f (a)) ∈ terms(c1) and also f (g(a)) ∈ terms(c1)

Hence g(f (a)) ∼G f (g(a)) which implies g(f (a)) ≈E f (g(a)).

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]

E = g(x) ≈ f (f (x))
f (f (x)) ≈ g(x)

Check g(f (a)) ≈E f (g(a))
Stuck! Need to close E under symmetry

a

f

g

𝑐1

𝑐2

𝑐3

g(x) → f (f (x))

𝜎(x) = c2
Insert f (f (c2))

a

f

g f

f

New

E-class,

E-node

New

E-node

f (f (x)) → g(x)

𝜎(x) = c3
Insert g(c3)

a

f

g f

f g

New

E-node

g(f (a)) ∈ terms(c1) and also f (g(a)) ∈ terms(c1)

Hence g(f (a)) ∼G f (g(a)) which implies g(f (a)) ≈E f (g(a)).

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]

E = g(x) ≈ f (f (x))
f (f (x)) ≈ g(x)

Check g(f (a)) ≈E f (g(a))
Stuck! Need to close E under symmetry

a

f

g

𝑐1

𝑐2

𝑐3

g(x) → f (f (x))

𝜎(x) = c2
Insert f (f (c2))

a

f

g f

f

New

E-class,

E-node

New

E-node

f (f (x)) → g(x)

𝜎(x) = c3
Insert g(c3) a

f

g f

f g

New

E-node

g(f (a)) ∈ terms(c1) and also f (g(a)) ∈ terms(c1)

Hence g(f (a)) ∼G f (g(a)) which implies g(f (a)) ≈E f (g(a)).

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]

E = g(x) ≈ f (f (x))
f (f (x)) ≈ g(x)

Check g(f (a)) ≈E f (g(a))
Stuck! Need to close E under symmetry

a

f

g

𝑐1

𝑐2

𝑐3

g(x) → f (f (x))

𝜎(x) = c2
Insert f (f (c2))

a

f

g f

f

New

E-class,

E-node

New

E-node

f (f (x)) → g(x)

𝜎(x) = c3
Insert g(c3) a

f

g f

f g

New

E-node

g(f (a)) ∈ terms(c1) and also f (g(a)) ∈ terms(c1)

Hence g(f (a)) ∼G f (g(a)) which implies g(f (a)) ≈E f (g(a)).

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 36

Review E-Graphs Volcano/Cascades

Discussion (1/2)

The Equality Saturation Algorithm ensures that s ∼G t implies s ≈E t.

Converse fails for multiple reasons:

E is treated as asymmetrically and may fail to trigger.

∼G is an equivalence relation only on terms(G).
Called Partial Equivalence Relation, PER; also partial congruence.

Dan Suciu CSE599d: Advanced QP Winter 2026 21 / 36

Review E-Graphs Volcano/Cascades

Discussion (2/2)

E-graphs can avoid some non-terminating reductions:,
E.g. commutativity:

b

+ +

a

Non-termination can still happen, e.g. g(x) ≈ g(f (x)):
Leads to g(a) ≈ g(f (a)) ≈ g(f (f (a))) ≈ · · ·

Direction of the identities in E may affect termination: e.g. g(f (x)) ≈ g(x).

No good theory exists for understanding termination.

Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 36

Review E-Graphs Volcano/Cascades

Special Case: Grounded Identities

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s, t are also grounded) is decidable.

Proof Initialize E-graph with s, t, and all sub-terms of terms E.

Make E symmetric: ℓ →E r and r →E ℓ.

Equality saturation never needs to insert new E-nodes in G

Hence the congruence closure algorithm terminates
and ∼G is the same as ∗↔E on terms(G) (because E is symmetric).

Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 36

Review E-Graphs Volcano/Cascades

Special Case: Grounded Identities

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s, t are also grounded) is decidable.

Proof Initialize E-graph with s, t, and all sub-terms of terms E.

Make E symmetric: ℓ →E r and r →E ℓ.

Equality saturation never needs to insert new E-nodes in G

Hence the congruence closure algorithm terminates
and ∼G is the same as ∗↔E on terms(G) (because E is symmetric).

Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 36

Review E-Graphs Volcano/Cascades

Special Case: Grounded Identities

Theorem when all terms in E are grounded (i.e. no variables),
then the ground word problem (i.e. s, t are also grounded) is decidable.

Proof Initialize E-graph with s, t, and all sub-terms of terms E.

Make E symmetric: ℓ →E r and r →E ℓ.

Equality saturation never needs to insert new E-nodes in G

Hence the congruence closure algorithm terminates
and ∼G is the same as ∗↔E on terms(G) (because E is symmetric).

Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]
E = f (f (a)) ≈ a

f (f (f (a))) ≈ a
Check if f (a) ≈E a

a

f

f

f

f (f (f (a))) → a
a

f

f

f

f (f (a)) → a
aff

f

f (f (f (a))) → a

af ⇐ aff f

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]
E = f (f (a)) ≈ a

f (f (f (a))) ≈ a
Check if f (a) ≈E a

a

f

f

f

f (f (f (a))) → a
a

f

f

f

f (f (a)) → a
aff

f

f (f (f (a))) → a

af ⇐ aff f

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]
E = f (f (a)) ≈ a

f (f (f (a))) ≈ a
Check if f (a) ≈E a

a

f

f

f

f (f (f (a))) → a

a

f

f

f

f (f (a)) → a
aff

f

f (f (f (a))) → a

af ⇐ aff f

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]
E = f (f (a)) ≈ a

f (f (f (a))) ≈ a
Check if f (a) ≈E a

a

f

f

f

f (f (f (a))) → a
a

f

f

f

f (f (a)) → a
aff

f

f (f (f (a))) → a

af ⇐ aff f

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]
E = f (f (a)) ≈ a

f (f (f (a))) ≈ a
Check if f (a) ≈E a

a

f

f

f

f (f (f (a))) → a
a

f

f

f

f (f (a)) → a

aff

f

f (f (f (a))) → a

af ⇐ aff f

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]
E = f (f (a)) ≈ a

f (f (f (a))) ≈ a
Check if f (a) ≈E a

a

f

f

f

f (f (f (a))) → a
a

f

f

f

f (f (a)) → a
aff

f

f (f (f (a))) → a

af ⇐ aff f

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]
E = f (f (a)) ≈ a

f (f (f (a))) ≈ a
Check if f (a) ≈E a

a

f

f

f

f (f (f (a))) → a
a

f

f

f

f (f (a)) → a
aff

f

f (f (f (a))) → a

af ⇐ aff f

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]
E = f (f (a)) ≈ a

f (f (f (a))) ≈ a
Check if f (a) ≈E a

a

f

f

f

f (f (f (a))) → a
a

f

f

f

f (f (a)) → a
aff

f

f (f (f (a))) → a

af ⇐

aff f

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 36

Review E-Graphs Volcano/Cascades

Example from [Baader and Nipkow, 1999]
E = f (f (a)) ≈ a

f (f (f (a))) ≈ a
Check if f (a) ≈E a

a

f

f

f

f (f (f (a))) → a
a

f

f

f

f (f (a)) → a
aff

f

f (f (f (a))) → a

af ⇐ aff f

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 36

Review E-Graphs Volcano/Cascades

Volcano/Cascades

Dan Suciu CSE599d: Advanced QP Winter 2026 25 / 36

Review E-Graphs Volcano/Cascades

Overview

Lecture mostly based on [Ding et al., 2024]

Volcano:
Introduced in [Graefe, 1994]; more details [McKenna, 1993]
Logical rules: equality saturation; physical rules: branch-and-bound.

Cascades
Introduced in [Graefe, 1995]; more details [Xu, 1998]
Combines the two phases of Volcano.
Adoption: SQLServer, Calcite, CockroachDB

Dan Suciu CSE599d: Advanced QP Winter 2026 26 / 36

Review E-Graphs Volcano/Cascades

Terminology (1/2)

Logical Property of an expression: e.g. estimated cardinality

Physical Property of an expression: interesting sort order, partition.

Logical Operators e.g. Z, 𝜎, Γ, Z . . .

Physical Operators e.g. HashJoin, MergeJoin, IndexScan, . . .

Enforcers e.g. Sort, Partition.

Dan Suciu CSE599d: Advanced QP Winter 2026 27 / 36

Review E-Graphs Volcano/Cascades

Terminology (2/2)

Rule = (CheckPattern, Transform):

Transformation rule, e.g. R Z S → S Z R

Implementation rule, e.g. R Z S → R HashJoin S

Memo = E-Graph

Group or Class = E-Class

Expression = E-Node

Dan Suciu CSE599d: Advanced QP Winter 2026 28 / 36

Review E-Graphs Volcano/Cascades

Volcano

1. Generation Phase: repeatedly applies transformation rules until saturation.

2. Cost Analysis Phase: applies implementation rules, using a cost Limit

Dan Suciu CSE599d: Advanced QP Winter 2026 29 / 36

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈𝐵

⋈𝐶

𝜎𝐷=5

𝜎𝐴=3

R

S

T

Initialize Memo

w/ one (naïve)

plan

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈𝐵

⋈𝐶

𝜎𝐷=5

𝜎𝐴=3

R

S

T

1 Scan R

1

Initialize Memo

w/ one (naïve)

plan

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈𝐵

⋈𝐶

𝜎𝐷=5

𝜎𝐴=3

R

S

T

1 Scan R

2 Select[A=3] 1

1

2

Initialize Memo

w/ one (naïve)

plan

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈𝐵

⋈𝐶

𝜎𝐷=5

𝜎𝐴=3

R

S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

1

2

3

4

5

6

7

Initialize Memo

w/ one (naïve)

plan

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈𝐵

⋈𝐶

𝜎𝐷=5

𝜎𝐴=3

R

S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

1

2

3

4

5

6

7

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈𝐵

⋈𝐶

𝜎𝐷=5

𝜎𝐴=3

R

S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

1

2

3

4

5

6

7

Apply an

optimization

rule

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈𝐵

⋈𝐶

𝜎𝐷=5

𝜎𝐴=3

R

S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎𝐷=5

⋈𝐶

Apply an

optimization

rule

1

2

3

4

5

6

7

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈𝐵

⋈𝐶

𝜎𝐷=5

𝜎𝐴=3

R

S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎𝐷=5

⋈𝐶

8 Select[D=5] 5

1

2

3

4

5

6

7

8

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈𝐵

⋈𝐶

𝜎𝐷=5

𝜎𝐴=3

R

S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎𝐷=5

⋈𝐶

8 Select[D=5] 5

Join[C=C] 4,8

1

2

3

4

5

6

7

8

Still 7

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈𝐵

𝜎𝐴=3

R

S

T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎𝐷=5

⋈𝐶

8 Select[D=5] 5

Join[C=C] 4,8

1

2

3

4

5

8

7

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈𝐵

𝜎𝐴=3

R S T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎𝐷=5

⋈𝐶

8 Select[D=5] 5

Join[C=C] 4,8

1

2

3

4

5

8

7

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈𝐵

𝜎𝐴=3

R S T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎𝐷=5

⋈𝐶

8 Select[D=5] 5

Join[C=C] 4,8

⋈𝐵

⋈𝐶

1

2

3

4

5

8

7

Apply another

rule

The Memo

select *

from R, S, T

where R.B=S.B

 and S.C=T.C

 and R.A = 3

 and T.D = 5

R(A,B), S(B,C), T(C,D)

⋈𝐵

𝜎𝐴=3

R S T

1 Scan R

2 Select[A=3] 1

3 Scan S

4 Join[B=B] 2, 3

5 Scan T

6 Join[C=C] 4,5

7 Select[D=5] 6

𝜎𝐷=5

⋈𝐶

8 Select[D=5] 5

Join[C=C] 4,8

⋈𝐵

⋈𝐶

Join[B=B] 2,9

9 Join[C=C] 3, 8

1

2

3

4

5

8

7

9

Review E-Graphs Volcano/Cascades

Volcano: Generation Phase

[Ding et al., 2024] Top Down equality saturation:

Small bug: GenerateLogicalExpr should have Rules as parameter.

Dan Suciu CSE599d: Advanced QP Winter 2026 30 / 36

Review E-Graphs Volcano/Cascades

Volcano: Cost Analysis Phase

FindBestPlan: Logical Expression ↦→ Physical plan

FindBestPlan(Group, Limit) by example:

For each Expr ∈ Group Z

g1 g2

Apply an implementation rule
HashJoin

g1 g2
Cost = 100

FindBestPlan(g1, Limit − 100) HashJoin

g3 g2
Cost = 2100

FindBestPlan(g2, Limit − 2100) HashJoin

g3 g4
Cost = . . .

Whenever Cost > Limit stop and return NULL

Dan Suciu CSE599d: Advanced QP Winter 2026 31 / 36

Review E-Graphs Volcano/Cascades

Volcano: Cost Analysis Phase

FindBestPlan: Logical Expression ↦→ Physical plan

FindBestPlan(Group, Limit) by example:

For each Expr ∈ Group Z

g1 g2

Apply an implementation rule
HashJoin

g1 g2
Cost = 100

FindBestPlan(g1, Limit − 100) HashJoin

g3 g2
Cost = 2100

FindBestPlan(g2, Limit − 2100) HashJoin

g3 g4
Cost = . . .

Whenever Cost > Limit stop and return NULL

Dan Suciu CSE599d: Advanced QP Winter 2026 31 / 36

Review E-Graphs Volcano/Cascades

Volcano: Cost Analysis Phase

FindBestPlan: Logical Expression ↦→ Physical plan

FindBestPlan(Group, Limit) by example:

For each Expr ∈ Group Z

g1 g2

Apply an implementation rule
HashJoin

g1 g2
Cost = 100

FindBestPlan(g1, Limit − 100) HashJoin

g3 g2
Cost = 2100

FindBestPlan(g2, Limit − 2100) HashJoin

g3 g4
Cost = . . .

Whenever Cost > Limit stop and return NULL

Dan Suciu CSE599d: Advanced QP Winter 2026 31 / 36

Review E-Graphs Volcano/Cascades

Volcano: Cost Analysis Phase

FindBestPlan: Logical Expression ↦→ Physical plan

FindBestPlan(Group, Limit) by example:

For each Expr ∈ Group Z

g1 g2

Apply an implementation rule
HashJoin

g1 g2
Cost = 100

FindBestPlan(g1, Limit − 100) HashJoin

g3 g2
Cost = 2100

FindBestPlan(g2, Limit − 2100) HashJoin

g3 g4
Cost = . . .

Whenever Cost > Limit stop and return NULL

Dan Suciu CSE599d: Advanced QP Winter 2026 31 / 36

Review E-Graphs Volcano/Cascades

Volcano: Cost Analysis Phase

FindBestPlan: Logical Expression ↦→ Physical plan

FindBestPlan(Group, Limit) by example:

For each Expr ∈ Group Z

g1 g2

Apply an implementation rule
HashJoin

g1 g2
Cost = 100

FindBestPlan(g1, Limit − 100) HashJoin

g3 g2
Cost = 2100

FindBestPlan(g2, Limit − 2100) HashJoin

g3 g4
Cost = . . .

Whenever Cost > Limit stop and return NULL

Dan Suciu CSE599d: Advanced QP Winter 2026 31 / 36

Review E-Graphs Volcano/Cascades

Volcano: Cost Analysis Phase

FindBestPlan: Logical Expression ↦→ Physical plan

FindBestPlan(Group, Limit) by example:

For each Expr ∈ Group Z

g1 g2

Apply an implementation rule
HashJoin

g1 g2
Cost = 100

FindBestPlan(g1, Limit − 100) HashJoin

g3 g2
Cost = 2100

FindBestPlan(g2, Limit − 2100) HashJoin

g3 g4
Cost = . . .

Whenever Cost > Limit stop and return NULL

Dan Suciu CSE599d: Advanced QP Winter 2026 31 / 36

Review E-Graphs Volcano/Cascades

Volcano: Cost Analysis Phase (Very Simplified)

Function FindBestPlan(Group, Limit)
if Limit ≤ 0 then return Null;
Plan, Cost := LookUpMemo(Group)
if Cost ≠ Null then

if Cost ≤ Limit then return Plan,Cost ;
else return NULL;

Cost := ∞;
for Expr ∈ Group, r ∈ ImplementationRules(Expr) do
Pln, Cst := r .Op, r .Cost ; // Start new plan with r .Op
for Grp ∈ Children(Expr) do
Pln, Cst += FindBestPlan(Grp, Limit − Cst)

if Success all children? then Plan, Cost, Limit := Pln, Cst, Cst;;
InsertMemo(Group, Plan, Cost)
return (Plan, Cost)

Dan Suciu CSE599d: Advanced QP Winter 2026 32 / 36

Review E-Graphs Volcano/Cascades

Volcano: Cost Analysis Phase (Visual Representation)

Group

Expr . . . Expr

Rule . . . Rule

Child1 Child2 . . .

. . .

. . .

Limit1 ≥ Limit2 ≥ Limit3 ≥ · · ·

When Cost > Limit, prune the search.

Dan Suciu CSE599d: Advanced QP Winter 2026 33 / 36

Review E-Graphs Volcano/Cascades

Discussion

Generation phase is straightforward: saturate the whole E-Graph.

Cost-analysis phase: prunes the search based on cost. In addition:

▶ Store applicable implementation rules in a set of Moves

▶ Sort Moves by “promise”, to find better plans first.

▶ Early stopping is possible, e.g. timeout.

A physical expression may have multiple version, with different properties.

Dan Suciu CSE599d: Advanced QP Winter 2026 34 / 36

Review E-Graphs Volcano/Cascades

Cascades

Will discuss only at a very high level.

Cascades makes the following changes to Volcano:

Handles transformation and implementation rules in the same phase.

Replaces recursive call with stack-based processing: allows control over
the order of operations.

Breaks down each rule application into smaller steps, each becomes a
separate task, to be placed on the stack.

This allows for a more aggressive cost-based pruning.

Dan Suciu CSE599d: Advanced QP Winter 2026 35 / 36

Review E-Graphs Volcano/Cascades

Discussion

Volcano/Cascades: complex, but clean foundation in E-Graphs

Lots of additional heuristics:
▶ Simplification rules: apply E1 → E2, then delete E1

▶ Macro rules: e.g. StarJoin(R1, . . . ,Rn) → DPccp

Systems implementing Cascades: SQLServer, Orca (Greenplum), Calcite.

Other systems: Postgres (DP), Catalyst/Spark (greedy).

Dan Suciu CSE599d: Advanced QP Winter 2026 36 / 36

Review E-Graphs Volcano/Cascades

Baader, F. and Nipkow, T. (1999).
Term Rewriting and All That.
Cambridge University Press, USA.

Ding, B., Narasayya, V. R., and Chaudhuri, S. (2024).
Extensible query optimizers in practice.
Found. Trends Databases, 14(3-4):186–402.

Graefe, G. (1994).
Volcano - an extensible and parallel query evaluation system.
IEEE Trans. Knowl. Data Eng., 6(1):120–135.

Graefe, G. (1995).
The cascades framework for query optimization.
IEEE Data Eng. Bull., 18(3):19–29.

McKenna, W. J. (1993).
Efficient Search in Extensible Query Optimization: The Volcano Optimizer Generator.
PhD thesis, University of Colorado-Boulder.

Willsey, M., Nandi, C., Wang, Y. R., Flatt, O., Tatlock, Z., and Panchekha, P. (2021).
egg: Fast and extensible equality saturation.
Proc. ACM Program. Lang., 5(POPL):1–29.

Xu, Y. (1998).
Efficiency in the Columbia Database Query Optimizer.
PhD thesis, Portland State University.

Dan Suciu CSE599d: Advanced QP Winter 2026 36 / 36

	Review
	E-Graphs
	Volcano/Cascades

