
CSE599d: Advanced Query Processing

Lecture 6: QO by Dynamic Programming – Wrapup

Dan Suciu

University of Washington

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The Full Picture

R = {R1, . . . ,Rn}

SystemR: introduced DP; Left Linear Plans

DPsize: all sets S1,S2 ⊆ R. O(4n)

DPsub: all disjoint sets S1,S2 ⊆ R, S1 ∩ S2 = ∅. O(3n)

DPccp Connected Component Pairs S1,S2.
▶ Chain query: O(n3)
▶ Star query: O(3n)

Specialized Algorithms: Greedy, IKKBZ

Very Large Joins.

Dan Suciu CSE599d: Advanced QP Winter 2026 2 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Recap: Optimization based on Connected Component Pairs

Algorithm 1: DPccp
for Connected component pairs S1,S2 ⊆ R do

if APPLICABLE(S1,S2, ◦) then
(P1, c1) := PlanCost[S1];
(P2, c2) := PlanCost[S2];
c := c1 + c2 + Cost(P1 ◦ P2);
if c < PlanCost[S1 ∪ S2] .cost then

PlanCost[S1 ∪ S2] := (P1 ◦ P2, c);

Runtime: O(3n).
Star query is the worst: O(3n)
Chain query is the best: O(n3).

Dan Suciu CSE599d: Advanced QP Winter 2026 3 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Discussion

Complexity: O(n3) · · ·O(3n). Hence n ≤ 14 · · · 100

Large joins (n ≫ 100) occur because of views over views over views.

Rare, but they exists [Neumann and Radke, 2018]:
▶ SAP Hana: query with 4,598, one with 2,298, a few with > 1000 relations.
▶ Tableau Public Data: long tail of queries with > 100 relations, up to 369.

Query optimizer must handle large joins: specialized algorithms.

Dan Suciu CSE599d: Advanced QP Winter 2026 4 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Greedy Algorithm

Dan Suciu CSE599d: Advanced QP Winter 2026 5 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Computing a Plan Greedily

[Fegaras, 1998]

Start from base tables: P1 := {R1}, . . . ,Pn := {Rn}.

Choose two join-able plans Pi ,Pj such that Cost(Pi Z Pj) is minimal.

Replace Pi ,Pj with Pi Z Pj . Repeat.

Stop when there is a single plan, with all relations.

Dan Suciu CSE599d: Advanced QP Winter 2026 6 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Computing a Plan Greedily

Function Greedy(R1,R2, . . . ,Rn)
Plans := {R1,R2, . . . ,Rn};
while |Plans| > 1 do

(L,R) := argminL,R∈Plans,L, R can joinCost(L Z R);
Plans := Plans − {L,R} ∪ {L Z R};

Dan Suciu CSE599d: Advanced QP Winter 2026 7 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example

Step 1: Plans = {R,S, T ,K }:
R Z S,R Z T ,R Z K , T Z K

Step 2: Plans = {R,S, TK }:
R Z S,R Z TK
Step3: Plans = {S,RTK }:
S Z RTK

R S

TK

Final plan:
Z

S Z

R Z

T K

Dan Suciu CSE599d: Advanced QP Winter 2026 8 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example

Step 1: Plans = {R,S, T ,K }:
R Z S,R Z T ,R Z K , T Z K

Step 2: Plans = {R,S, TK }:
R Z S,R Z TK
Step3: Plans = {S,RTK }:
S Z RTK

R S

TK

Final plan:
Z

S Z

R Z

T K

Dan Suciu CSE599d: Advanced QP Winter 2026 8 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example

Step 1: Plans = {R,S, T ,K }:
R Z S,R Z T ,R Z K , T Z K
Step 2: Plans = {R,S, TK }:
R Z S,R Z TK

Step3: Plans = {S,RTK }:
S Z RTK

R S

TK

Final plan:
Z

S Z

R Z

T K

Dan Suciu CSE599d: Advanced QP Winter 2026 8 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example

Step 1: Plans = {R,S, T ,K }:
R Z S,R Z T ,R Z K , T Z K
Step 2: Plans = {R,S, TK }:
R Z S,R Z TK

Step3: Plans = {S,RTK }:
S Z RTK

R S

TK

Final plan:
Z

S Z

R Z

T K

Dan Suciu CSE599d: Advanced QP Winter 2026 8 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example

Step 1: Plans = {R,S, T ,K }:
R Z S,R Z T ,R Z K , T Z K
Step 2: Plans = {R,S, TK }:
R Z S,R Z TK
Step3: Plans = {S,RTK }:
S Z RTK

R S

TK

Final plan:
Z

S Z

R Z

T K

Dan Suciu CSE599d: Advanced QP Winter 2026 8 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example

Step 1: Plans = {R,S, T ,K }:
R Z S,R Z T ,R Z K , T Z K
Step 2: Plans = {R,S, TK }:
R Z S,R Z TK
Step3: Plans = {S,RTK }:
S Z RTK

R S

TK

Final plan:
Z

S Z

R Z

T K

Dan Suciu CSE599d: Advanced QP Winter 2026 8 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

QO via Shortest Path [Haffner and Dittrich, 2023]

Given a weighted graph G = (V ,E), find the shortest path from s to t.

Dijkstra’s algorithm: Single-Source Shortest Path (SSSP) in time
O(|E | + |V | log |V |).

A∗: a search algorithm where G is given implicitly and has exponential
size.

Dan Suciu CSE599d: Advanced QP Winter 2026 9 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

QO via Shortest Path [Haffner and Dittrich, 2023]

Join graph Q = (R,E), where R = {R1, . . . ,Rn}, E = all joins.

Define the search graph G = (CC, J), where (informally!):
CC = set of partitions into connected components

R = C1 ∪ · · · ∪ Ck
J = pairs of partitions that can represent one join in E.
The weight of an edge in J is the cost of the join.

The optimal bushy plan w/o cross products is the shortest path:
{{R1}, {R2}, . . . , {Rn}} →∗ {{R1, . . . ,Rn}}

Dan Suciu CSE599d: Advanced QP Winter 2026 10 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

QO via Shortest Path [Haffner and Dittrich, 2023]

Join graph Q = (R,E), where R = {R1, . . . ,Rn}, E = all joins.

Define the search graph G = (CC, J), where (informally!):
CC = set of partitions into connected components

R = C1 ∪ · · · ∪ Ck
J = pairs of partitions that can represent one join in E.
The weight of an edge in J is the cost of the join.

The optimal bushy plan w/o cross products is the shortest path:
{{R1}, {R2}, . . . , {Rn}} →∗ {{R1, . . . ,Rn}}

Dan Suciu CSE599d: Advanced QP Winter 2026 10 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

QO via Shortest Path [Haffner and Dittrich, 2023]
R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

Dan Suciu CSE599d: Advanced QP Winter 2026 11 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

QO via Shortest Path [Haffner and Dittrich, 2023]
R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

Z

Z

K T

Z

R S

Dan Suciu CSE599d: Advanced QP Winter 2026 11 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

QO via Shortest Path [Haffner and Dittrich, 2023]
R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

R S

TK

Z

Z

Z

R K

T

S

Dan Suciu CSE599d: Advanced QP Winter 2026 11 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Discussion

Greedy: very simple, suboptimal plan

Graph search: natural extension.
Cannot construct the full graph (exponential!), but can use A∗ or some
beam search.

Dan Suciu CSE599d: Advanced QP Winter 2026 12 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The IKKBZ Algorithm

Dan Suciu CSE599d: Advanced QP Winter 2026 13 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Overview of IKKBZ

Optimal left linear plan w/o cross products, time O(n2). Assumes ASI property.

ASI originates in the job scheduling literature [Monma and Sidney, 1979].

Adapted to query optimization [Ibaraki and Kameda, 1984].

Further refined [Krishnamurthy et al., 1986]: we follow this.

Called IKKBZ in [Neumann and Radke, 2018].

Dan Suciu CSE599d: Advanced QP Winter 2026 14 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Problem Setting

Input: acyclic query graph.

R1 joins with R2 and R3.
R1 does not join with R4 or R5.

R1

R2 R3

R4 R5

Goal: find optimal left linear plan w/o cross products

For each i, consider all topological orders of tree rooted at Ri

Root R1, e.g. left-linear plan: R1R3R5R2R4
Root R3, e.g. left-linear plan: R3R4R1R5R2

Z

Z

Z

Z

R1 R3

R5

R2

R4

Dan Suciu CSE599d: Advanced QP Winter 2026 15 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Problem Setting

Input: acyclic query graph.

R1 joins with R2 and R3.
R1 does not join with R4 or R5.

R1

R2 R3

R4 R5

Goal: find optimal left linear plan w/o cross products

For each i, consider all topological orders of tree rooted at Ri

Root R1, e.g. left-linear plan: R1R3R5R2R4
Root R3, e.g. left-linear plan: R3R4R1R5R2

Z

Z

Z

Z

R1 R3

R5

R2

R4

Dan Suciu CSE599d: Advanced QP Winter 2026 15 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Problem Setting

Input: acyclic query graph.

R1 joins with R2 and R3.
R1 does not join with R4 or R5.

R1

R2 R3

R4 R5

Goal: find optimal left linear plan w/o cross products

For each i, consider all topological orders of tree rooted at Ri

Root R1, e.g. left-linear plan: R1R3R5R2R4
Root R3, e.g. left-linear plan: R3R4R1R5R2

Z

Z

Z

Z

R1 R3

R5

R2

R4

Dan Suciu CSE599d: Advanced QP Winter 2026 15 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Assumptions on the Cost Function

Fix a root of the query, say R1. Set p(i) def
= parent(i).

Est(Rp(i) Z Ri)
def
= 𝜃i · |Rp(i) | · |Ri | Cost(R Z Ri)

def
= |R | · g(|Ri |)

Est(Zi=k,m Ri) =
∏

i=k,m 𝜃i |Ri |
Notice Est(Ri) = 𝜃i |Ri |.

Cost(Zi=k,m Ri) =∑
j=k+1,m

∏
i=k,j−1(𝜃i |Ri |) · g(|Rj |)

Est(S1S2) =Est(S1) · Est(S2)
Cost(S1S2) =Cost(S1) + Est(S1) · Cost(S2)

E.g. Cost(R4R5R6R7R8) = Cost(R4R5R6) + Est(R4R5R6) · Cost(R7R8)

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Assumptions on the Cost Function

Fix a root of the query, say R1. Set p(i) def
= parent(i).

Est(Rp(i) Z Ri)
def
= 𝜃i · |Rp(i) | · |Ri | Cost(R Z Ri)

def
= |R | · g(|Ri |)

Est(Zi=k,m Ri) =
∏

i=k,m 𝜃i |Ri |
Notice Est(Ri) = 𝜃i |Ri |.

Cost(Zi=k,m Ri) =∑
j=k+1,m

∏
i=k,j−1(𝜃i |Ri |) · g(|Rj |)

Est(S1S2) =Est(S1) · Est(S2)
Cost(S1S2) =Cost(S1) + Est(S1) · Cost(S2)

E.g. Cost(R4R5R6R7R8) = Cost(R4R5R6) + Est(R4R5R6) · Cost(R7R8)

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Assumptions on the Cost Function

Fix a root of the query, say R1. Set p(i) def
= parent(i).

Est(Rp(i) Z Ri)
def
= 𝜃i · |Rp(i) | · |Ri | Cost(R Z Ri)

def
= |R | · g(|Ri |)

Est(Zi=k,m Ri) =
∏

i=k,m 𝜃i |Ri |
Notice Est(Ri) = 𝜃i |Ri |.

Cost(Zi=k,m Ri) =∑
j=k+1,m

∏
i=k,j−1(𝜃i |Ri |) · g(|Rj |)

Est(S1S2) =Est(S1) · Est(S2)
Cost(S1S2) =Cost(S1) + Est(S1) · Cost(S2)

E.g. Cost(R4R5R6R7R8) = Cost(R4R5R6) + Est(R4R5R6) · Cost(R7R8)

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The ASI Property

Cost satisfies the Adjacent Sequence Interchange (ASI) property
if there exists a function Rank such that for all sequences A,B,U,V :

Rank(U) ≤ Rank(V) iff Cost(AUVB) ≤ Cost(AVUB)

Dan Suciu CSE599d: Advanced QP Winter 2026 17 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The ASI Property for Query Optimization

Theorem Cost satisfies ASI with Rank(S) def
=
Est(S)−1
Cost(S)

Proof to check Cost(AUVB) ≤ Cost(AVUB) iff Rank(U) ≤ Rank(V)

Cost(AUVB) =Cost(A) + Est(A) · Cost(U) + Est(AU) · Cost(V) + Est(AUV) · Cost(B)
Cost(AVUB) =Cost(A) + Est(A) · Cost(V) + Est(AV) · Cost(U) + Est(AVU) · Cost(B)

Cost(AUVB) ≤Cost(AVUB)
iff Est(A) · Cost(U) + Est(AU) · Cost(V) ≤Est(A) · Cost(V) + Est(AV) · Cost(U)

iff Cost(U) + Est(U) · Cost(V) ≤Cost(V) + Est(V) · Cost(U)
iff Est(U) · Cost(V) − Cost(V) ≤Est(V) · Cost(U) − Cost(U)

iff Rank(U) = Est(U) − 1
Cost(U) ≤Est(V) − 1

Cost(V) = Rank(V)

Dan Suciu CSE599d: Advanced QP Winter 2026 18 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The ASI Property for Query Optimization

Theorem Cost satisfies ASI with Rank(S) def
=
Est(S)−1
Cost(S)

Proof to check Cost(AUVB) ≤ Cost(AVUB) iff Rank(U) ≤ Rank(V)

Cost(AUVB) =Cost(A) + Est(A) · Cost(U) + Est(AU) · Cost(V) + Est(AUV) · Cost(B)
Cost(AVUB) =Cost(A) + Est(A) · Cost(V) + Est(AV) · Cost(U) + Est(AVU) · Cost(B)

Cost(AUVB) ≤Cost(AVUB)
iff Est(A) · Cost(U) + Est(AU) · Cost(V) ≤Est(A) · Cost(V) + Est(AV) · Cost(U)

iff Cost(U) + Est(U) · Cost(V) ≤Cost(V) + Est(V) · Cost(U)
iff Est(U) · Cost(V) − Cost(V) ≤Est(V) · Cost(U) − Cost(U)

iff Rank(U) = Est(U) − 1
Cost(U) ≤Est(V) − 1

Cost(V) = Rank(V)

Dan Suciu CSE599d: Advanced QP Winter 2026 18 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The ASI Property for Query Optimization

Theorem Cost satisfies ASI with Rank(S) def
=
Est(S)−1
Cost(S)

Proof to check Cost(AUVB) ≤ Cost(AVUB) iff Rank(U) ≤ Rank(V)

Cost(AUVB) =Cost(A) + Est(A) · Cost(U) + Est(AU) · Cost(V) + Est(AUV) · Cost(B)
Cost(AVUB) =Cost(A) + Est(A) · Cost(V) + Est(AV) · Cost(U) + Est(AVU) · Cost(B)

Cost(AUVB) ≤Cost(AVUB)
iff Est(A) · Cost(U) + Est(AU) · Cost(V) ≤Est(A) · Cost(V) + Est(AV) · Cost(U)

iff Cost(U) + Est(U) · Cost(V) ≤Cost(V) + Est(V) · Cost(U)
iff Est(U) · Cost(V) − Cost(V) ≤Est(V) · Cost(U) − Cost(U)

iff Rank(U) = Est(U) − 1
Cost(U) ≤Est(V) − 1

Cost(V) = Rank(V)

Dan Suciu CSE599d: Advanced QP Winter 2026 18 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The ASI Property for Query Optimization

Theorem Cost satisfies ASI with Rank(S) def
=
Est(S)−1
Cost(S)

Proof to check Cost(AUVB) ≤ Cost(AVUB) iff Rank(U) ≤ Rank(V)

Cost(AUVB) =Cost(A) + Est(A) · Cost(U) + Est(AU) · Cost(V) + Est(AUV) · Cost(B)
Cost(AVUB) =Cost(A) + Est(A) · Cost(V) + Est(AV) · Cost(U) + Est(AVU) · Cost(B)

Cost(AUVB) ≤Cost(AVUB)
iff Est(A) · Cost(U) + Est(AU) · Cost(V) ≤Est(A) · Cost(V) + Est(AV) · Cost(U)
iff Cost(U) + Est(U) · Cost(V) ≤Cost(V) + Est(V) · Cost(U)

iff Est(U) · Cost(V) − Cost(V) ≤Est(V) · Cost(U) − Cost(U)

iff Rank(U) = Est(U) − 1
Cost(U) ≤Est(V) − 1

Cost(V) = Rank(V)

Dan Suciu CSE599d: Advanced QP Winter 2026 18 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The ASI Property for Query Optimization

Theorem Cost satisfies ASI with Rank(S) def
=
Est(S)−1
Cost(S)

Proof to check Cost(AUVB) ≤ Cost(AVUB) iff Rank(U) ≤ Rank(V)

Cost(AUVB) =Cost(A) + Est(A) · Cost(U) + Est(AU) · Cost(V) + Est(AUV) · Cost(B)
Cost(AVUB) =Cost(A) + Est(A) · Cost(V) + Est(AV) · Cost(U) + Est(AVU) · Cost(B)

Cost(AUVB) ≤Cost(AVUB)
iff Est(A) · Cost(U) + Est(AU) · Cost(V) ≤Est(A) · Cost(V) + Est(AV) · Cost(U)
iff Cost(U) + Est(U) · Cost(V) ≤Cost(V) + Est(V) · Cost(U)
iff Est(U) · Cost(V) − Cost(V) ≤Est(V) · Cost(U) − Cost(U)

iff Rank(U) = Est(U) − 1
Cost(U) ≤Est(V) − 1

Cost(V) = Rank(V)

Dan Suciu CSE599d: Advanced QP Winter 2026 18 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The ASI Property for Query Optimization

Theorem Cost satisfies ASI with Rank(S) def
=
Est(S)−1
Cost(S)

Proof to check Cost(AUVB) ≤ Cost(AVUB) iff Rank(U) ≤ Rank(V)

Cost(AUVB) =Cost(A) + Est(A) · Cost(U) + Est(AU) · Cost(V) + Est(AUV) · Cost(B)
Cost(AVUB) =Cost(A) + Est(A) · Cost(V) + Est(AV) · Cost(U) + Est(AVU) · Cost(B)

Cost(AUVB) ≤Cost(AVUB)
iff Est(A) · Cost(U) + Est(AU) · Cost(V) ≤Est(A) · Cost(V) + Est(AV) · Cost(U)
iff Cost(U) + Est(U) · Cost(V) ≤Cost(V) + Est(V) · Cost(U)
iff Est(U) · Cost(V) − Cost(V) ≤Est(V) · Cost(U) − Cost(U)

iff Rank(U) = Est(U) − 1
Cost(U) ≤Est(V) − 1

Cost(V) = Rank(V)

Dan Suciu CSE599d: Advanced QP Winter 2026 18 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The IKKBZ Algorithm
For each node R, find optimal topological order for tree w/ root R:

Choose node R0 all of whose children are chains.

(Assuming only two children.) By induction:
Rank(R1) ≤ Rank(R2) ≤ · · ·
Rank(R′

1) ≤ Rank(R′
2) ≤ · · ·

Merge the two chains to obtain:

Rank(R0)
??
≶Rank(R′′

1) ≤ Rank(R′′
2) ≤ · · ·

Cannot move R0. Instead:
If Rank(R0) > Rank(R1): R0:1 := R0R′′

1

If Rank(R0:1) > Rank(R2): R0:2 := R0R′′
1 R′′

2
Until Rank(R0:i) ≤ Rank(R′′

i+1).

Repeat until entire rooted tree becomes a single chain.

R0

R1

R2

.

.

.

R′
1

R′
2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

R0

R′′
1

R′′
2

.

.

.

R′′
i

R′′
i+1

.

.

.

R0:i

R′′
i+1

R′′
i+1

.

.

.

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The IKKBZ Algorithm
For each node R, find optimal topological order for tree w/ root R:

Choose node R0 all of whose children are chains.

(Assuming only two children.) By induction:
Rank(R1) ≤ Rank(R2) ≤ · · ·
Rank(R′

1) ≤ Rank(R′
2) ≤ · · ·

Merge the two chains to obtain:

Rank(R0)
??
≶Rank(R′′

1) ≤ Rank(R′′
2) ≤ · · ·

Cannot move R0. Instead:
If Rank(R0) > Rank(R1): R0:1 := R0R′′

1

If Rank(R0:1) > Rank(R2): R0:2 := R0R′′
1 R′′

2
Until Rank(R0:i) ≤ Rank(R′′

i+1).

Repeat until entire rooted tree becomes a single chain.

R0

R1

R2

.

.

.

R′
1

R′
2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

R0

R′′
1

R′′
2

.

.

.

R′′
i

R′′
i+1

.

.

.

R0:i

R′′
i+1

R′′
i+1

.

.

.

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The IKKBZ Algorithm
For each node R, find optimal topological order for tree w/ root R:

Choose node R0 all of whose children are chains.

(Assuming only two children.) By induction:
Rank(R1) ≤ Rank(R2) ≤ · · ·
Rank(R′

1) ≤ Rank(R′
2) ≤ · · ·

Merge the two chains to obtain:

Rank(R0)
??
≶Rank(R′′

1) ≤ Rank(R′′
2) ≤ · · ·

Cannot move R0. Instead:
If Rank(R0) > Rank(R1): R0:1 := R0R′′

1

If Rank(R0:1) > Rank(R2): R0:2 := R0R′′
1 R′′

2
Until Rank(R0:i) ≤ Rank(R′′

i+1).

Repeat until entire rooted tree becomes a single chain.

R0

R1

R2

.

.

.

R′
1

R′
2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

R0

R′′
1

R′′
2

.

.

.

R′′
i

R′′
i+1

.

.

.

R0:i

R′′
i+1

R′′
i+1

.

.

.

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

The IKKBZ Algorithm
For each node R, find optimal topological order for tree w/ root R:

Choose node R0 all of whose children are chains.

(Assuming only two children.) By induction:
Rank(R1) ≤ Rank(R2) ≤ · · ·
Rank(R′

1) ≤ Rank(R′
2) ≤ · · ·

Merge the two chains to obtain:

Rank(R0)
??
≶Rank(R′′

1) ≤ Rank(R′′
2) ≤ · · ·

Cannot move R0. Instead:
If Rank(R0) > Rank(R1): R0:1 := R0R′′

1

If Rank(R0:1) > Rank(R2): R0:2 := R0R′′
1 R′′

2
Until Rank(R0:i) ≤ Rank(R′′

i+1).

Repeat until entire rooted tree becomes a single chain.

R0

R1

R2

.

.

.

R′
1

R′
2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

R0

R′′
1

R′′
2

.

.

.

R′′
i

R′′
i+1

.

.

.

R0:i

R′′
i+1

R′′
i+1

.

.

.

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example: Adapted from [Krishnamurthy et al., 1986]
R35 |Ri | 𝜃i Cost(Ri) = gi (|Ri |) Rank(Ri) = Est(Ri)−1

Cost(Ri)
R1 100 1 300
R2 2000 0.5 9
R3 1000 0.1 9.9
R4 400 0.25 3
R5 100 0.1 30

R1

0.33

R2

111

R3

10

R4

33

R5

0.3

R0.33
1

R111
2 R10

3

R0.3
5

R33
4

R0.33
1

R111
2 R3.22

35

R33
4

R0.33
1

R3.22
35

R33
4

R111
2

Optimal plan so far: R1 Z R3 Z R5 Z R4 Z R2.
Next, repeat with root= R2, then root= R3, etc. Return the cheapest plan.

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example: Adapted from [Krishnamurthy et al., 1986]
|Ri | 𝜃i Cost(Ri) = gi (|Ri |) Est(Ri) = 𝜃i |Ri | Rank(Ri) = Est(Ri)−1

Cost(Ri)
R1 100 1 300 100 0.33
R2 2000 0.5 9 1000 111
R3 1000 0.1 9.9 100 10
R4 400 0.25 3 100 33
R5 100 0.1 30 10 0.3

R1

0.33

R2

111

R3

10

R4

33

R5

0.3

R0.33
1

R111
2 R10

3

R0.3
5

R33
4

R0.33
1

R111
2 R3.22

35

R33
4

R0.33
1

R3.22
35

R33
4

R111
2

Optimal plan so far: R1 Z R3 Z R5 Z R4 Z R2.
Next, repeat with root= R2, then root= R3, etc. Return the cheapest plan.

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example: Adapted from [Krishnamurthy et al., 1986]
|Ri | 𝜃i Cost(Ri) = gi (|Ri |) Est(Ri) = 𝜃i |Ri | Rank(Ri) = Est(Ri)−1

Cost(Ri)
R1 100 1 300 100 0.33
R2 2000 0.5 9 1000 111
R3 1000 0.1 9.9 100 10
R4 400 0.25 3 100 33
R5 100 0.1 30 10 0.3

R1
0.33

R2
111 R3

10

R4
33 R5

0.3

R0.33
1

R111
2 R10

3

R0.3
5

R33
4

R0.33
1

R111
2 R3.22

35

R33
4

R0.33
1

R3.22
35

R33
4

R111
2

Optimal plan so far: R1 Z R3 Z R5 Z R4 Z R2.
Next, repeat with root= R2, then root= R3, etc. Return the cheapest plan.

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example: Adapted from [Krishnamurthy et al., 1986]
|Ri | 𝜃i Cost(Ri) = gi (|Ri |) Est(Ri) = 𝜃i |Ri | Rank(Ri) = Est(Ri)−1

Cost(Ri)
R1 100 1 300 100 0.33
R2 2000 0.5 9 1000 111
R3 1000 0.1 9.9 100 10
R4 400 0.25 3 100 33
R5 100 0.1 30 10 0.3

R1
0.33

R2
111 R3

10

R4
33 R5

0.3

R0.33
1

R111
2 R10

3

R0.3
5

R33
4

R0.33
1

R111
2 R3.22

35

R33
4

R0.33
1

R3.22
35

R33
4

R111
2

Optimal plan so far: R1 Z R3 Z R5 Z R4 Z R2.
Next, repeat with root= R2, then root= R3, etc. Return the cheapest plan.

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example: Adapted from [Krishnamurthy et al., 1986]
|Ri | 𝜃i Cost(Ri) = gi (|Ri |) Est(Ri) = 𝜃i |Ri | Rank(Ri) = Est(Ri)−1

Cost(Ri)
R1 100 1 300 100 0.33
R2 2000 0.5 9 1000 111
R3 1000 0.1 9.9 100 10
R4 400 0.25 3 100 33
R5 100 0.1 30 10 0.3
R35 Cost(R3) + Est(R3)Cost(R5) Est(R3)Est(R5)

1000 309.9 3.223620523

R1
0.33

R2
111 R3

10

R4
33 R5

0.3

R0.33
1

R111
2 R10

3

R0.3
5

R33
4

R0.33
1

R111
2 R3.22

35

R33
4

R0.33
1

R3.22
35

R33
4

R111
2

Optimal plan so far: R1 Z R3 Z R5 Z R4 Z R2.
Next, repeat with root= R2, then root= R3, etc. Return the cheapest plan.

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example: Adapted from [Krishnamurthy et al., 1986]
|Ri | 𝜃i Cost(Ri) = gi (|Ri |) Est(Ri) = 𝜃i |Ri | Rank(Ri) = Est(Ri)−1

Cost(Ri)
R1 100 1 300 100 0.33
R2 2000 0.5 9 1000 111
R3 1000 0.1 9.9 100 10
R4 400 0.25 3 100 33
R5 100 0.1 30 10 0.3
R35 Cost(R3) + Est(R3)Cost(R5) Est(R3)Est(R5)

1000 309.9 3.223620523

R1
0.33

R2
111 R3

10

R4
33 R5

0.3

R0.33
1

R111
2 R10

3

R0.3
5

R33
4

R0.33
1

R111
2 R3.22

35

R33
4

R0.33
1

R3.22
35

R33
4

R111
2

Optimal plan so far: R1 Z R3 Z R5 Z R4 Z R2.
Next, repeat with root= R2, then root= R3, etc. Return the cheapest plan.

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Example: Adapted from [Krishnamurthy et al., 1986]
|Ri | 𝜃i Cost(Ri) = gi (|Ri |) Est(Ri) = 𝜃i |Ri | Rank(Ri) = Est(Ri)−1

Cost(Ri)
R1 100 1 300 100 0.33
R2 2000 0.5 9 1000 111
R3 1000 0.1 9.9 100 10
R4 400 0.25 3 100 33
R5 100 0.1 30 10 0.3
R35 Cost(R3) + Est(R3)Cost(R5) Est(R3)Est(R5)

1000 309.9 3.223620523

R1
0.33

R2
111 R3

10

R4
33 R5

0.3

R0.33
1

R111
2 R10

3

R0.3
5

R33
4

R0.33
1

R111
2 R3.22

35

R33
4

R0.33
1

R3.22
35

R33
4

R111
2

Optimal plan so far: R1 Z R3 Z R5 Z R4 Z R2.
Next, repeat with root= R2, then root= R3, etc. Return the cheapest plan.

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality Proof: Overview

None of [Krishnamurthy et al., 1986, Ibaraki and Kameda, 1984,
Neumann and Radke, 2018] gives the correctness proof.

A proof will give us better understanding.

One key step is to explain the need to combine R0,R1, . . . ,Ri into R0:i :
this is the Key Lemma

Another subtlety is that we want to prove that the output is globally
optimal, not locally optimal.

Dan Suciu CSE599d: Advanced QP Winter 2026 21 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Key Lemma

Assume Rank(R0) > Rank(R1), . . . Rank(R0:i−1) > Rank(Ri). Then
Cost(R0 · · ·Rj−1SRj · · ·Ri) > min(Cost(SR0 · · ·Ri),Cost(R0 · · ·RiS))

“Inserting S between R0 · · ·Ri is suboptimal”

Proof
Rank(R0) > Rank(R1) implies R0SR1 is suboptimal:

If Rank(S) < Rank(R0) then Cost(R0SR1) >.
If Rank(S) > Rank(R1) then Cost(R0SR1) >.

Rank(R0:1) > Rank(R2) implies R0:1SR1 is suboptimal.

Rank(R0:2) > Rank(R3) implies R0:2SR3 is suboptimal. Etc.

Justifies combining R0 · · ·Ri into R0:i for the rest of algorithm

Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Key Lemma

Assume Rank(R0) > Rank(R1), . . . Rank(R0:i−1) > Rank(Ri). Then
Cost(R0 · · ·Rj−1SRj · · ·Ri) > min(Cost(SR0 · · ·Ri),Cost(R0 · · ·RiS))

“Inserting S between R0 · · ·Ri is suboptimal”

Proof
Rank(R0) > Rank(R1) implies R0SR1 is suboptimal:

If Rank(S) < Rank(R0) then Cost(R0SR1) >.
If Rank(S) > Rank(R1) then Cost(R0SR1) >.

Rank(R0:1) > Rank(R2) implies R0:1SR1 is suboptimal.

Rank(R0:2) > Rank(R3) implies R0:2SR3 is suboptimal. Etc.

Justifies combining R0 · · ·Ri into R0:i for the rest of algorithm

Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Key Lemma

Assume Rank(R0) > Rank(R1), . . . Rank(R0:i−1) > Rank(Ri). Then
Cost(R0 · · ·Rj−1SRj · · ·Ri) > min(Cost(SR0 · · ·Ri),Cost(R0 · · ·RiS))

“Inserting S between R0 · · ·Ri is suboptimal”

Proof
Rank(R0) > Rank(R1) implies R0SR1 is suboptimal:

If Rank(S) < Rank(R0) then Cost(R0SR1) > ???????.

If Rank(S) > Rank(R1) then Cost(R0SR1) >.

Rank(R0:1) > Rank(R2) implies R0:1SR1 is suboptimal.

Rank(R0:2) > Rank(R3) implies R0:2SR3 is suboptimal. Etc.

Justifies combining R0 · · ·Ri into R0:i for the rest of algorithm

Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Key Lemma

Assume Rank(R0) > Rank(R1), . . . Rank(R0:i−1) > Rank(Ri). Then
Cost(R0 · · ·Rj−1SRj · · ·Ri) > min(Cost(SR0 · · ·Ri),Cost(R0 · · ·RiS))

“Inserting S between R0 · · ·Ri is suboptimal”

Proof
Rank(R0) > Rank(R1) implies R0SR1 is suboptimal:

If Rank(S) < Rank(R0) then Cost(R0SR1) > Cost(SR0R1).

If Rank(S) > Rank(R1) then Cost(R0SR1) >.

Rank(R0:1) > Rank(R2) implies R0:1SR1 is suboptimal.

Rank(R0:2) > Rank(R3) implies R0:2SR3 is suboptimal. Etc.

Justifies combining R0 · · ·Ri into R0:i for the rest of algorithm

Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Key Lemma

Assume Rank(R0) > Rank(R1), . . . Rank(R0:i−1) > Rank(Ri). Then
Cost(R0 · · ·Rj−1SRj · · ·Ri) > min(Cost(SR0 · · ·Ri),Cost(R0 · · ·RiS))

“Inserting S between R0 · · ·Ri is suboptimal”

Proof
Rank(R0) > Rank(R1) implies R0SR1 is suboptimal:

If Rank(S) < Rank(R0) then Cost(R0SR1) > Cost(SR0R1).
If Rank(S) > Rank(R1) then Cost(R0SR1) > ???????.

Rank(R0:1) > Rank(R2) implies R0:1SR1 is suboptimal.

Rank(R0:2) > Rank(R3) implies R0:2SR3 is suboptimal. Etc.

Justifies combining R0 · · ·Ri into R0:i for the rest of algorithm

Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Key Lemma

Assume Rank(R0) > Rank(R1), . . . Rank(R0:i−1) > Rank(Ri). Then
Cost(R0 · · ·Rj−1SRj · · ·Ri) > min(Cost(SR0 · · ·Ri),Cost(R0 · · ·RiS))

“Inserting S between R0 · · ·Ri is suboptimal”

Proof
Rank(R0) > Rank(R1) implies R0SR1 is suboptimal:

If Rank(S) < Rank(R0) then Cost(R0SR1) > Cost(SR0R1).
If Rank(S) > Rank(R1) then Cost(R0SR1) > Cost(R0R1S).

Rank(R0:1) > Rank(R2) implies R0:1SR1 is suboptimal.

Rank(R0:2) > Rank(R3) implies R0:2SR3 is suboptimal. Etc.

Justifies combining R0 · · ·Ri into R0:i for the rest of algorithm

Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Key Lemma

Assume Rank(R0) > Rank(R1), . . . Rank(R0:i−1) > Rank(Ri). Then
Cost(R0 · · ·Rj−1SRj · · ·Ri) > min(Cost(SR0 · · ·Ri),Cost(R0 · · ·RiS))

“Inserting S between R0 · · ·Ri is suboptimal”

Proof
Rank(R0) > Rank(R1) implies R0SR1 is suboptimal:

If Rank(S) < Rank(R0) then Cost(R0SR1) > Cost(SR0R1).
If Rank(S) > Rank(R1) then Cost(R0SR1) > Cost(R0R1S).

Rank(R0:1) > Rank(R2) implies R0:1SR1 is suboptimal.

Rank(R0:2) > Rank(R3) implies R0:2SR3 is suboptimal. Etc.

Justifies combining R0 · · ·Ri into R0:i for the rest of algorithm

Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Key Lemma

Assume Rank(R0) > Rank(R1), . . . Rank(R0:i−1) > Rank(Ri). Then
Cost(R0 · · ·Rj−1SRj · · ·Ri) > min(Cost(SR0 · · ·Ri),Cost(R0 · · ·RiS))

“Inserting S between R0 · · ·Ri is suboptimal”

Proof
Rank(R0) > Rank(R1) implies R0SR1 is suboptimal:

If Rank(S) < Rank(R0) then Cost(R0SR1) > Cost(SR0R1).
If Rank(S) > Rank(R1) then Cost(R0SR1) > Cost(R0R1S).

Rank(R0:1) > Rank(R2) implies R0:1SR1 is suboptimal.

Rank(R0:2) > Rank(R3) implies R0:2SR3 is suboptimal. Etc.

Justifies combining R0 · · ·Ri into R0:i for the rest of algorithm

Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Overview

Let R1R2 . . .Rn be the sequence returned by IKKBZ.

Does it suffices to prove Rank(R1) ≤ Rank(R2) ≤ · · · ?

No! That only proves local optimality1

Instead we need to prove this:

If Opt is the optimal sequence, then IKKBZ returns Opt

1If we also prove Rank(R1R2R3) ≤ Rank(R4R5), etc.
Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Overview

Let R1R2 . . .Rn be the sequence returned by IKKBZ.

Does it suffices to prove Rank(R1) ≤ Rank(R2) ≤ · · · ?

No! That only proves local optimality1

Instead we need to prove this:

If Opt is the optimal sequence, then IKKBZ returns Opt

1If we also prove Rank(R1R2R3) ≤ Rank(R4R5), etc.
Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Overview

Let R1R2 . . .Rn be the sequence returned by IKKBZ.

Does it suffices to prove Rank(R1) ≤ Rank(R2) ≤ · · · ?

No! That only proves local optimality1

Instead we need to prove this:

If Opt is the optimal sequence, then IKKBZ returns Opt

1If we also prove Rank(R1R2R3) ≤ Rank(R4R5), etc.
Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Proof 1/2

Theorem Fix R as the tree root, and let OptR be the optimal starting at this root.
Then IKKBZ on root R returns OptR.

Notice that OptR must start with R (why?).
IKKBZ also returns a sequence that starts with R.

R

S1

S2

.

.

.

.

.

.

T1

.

.

.

K1

.

.

.

Let OptR ∩ T be the subsequence consisting of relations in subtree T .

E.g. if OptR = RT1S1T3K1S4S2T2 · · · then Opt ∩ Tree(S1) = S1S4S2 · · ·

Subsequence Lemma: For every subtree T of the root R, OptR ∩ T is the
optimal sequence OptT of T

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Proof 1/2

Theorem Fix R as the tree root, and let OptR be the optimal starting at this root.
Then IKKBZ on root R returns OptR.

Notice that OptR must start with R (why?).
IKKBZ also returns a sequence that starts with R.

R

S1

S2

.

.

.

.

.

.

T1

.

.

.

K1

.

.

.

Let OptR ∩ T be the subsequence consisting of relations in subtree T .

E.g. if OptR = RT1S1T3K1S4S2T2 · · · then Opt ∩ Tree(S1) = S1S4S2 · · ·

Subsequence Lemma: For every subtree T of the root R, OptR ∩ T is the
optimal sequence OptT of T

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Proof 1/2

Theorem Fix R as the tree root, and let OptR be the optimal starting at this root.
Then IKKBZ on root R returns OptR.

Notice that OptR must start with R (why?).
IKKBZ also returns a sequence that starts with R.

R

S1

S2

.

.

.

.

.

.

T1

.

.

.

K1

.

.

.

Let OptR ∩ T be the subsequence consisting of relations in subtree T .

E.g. if OptR = RT1S1T3K1S4S2T2 · · · then Opt ∩ Tree(S1) = S1S4S2 · · ·

Subsequence Lemma: For every subtree T of the root R, OptR ∩ T is the
optimal sequence OptT of T

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Proof 1/2

Theorem Fix R as the tree root, and let OptR be the optimal starting at this root.
Then IKKBZ on root R returns OptR.

Notice that OptR must start with R (why?).
IKKBZ also returns a sequence that starts with R.

R

S1

S2

.

.

.

.

.

.

T1

.

.

.

K1

.

.

.

Let OptR ∩ T be the subsequence consisting of relations in subtree T .

E.g. if OptR = RT1S1T3K1S4S2T2 · · · then Opt ∩ Tree(S1) = S1S4S2 · · ·

Subsequence Lemma: For every subtree T of the root R, OptR ∩ T is the
optimal sequence OptT of T

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Proof of the Subsequence Lemma
Forest F = {T1,T2, . . .} (set of ordered trees)

Claim Let OptF be optimal topological order of F .

R1

R2

.

.

.

R3

.

.

.

S1

S2

.

.

.

.

.

.

.

.

.

K1

K2

.

.

.

.

.

.

Then, for all T ∈ F , OptF ∩ T is optimal sequence OptT of T .

Proof by induction on the number of nodes in the forest.

Let the first node of OptF be S1: OptF = S1Rest

S1 is the root of some tree T ∈ F why?
and Rest is optimal topological order of F − {S1} why?

Because Cost(OptF) = Cost(S1Rest) = Cost(S1) + Est(S1)Cost(Rest)
Improving Cost(Rest) would improve Cost(OptF).

Lemma follows from induction hypothesis on F − {S1}.

Dan Suciu CSE599d: Advanced QP Winter 2026 25 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Proof of the Subsequence Lemma
Forest F = {T1,T2, . . .} (set of ordered trees)

Claim Let OptF be optimal topological order of F .

R1

R2

.

.

.

R3

.

.

.

S1

S2

.

.

.

.

.

.

.

.

.

K1

K2

.

.

.

.

.

.

Then, for all T ∈ F , OptF ∩ T is optimal sequence OptT of T .

Proof by induction on the number of nodes in the forest.

Let the first node of OptF be S1: OptF = S1Rest

S1 is the root of some tree T ∈ F why?
and Rest is optimal topological order of F − {S1} why?

Because Cost(OptF) = Cost(S1Rest) = Cost(S1) + Est(S1)Cost(Rest)
Improving Cost(Rest) would improve Cost(OptF).

Lemma follows from induction hypothesis on F − {S1}.

Dan Suciu CSE599d: Advanced QP Winter 2026 25 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Proof of the Subsequence Lemma
Forest F = {T1,T2, . . .} (set of ordered trees)

Claim Let OptF be optimal topological order of F .

R1

R2

.

.

.

R3

.

.

.

S1

S2

.

.

.

.

.

.

.

.

.

K1

K2

.

.

.

.

.

.

Then, for all T ∈ F , OptF ∩ T is optimal sequence OptT of T .

Proof by induction on the number of nodes in the forest.

Let the first node of OptF be S1: OptF = S1Rest

S1 is the root of some tree T ∈ F why?

and Rest is optimal topological order of F − {S1} why?

Because Cost(OptF) = Cost(S1Rest) = Cost(S1) + Est(S1)Cost(Rest)
Improving Cost(Rest) would improve Cost(OptF).

Lemma follows from induction hypothesis on F − {S1}.

Dan Suciu CSE599d: Advanced QP Winter 2026 25 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Proof of the Subsequence Lemma
Forest F = {T1,T2, . . .} (set of ordered trees)

Claim Let OptF be optimal topological order of F .

R1

R2

.

.

.

R3

.

.

.

S1

S2

.

.

.

.

.

.

.

.

.

K1

K2

.

.

.

.

.

.

Then, for all T ∈ F , OptF ∩ T is optimal sequence OptT of T .

Proof by induction on the number of nodes in the forest.

Let the first node of OptF be S1: OptF = S1Rest

S1 is the root of some tree T ∈ F why?
and Rest is optimal topological order of F − {S1} why?

Because Cost(OptF) = Cost(S1Rest) = Cost(S1) + Est(S1)Cost(Rest)
Improving Cost(Rest) would improve Cost(OptF).

Lemma follows from induction hypothesis on F − {S1}.

Dan Suciu CSE599d: Advanced QP Winter 2026 25 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Proof of the Subsequence Lemma
Forest F = {T1,T2, . . .} (set of ordered trees)

Claim Let OptF be optimal topological order of F .

R1

R2

.

.

.

R3

.

.

.

S1

S2

.

.

.

.

.

.

.

.

.

K1

K2

.

.

.

.

.

.

Then, for all T ∈ F , OptF ∩ T is optimal sequence OptT of T .

Proof by induction on the number of nodes in the forest.

Let the first node of OptF be S1: OptF = S1Rest

S1 is the root of some tree T ∈ F why?
and Rest is optimal topological order of F − {S1} why?
Because Cost(OptF) = Cost(S1Rest) = Cost(S1) + Est(S1)Cost(Rest)

Improving Cost(Rest) would improve Cost(OptF).

Lemma follows from induction hypothesis on F − {S1}.

Dan Suciu CSE599d: Advanced QP Winter 2026 25 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Proof of the Subsequence Lemma
Forest F = {T1,T2, . . .} (set of ordered trees)

Claim Let OptF be optimal topological order of F .

R1

R2

.

.

.

R3

.

.

.

S1

S2

.

.

.

.

.

.

.

.

.

K1

K2

.

.

.

.

.

.

Then, for all T ∈ F , OptF ∩ T is optimal sequence OptT of T .

Proof by induction on the number of nodes in the forest.

Let the first node of OptF be S1: OptF = S1Rest

S1 is the root of some tree T ∈ F why?
and Rest is optimal topological order of F − {S1} why?
Because Cost(OptF) = Cost(S1Rest) = Cost(S1) + Est(S1)Cost(Rest)

Improving Cost(Rest) would improve Cost(OptF).

Lemma follows from induction hypothesis on F − {S1}.

Dan Suciu CSE599d: Advanced QP Winter 2026 25 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Proof 2/2

IKKBZ on root R returns OptR.

Assume for simplicity that R has two children: T1,T2

By induction, IKKBZ computes their optimal order:
OptT1 = S1S2 · · ·
OptT2 = T1T2 · · ·

By the Subsequence Lemma:
OptR ∩ T1 = S1S2 · · ·
OptR ∩ T2 = T1T2 · · ·

By the Key Lemma, if Si:j was combined by the algorithm, then OptR will not
have any Tk between Si · · ·Sj .

By ASI, OptR is obtained by merging their ranks.

Dan Suciu CSE599d: Advanced QP Winter 2026 26 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Proof 2/2

IKKBZ on root R returns OptR.

Assume for simplicity that R has two children: T1,T2

By induction, IKKBZ computes their optimal order:
OptT1 = S1S2 · · ·
OptT2 = T1T2 · · ·

By the Subsequence Lemma:
OptR ∩ T1 = S1S2 · · ·
OptR ∩ T2 = T1T2 · · ·

By the Key Lemma, if Si:j was combined by the algorithm, then OptR will not
have any Tk between Si · · ·Sj .

By ASI, OptR is obtained by merging their ranks.

Dan Suciu CSE599d: Advanced QP Winter 2026 26 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Proof 2/2

IKKBZ on root R returns OptR.

Assume for simplicity that R has two children: T1,T2

By induction, IKKBZ computes their optimal order:
OptT1 = S1S2 · · ·
OptT2 = T1T2 · · ·

By the Subsequence Lemma:
OptR ∩ T1 = S1S2 · · ·
OptR ∩ T2 = T1T2 · · ·

By the Key Lemma, if Si:j was combined by the algorithm, then OptR will not
have any Tk between Si · · ·Sj .

By ASI, OptR is obtained by merging their ranks.

Dan Suciu CSE599d: Advanced QP Winter 2026 26 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Proof 2/2

IKKBZ on root R returns OptR.

Assume for simplicity that R has two children: T1,T2

By induction, IKKBZ computes their optimal order:
OptT1 = S1S2 · · ·
OptT2 = T1T2 · · ·

By the Subsequence Lemma:
OptR ∩ T1 = S1S2 · · ·
OptR ∩ T2 = T1T2 · · ·

By the Key Lemma, if Si:j was combined by the algorithm, then OptR will not
have any Tk between Si · · ·Sj .

By ASI, OptR is obtained by merging their ranks.

Dan Suciu CSE599d: Advanced QP Winter 2026 26 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Optimality of the IKKBZ Algorithm: Proof 2/2

IKKBZ on root R returns OptR.

Assume for simplicity that R has two children: T1,T2

By induction, IKKBZ computes their optimal order:
OptT1 = S1S2 · · ·
OptT2 = T1T2 · · ·

By the Subsequence Lemma:
OptR ∩ T1 = S1S2 · · ·
OptR ∩ T2 = T1T2 · · ·

By the Key Lemma, if Si:j was combined by the algorithm, then OptR will not
have any Tk between Si · · ·Sj .

By ASI, OptR is obtained by merging their ranks.

Dan Suciu CSE599d: Advanced QP Winter 2026 26 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Discussion

IKKBZ finds optimal plan in polynomial time, but only under the ASI
assumption on Cost.

Can still use IKKBZ as a heuristics, setting Rank(S) = Est(S)−1
Cost(S) .

Searches only for left-linear plans. This is useful for the linearization used
to optimize very large joins: next.

Dan Suciu CSE599d: Advanced QP Winter 2026 27 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Large Joins

Dan Suciu CSE599d: Advanced QP Winter 2026 28 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Overview

[Neumann and Radke, 2018]:

Small query: DPccp. Optimal

Medium query (≤ 100 tables): Linearized DPccp. Almost Optimal

Large query: Greedy. Degrade Gracefully

Dan Suciu CSE599d: Advanced QP Winter 2026 29 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Small Query

Dan Suciu CSE599d: Advanced QP Winter 2026 30 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Small Query

What is Small?

Runtime of DPccp depends heavily on the query’s topology:

Linear query (easiest): O(n3) n ≤ 100

Star query (hardest): O(3n) n ≤ 14.

A workable definition of “small”:

number of connected subgraphs csg ≤ 10000

csg can be computed efficiently.

Dan Suciu CSE599d: Advanced QP Winter 2026 31 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Medium Query

Fix a linear order on the relations: R1,R2, . . . ,Rn.

Modify DPccp to consider only sets S that are connected subchains.

Size of the DP table: O(n2) as opposed to O(2n).

Dan Suciu CSE599d: Advanced QP Winter 2026 32 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Query Linearization

Reduces the size of the DP table from O(2n) to O(n2).

Use IKKBZ to find a good linearization order.

LinearizedDP: a simplified version of DPccp, runtime O(n3).

Dan Suciu CSE599d: Advanced QP Winter 2026 33 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Discussion

Linearizaton reduces runtime from O(3n) to O(n3).

Output plan is no longer optimal: it depends on the linearization order.

Use the IKKBZ algorithm to find a good linearization order.

Dan Suciu CSE599d: Advanced QP Winter 2026 34 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Large Query

n > 100.

Use greedy algorithm to compute an initial plan P.

Iterative refinement: optimize subtrees of size k (e.g. k = 100).

Dan Suciu CSE599d: Advanced QP Winter 2026 35 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Iterative Refinement

Start from complete join plan P.

P

P’
≤ 𝑘

Find a subplan (subtree) P′ such that:
▶ |P′ | ≤ 100 (so we can run LinearizedDP).
▶ Cost(P′) is maximal.

Replace P′ with LinearizedDP(P′)

Replace P′ with one relation (so we don’t optimize it further). Repeat.

Stop after some fixed number of iterations.

Dan Suciu CSE599d: Advanced QP Winter 2026 36 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Summary of Large Joins from [Neumann and Radke, 2018]

Small query: DPccp.

Medium query: LinearizedDP. Need IKKBZ (next)

Large query: Greedy, then local LinearizedDP

Dan Suciu CSE599d: Advanced QP Winter 2026 37 / 37

Query Optimization via DP Greedy Algorithm IKKBZ Large Joins

Fegaras, L. (1998).
A new heuristic for optimizing large queries.
In Quirchmayr, G., Schweighofer, E., and Bench-Capon, T. J. M., editors, Database and Expert Systems Applications, 9th International
Conference, DEXA ’98, Vienna, Austria, August 24-28, 1998, Proceedings, volume 1460 of Lecture Notes in Computer Science, pages
726–735. Springer.

Haffner, I. and Dittrich, J. (2023).
Efficiently computing join orders with heuristic search.
Proc. ACM Manag. Data, 1(1):73:1–73:26.

Ibaraki, T. and Kameda, T. (1984).
On the optimal nesting order for computing n-relational joins.
ACM Trans. Database Syst., 9(3):482–502.

Krishnamurthy, R., Boral, H., and Zaniolo, C. (1986).
Optimization of nonrecursive queries.
In Chu, W. W., Gardarin, G., Ohsuga, S., and Kambayashi, Y., editors, VLDB’86 Twelfth International Conference on Very Large Data
Bases, August 25-28, 1986, Kyoto, Japan, Proceedings, pages 128–137. Morgan Kaufmann.

Monma, C. L. and Sidney, J. B. (1979).
Sequencing with series-parallel precedence constraints.
Math. Oper. Res., 4(3):215–224.

Neumann, T. and Radke, B. (2018).
Adaptive optimization of very large join queries.
In Das, G., Jermaine, C. M., and Bernstein, P. A., editors, Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 677–692. ACM.

Dan Suciu CSE599d: Advanced QP Winter 2026 37 / 37

	Query Optimization via DP
	Greedy Algorithm
	IKKBZ
	Large Joins

