CSE599d: Advanced Query Processing

Lecture 6: QO by Dynamic Programming — Wrapup

Dan Suciu

University of Washington

Query Optimization via DP
@00

The Full Picture
R = {R1,...,Rn}
o SystemR: introduced DP; Left Linear Plans
e DPsize: all sets S1,S2 C R.
@ DPsub: all disjoint sets S1,S> C R, S1 NS> = 0.
@ DPccp Connected Component Pairs Sy, So.
> Chain query:
> Star query:

@ Specialized Algorithms: Greedy, IKKBZ

@ Very Large Joins.

Dan Suciu CSE599d: Advanced QP

‘Winter 2026

o(4")

0(3")

o(n?)
0(3")

2/37

Query Optimization via DP
0e0

Recap: Optimization based on Connected Component Pairs

Algorithm 1: DPccp

for Connected component pairs S1,S2 C R do
if APPLICABLE(S1, So, o) then
(P1,cq) := PlanCost[S1];
(P2, c2) := PlanCost[S>];
€ :=Cy + C2 + Cost(Pq o Po);
if ¢ < PlanCost[S; U S»].cost then
PlanCost[S1 U So] := (Pq o P2, ¢);

Runtime: O(3").
Star query is the worst: O(3")
Chain query is the best: O(n®).

Dan Suciu CSE599d: Advanced QP ‘Winter 2026

3/37

Query Optimization via DP
[e]e] J

Discussion

e Complexity: O(n®) ---O(3"). Hence n < 14---100

@ Large joins (n > 100) occur because of views over views over views.

@ Rare, but they exists [Neumann and Radke, 2018]:

» SAP Hana: query with 4,598, one with 2,298, a few with > 1000 relations.
> Tableau Public Data: long tail of queries with > 100 relations, up to 369.

@ Query optimizer must handle large joins: specialized algorithms.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 4/37

ly Algorithm

00000

Greedy Algorithm

CSE599d: Advanced QP ‘Winter 2026 5/37

Query Optimization via DP Greedy Algorithm

O®000000

Computing a Plan Greedily

[Fegaras, 1998]
@ Start from base tables: Py := {R1},...,Pn := {Rn}.
@ Choose two join-able plans P;, P; such that Cost(P; > P;) is minimal.
@ Replace P;, P; with P; > P;. Repeat.

@ Stop when there is a single plan, with all relations.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 6/37

Query Optimization via DP Greedy Algorithm

[e]e] lele]elele)

Computing a Plan Greedily

Function Greedy(R1, Ro, ..., Rp)

Plans := {R1,Ro, ..., Rn};

while |Plans| > 1 do
(L’ R) = argminL,Fi’ePlans,L,RcanjoinCOSt(L s R),
Plans := Plans — {L, R} U {L = R};

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 7137

Greedy Algorithm

[e]e]e] Je]elele)

Example

o Step 1: Plans = {R,S, T,K}:
RS R<T,ARxK,TxK

Pyl
(@]

P
—

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 8/37

Greedy Algorithm

[e]e]e] Je]elele)

Example

o Step 1: Plans = {R,S, T,K}:
RS R<T,ARxK,TxK

Pyl
(@]

P
—

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 8/37

Greedy Algorithm

[e]e]e] Je]elele)

Example

o Step 1: Plans = {R,S, T,K}:
RS R<T,ARxK,TxK

@ Step 2: Plans = {R, S, TK}:
R~ S, R~ TK

Pyl
(@]

P
—

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 8/37

Greedy Algorithm

[e]e]e] Je]elele)

Example

o Step 1: Plans = {R,S, T,K}:
RS R<T,ARxK,TxK

@ Step 2: Plans = {R, S, TK}:
R~ S, R~ TK

Pyl
(@]

P
—

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 8/37

Query Optimization via DP Greedy Algorithm

[e]e]e] Je]elele)

Example

o Step 1: Plans = {R,S, T,K}:
RS R<T,ARxK,TxK

@ Step 2: Plans = {R, S, TK}:

Pyl
(@]

R~ S, R~ TK
o Step3: Plans = {S, RTK}: K T
S < RTK

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 8/37

Query Optimization via DP Greedy Algorithm

[e]e]e] Je]elele)

Example

o Step 1: Plans = {R,S, T,K}:
RS R<T,ARxK,TxK

@ Step 2: Plans = {R, S, TK}:

Pyl
(@]

R~ S, R~ TK
o Step3: Plans = {S, RTK}: K T
S x RTK
Final plan:
>
/\
S]
N
R [
P
T K

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 8/37

Query Optimization via DP Greedy Algorithm

[e]e]e]e] Jelele)

QO via Shortest Path [Haffner and Dittrich, 2023]

Given a weighted graph G = (V, E), find the shortest path from s to t.

@ Dijkstra’s algorithm: Single-Source Shortest Path (SSSP) in time
O(E| + [V[log|V]).

@ A*: asearch algorithm where G is given implicitly and has exponential
size.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 9/37

Query Optimization via DP Greedy Algorithm
500 00000800

QO via Shortest Path [Haffner and Dittrich, 2023]
Join graph Q = (R, E), where R = {R4, ..., Ry}, E = all joins.

Define the search graph G = (CC, J), where (informally!):
CC = set of partitions into connected components
R=CiU---UCx
J = pairs of partitions that can represent one join in E.
The weight of an edge in J is the cost of the join.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 10/37

Query Optimization via DP Greedy Algorithm

[e]e]e]e]e] lele)

QO via Shortest Path [Haffner and Dittrich, 2023]
Join graph Q = (R, E), where R = {R4, ..., Ry}, E = all joins.

Define the search graph G = (CC, J), where (informally!):

CC = set of partitions into connected components
R=CiU---UCx

J = pairs of partitions that can represent one join in E.
The weight of an edge in J is the cost of the join.

The optimal bushy plan w/o cross products is the shortest path:

{{R1}.{Rz},....{Rn}} =" {{R1,.... Rn}}

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 10/37

Query Optimization via DP Greedy Algorithm IK
000 00000000 ole

QO via Shortest Path [Haffner and Dittrich, 2023]

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 11/37

Query Optimization via DP Greedy Algorithm IK
000 00000000 ole

QO via Shortest Path [Haffner and Dittrich, 2023]

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 11/37

Query Optimization via DP Greedy Algorithm IK
000 00000000 ole

QO via Shortest Path [Haffner and Dittrich, 2023]

%
‘o

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 11/37

Query Optimization via DP Greedy Algorithm

0O000000e

Discussion

@ Greedy: very simple, suboptimal plan

@ Graph search: natural extension.
Cannot construct the full graph (exponential!), but can use A* or some
beam search.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 12/37

IKKBZ
@00000000000000

The IKKBZ Algorithm

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 13/37

Query Optimization via DP

0®@0000000000000

Overview of IKKBZ

Optimal left linear plan w/o cross products, time O(n?). Assumes ASI property.

@ ASI originates in the job scheduling literature [Monma and Sidney, 1979].

@ Adapted to query optimization [Ibaraki and Kameda, 1984].

@ Further refined [Krishnamurthy et al., 1986]: we follow this.

@ Called IKKBZ in [Neumann and Radke, 2018].

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 14/37

Problem Setting

Input: acyclic query graph.

R4
R; joins with Ry and Rs. R/\R
R1 does not join with R4 or Rs. 2 3
N
Rs Rs

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 15/37

Query Optimization via DP Jre Algorithm IKKBZ

00@000000000000

Problem Setting

Input: acyclic query graph.

R4
R; joins with Ry and Rs. R/\R
R1 does not join with R4 or Rs. 2 3
N
Rs Rs

Goal: find optimal left linear plan w/o cross products

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 15/37

Query Optimization via DP Greedy Algorithm IKKBZ

Problem Setting

Input: acyclic query graph.

R
R; joins with Ry and Rs. R/\R
R1 does not join with R4 or Rs. 2 3
Rs Rs

Goal: find optimal left linear plan w/o cross products

For each i, consider all topological orders of tree rooted at R;

7%
Root Ry, e.g. left-linear plan: R1R3RsR2R4 o~
Root Rz, e.g. left-linear plan: R3R4R1Rs5R> i Ra
& h,
A~
A R

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 15/37

IKKBZ
000@00000000000

Assumptions on the Cost Function

Fix a root of the query, say Ry. Set p(/) = parent(/).

def
Est(Rp() = R) S 6; - |Roy | - R Cost(R = R;) € |R| - g(|Ri])

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 16/37

Query Optimization via DP sreedy Algo IKKBZ

000@00000000000

Assumptions on the Cost Function

Fix a root of the query, say Ry. Set p(/) = parent(/).

def def
Est(Rp() > Ri) = 6; - |Roi)| - IRi] Cost(R » R) = |R| - g(|Ril)
Est(>j=k,m Ri) = [1j=k,m 0i|Ril Cost(»i=k,m Rj) =

Notice Est(R;) = 6;|R;|. Zj=k+1,m L i=k j—1(GilRil) - g(1R;])

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 16/37

Query Optimization via DP Greedy Algorithm IKKBZ

000@00000000000

Assumptions on the Cost Function

Fix a root of the query, say Ry. Set p(/) = parent(/).

def def
Est(Rp() > Ri) = 6; - |Roi)| - IRi] Cost(R » R) = |R| - g(|Ril)
Est(>j=k,m Ri) = [1j=k,m 0i|Ril Cost(»i=k,m Rj) =

Notice Est(R;) = 6;|R;|. Zj=k+1,m L i=k j—1(GilRil) - g(1R;])

Est(S51S2) =Est(Sy) - Est(Sy)
Cost(S1Ss) =Cost(S1) + Est(S1) - Cost(S»)

E.g. Cost(R4Rs5RsR7Rs) = Cost(R4R5Rs) + Est(R4R5Rs) - Cost(R7Rg)

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 16/37

Query Optimization via DP S go 1 IKKBZ

0000@0000000000

The ASI Property

Cost satisfies the Adjacent Sequence Interchange (ASI) property
if there exists a function Rank such that for all sequences A, B, U, V:

|Rank(U) < Rank(V) | iff |Cost(AUVB) < Cost(AVUB)

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 17/37

IKKBZ
00000@000000000

The ASI Property for Query Optimization

Theorem Cost satisfies ASI with | Rank(S) & Eéf)gfg;

Proof to check ‘ Cost(AUVB) < Cost(AVUB) ‘iff ‘ Rank(U) < Rank(V) ‘

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 18/37

Query Optimization via DP Sre gorithm IKKBZ

00000@000000000

The ASI Property for Query Optimization

Theorem Cost satisfies ASI with | Rank(S) & E(S:ths(?s_;

Proof to check ‘ Cost(AUVB) < Cost(AVUB) ‘iff ‘ Rank(U) < Rank(V) ‘

Cost(AUVB) =Cost(A) + Est(A) - Cost(U) + Est(AU) - Cost(V) + Est(AUV) - Cost(B)
Cost(AVUB) =Cost(A) + Est(A) - Cost(V) + Est(AV) - Cost(U) + Est(AVU) - Cost(B)

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 18/37

Query Optimization via DP

00000@000000000

The ASI Property for Query Optimization

Theorem Cost satisfies ASI with | Rank(S) = 2t

Proof to check ‘ Cost(AUVB) < Cost(AVUB) ‘iff ‘ Rank(U) < Rank(V) ‘

Cost(AUVB) =Cost(A) + Est(A) - Cost(U) + Est(AU) - Cost(V) + Est(AUV) - Cost(B)
Cost(AVUB) =Cost(A) + Est(A) - Cost(V) + Est(AV) - Cost(U) + Est(AVU) - Cost(B)

Cost(AUVB) <Cost(AVUB)
iff Est(A) - Cost(U) + Est(AU) - Cost(V) <Est(A) - Cost(V) + Est(AV) - Cost(U)

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 18/37

Query Optimization via DP

00000@000000000

The ASI Property for Query Optimization

Theorem Cost satisfies ASI with | Rank(S) = 2t

Proof to check ‘ Cost(AUVB) < Cost(AVUB) ‘iff ‘ Rank(U) < Rank(V) ‘

Cost(AUVB) =Cost(A) + Est(A) - Cost(U) + Est(AU) - Cost(V) + Est(AUV) - Cost(B)
Cost(AVUB) =Cost(A) + Est(A) - Cost(V) + Est(AV) - Cost(U) + Est(AVU) - Cost(B)

Cost(AUVB) <Cost(AVUB)
iff Est(A) - Cost(U) + Est(AU) - Cost(V) <Est(A) - Cost(V) + Est(AV) - Cost(U)
iff Cost(U) + Est(U) - Cost(V) <Cost(V) + Est(V) - Cost(U)

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 18/37

Query Optimization via DP

00000@000000000

The ASI Property for Query Optimization

Theorem Cost satisfies ASI with | Rank(S) = 2t

Proof to check ‘ Cost(AUVB) < Cost(AVUB) ‘iff ‘ Rank(U) < Rank(V) ‘

Cost(AUVB) =Cost(A) + Est(A) - Cost(U) + Est(AU) - Cost(V) + Est(AUV) - Cost(B)
Cost(AVUB) =Cost(A) + Est(A) - Cost(V) + Est(AV) - Cost(U) + Est(AVU) - Cost(B)

Cost(AUVB) <Cost(AVUB)
iff Est(A) - Cost(U) + Est(AU) - Cost(V) <Est(A) - Cost(V) + Est(AV) - Cost(U)
iff Cost(U) + Est(U) - Cost(V) <Cost(V) + Est(V) - Cost(U)
iff Est(U) - Cost(V) — Cost(V) <Est(V) - Cost(U) — Cost(U)

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 18/37

Query Optimization via DP

00000@000000000

The ASI Property for Query Optimization

Theorem Cost satisfies ASI with | Rank(S) = 2t

Proof to check ‘ Cost(AUVB) < Cost(AVUB) ‘iff ‘ Rank(U) < Rank(V) ‘

Cost(AUVB) =Cost(A) + Est(A) - Cost(U) + Est(AU) - Cost(V) + Est(AUV) - Cost(B)
Cost(AVUB) =Cost(A) + Est(A) - Cost(V) + Est(AV) - Cost(U) + Est(AVU) - Cost(B)

Cost(AUVB) <Cost(AVUB)

iff Est(A) - Cost(U) + Est(AU) - Cost(V) <Est(A) - Cost(V) + Est(AV) - Cost(U)
iff Cost(U) + Est(U) - Cost(V) <Cost(V) + Est(V) - Cost(U)

iff Est(U) - Cost(V) — Cost(V) <Est(V) - Cost(U) — Cost(U)

iff Rank(U) = EStW) =1 _EstV) =1 _ b (v)

Cost(U) ~ Cost(V)

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 18/37

Query Optimization via DP Gre gorithm IKKBZ
[e]e]e} o] [e]e) 000000 e00000000

The IKKBZ Algorithm

For each node R, find optimal topological order for tree w/ root R:
R,
@ Choose node Ry all of whose children are chains. /O\
Ry qu . .
@ (Assuming only two children.) By induction: A A

Rank(R1) < Rank(R») < --- ‘ ‘ :
Rank(R/) < Rank(R}) < --- S

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 19/37

Query Optimization via DP G or IKKBZ

000000@00000000

The IKKBZ Algorithm
For each node R, find optimal topological order for tree w/ root R:

@ Choose node Ry all of whose children are chains. T
Ry Aj .

@ (Assuming only two children.) By induction: A n‘é

Rank(R1) < Rank(R») < --- ‘ ‘ :
Rank(R/) < Rank(R}) < --- S

@ Merge the two chains to obtain:

Rank(Ro)=Rank(R;’) < Rank(R}) < - o
Ry

Ay

I

|

Ry

R

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 19/37

Query Optimization via DP Gr

000000@00000000

The IKKBZ Algorithm

For each node R, find optimal topological order for tree w/ root R:

@ Choose node Ry all of whose children are chains. TR
Ry Ff; . .
@ (Assuming only two children.) By induction: Ay n‘é o
Rank(R;) < Rank(R,) < - - L
Rank(R/) < Rank(R}) < --- ot
@ Merge the two chains to obtain:
Rank(Ro)=Rank(R;’) < Rank(R}) < - o Rf-f
RY Rl
e Cannot move Ryp. Instead: H,‘; HJ,:
If Rank(Ro) > Rank(R1): Ro:1 = RQRQ’ ‘
If Rank(Ro.1) > Rank(Ro): | Ro:2 := RoR{ R} R‘
Until Rank(Ro.) < Rank(R/7.). o

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 19/37

Query Optimization via DP G

000000@00000000

The IKKBZ Algorithm

For each node R, find optimal topological order for tree w/ root R:

@ Choose node Ry all of whose children are chains. T
Ry qu . .
@ (Assuming only two children.) By induction: Ay n‘é o
Rank(R1) < Rank(R») < --- ‘ ‘ :
Rank(R/) < Rank(R}) < --- S
@ Merge the two chains to obtain:
Rank(Ho)éRank(RQ’) < Rank(R}) <--- ”‘0 F"JO»/‘
RY Rl
e Cannot move Ry. Instead: H,‘; HJ,:
If Rank(Ro) > Rank(R1): Ro:1 = RQRQ’ ‘
If Rank(Ro.1) > Rank(Ro): | Ro:2 := RoR{ R} .
Until Rank(Ro.) < Rank(R/7.). Nl
i+1

@ Repeat until entire rooted tree becomes a single chain.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 19/37

IKKBZ
0000000e0000000

Example: Adapted from [Krishnamurthy et al., 1986]

|Ril | 6 Cost(R) = gi(I1Ri])
Ry [100 | 1 300

Rp | 2000 | 05 |9

Rs | 1000 | 0.1 | 99

Ry | 400 | 025 |3

Rs | 100 | 01 |30

R
R> Rs
/\
R4 Rs

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 20/37

IKKBZ
0000000e0000000

Example: Adapted from [Krishnamurthy et al., 1986]

R)—1
Al | 6 | CosR) =gi(IRiD) | Est(R) = 6lRIl | Rank(R) = St
Ry 100 1 300 100 0.33
R> | 2000 | 0.5 9 1000 111
Rs | 1000 | 0.1 9.9 100 10
R4 | 400 025 | 3 100 33
Rs | 100 0.1 30 10 0.3
R
Rz Rs
/\
R, Rs

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 20/37

IKKBZ
0000000e0000000

Example: Adapted from [Krishnamurthy et al., 1986]

R)—1

Rl | 6 | Cost(R) =gi(IRil) | Est(R) = 6|R| | Rank(R;) = ="
R4 100 1 300 100 0.33
Ry | 2000 | 0.5 9 1000 111
R3 1000 | 0.1 9.9 100 10
R4 | 400 025 | 3 100 33
Rs 100 0.1 30 10 0.3

R10'33
111 1
R Rs'°
R433 R50'3

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 20/37

Query Optimization via DP

IKKBZ

0000000e0000000

Example: Adapted from [Krishnamurthy et al., 1986]

Ry
[Ril | & Cost(Ri) = gi(|1Ri) | Est(R;) = 6|Ri Raﬂk(ﬁ‘)=%
Ry [100 |1 300 100 033
Ro | 2000 | 05 | 9 1000 111
Ry | 1000 | 0.1 | 99 100 10
Ry | 400 | 025 | 3 100 33
Rs | 100 | 01 | 30 10 0.3
R,0-33 R0-33
1
1{\10
R, 11 Ra'0 R, F?3
33 0.3 Ft"L~3
R4 Rs™ 5
L
Ry

‘Winter 2026 20/37

Dan Suciu CSE599d: Advanced QP

Query Optimization via DP Greedy A IKKBZ

0000000e0000000

Example: Adapted from [Krishnamurthy et al., 1986]

N
[Ril | 6 Cost(R;) = gi(|Ri]) Est(R;) = 6i|R;| | Rank(R;) = %
Ry 100 1 300 100 0.33
R> 2000 | 0.5 9 1000 111
R3 1000 | 0.1 9.9 100 10
Ry 400 025 | 3 100 33
Rs 100 0.1 30 10 0.3
Rss Cost(R3) + Est(R3)Cost(Rs) Est(R3)Est(Rs)
1000 309.9 3.223620523
R,0-33 R0-33 R0.33
1 1
mA 10 R(\Rw Rmzz
R> Rs 2 3 2 3‘5
P (L
3 33
R,33 Rs%3 Fi’? R 7
33
R4

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 20/37

Query Optimization via DP reedy Algori IKKBZ

0000000e0000000

Example: Adapted from [Krishnamurthy et al., 1986]

Ry -1
Ril | 6 Cost(Ri) = gi(|1Ril) Est(R;) = 6i|Ri| | Rank(R;) = %
R4 100 1 300 100 0.33
Ro 2000 | 0.5 9 1000 111
R3 1000 | 0.1 9.9 100 10
Ry 400 025 | 3 100 33
Rs 100 0.1 30 10 0.3
Rss Cost(R3) + Est(R3)Cost(Rs) Est(R3)Est(Rs)
1000 309.9 3.223620523
R;0-33 R0-33 RO-33 R0-33
1 1 1
mA 0 R(\Fﬂ 0 Rmzz R3‘_22
Rg R3 2 3 2 3‘5 3‘5
P (L
3 33 33
R,33 Rs%3 Fi’? R, R ‘4
33 111
R; R,

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 20/37

Query Optimization via DP Greedy Algorithm IKKBZ

0000000e0000000

Example: Adapted from [Krishnamurthy et al., 1986]

Ry -1
Ril | 6 Cost(Ri) = gi(|1Ril) Est(R;) = 6i|Ri| | Rank(R;) = %
R4 100 1 300 100 0.33
Ro 2000 | 0.5 9 1000 111
R3 1000 | 0.1 9.9 100 10
Ry 400 025 | 3 100 33
Rs 100 0.1 30 10 0.3
Rss Cost(R3) + Est(R3)Cost(Rs) Est(R3)Est(Rs)
1000 309.9 3.223620523
R;0-33 R0-33 RO-33 R0-33
1 1 1
mA 0 R(\Fﬂ 0 Rmzz Rs‘.gg
Rg R3 2 3 2 3‘5 3‘5
P (L
3 33 33
R,33 Rs%3 Fi’? R, R ‘4
33 111
R; R,

Optimal plan so far: Ry >4 A3 > Rs > R4 >4 Ro.
Next, repeat with root= Ry, then root= Rs, etc. Return the cheapest plan.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 20/37

Query Optimization via DP G or IKKBZ

00000000 e000000

Optimality Proof: Overview

@ None of [Krishnamurthy et al., 1986, Ibaraki and Kameda, 1984,
Neumann and Radke, 2018] gives the correctness proof.

@ A proof will give us better understanding.

@ One key step is to explain the need to combine Ry, R4, ..., R; into Ry.;:
this is the Key Lemma

@ Another subtlety is that we want to prove that the output is globally
optimal, not locally optimal.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 21/37

Query Optimization via DP S go 1 IKKBZ

0000000000 0000

Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 22/37

Query Optimization via DP

0000000000 0000

Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”

Proof
Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 22/37

Query Optimization via DP Greedy Algorithm IKKBZ

0000000000 0000

Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”

Proof
Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 22/37

Query Optimization via DP Greedy Algorithm IKKBZ

0000000000 0000

Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”
Proof
Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:
@ If Rank(S) < Rank(Rg) then Cost(RoSR1) > Cost(SRgR1).

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 22/37

Query Optimization via DP Greedy Algorithm IKKBZ

0000000000 0000

Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”
Proof
Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:
@ If Rank(S) < Rank(Rg) then Cost(RoSR1) > Cost(SRgR1).

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 22/37

Query Optimization via DP Greedy Algorithm IKKBZ

0000000000 0000

Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”

Proof

Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:
@ If Rank(S) < Rank(Rg) then Cost(RoSR1) > Cost(SRgR1).
o If Rank(S) > Rank(Ry) then Cost(RoSR1) > Cost(RgR1S).

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 22/37

Query Optimization via DP e Algorithm IKKBZ

0000000000 0000

Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”

Proof

Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:
@ If Rank(S) < Rank(Rg) then Cost(RoSR1) > Cost(SRgR1).
o If Rank(S) > Rank(Ry) then Cost(RoSR1) > Cost(RgR1S).

Rank(Ryp.1) > Rank(Rz) implies Ro.1 SRy is suboptimal.

Rank(Rp.2) > Rank(Rj3) implies Ry.2SRj3 is suboptimal. Etc.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 22/37

Query Optimization via DP e Algorithm IKKBZ

0000000000 0000

Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”

Proof

Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:
@ If Rank(S) < Rank(Rg) then Cost(RoSR1) > Cost(SRgR1).
o If Rank(S) > Rank(Ry) then Cost(RoSR1) > Cost(RgR1S).

Rank(Ryp.1) > Rank(Rz) implies Ro.1 SRy is suboptimal.
Rank(Rp.2) > Rank(Rj3) implies Ry.2SRj3 is suboptimal. Etc.

Justifies combining Ry - - - R; into Ry.; for the rest of algorithm

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 22/37

IKKBZ
0000000000 e0000

Optimality of the IKKBZ Algorithm: Overview

Let R1R> ... Ry be the sequence returned by IKKBZ.

Does it suffices to prove Rank(Ry) < Rank(Rp) < ---?

!f we also prove Rank(RR2R3) < Rank(R4Rs), etc.
Winter 2026 23/37

Query Optimization via DP sreedy Algorithm IKKBZ

0000000000 e0000

Optimality of the IKKBZ Algorithm: Overview

Let R1R> ... Ry be the sequence returned by IKKBZ.
Does it suffices to prove Rank(Ry) < Rank(Rp) < ---?

No! That only proves local optimality'

!f we also prove Rank(RR2R3) < Rank(R4Rs), etc.
Winter 2026

23/37

Query Optimization via DP

0000000000 e0000

Optimality of the IKKBZ Algorithm: Overview
Let R1R> ... Ry be the sequence returned by IKKBZ.

Does it suffices to prove Rank(Ry) < Rank(Rp) < ---?

No! That only proves local optimality'

Instead we need to prove this:

If Opt is the optimal sequence, then IKKBZ returns Opt

!f we also prove Rank(RR2R3) < Rank(R4Rs), etc.
Winter 2026

23/37

Query Optimization via DP Greedy Algorithm IKKBZ
000 00000000000e000

Optimality of the IKKBZ Algorithm: Proof 1/2

Theorem Fix R as the tree root, and let Optg be the optimal starting at this root.
Then IKKBZ on root R returns Optg.

R
Sq T4 K4
S
s > \ \

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 24/37

Query Optimization via DP G Algorithm IKKBZ
[e]e]e}) 00000000000 e000

Optimality of the IKKBZ Algorithm: Proof 1/2

Theorem Fix R as the tree root, and let Optg be the optimal starting at this root.
Then IKKBZ on root R returns Optg.

R
Notice that Optg must start with R (why?). 31/’T1\K1

. <N [[
IKKBZ also returns a sequence that starts with A. S . :

Dan Suciu CSE599d: Advanced QP

‘Winter 2026 24/37

Dan Suciu CSE599d: Advanced QP

Query Optimization via DP G IKKBZ
500 0 000000000008000

Optimality of the IKKBZ Algorithm: Proof 1/2

Theorem Fix R as the tree root, and let Optg be the optimal starting at this root.
Then IKKBZ on root R returns Optg.

R
Notice that Optg must start with R (why?). S1/T’1\K1

. <N [[
IKKBZ also returns a sequence that starts with A. S . :

Let Optg N T be the subsequence consisting of relations in subtree 7.

E.g. if Optg = RT1S1T3K1S4S2T5 - - - then Opt N Tree(Sy) = S1S4S2 - - -

‘Winter 2026 24/37

Query Optimization via DP G gorithm IKKBZ

0000000000080 00

Optimality of the IKKBZ Algorithm: Proof 1/2

Theorem Fix R as the tree root, and let Optg be the optimal starting at this root.
Then IKKBZ on root R returns Optg.

R
Notice that Optg must start with R (why?). /31\/7’1\;9
IKKBZ also returns a sequence that starts with R. Sz .

Let Optg N T be the subsequence consisting of relations in subtree 7.
E.g. if OptR = RT1S51T3K154S2T5 - - - then Opt N Tree(S1) =85154S5---

Subsequence Lemma: For every subtree 7~ of the root R, Opt; N 7 is the
optimal sequence Opts of 7

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 24/37

Query Optimization via DP IKKBZ

000000000000 e00

Proof of the Subsequence Lemma

Forest F = {77, 73, ...} (set of ordered trees) A
Ry R 3‘2 . K‘z .
L

Claim Let Optg be optimal topological order of F.
Then, for all 7 € F, Opte N 7 is optimal sequence Opt4 of 7.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 25/37

Query Optimization via DP G or IKKBZ

000000000000 e00

Proof of the Subsequence Lemma
Forest F = {71, 72, . . .} (set of ordered trees) Ay S K

R Rz S22 . Ko
| |

Claim Let Optg be optimal topological order of F.
Then, for all 7 € F, Opte N 7 is optimal sequence Opt4 of 7.

Proof by induction on the number of nodes in the forest.

Let the first node of Optg be S1: | Opte = S1Rest

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 25/37

Query Optimization via DP G or IKKBZ

000000000000 e00

Proof of the Subsequence Lemma
Forest F = {71, 72, . . .} (set of ordered trees) Ay S K

R Rz S22 . Ko
| |

Claim Let Optg be optimal topological order of F.
Then, for all 7 € F, Opte N 7 is optimal sequence Opt4 of 7.

Proof by induction on the number of nodes in the forest.

Let the first node of Optg be S1: | Opte = S1Rest

@ Sj is the root of some tree 7~ € F why?

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 25/37

000000000000 e00

Query Optimization via DP

Proof of the Subsequence Lemma

Forest F = {77, 75, . ..} (set of ordered trees) R S K
Ay R 3‘2 . K‘z .
! :
: !
Claim Let Optg be optimal topological order of F. :
Then, for all 7 € F, Opte N 7 is optimal sequence Opt4 of 7.

Proof by induction on the number of nodes in the forest.

Let the first node of Optg be S1: | Opte = S1Rest ‘

@ Sj is the root of some tree 7~ € F why?

@ and Rest is optimal topological order of F — {S1} why?

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 25/37

Query Optimization via DP

Proof of the Subsequence Lemma

Forest F = {71, 72, . . .} (set of ordered trees) Ay S K

Claim Let Optg be optimal topological order of F.
Then, for all 7 € F, Opte N 7 is optimal sequence Opt4 of 7.

Proof by induction on the number of nodes in the forest.

Let the first node of Optg be Sy: ‘ Opt: = SiRest ‘

@ Sj is the root of some tree 7~ € F why?

@ and Rest is optimal topological order of F — {S1} why?
Because Cost(Optg) = Cost(S1Rest) = Cost(S1) + Est(Sy)Cost(Rest)
Improving Cost(Rest) would improve Cost(Optg).

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 25/37

Query Optimization via DP

000000000000 e00

Proof of the Subsequence Lemma

Forest F = {71, 72, . . .} (set of ordered trees) Ry S K
FIZ/\FI;; 3‘2 . K‘z .
! :
: !
Claim Let Optg be optimal topological order of F. :
Then, for all 7 € F, Opte N 7 is optimal sequence Opt4 of 7.

Proof by induction on the number of nodes in the forest.

Let the first node of Optg be Sy: ‘ Opte = S1Rest ‘

@ Sj is the root of some tree 7~ € F why?

@ and Rest is optimal topological order of F — {S1} why?
Because Cost(Optg) = Cost(S1Rest) = Cost(S1) + Est(Sy)Cost(Rest)
Improving Cost(Rest) would improve Cost(Optg).

Lemma follows from induction hypothesis on F — {S1}.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 25/37

IKKBZ
0000000000000 e0

Optimality of the IKKBZ Algorithm: Proof 2/2

IKKBZ on root R returns Optg.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 26/37

Optimality of the IKKBZ Algorithm: Proof 2/2

IKKBZ on root R returns Optg.

Assume for simplicity that R has two children: 77, 72

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 26/37

Query Optimization via DP Gre IKKBZ
500 5 000000000000080

Optimality of the IKKBZ Algorithm: Proof 2/2
IKKBZ on root R returns Optg.
Assume for simplicity that R has two children: 77, 72

By induction, IKKBZ computes their optimal order:
Opt(ﬁ = 8182 cee
Opth = T1T2~-'

Dan Suciu CSE599d: Advanced QP

‘Winter 2026

26/37

Query Optimization via DP G IKKBZ
000 5 000000000000080

Optimality of the IKKBZ Algorithm: Proof 2/2

IKKBZ on root R returns Optg.
Assume for simplicity that R has two children: 77, 72

By induction, IKKBZ computes their optimal order:
Opt(ﬁ = 8182 cee
Opth = T1T2~-'

By the Subsequence Lemma:
OptgNT1 =515, -
Opte, NT2 =TT

Dan Suciu CSE599d: Advanced QP ‘Winter 2026

26/37

IKKBZ

Query Optimization via DP G
[e]e]e] O 0000000000000 e0

Optimality of the IKKBZ Algorithm: Proof 2/2
IKKBZ on root R returns Optg.
Assume for simplicity that R has two children: 77, 72

By induction, IKKBZ computes their optimal order:
Opt(ﬁ = 8182 cee
Opth = T1T2~-'

By the Subsequence Lemma:
OptgNT1 =51S5---
Opte, NT2 =TT

By the Key Lemma, if S;; was combined by the algorithm, then Optz will not
have any Ty between S; - - - S;.

By ASI, Optg is obtained by merging their ranks.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 26/37

Query Optimization via DP Greedy Algorithm IKKBZ

0000000000000 0e

Discussion

o IKKBZ finds optimal plan in polynomial time, but only under the ASI
assumption on Cost.

Est(S)-1

@ Can still use IKKBZ as a heuristics, setting Rank(S) = =& ()

@ Searches only for left-linear plans. This is useful for the linearization used
to optimize very large joins: next.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 27137

arge J
©000000000

Large Joins

CSE599d: Advanced QP ‘Winter 2026 28/37

Query Optimization via DP ree go 1 < Large Joins

0O@00000000

Overview

[Neumann and Radke, 2018]:

@ Small query: DPccp. Optimal
@ Medium query (< 100 tables): Linearized DPccp. Almost Optimal
o Large query: Greedy. Degrade Gracefully

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 29/37

Small Query

CSE599d: Advanced QP ‘Winter 2026 30/37

Query Optimization via DP

Large Joins
[e]e]e] le]ele]ele]e)

Small Query
What is Small?
Runtime of DPccp depends heavily on the query’s topology:
e Linear query (easiest): O(n®) n <100
@ Star query (hardest): O(3") n<14.
A workable definition of “small”:
number of connected subgraphs csg < 10000

csg can be computed efficiently.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 31/37

Query Optimization via DP . 0 Large Joins

[e]e]e]e] lele]elele)

Medium Query

@ Fix a linear order on the relations: R4, R>, ..., Rn.

@ Modify DPccp to consider only sets S that are connected subchains.

@ Size of the DP table: O(n?) as opposed to O(2").

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 32/37

)ptimization via DP

S
[e]e]e]e]e] le]elele)

Query Linearization

R3 — R4 o~
/_\
R1 — R2 R2—R1 R3 R5—R6 R4

N\

Rs—R 0 1 2 3 4 5

enumerations by full DP:

{R1,R2}, {R2,R3}, {R2,R5}, {R3,R4}, {R5,R6},
{R1,R2,R3}, {R1,R2R5}, {R2,R3,R4}, {RZR3,R5},
{R2R5,R6}, {R1,RZR3,R4}, {R1,RZ,R3,RS},
{R1R2R5,R6}, RZR3R4,R5}, {R1,R2,R3,R4,R5},
{R2,R3,R4,R5,R6}, {R1,R2,R3,R4,R5,R6}

enumerations by linearized DP:

{R1,R2}, {R5,R6}, {R1,R2,R3}, {R1,R2Z,R3,R5},
{R1,R2,R3,R5,R6}, {R1,R2,R3,R4,R5,R6}

Figure 4: Example for Search Space Linearization
Reduces the size of the DP table from O(2") to O(n?).
Use IKKBZ to find a good linearization order.

LinearizedDP: a simplified version of DPccp, runtime O(n®).

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 33/37

Query Optimization via DP . 0! Large Joins

[e]e]e]e]e]e] Jelele)

Discussion

e Linearizaton reduces runtime from O(3") to O(n®).

@ Output plan is no longer optimal: it depends on the linearization order.

o Use the IKKBZ algorithm to find a good linearization order.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 34/37

Large Joins
[e]e]e]e]e]ele] Jele)

Large Query

e n>100.

@ Use greedy algorithm to compute an initial plan P.

o Iterative refinement: optimize subtrees of size k (e.g. k = 100).

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 35/37

Query Optimization via DP e Algorithm IKKBZ Large Joins

[e]e]e]e]e]ele]e] o)

Iterative Refinement

@ Start from complete join plan P. A

o Find a subplan (subtree) P’ such that:

> |P’| <100 (so we can run LinearizedDP).
» Cost(P’) is maximal.

@ Replace P’ with LinearizedDP(P’)
@ Replace P’ with one relation (so we don’t optimize it further). Repeat.

@ Stop after some fixed number of iterations.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 36/37

Large Joins
000000000 e

Summary of Large Joins from [Neumann and Radke, 2018]

@ Small query: DPccp.
@ Medium query: LinearizedDP. Need IKKBZ (next)

o Large query: Greedy, then local LinearizedDP

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 37137

Large Jc
[e]e]e]e]e]ele]e]
@ Fegaras, L. (1998).
A new heuristic for optimizing large queries.
In Quirchmayr, G., Schweighofer, E., and Bench-Capon, T. J. M., editors, Database and Expert Systems Applications, 9th International
Conference, DEXA *98, Vienna, Austria, August 24-28, 1998, Proceedings, volume 1460 of Lecture Notes in Computer Science, pages
726-735. Springer.

Haffner, I. and Dittrich, J. (2023).
Efficiently computing join orders with heuristic search.
Proc. ACM Manag. Data, 1(1):73:1-73:26.

Troc. ALV vVianag. Lata.

Ibaraki, T. and Kameda, T. (1984).

On the optimal nesting order for computing n-relational joins.
ACM Trans. Database Syst., 9(3):482-502.

Krishnamurthy, R., Boral, H., and Zaniolo, C. (1986).

Optimization of nonrecursive queries.

In Chu, W. W., Gardarin, G., Ohsuga, S., and Kambayashi, Y., editors, VLDB’86 Twelfth International Conference on Very Large Data
Bases, August 25-28, 1986, Kyoto, Japan, Proceedings, pages 128-137. Morgan Kaufmann.

Monma, C. L. and Sidney, J. B. (1979).

Sequencing with series-parallel precedence constraints.
Math. Oper. Res., 4(3):215-224.

D = & W

Neumann, T. and Radke, B. (2018).

Adaptive optimization of very large join queries.

In Das, G., Jermaine, C. M., and Bernstein, P. A., editors, Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 677-692. ACM.

9d: Advanced QP ‘Winter 2026 37137

	Query Optimization via DP
	Greedy Algorithm
	IKKBZ
	Large Joins

