

# CSE599d: Advanced Query Processing

## Lecture 7: Extensible Query Optimizers

Dan Suciu

University of Washington

# Motivation

Dynamic programming is efficient, but handles only joins.

Difficult to add more complex operators (outer/anti joins, group-by).

**Extensible Query Optimizer:** based on a set of identities called **logical transformation rules**, which can be extended with new operators and new identities.

## Examples of Identities<sup>1</sup>

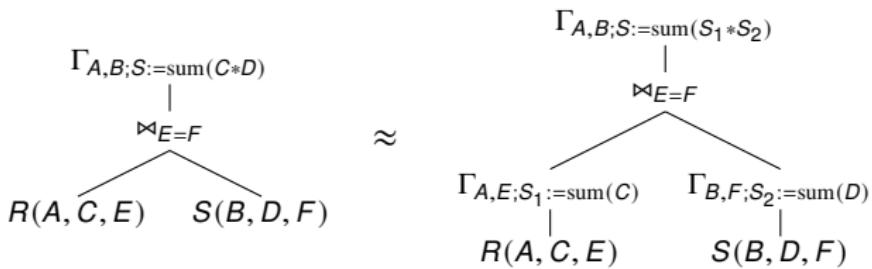
## Commutativity:



## Associativity:



## Group-by:



<sup>1</sup>Called Logical Transformation Rules in Volcano/Cascades.

# Overview

- The optimization problem becomes an instance of the **word problem**
- There are two techniques for the word problem: TRS and E-graphs.
- Volcano and Cascades (an extension of Volcano) are essentially E-graphs on steroids.
- This lecture: review of the Word Problem, TRS, E-Graphs.

## The Word Problem

Based on [Baader and Nipkow, 1999].

# $\Sigma$ -Algebras

A **signature** is  $\Sigma = \{f_1, f_2, \dots, f_m\}$   
each function symbol  $f_i$  and has an **arity**  $n_i \geq 0$ .

# $\Sigma$ -Algebras

A **signature** is  $\Sigma = \{f_1, f_2, \dots, f_m\}$   
each function symbol  $f_i$  and has an **arity**  $n_i \geq 0$ .

A  **$\Sigma$ -algebra** is  $\mathbf{A} = (A, f_1^A, f_2^A, \dots, f_m^A)$  where  $f_i^A : A^{n_i} \rightarrow A$ .

# $\Sigma$ -Algebras

A **signature** is  $\Sigma = \{f_1, f_2, \dots, f_m\}$   
each function symbol  $f_i$  and has an **arity**  $n_i \geq 0$ .

A  **$\Sigma$ -algebra** is  $\mathbf{A} = (A, f_1^A, f_2^A, \dots, f_m^A)$  where  $f_i^A : A^{n_i} \rightarrow A$ .

Examples:

- $\Sigma = \{f, g\}$  with arities 1, 2.  
Algebra  $(\mathbb{N}, f^N, g^N)$  where  $f^N(x) = x + 1$  and  $g^N(x, y) = x \cdot y$ .

# $\Sigma$ -Algebras

A **signature** is  $\Sigma = \{f_1, f_2, \dots, f_m\}$   
each function symbol  $f_i$  and has an **arity**  $n_i \geq 0$ .

A  **$\Sigma$ -algebra** is  $\mathbf{A} = (A, f_1^A, f_2^A, \dots, f_m^A)$  where  $f_i^A : A^{n_i} \rightarrow A$ .

Examples:

- $\Sigma = \{f, g\}$  with arities 1, 2.  
Algebra  $(\mathbb{N}, f^N, g^N)$  where  $f^N(x) = x + 1$  and  $g^N(x, y) = x \cdot y$ .
- $\Sigma = \{+, \times, 0, 1\}$   
Algebra  $\mathbb{N} = (\{0, 1, 2, \dots\}, +, \times, 0, 1)$   
Another algebra  $\mathbb{B} = (\{0, 1\}, \vee, \wedge, 0, 1)$

# The Term Algebra

Fix an infinite set of variables  $X = \{x_1, x_2, \dots\}$ .

A  $\Sigma$ -term is an expression built from  $\Sigma$  and  $X$ .

$$T(\Sigma, X) = \text{the set of } \Sigma \text{ terms}$$

# The Term Algebra

Fix an infinite set of variables  $X = \{x_1, x_2, \dots\}$ .

A  $\Sigma$ -term is an expression built from  $\Sigma$  and  $X$ .

$T(\Sigma, X) = \text{the set of } \Sigma \text{ terms}$

$$f(g(x, f(g(x, y)))) = \begin{array}{c} f \\ | \\ g \\ / \quad \backslash \\ x \quad f \\ | \\ g \\ / \quad \backslash \\ x \quad y \end{array}$$

# The Term Algebra

Fix an infinite set of variables  $X = \{x_1, x_2, \dots\}$ .

A  $\Sigma$ -term is an expression built from  $\Sigma$  and  $X$ .

$T(\Sigma, X) = \text{the set of } \Sigma \text{ terms}$

$$f(g(x, f(g(x, y)))) = \begin{array}{c} f \\ | \\ g \\ / \quad \backslash \\ x \quad f \\ | \\ g \\ / \quad \backslash \\ x \quad y \end{array} \quad (x + 1) * ((0 + y) * x) = \begin{array}{c} * \\ / \quad \backslash \\ + \quad * \\ / \quad \backslash \quad / \quad \backslash \\ x \quad 1 \quad + \quad x \\ / \quad \backslash \\ 0 \quad y \end{array}$$

# The Term Algebra

Fix an infinite set of variables  $X = \{x_1, x_2, \dots\}$ .

A  $\Sigma$ -term is an expression built from  $\Sigma$  and  $X$ .

$$T(\Sigma, X) = \text{the set of } \Sigma \text{ terms}$$

$$f(g(x, f(g(x, y)))) = \begin{array}{c} f \\ | \\ g \\ / \quad \backslash \\ x \quad f \\ | \\ g \\ / \quad \backslash \\ x \quad y \end{array} \quad (x + 1) * ((0 + y) * x) = \begin{array}{c} * \\ / \quad \backslash \\ + \quad * \\ / \quad \backslash \quad / \quad \backslash \\ x \quad 1 \quad + \quad x \\ / \quad \backslash \\ 0 \quad y \end{array}$$

$$T(\Sigma, X) \text{ is a } \Sigma \text{ algebra}$$

what are the operations  $f, g, \dots$ ??

# Identities

An **identity** is a pair of terms  $(\ell, r)$ . We write  $\ell \approx r$ .

$\ell$  = the **left-hand-side**

$r$  = the **right-hand-side**



# Identities

An **identity** is a pair of terms  $(\ell, r)$ . We write  $\ell \approx r$ .

$\ell$  = the **left-hand-side**

$r$  = the **right-hand-side**



What does  $\ell \approx r$  mean?

# Identities

An **identity** is a pair of terms  $(\ell, r)$ . We write  $\ell \approx r$ .

$\ell$  = the **left-hand-side**

$r$  = the **right-hand-side**



What does  $\ell \approx r$  mean? Fix an algebra  $\mathbf{A}$ :

# Identities

An **identity** is a pair of terms  $(\ell, r)$ . We write  $\ell \approx r$ .

$\ell$  = the **left-hand-side**  
 $r$  = the **right-hand-side**



What does  $\ell \approx r$  mean? Fix an algebra  $\mathbf{A}$ :

A **substitution** is a function  $\sigma : X \rightarrow A$ , where  $\mathbf{A}$  is a  $\Sigma$ -algebra.

$\mathbf{A}$  **satisfies** the identity  $\ell \approx r$  if  $\sigma(\ell) = \sigma(r)$  for all  $\sigma$ . Notation:  $\boxed{\mathbf{A} \models \ell \approx r}$

## Semantic Consequence

Fix a set of identities  $E$ .

An identity  $s \approx t$  is a [semantic consequence](#) of  $E$  if:

For every  $\Sigma$ -algebra  $\mathbf{A}$ : if  $\mathbf{A} \models E$  then  $\mathbf{A} \models s \approx t$

We write  $\approx_E$  for the semantic consequences of  $E$ .

It turns out that we can describe  $\approx_E$  in terms of [reductions](#).

# The Reduction Relation

The reduction relation  $s \rightarrow_E t$  holds if

there exists  $(\ell, r) \in E$ , substitution  $\sigma : X \rightarrow T(\Sigma, X)$ , context<sup>2</sup>  $C[ ]$  s.t.:

$$s = C[\sigma(\ell)] \text{ and } t = C[\sigma(r)]$$

---

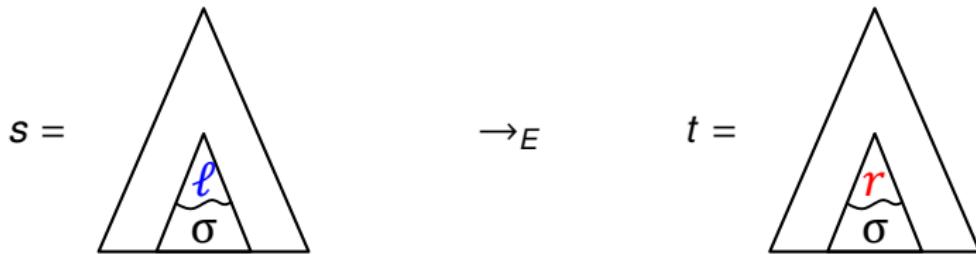
<sup>2</sup>A context is a “term with a hole”.

## The Reduction Relation

The reduction relation  $s \rightarrow_E t$  holds if

there exists  $(\ell, r) \in E$ , substitution  $\sigma : X \rightarrow T(\Sigma, X)$ , context  $^2 C[ ]$  s.t.:

$s = C[\sigma(\ell)]$  and  $t = C[\sigma(r)]$



<sup>2</sup>A context is a “term with a hole”.

# The Reduction Relation

We extend  $\rightarrow_E$  as follows:

$\rightarrow_E^*$  transitive and reflexive closure of  $\rightarrow_E$

$\leftarrow_E$  symmetric closure of  $\rightarrow_E$

$\leftrightarrow_E^*$  transitive, reflexive and symmetric closure of  $\rightarrow_E$

We say that  $s \leftrightarrow_E^* t$  is a **syntactic consequence** of  $E$ .

**Theorem [Birkoff]**  $\approx_E$  is the same as  $\leftrightarrow_E^*$

## The Word Problem

Fix  $\Sigma, E$ .

**The Word Problem:** given  $s, t$ , decide whether  $s \approx_E t$

Decidability depends on  $\Sigma, E$ .

## Examples of Decidable Word Problems

## Semigroups $\Sigma = \{\cdot\}$

$$(xy)z \approx x(yz)$$

# Examples of Decidable Word Problems

**Semigroups**  $\Sigma = \{\cdot\}$

$$(xy)z \approx x(yz)$$

Also:

- Commutative Semigroups  
 $xy \approx yx$
- Monoids  $ex \approx xe \approx x$
- Groups  $x^{-1}x \approx xx^{-1} \approx e$ .

# Examples of Decidable Word Problems

**Semigroups**  $\Sigma = \{\cdot\}$

$$(xy)z \approx x(yz)$$

**Lattices**  $\Sigma = \{\vee, \wedge\}$

$\wedge, \vee$  are associative, commutative, and:

$$x \vee (x \wedge y) \approx x$$

$$x \wedge (x \vee y) \approx x$$

Also:

- Commutative Semigroups

$$xy \approx yx$$

- Monoids  $ex \approx xe \approx x$

- Groups  $x^{-1}x \approx xx^{-1} \approx e$ .

Also:

- Distributive lattices
- Boolean algebras

# Examples of Undecidable Word Problems

**Semigroups** [Matijasevič]  $\Sigma = \{\cdot, a, b\}$

$$(xy)z \approx x(yz)$$

$$aba^2b^2 \approx b^2a^2ba$$

$$a^2bab^2a \approx b^2a^3ba$$

$$aba^3b^2 \approx ab^2aba^2$$

$$b^3a^2b^2a^2ba \approx b^3a^2b^2a^4$$

$$a^4b^2a^2ba \approx b^2a^4$$

**Combinatory Logic**  $\Sigma = \{\cdot, S, K\}$

$$((S \cdot x) \cdot y) \cdot z \approx (x \cdot z) \cdot (y \cdot z)$$

$$(K \cdot x) \cdot y \approx x$$

# A Special Case

**Theorem** when all terms in  $E$  are grounded (meaning: no variables), then the ground word problem<sup>3</sup> for  $E$  is decidable.

---

<sup>3</sup>Meaning:  $s, t$  are also grounded.

## QO v.s. the Word Problem

# Query Optimization v.s. the Word Problem

Query optimization: given a set of logical transformations  $E$  (i.e. identities), and a query  $Q$ , find an “optimal” query  $Q'$  such that  $Q \approx_E Q'$ .

This is basically a word problem.

However, there are some rough spots in modeling QO as a word problem.

# Relational Algebra v.s. a $\Sigma$ -algebra

The relational algebra is a  $\Sigma$ -algebra, where  $\Sigma = \{\sigma, \Pi, \bowtie, \cup, -\}$ , however:

- Some operations are undefined:  $R \cup S$  when  $R, S$  have different schemas.
- Some operations have parameters:  $\sigma_p(R)$  where  $p$  is some predicate.
- Template identities: one  $R \bowtie S \approx S \bowtie R$  for each schema of  $R, S$ .

Could fix with a multi-sorted algebra. In practice, just ignore these rough edges.

# $E$ is Always Incomplete!

Query equivalence,  $Q \equiv Q'$ , means:  $Q(D) = Q'(D)$  for any database  $D$ .

**Fact** There is no r.e.<sup>4</sup>  $E$  for which  $\approx_E$  coincides with  $\equiv$ .

---

<sup>4</sup>Recursively enumerable, e.g. templates.

## *E* is Always Incomplete!

Query equivalence,  $Q \equiv Q'$ , means:  $Q(D) = Q'(D)$  for any database  $D$ .

**Fact** There is no r.e.<sup>4</sup>  $E$  for which  $\approx_E$  coincides with  $\equiv$ .

**Proof** Recall that checking  $Q \equiv Q'$  is undecidable.

<sup>4</sup>Recursively enumerable, e.g. templates.

# $E$ is Always Incomplete!

Query equivalence,  $Q \equiv Q'$ , means:  $Q(D) = Q'(D)$  for any database  $D$ .

**Fact** There is no r.e.<sup>4</sup>  $E$  for which  $\approx_E$  coincides with  $\equiv$ .

**Proof** Recall that checking  $Q \equiv Q'$  is undecidable.

Assume  $\approx_E$  and  $\equiv$  are the same. Then we can check  $Q \equiv Q'$ :

- Enumerate all pairs  $(Q_1, Q_2)$  such that  $Q_1 \approx_E Q_2$  how??
- Enumerate all pairs  $(Q_1, Q_2)$  such that  $Q_1 \not\approx_E Q_2$  how??
- Watch whether  $(Q, Q')$  appears in the first or second list.

---

<sup>4</sup>Recursively enumerable, e.g. templates.

# Term Rewriting Systems

# Two Approaches to the Word Problem

- Term Rewriting Systems (TRS)
- Equality Saturation Graphs (E-Graphs)

# Term Rewriting Systems

A **Term Rewriting Systems (TRS)** is a set of oriented identities  $E$ , written  $\ell \rightarrow r$ .

Goal: study the properties of  $\rightarrow_E^*$ .

Note: TRS require  $\text{Vars}(\ell) \supseteq \text{Vars}(r)$  and  $\ell$  is not a variable

# Solving the Word Problem via TRS

A Naive Approach to check  $s \approx_E t$ :

Perform reductions  $s \rightarrow s_1 \rightarrow s_2 \rightarrow \dots$

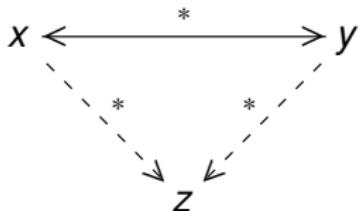
If  $t$  shows up, then  $s \equiv_E t$ .

Problems with the naive approach:

- Infinite reductions. E.g. commutativity  $a + b \rightarrow b + a \rightarrow a + b \rightarrow \dots$
- We may need to go in both directions  $s \rightarrow s_1 \leftarrow s_2 \leftarrow s_3 \rightarrow \dots$ .

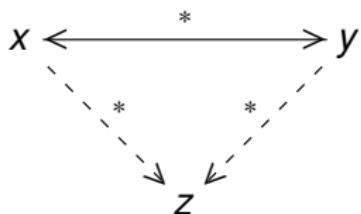
# Desirable Properties of a TRS

Church-Rosser:

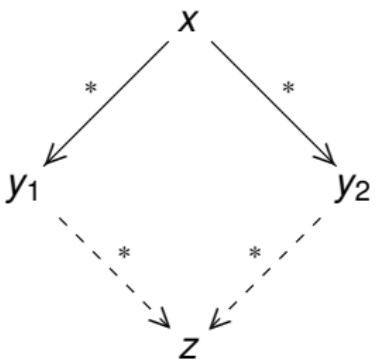


# Desirable Properties of a TRS

Church-Rosser:

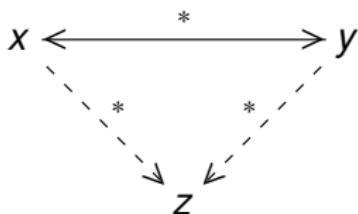


Confluent:

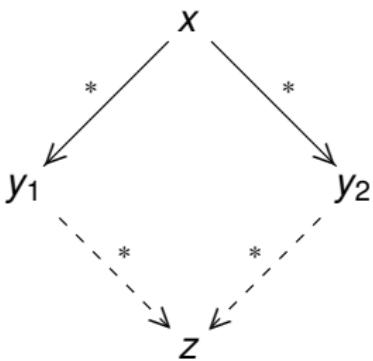


# Desirable Properties of a TRS

Church-Rosser:



Confluent:



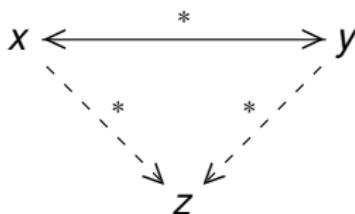
Terminating:

No infinite sequence:

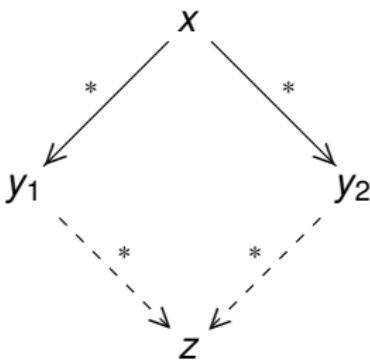
$$x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$$

# Desirable Properties of a TRS

Church-Rosser:



Confluent:



Terminating:

No infinite sequence:

$$x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$$

- $\rightarrow$  is Church-Rosser iff it is confluent.
- If  $\rightarrow$  is confluent and terminating then  $\approx$  (which is  $\leftrightarrow^*$ ) is decidable. because each  $x$  has a unique **normal form**  $x_0$ :  $x \xrightarrow{*} x_0 \rightarrow \perp$

## Discussion

Key assumption in TRS: identities are directional.  $\ell \approx r$  not same as  $r \approx \ell$ .

Problems in TRS: non-terminating reductions.

Rich literature on sufficient conditions to ensure termination.  
Still can't handle commutativity.

E-Graphs were introduced as a caching mechanism to avoid repeated terms.

## E-Graphs

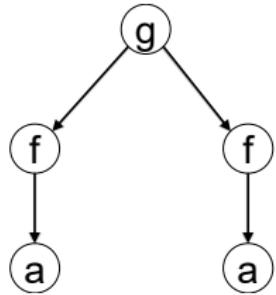
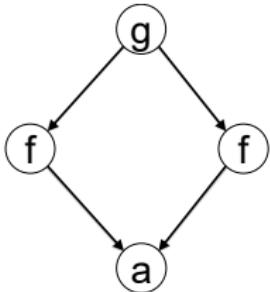
## Overview

E-graphs are keeping all intermediate steps of a rewrite sequence  $s \rightarrow s_1 \rightarrow s_2 \rightarrow \dots$  in a compact data structure.

This part is based on the book [Baader and Nipkow, 1999] and the egg paper [Willsey et al., 2021].

## Term Graph

Modify tree to a DAG by sharing common subexpressions: [Term Graph](#)



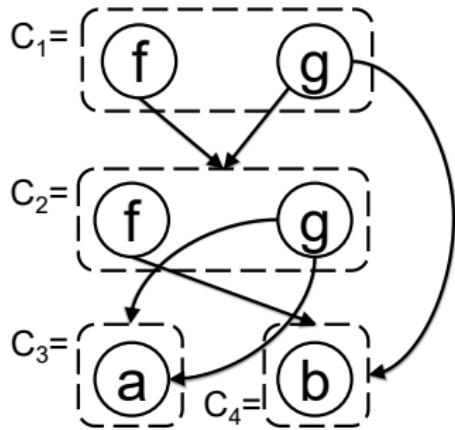
Each of these term graphs represent the term  $g(f(a), f(a))$ .

# E-Graph

An E-graph  $G$  consists of:

- A set of **E-classes**  $c_1, c_2, \dots,$
- ... where each E-class  $c$  is a set of **E-nodes**  $c = \{v_1, v_2, \dots\},$
- ... and each e-node is a pair  $(f, (c_{i_1}, \dots, c_{i_k}))$  where  $f \in \Sigma, c_{i_1}, \dots, c_{i_k}$  are E-classes, and  $k =$  the arity of  $f.$

# E-Graphs



Each class  $c$  represents a set of terms:

$$\text{terms}(c_3) = a,$$

$$\text{terms}(c_4) = b$$

$$\text{terms}(c_2) = \{f(b), g(a, a)\}$$

$$\text{terms}(c_1) = \{f(f(b)), f(g(a, a)), g(f(b), b), g(g(a, a), b)\}$$

$\text{terms}(G) =$  the set of all terms represented by all E-classes.

# Congruence Closure

An E-graph defines the following relation on terms( $G$ ):

$s \sim_G t$  if exists E-class  $c$  such that  $s, t \in \text{terms}(c)$

# Congruence Closure

An E-graph defines the following relation on terms( $G$ ):

$s \sim_G t$  if exists E-class  $c$  such that  $s, t \in \text{terms}(c)$

We say that  $G$  is **closed under congruence** if  $\sim_G$  is a congruence relation on  $\text{terms}(G)$ , meaning:

- $\sim_G$  is an equivalence relation, and
- if  $f(s_1, \dots, s_n), f(t_1, \dots, t_n) \in \text{terms}(G)$  and  $s_1 \sim_G t_1, s_2 \sim_G t_2, \dots$  then  $f(s_1, \dots, s_n) \sim_G f(t_1, \dots, t_n)$ .

# Congruence Closure

An E-graph defines the following relation on terms( $G$ ):

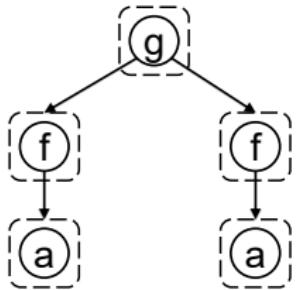
$$s \sim_G t \text{ if exists E-class } c \text{ such that } s, t \in \text{terms}(c)$$

We say that  $G$  is **closed under congruence** if  $\sim_G$  is a congruence relation on  $\text{terms}(G)$ , meaning:

- $\sim_G$  is an equivalence relation, and
- if  $f(s_1, \dots, s_n), f(t_1, \dots, t_n) \in \text{terms}(G)$  and  $s_1 \sim_G t_1, s_2 \sim_G t_2, \dots$  then  $f(s_1, \dots, s_n) \sim_G f(t_1, \dots, t_n)$ .

**Congruence closure algorithm:** modifies  $G$  to ensure that  $\sim_G$  is a congruence.

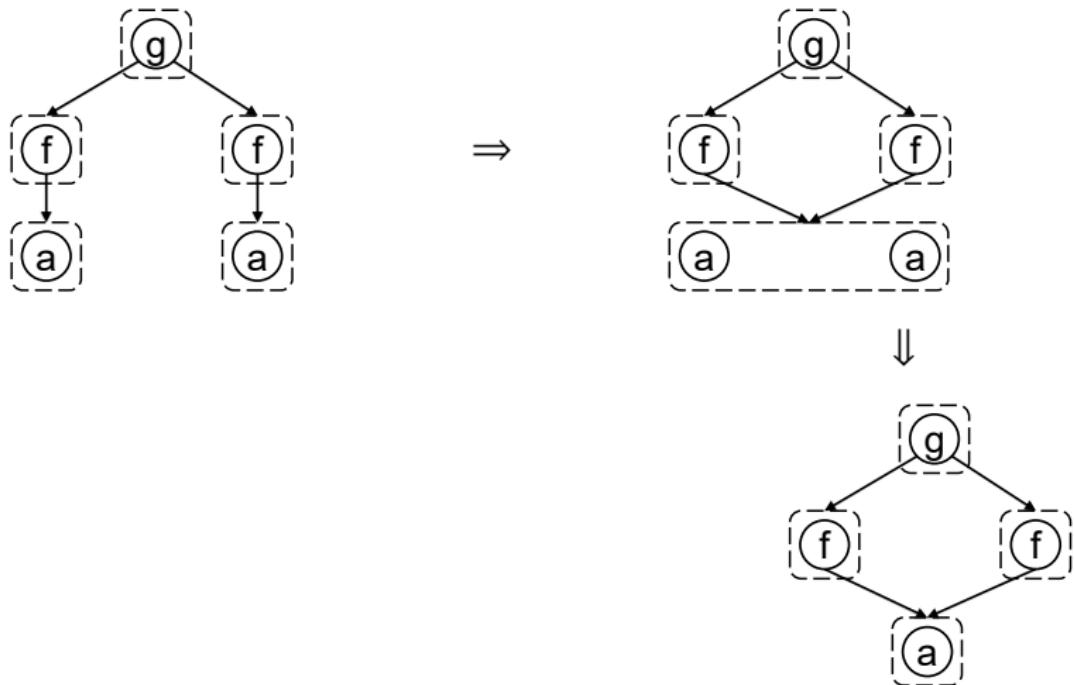
# Example



# Example

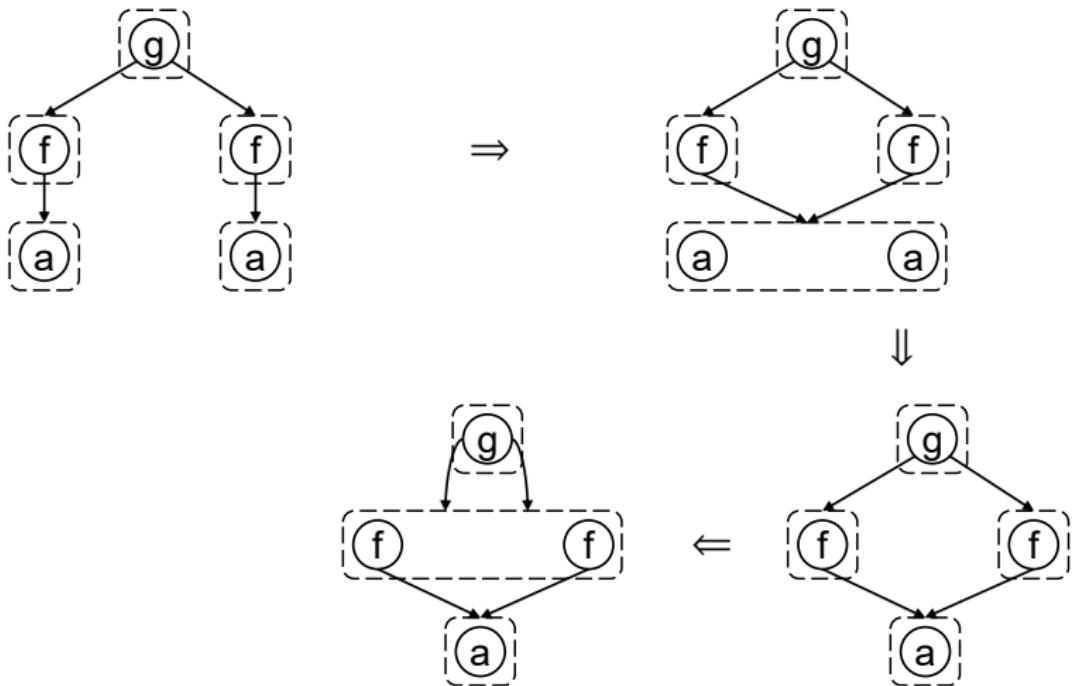


# Example



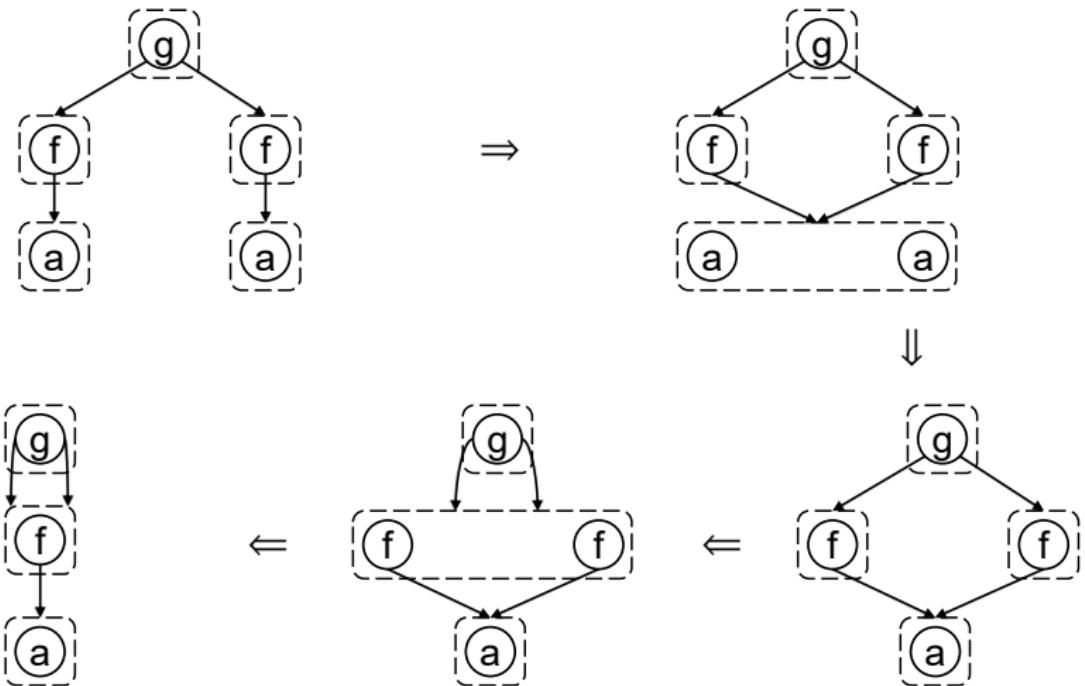
Two E-nodes with the same label and same children are the same E-node.

# Example



Two E-nodes with the same label and same children are the same E-node.

# Example



Two E-nodes with the same label and same children are the same E-node.

# The Equality Saturation Algorithm for the Word Problem

To check  $s \approx_E t$ , start with the E-graph encoding  $s$  and  $t$ .

- Find  $(\ell, r) \in E$  such that  $\ell$  “matches” the E-graph.

Meaning: there exists substitution  $\sigma$ , s.t.  $\sigma(\ell) \in \text{terms}(G)$ .

Notice: identities are directional.

# The Equality Saturation Algorithm for the Word Problem

To check  $s \approx_E t$ , start with the E-graph encoding  $s$  and  $t$ .

- Find  $(\ell, r) \in E$  such that  $\ell$  “matches” the E-graph.  
Meaning: there exists substitution  $\sigma$ , s.t.  $\sigma(\ell) \in \text{terms}(G)$ .  
Notice: identities are directional.
- Add  $\sigma(r)$  to  $G$  (if not already present).

# The Equality Saturation Algorithm for the Word Problem

To check  $s \approx_E t$ , start with the E-graph encoding  $s$  and  $t$ .

- Find  $(\ell, r) \in E$  such that  $\ell$  “matches” the E-graph.  
Meaning: there exists substitution  $\sigma$ , s.t.  $\sigma(\ell) \in \text{terms}(G)$ .  
Notice: identities are directional.
- Add  $\sigma(r)$  to  $G$  (if not already present).
- Perform congruence closure
- Repeat.

# The Equality Saturation Algorithm for the Word Problem

To check  $s \approx_E t$ , start with the E-graph encoding  $s$  and  $t$ .

- Find  $(\ell, r) \in E$  such that  $\ell$  “matches” the E-graph.  
Meaning: there exists substitution  $\sigma$ , s.t.  $\sigma(\ell) \in \text{terms}(G)$ .  
Notice: identities are directional.
- Add  $\sigma(r)$  to  $G$  (if not already present).
- Perform congruence closure
- Repeat.

When (and if!) it terminates, check  $s \sim_G t$ .

# Example from [Baader and Nipkow, 1999]

$$E = \boxed{g(x) \approx f(f(x))}$$

Check if  $\boxed{g(f(a)) \approx f(g(a))}$

# Example from [Baader and Nipkow, 1999]

$$E = \boxed{g(x) \approx f(f(x))}$$

Check if  $\boxed{g(f(a)) \approx f(g(a))}$   
Need to close  $E$  under symmetry

# Example from [Baader and Nipkow, 1999]

$$E = \boxed{g(x) \approx f(f(x))}$$
  
$$\boxed{f(f(x)) \approx g(x)}$$

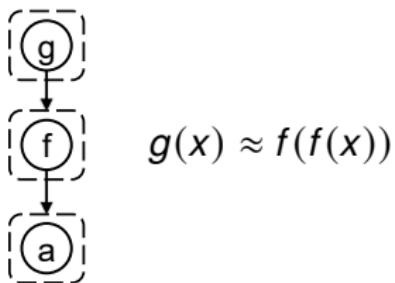
Check if  $\boxed{g(f(a)) \approx f(g(a))}$   
Need to close  $E$  under symmetry



# Example from [Baader and Nipkow, 1999]

$$E = \boxed{g(x) \approx f(f(x))} \\ \boxed{f(f(x)) \approx g(x)}$$

Check if  $\boxed{g(f(a)) \approx f(g(a))}$   
Need to close  $E$  under symmetry



$$g(x) \approx f(f(x))$$

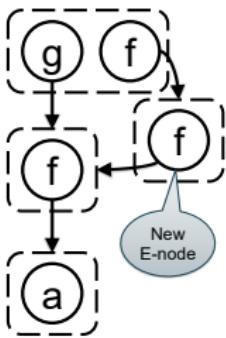
# Example from [Baader and Nipkow, 1999]

$$E = \boxed{g(x) \approx f(f(x)) \\ f(f(x)) \approx g(x)}$$

Check if  $\boxed{g(f(a)) \approx f(g(a))}$   
Need to close  $E$  under symmetry



$$g(x) \approx f(f(x))$$



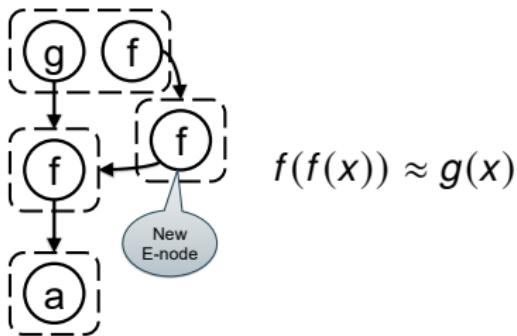
# Example from [Baader and Nipkow, 1999]

$$E = \boxed{g(x) \approx f(f(x)) \\ f(f(x)) \approx g(x)}$$

Check if  $\boxed{g(f(a)) \approx f(g(a))}$   
Need to close  $E$  under symmetry



$$g(x) \approx f(f(x))$$



$$f(f(x)) \approx g(x)$$

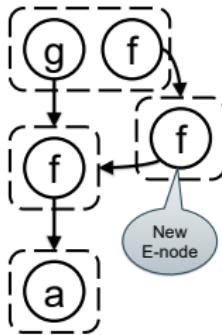
## Example from [Baader and Nipkow, 1999]

$$E = \boxed{\begin{array}{l} g(x) \approx f(f(x)) \\ f(f(x)) \approx g(x) \end{array}}$$

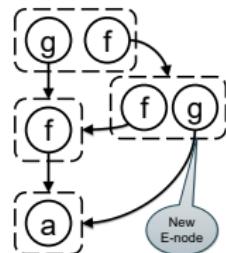
Check if  $\boxed{g(f(a)) \approx f(g(a))}$   
Need to close  $E$  under symmetry



$$g(x) \approx f(f(x))$$

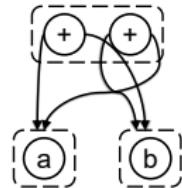


$$f(f(x)) \approx g(x)$$



## Discussion

E-graphs can avoid some non-terminating reductions:  
E.g. commutativity:



Non-termination can still happen, e.g.  $g(x) \approx g(f(x))$ :  
Leads to  $g(a) \approx g(f(a)) \approx g(f(f(a))) \approx \cdots$

Direction of the identities in  $E$  may affect termination: e.g.  $g(f(x)) \approx g(x)$ .

No good theory exists for understanding termination.

## Special Case: Grounded Identities

**Theorem** if all identities in  $E$  are grounded, then equality saturation terminates, and the ground word problem is decidable.

Proof: start with the E-graph consisting of  $s, t$ , and all terms in  $E$ .

Then we never need to insert a new nodes in  $G$ , hence the congruence closure algorithm terminates.

## Example from [Baader and Nipkow, 1999]

$$E = \boxed{f(f(a)) \approx a}$$
$$f(f(f(a))) \approx a$$

Check if  $f(a) \approx_E a$

## Example from [Baader and Nipkow, 1999]

$$E = \boxed{f(f(a)) \approx a \\ f(f(f(a))) \approx a}$$

Check if  $f(a) \approx_E a$



## Example from [Baader and Nipkow, 1999]

$$E = \boxed{f(f(a)) \approx a \\ f(f(f(a))) \approx a}$$

Check if  $f(a) \approx_E a$



$$f(f(f(a))) \approx a$$

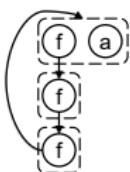
## Example from [Baader and Nipkow, 1999]

$$E = \boxed{f(f(a)) \approx a \\ f(f(f(a))) \approx a}$$

Check if  $f(a) \approx_E a$



$$f(f(f(a))) \approx a$$



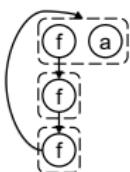
## Example from [Baader and Nipkow, 1999]

$$E = \boxed{f(f(a)) \approx a \\ f(f(f(a))) \approx a}$$

Check if  $f(a) \approx_E a$



$$f(f(f(a))) \approx a$$



$$f(f(a)) \approx a$$

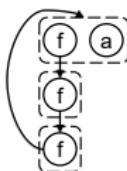
## Example from [Baader and Nipkow, 1999]

$$E = \boxed{f(f(a)) \approx a \\ f(f(f(a))) \approx a}$$

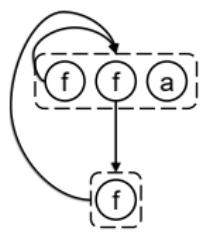
Check if  $f(a) \approx_E a$



$$f(f(f(a))) \approx a$$



$$f(f(a)) \approx a$$



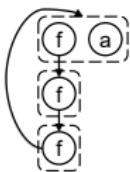
## Example from [Baader and Nipkow, 1999]

$$E = \boxed{\begin{array}{l} f(f(a)) \approx a \\ f(f(f(a))) \approx a \end{array}}$$

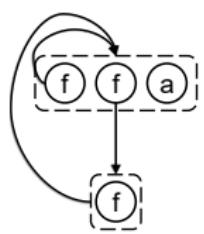
Check if  $f(a) \approx_E a$



$$f(f(f(a))) \approx a$$



$$f(f(a)) \approx a$$



$$f(f(f(a))) \approx a$$

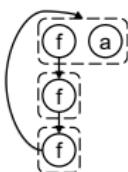
## Example from [Baader and Nipkow, 1999]

$$E = \boxed{\begin{array}{l} f(f(a)) \approx a \\ f(f(f(a))) \approx a \end{array}}$$

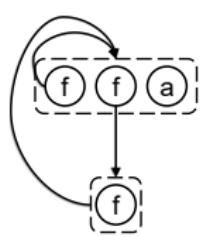
Check if  $f(a) \approx_E a$



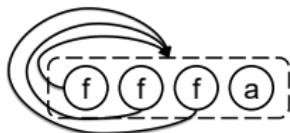
$$f(f(f(a))) \approx a$$



$$f(f(a)) \approx a$$



$$f(f(f(a))) \approx a$$

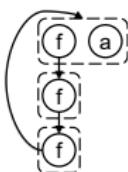


## Example from [Baader and Nipkow, 1999]

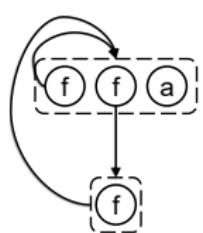
$$E = \boxed{\begin{array}{l} f(f(a)) \approx a \\ f(f(f(a))) \approx a \end{array}}$$

Check if  $f(a) \approx_E a$ 

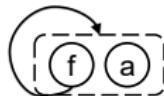
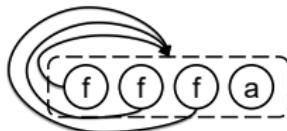
$$f(f(f(a))) \approx a$$



$$f(f(a)) \approx a$$



$$f(f(f(a))) \approx a$$

 $\Leftarrow$ 

## Discussion

The extensible query optimizers Volcano and Cascades are essentially E-graphs on steroids.

However, they come with their specialized terminology, and with heavy engineering.

Will discuss them in the next lecture(s), and refer to TRS and E-graphs.



Baader, F. and Nipkow, T. (1999).

Term Rewriting and All That.

Cambridge University Press, USA.



Willsey, M., Nandi, C., Wang, Y. R., Flatt, O., Tatlock, Z., and Panchekha, P. (2021).

egg: Fast and extensible equality saturation.

Proc. ACM Program. Lang., 5(POPL):1–29.