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Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The Full Picture

R = {R1, . . . ,Rn}

SystemR: introduced DP; Left Linear Plans

DPsize: all sets S1,S2 ⊆ R. O(4n)

DPsub: all disjoint sets S1,S2 ⊆ R, S1 ∩ S2 = ∅. O(3n)

DPccp Connected Component Pairs S1,S2.
▶ Chain query: O(n3)
▶ Star query: O(3n)

Specialized Algorithms: Greedy, IKKBZ

Very Large Joins.
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Recap: Optimization based on Connected Component Pairs

Algorithm 1: DPccp
for Connected component pairs S1,S2 ⊆ R do

if APPLICABLE(S1,S2, ◦) then
(P1, c1) := PlanCost[S1];
(P2, c2) := PlanCost[S2];
c := c1 + c2 + Cost(P1 ◦ P2);
if c < PlanCost[S1 ∪ S2] .cost then

PlanCost[S1 ∪ S2] := (P1 ◦ P2, c);

Runtime: O(3n).
Star query is the worst: O(3n)
Chain query is the best: O(n3).
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Discussion

Complexity: O(n3) · · ·O(3n). Hence n ≤ 14 · · · 100

Large joins (n ≫ 100) occur because of views over views over views.

Rare, but they exists [Neumann and Radke, 2018]:
▶ SAP Hana: query with 4,598, one with 2,298, a few with > 1000 relations.
▶ Tableau Public Data: long tail of queries with > 100 relations, up to 369.

Query optimizer must handle large joins: specialized algorithms.
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Greedy Algorithm
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Computing a Plan Greedily

[Fegaras, 1998]

Start from base tables: P1 := {R1}, . . . ,Pn := {Rn}.

Choose two join-able plans Pi ,Pj such that Cost(Pi Z Pj) is minimal.

Replace Pi ,Pj with Pi Z Pj . Repeat.

Stop when there is a single plan, with all relations.
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Computing a Plan Greedily

Function Greedy(R1,R2, . . . ,Rn)
Plans := {R1,R2, . . . ,Rn};
while |Plans| > 1 do

(L,R) := argminL,R∈Plans,L, R can joinCost(L Z R);
Plans := Plans − {L,R} ∪ {L Z R};
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Example

Step 1: Plans = {R,S, T ,K }:
R Z S,R Z T ,R Z K , T Z K

Step 2: Plans = {R,S, TK }:
R Z S,R Z TK
Step3: Plans = {S,RTK }:
S Z RTK

R S

TK

Final plan:
Z

S Z

R Z

T K
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QO via Shortest Path [Haffner and Dittrich, 2023]

Given a weighted graph G = (V ,E), find the shortest path from s to t.

Dijkstra’s algorithm: Single-Source Shortest Path (SSSP) in time
O( |E | + |V | log |V |).

A∗: a search algorithm where G is given implicitly and has exponential
size.
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QO via Shortest Path [Haffner and Dittrich, 2023]

Join graph Q = (R,E), where R = {R1, . . . ,Rn}, E = all joins.

Define the search graph G = (CC, J), where (informally!):
CC = set of partitions into connected components

R = C1 ∪ · · · ∪ Ck
J = pairs of partitions that can represent one join in E.
The weight of an edge in J is the cost of the join.

The optimal bushy plan w/o cross products is the shortest path:
{{R1}, {R2}, . . . , {Rn}} →∗ {{R1, . . . ,Rn}}
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QO via Shortest Path [Haffner and Dittrich, 2023]
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Discussion

Greedy: very simple, suboptimal plan

Graph search: natural extension.
Cannot construct the full graph (exponential!), but can use A∗ or some
beam search.
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The IKKBZ Algorithm
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Overview of IKKBZ

Optimal left linear plan w/o cross products, time O(n2). Assumes ASI property.

ASI originates in the job scheduling literature [Monma and Sidney, 1979].

Adapted to query optimization [Ibaraki and Kameda, 1984].

Further refined [Krishnamurthy et al., 1986]: we follow this.

Called IKKBZ in [Neumann and Radke, 2018].
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Problem Setting

Input: acyclic query graph.

R1 joins with R2 and R3.
R1 does not join with R4 or R5.

R1

R2 R3

R4 R5

Goal: find optimal left linear plan w/o cross products

For each i, consider all topological orders of tree rooted at Ri

Root R1, e.g. left-linear plan: R1R3R5R2R4
Root R3, e.g. left-linear plan: R3R4R1R5R2

Z

Z

Z

Z

R1 R3

R5

R2

R4
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Assumptions on the Cost Function

Fix a root of the query, say R1. Set p(i) def
= parent(i).

Est(Rp(i ) Z Ri)
def
= 𝜃i · |Rp(i ) | · |Ri | Cost(R Z Ri)

def
= |R | · g( |Ri |)

Est(Zi=k,m Ri) =
∏

i=k,m 𝜃i |Ri |
Notice Est(Ri) = 𝜃i |Ri |.

Cost(Zi=k,m Ri) =∑
j=k+1,m

∏
i=k,j−1(𝜃i |Ri |) · g( |Rj |)

Est(S1S2) =Est(S1) · Est(S2)
Cost(S1S2) =Cost(S1) + Est(S1) · Cost(S2)

E.g. Cost(R4R5R6R7R8) = Cost(R4R5R6) + Est(R4R5R6) · Cost(R7R8)
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The ASI Property

Cost satisfies the Adjacent Sequence Interchange (ASI) property
if there exists a function Rank such that for all sequences A,B,U,V :

Rank(U) ≤ Rank(V ) iff Cost(AUVB) ≤ Cost(AVUB)
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The ASI Property for Query Optimization

Theorem Cost satisfies ASI with Rank(S) def
=
Est(S)−1
Cost(S)

Proof to check Cost(AUVB) ≤ Cost(AVUB) iff Rank(U) ≤ Rank(V )

Cost(AUVB) =Cost(A) + Est(A) · Cost(U) + Est(AU) · Cost(V ) + Est(AUV ) · Cost(B)
Cost(AVUB) =Cost(A) + Est(A) · Cost(V ) + Est(AV ) · Cost(U) + Est(AVU) · Cost(B)

Cost(AUVB) ≤Cost(AVUB)
iff Est(A) · Cost(U) + Est(AU) · Cost(V ) ≤Est(A) · Cost(V ) + Est(AV ) · Cost(U)

iff Cost(U) + Est(U) · Cost(V ) ≤Cost(V ) + Est(V ) · Cost(U)
iff Est(U) · Cost(V ) − Cost(V ) ≤Est(V ) · Cost(U) − Cost(U)

iff Rank(U) = Est(U) − 1
Cost(U) ≤Est(V ) − 1

Cost(V ) = Rank(V )
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The IKKBZ Algorithm
For each node R, find optimal topological order for tree w/ root R:

Choose node R0 all of whose children are chains.

(Assuming only two children.) By induction:
Rank(R1) ≤ Rank(R2) ≤ · · ·
Rank(R′

1) ≤ Rank(R′
2) ≤ · · ·

Merge the two chains to obtain:

Rank(R0)
??
≶Rank(R′′

1 ) ≤ Rank(R′′
2 ) ≤ · · ·

Cannot move R0. Instead:
If Rank(R0) > Rank(R1): R0:1 := R0R′′

1

If Rank(R0:1) > Rank(R2): R0:2 := R0R′′
1 R′′

2
Until Rank(R0:i) ≤ Rank(R′′

i+1).

Repeat until entire rooted tree becomes a single chain.

R0

R1

R2

.

.

.

R′
1

R′
2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

R0

R′′
1

R′′
2

.

.

.

R′′
i

R′′
i+1

.

.

.

R0:i

R′′
i+1

R′′
i+1

.

.

.
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Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example: Adapted from [Krishnamurthy et al., 1986]
R35 |Ri | 𝜃i Cost(Ri ) = gi ( |Ri | ) Rank(Ri ) = Est(Ri )−1

Cost(Ri )
R1 100 1 300
R2 2000 0.5 9
R3 1000 0.1 9.9
R4 400 0.25 3
R5 100 0.1 30

R1

0.33

R2

111

R3

10

R4

33

R5

0.3

R0.33
1

R111
2 R10

3

R0.3
5

R33
4

R0.33
1

R111
2 R3.22

35

R33
4

R0.33
1

R3.22
35

R33
4

R111
2

Optimal plan so far: R1 Z R3 Z R5 Z R4 Z R2.
Next, repeat with root= R2, then root= R3, etc. Return the cheapest plan.
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Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality Proof: Overview

None of [Krishnamurthy et al., 1986, Ibaraki and Kameda, 1984,
Neumann and Radke, 2018] gives the correctness proof.

A proof will give us better understanding.

One key step is to explain the need to combine R0,R1, . . . ,Ri into R0:i :
this is the Key Lemma

Another subtlety is that we want to prove that the output is globally
optimal, not locally optimal.
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Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Key Lemma

Assume Rank(R0) > Rank(R1), . . . Rank(R0:i−1) > Rank(Ri). Then
Cost(R0 · · ·Rj−1SRj · · ·Ri) > min(Cost(SR0 · · ·Ri),Cost(R0 · · ·RiS))

“Inserting S between R0 · · ·Ri is suboptimal”

Proof
Rank(R0) > Rank(R1) implies R0SR1 is suboptimal:

If Rank(S) < Rank(R0) then Cost(R0SR1) >.
If Rank(S) > Rank(R1) then Cost(R0SR1) >.

Rank(R0:1) > Rank(R2) implies R0:1SR1 is suboptimal.

Rank(R0:2) > Rank(R3) implies R0:2SR3 is suboptimal. Etc.

Justifies combining R0 · · ·Ri into R0:i for the rest of algorithm
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Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Overview

Let R1R2 . . .Rn be the sequence returned by IKKBZ.

Does it suffices to prove Rank(R1) ≤ Rank(R2) ≤ · · · ?

No! That only proves local optimality1

Instead we need to prove this:

If Opt is the optimal sequence, then IKKBZ returns Opt

1If we also prove Rank(R1R2R3) ≤ Rank(R4R5), etc.
Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 37



Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Overview

Let R1R2 . . .Rn be the sequence returned by IKKBZ.

Does it suffices to prove Rank(R1) ≤ Rank(R2) ≤ · · · ?

No! That only proves local optimality1

Instead we need to prove this:

If Opt is the optimal sequence, then IKKBZ returns Opt

1If we also prove Rank(R1R2R3) ≤ Rank(R4R5), etc.
Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 37



Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Overview

Let R1R2 . . .Rn be the sequence returned by IKKBZ.

Does it suffices to prove Rank(R1) ≤ Rank(R2) ≤ · · · ?

No! That only proves local optimality1

Instead we need to prove this:

If Opt is the optimal sequence, then IKKBZ returns Opt

1If we also prove Rank(R1R2R3) ≤ Rank(R4R5), etc.
Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 37



Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Proof 1/2

Theorem Fix R as the tree root, and let OptR be the optimal starting at this root.
Then IKKBZ on root R returns OptR.

Notice that OptR must start with R (why?).
IKKBZ also returns a sequence that starts with R.

R

S1

S2

.

.

.

.

.

.

T1

.

.

.

K1

.

.

.

Let OptR ∩ T be the subsequence consisting of relations in subtree T .

E.g. if OptR = RT1S1T3K1S4S2T2 · · · then Opt ∩ Tree(S1) = S1S4S2 · · ·

Subsequence Lemma: For every subtree T of the root R, OptR ∩ T is the
optimal sequence OptT of T
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Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Proof of the Subsequence Lemma
Forest F = {T1,T2, . . .} (set of ordered trees)

Claim Let OptF be optimal topological order of F .

R1

R2

.

.

.

R3

.

.

.

S1

S2

.

.

.

.

.

.

.

.

.

K1

K2

.

.

.

.

.

.

Then, for all T ∈ F , OptF ∩ T is optimal sequence OptT of T .

Proof by induction on the number of nodes in the forest.

Let the first node of OptF be S1: OptF = S1Rest

S1 is the root of some tree T ∈ F why?
and Rest is optimal topological order of F − {S1} why?

Because Cost(OptF ) = Cost(S1Rest) = Cost(S1) + Est(S1)Cost(Rest)
Improving Cost(Rest) would improve Cost(OptF ).

Lemma follows from induction hypothesis on F − {S1}.
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Then, for all T ∈ F , OptF ∩ T is optimal sequence OptT of T .

Proof by induction on the number of nodes in the forest.

Let the first node of OptF be S1: OptF = S1Rest

S1 is the root of some tree T ∈ F why?
and Rest is optimal topological order of F − {S1} why?

Because Cost(OptF ) = Cost(S1Rest) = Cost(S1) + Est(S1)Cost(Rest)
Improving Cost(Rest) would improve Cost(OptF ).

Lemma follows from induction hypothesis on F − {S1}.
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Optimality of the IKKBZ Algorithm: Proof 2/2

IKKBZ on root R returns OptR.

Assume for simplicity that R has two children: T1,T2

By induction, IKKBZ computes their optimal order:
OptT1 = S1S2 · · ·
OptT2 = T1T2 · · ·

By the Subsequence Lemma:
OptR ∩ T1 = S1S2 · · ·
OptR ∩ T2 = T1T2 · · ·

By the Key Lemma, if Si:j was combined by the algorithm, then OptR will not
have any Tk between Si · · ·Sj .

By ASI, OptR is obtained by merging their ranks.
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Discussion

IKKBZ finds optimal plan in polynomial time, but only under the ASI
assumption on Cost.

Can still use IKKBZ as a heuristics, setting Rank(S) = Est(S)−1
Cost(S) .

Searches only for left-linear plans. This is useful for the linearization used
to optimize very large joins: next.
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Large Joins
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Overview

[Neumann and Radke, 2018]:

Small query: DPccp. Optimal

Medium query (≤ 100 tables): Linearized DPccp. Almost Optimal

Large query: Greedy. Degrade Gracefully
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Small Query
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Small Query

What is Small?

Runtime of DPccp depends heavily on the query’s topology:

Linear query (easiest): O(n3) n ≤ 100

Star query (hardest): O(3n) n ≤ 14.

A workable definition of “small”:

number of connected subgraphs csg ≤ 10000

csg can be computed efficiently.
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Medium Query

Fix a linear order on the relations: R1,R2, . . . ,Rn.

Modify DPccp to consider only sets S that are connected subchains.

Size of the DP table: O(n2) as opposed to O(2n).

Dan Suciu CSE599d: Advanced QP Winter 2026 32 / 37



Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Query Linearization

Reduces the size of the DP table from O(2n) to O(n2).

Use IKKBZ to find a good linearization order.

LinearizedDP: a simplified version of DPccp, runtime O(n3).
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Discussion

Linearizaton reduces runtime from O(3n) to O(n3).

Output plan is no longer optimal: it depends on the linearization order.

Use the IKKBZ algorithm to find a good linearization order.
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Large Query

n > 100.

Use greedy algorithm to compute an initial plan P.

Iterative refinement: optimize subtrees of size k (e.g. k = 100).
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Iterative Refinement

Start from complete join plan P.

P

P’
≤ 𝑘

Find a subplan (subtree) P′ such that:
▶ |P′ | ≤ 100 (so we can run LinearizedDP).
▶ Cost(P′) is maximal.

Replace P′ with LinearizedDP(P′)

Replace P′ with one relation (so we don’t optimize it further). Repeat.

Stop after some fixed number of iterations.
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Summary of Large Joins from [Neumann and Radke, 2018]

Small query: DPccp.

Medium query: LinearizedDP. Need IKKBZ (next)

Large query: Greedy, then local LinearizedDP
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