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Query Optimization via DP
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The Full Picture
R = {R1,...,Rn}
o SystemR: introduced DP; Left Linear Plans
e DPsize: all sets S1,S2 C R.
@ DPsub: all disjoint sets S1,S> C R, S1 NS> = 0.
@ DPccp Connected Component Pairs Sy, So.
> Chain query:
> Star query:

@ Specialized Algorithms: Greedy, IKKBZ

@ Very Large Joins.
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Query Optimization via DP
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Recap: Optimization based on Connected Component Pairs

Algorithm 1: DPccp

for Connected component pairs S1,S2 C R do
if APPLICABLE(S1, So, o) then
(P1,cq) := PlanCost[S1];
(P2, c2) := PlanCost[S>];
€ :=Cy + C2 + Cost(Pq o Po);
if ¢ < PlanCost[S; U S»].cost then
PlanCost[S1 U So] := (Pq o P2, ¢);

Runtime: O(3").
Star query is the worst: O(3")
Chain query is the best: O(n®).
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Query Optimization via DP
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Discussion

e Complexity: O(n®) ---O(3"). Hence n < 14---100

@ Large joins (n > 100) occur because of views over views over views.

@ Rare, but they exists [Neumann and Radke, 2018]:

» SAP Hana: query with 4,598, one with 2,298, a few with > 1000 relations.
> Tableau Public Data: long tail of queries with > 100 relations, up to 369.

@ Query optimizer must handle large joins: specialized algorithms.
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Greedy Algorithm
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Query Optimization via DP Greedy Algorithm
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Computing a Plan Greedily

[Fegaras, 1998]
@ Start from base tables: Py := {R1},...,Pn := {Rn}.
@ Choose two join-able plans P;, P; such that Cost(P; > P;) is minimal.
@ Replace P;, P; with P; > P;. Repeat.

@ Stop when there is a single plan, with all relations.

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 6/37



Query Optimization via DP Greedy Algorithm
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Computing a Plan Greedily

Function Greedy(R1, Ro, ..., Rp)

Plans := {R1,Ro, ..., Rn};

while |Plans| > 1 do
(L’ R) = argminL,Fi’ePlans,L,RcanjoinCOSt(L s R),
Plans := Plans — {L, R} U {L = R};
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Example

o Step 1: Plans = {R,S, T,K}:
RS R<T,ARxK,TxK

Pyl
(@]

P
—
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Example

o Step 1: Plans = {R,S, T,K}:
RS R<T,ARxK,TxK
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Greedy Algorithm
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Example

o Step 1: Plans = {R,S, T,K}:
RS R<T,ARxK,TxK

@ Step 2: Plans = {R, S, TK}:
R~ S, R~ TK

Pyl
(@]

P
—
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Greedy Algorithm
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Example

o Step 1: Plans = {R,S, T,K}:
RS R<T,ARxK,TxK

@ Step 2: Plans = {R, S, TK}:
R~ S, R~ TK

Pyl
(@]

P
—
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Query Optimization via DP Greedy Algorithm
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Example

o Step 1: Plans = {R,S, T,K}:
RS R<T,ARxK,TxK

@ Step 2: Plans = {R, S, TK}:

Pyl
(@]

R~ S, R~ TK
o Step3: Plans = {S, RTK}: K T
S < RTK
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Query Optimization via DP Greedy Algorithm
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Example

o Step 1: Plans = {R,S, T,K}:
RS R<T,ARxK,TxK

@ Step 2: Plans = {R, S, TK}:

Pyl
(@]

R~ S, R~ TK
o Step3: Plans = {S, RTK}: K T
S x RTK
Final plan:
>
/\
S ]
N
R [
P
T K
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Query Optimization via DP Greedy Algorithm
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QO via Shortest Path [Haffner and Dittrich, 2023]

Given a weighted graph G = (V, E), find the shortest path from s to t.

@ Dijkstra’s algorithm: Single-Source Shortest Path (SSSP) in time
O(E| + [V[log|V]).

@ A*: asearch algorithm where G is given implicitly and has exponential
size.
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Query Optimization via DP Greedy Algorithm
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QO via Shortest Path [Haffner and Dittrich, 2023]
Join graph Q = (R, E), where R = {R4, ..., Ry}, E = all joins.

Define the search graph G = (CC, J), where (informally!):
CC = set of partitions into connected components
R=CiU---UCx
J = pairs of partitions that can represent one join in E.
The weight of an edge in J is the cost of the join.
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QO via Shortest Path [Haffner and Dittrich, 2023]
Join graph Q = (R, E), where R = {R4, ..., Ry}, E = all joins.

Define the search graph G = (CC, J), where (informally!):

CC = set of partitions into connected components
R=CiU---UCx

J = pairs of partitions that can represent one join in E.
The weight of an edge in J is the cost of the join.

The optimal bushy plan w/o cross products is the shortest path:

{{R1}.{Rz},....{Rn}} =" {{R1,.... Rn}}
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QO via Shortest Path [Haffner and Dittrich, 2023]
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QO via Shortest Path [Haffner and Dittrich, 2023]
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QO via Shortest Path [Haffner and Dittrich, 2023]

%
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Discussion

@ Greedy: very simple, suboptimal plan

@ Graph search: natural extension.
Cannot construct the full graph (exponential!), but can use A* or some
beam search.
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The IKKBZ Algorithm
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Query Optimization via DP
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Overview of IKKBZ

Optimal left linear plan w/o cross products, time O(n?). Assumes ASI property.

@ ASI originates in the job scheduling literature [Monma and Sidney, 1979].

@ Adapted to query optimization [Ibaraki and Kameda, 1984].

@ Further refined [Krishnamurthy et al., 1986]: we follow this.

@ Called IKKBZ in [Neumann and Radke, 2018].
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Problem Setting

Input: acyclic query graph.

R4
R; joins with Ry and Rs. R/\R
R1 does not join with R4 or Rs. 2 3
N
Rs Rs
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Problem Setting

Input: acyclic query graph.

R4
R; joins with Ry and Rs. R/\R
R1 does not join with R4 or Rs. 2 3
N
Rs Rs

Goal: find optimal left linear plan w/o cross products
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Query Optimization via DP Greedy Algorithm IKKBZ

Problem Setting

Input: acyclic query graph.

R
R; joins with Ry and Rs. R/\R
R1 does not join with R4 or Rs. 2 3
Rs Rs

Goal: find optimal left linear plan w/o cross products

For each i, consider all topological orders of tree rooted at R;

7%
Root Ry, e.g. left-linear plan: R1R3RsR2R4 o~
Root Rz, e.g. left-linear plan: R3R4R1Rs5R> i Ra
& h,
A~
A R
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Assumptions on the Cost Function

Fix a root of the query, say Ry. Set p(/) = parent(/).

def
Est(Rp() = R) S 6; - |Roy | - R Cost(R = R;) € |R| - g(|Ri])
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Assumptions on the Cost Function

Fix a root of the query, say Ry. Set p(/) = parent(/).

def def
Est(Rp() > Ri) = 6; - |Roi)| - IRi] Cost(R » R) = |R| - g(|Ril)
Est(>j=k,m Ri) = [1j=k,m 0i|Ril Cost(»i=k,m Rj) =

Notice Est(R;) = 6;|R;|. Zj=k+1,m L i=k j—1(GilRil) - g(1R;])
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Query Optimization via DP Greedy Algorithm IKKBZ
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Assumptions on the Cost Function

Fix a root of the query, say Ry. Set p(/) = parent(/).

def def
Est(Rp() > Ri) = 6; - |Roi)| - IRi] Cost(R » R) = |R| - g(|Ril)
Est(>j=k,m Ri) = [1j=k,m 0i|Ril Cost(»i=k,m Rj) =

Notice Est(R;) = 6;|R;|. Zj=k+1,m L i=k j—1(GilRil) - g(1R;])

Est(S51S2) =Est(Sy) - Est(Sy)
Cost(S1Ss) =Cost(S1) + Est(S1) - Cost(S»)

E.g. Cost(R4Rs5RsR7Rs) = Cost(R4R5Rs) + Est(R4R5Rs) - Cost(R7Rg)

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 16/37



Query Optimization via DP S go 1 IKKBZ
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The ASI Property

Cost satisfies the Adjacent Sequence Interchange (ASI) property
if there exists a function Rank such that for all sequences A, B, U, V:

|Rank(U) < Rank(V) | iff |Cost(AUVB) < Cost(AVUB)
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The ASI Property for Query Optimization

Theorem Cost satisfies ASI with | Rank(S) & Eéf)gfg;

Proof to check ‘ Cost(AUVB) < Cost(AVUB) ‘iff ‘ Rank(U) < Rank(V) ‘
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Query Optimization via DP Sre gorithm IKKBZ
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The ASI Property for Query Optimization

Theorem Cost satisfies ASI with | Rank(S) & E(S:ths(?s_;

Proof to check ‘ Cost(AUVB) < Cost(AVUB) ‘iff ‘ Rank(U) < Rank(V) ‘

Cost(AUVB) =Cost(A) + Est(A) - Cost(U) + Est(AU) - Cost(V) + Est(AUV) - Cost(B)
Cost(AVUB) =Cost(A) + Est(A) - Cost(V) + Est(AV) - Cost(U) + Est(AVU) - Cost(B)
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Query Optimization via DP
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The ASI Property for Query Optimization

Theorem Cost satisfies ASI with | Rank(S) = 2t

Proof to check ‘ Cost(AUVB) < Cost(AVUB) ‘iff ‘ Rank(U) < Rank(V) ‘

Cost(AUVB) =Cost(A) + Est(A) - Cost(U) + Est(AU) - Cost(V) + Est(AUV) - Cost(B)
Cost(AVUB) =Cost(A) + Est(A) - Cost(V) + Est(AV) - Cost(U) + Est(AVU) - Cost(B)

Cost(AUVB) <Cost(AVUB)
iff  Est(A) - Cost(U) + Est(AU) - Cost(V) <Est(A) - Cost(V) + Est(AV) - Cost(U)

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 18/37



Query Optimization via DP

00000@000000000

The ASI Property for Query Optimization

Theorem Cost satisfies ASI with | Rank(S) = 2t

Proof to check ‘ Cost(AUVB) < Cost(AVUB) ‘iff ‘ Rank(U) < Rank(V) ‘

Cost(AUVB) =Cost(A) + Est(A) - Cost(U) + Est(AU) - Cost(V) + Est(AUV) - Cost(B)
Cost(AVUB) =Cost(A) + Est(A) - Cost(V) + Est(AV) - Cost(U) + Est(AVU) - Cost(B)

Cost(AUVB) <Cost(AVUB)
iff  Est(A) - Cost(U) + Est(AU) - Cost(V) <Est(A) - Cost(V) + Est(AV) - Cost(U)
iff Cost(U) + Est(U) - Cost(V) <Cost(V) + Est(V) - Cost(U)
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Query Optimization via DP
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The ASI Property for Query Optimization

Theorem Cost satisfies ASI with | Rank(S) = 2t

Proof to check ‘ Cost(AUVB) < Cost(AVUB) ‘iff ‘ Rank(U) < Rank(V) ‘

Cost(AUVB) =Cost(A) + Est(A) - Cost(U) + Est(AU) - Cost(V) + Est(AUV) - Cost(B)
Cost(AVUB) =Cost(A) + Est(A) - Cost(V) + Est(AV) - Cost(U) + Est(AVU) - Cost(B)

Cost(AUVB) <Cost(AVUB)
iff  Est(A) - Cost(U) + Est(AU) - Cost(V) <Est(A) - Cost(V) + Est(AV) - Cost(U)
iff Cost(U) + Est(U) - Cost(V) <Cost(V) + Est(V) - Cost(U)
iff Est(U) - Cost(V) — Cost(V) <Est(V) - Cost(U) — Cost(U)
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Query Optimization via DP
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The ASI Property for Query Optimization

Theorem Cost satisfies ASI with | Rank(S) = 2t

Proof to check ‘ Cost(AUVB) < Cost(AVUB) ‘iff ‘ Rank(U) < Rank(V) ‘

Cost(AUVB) =Cost(A) + Est(A) - Cost(U) + Est(AU) - Cost(V) + Est(AUV) - Cost(B)
Cost(AVUB) =Cost(A) + Est(A) - Cost(V) + Est(AV) - Cost(U) + Est(AVU) - Cost(B)

Cost(AUVB) <Cost(AVUB)

iff  Est(A) - Cost(U) + Est(AU) - Cost(V) <Est(A) - Cost(V) + Est(AV) - Cost(U)
iff Cost(U) + Est(U) - Cost(V) <Cost(V) + Est(V) - Cost(U)

iff Est(U) - Cost(V) — Cost(V) <Est(V) - Cost(U) — Cost(U)

iff Rank(U) = EStW) =1 _EstV) =1 _ b (v)

Cost(U) ~ Cost(V)
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The IKKBZ Algorithm

For each node R, find optimal topological order for tree w/ root R:
R,
@ Choose node Ry all of whose children are chains. /O\
Ry qu . .
@ (Assuming only two children.) By induction: A A

Rank(R1) < Rank(R») < --- ‘ ‘ :
Rank(R/) < Rank(R}) < --- S
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The IKKBZ Algorithm
For each node R, find optimal topological order for tree w/ root R:

@ Choose node Ry all of whose children are chains. T
Ry Aj .

@ (Assuming only two children.) By induction: A n‘é

Rank(R1) < Rank(R») < --- ‘ ‘ :
Rank(R/) < Rank(R}) < --- S

@ Merge the two chains to obtain:

Rank(Ro)=Rank(R;’) < Rank(R}) < - o
Ry

Ay

I

|

Ry

R
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The IKKBZ Algorithm

For each node R, find optimal topological order for tree w/ root R:

@ Choose node Ry all of whose children are chains. TR
Ry Ff; . .
@ (Assuming only two children.) By induction: Ay n‘é o
Rank(R;) < Rank(R,) < - - L
Rank(R/) < Rank(R}) < --- ot
@ Merge the two chains to obtain:
Rank(Ro)=Rank(R;’) < Rank(R}) < - o Rf-f
RY Rl
e Cannot move Ryp. Instead: H,‘; HJ,:
If Rank(Ro) > Rank(R1): Ro:1 = RQRQ’ ‘
If Rank(Ro.1) > Rank(Ro): | Ro:2 := RoR{ R} R‘
Until Rank(Ro.) < Rank(R/7.). o
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The IKKBZ Algorithm

For each node R, find optimal topological order for tree w/ root R:

@ Choose node Ry all of whose children are chains. T
Ry qu . .
@ (Assuming only two children.) By induction: Ay n‘é o
Rank(R1) < Rank(R») < --- ‘ ‘ :
Rank(R/) < Rank(R}) < --- S
@ Merge the two chains to obtain:
Rank(Ho)éRank(RQ’) < Rank(R}) <--- ”‘0 F"JO»/‘
RY Rl
e Cannot move Ry. Instead: H,‘; HJ,:
If Rank(Ro) > Rank(R1): Ro:1 = RQRQ’ ‘
If Rank(Ro.1) > Rank(Ro): | Ro:2 := RoR{ R} .
Until Rank(Ro.) < Rank(R/7.). Nl
i+1

@ Repeat until entire rooted tree becomes a single chain.
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Example: Adapted from [Krishnamurthy et al., 1986]

|Ril | 6 Cost(R) = gi(I1Ri])
Ry [ 100 | 1 300

Rp | 2000 | 05 |9

Rs | 1000 | 0.1 | 99

Ry | 400 | 025 |3

Rs | 100 | 01 |30

R
R> Rs
/\
R4 Rs
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Example: Adapted from [Krishnamurthy et al., 1986]

R)—1
Al | 6 | CosR) =gi(IRiD) | Est(R) = 6lRIl | Rank(R) = St
Ry 100 1 300 100 0.33
R> | 2000 | 0.5 9 1000 111
Rs | 1000 | 0.1 9.9 100 10
R4 | 400 025 | 3 100 33
Rs | 100 0.1 30 10 0.3
R
Rz Rs
/\
R, Rs
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Example: Adapted from [Krishnamurthy et al., 1986]

R)—1

Rl | 6 | Cost(R) =gi(IRil) | Est(R) = 6|R| | Rank(R;) = ="
R4 100 1 300 100 0.33
Ry | 2000 | 0.5 9 1000 111
R3 1000 | 0.1 9.9 100 10
R4 | 400 025 | 3 100 33
Rs 100 0.1 30 10 0.3

R10'33
111 1
R Rs'°
R433 R50'3
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Example: Adapted from [Krishnamurthy et al., 1986]

Ry
[Ril | & Cost(Ri) = gi(|1Ri) | Est(R;) = 6|Ri Raﬂk(ﬁ‘)=%
Ry [ 100 |1 300 100 033
Ro | 2000 | 05 | 9 1000 111
Ry | 1000 | 0.1 | 99 100 10
Ry | 400 | 025 | 3 100 33
Rs | 100 | 01 | 30 10 0.3
R,0-33 R0-33
1
1{\10
R, 11 Ra'0 R, F?3
33 0.3 Ft"L~3
R4 Rs™ 5
L
Ry

‘Winter 2026 20/37
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Example: Adapted from [Krishnamurthy et al., 1986]

N
[Ril | 6 Cost(R;) = gi(|Ri]) Est(R;) = 6i|R;| | Rank(R;) = %
Ry 100 1 300 100 0.33
R> 2000 | 0.5 9 1000 111
R3 1000 | 0.1 9.9 100 10
Ry 400 025 | 3 100 33
Rs 100 0.1 30 10 0.3
Rss Cost(R3) + Est(R3)Cost(Rs) Est(R3)Est(Rs)
1000 309.9 3.223620523
R,0-33 R0-33 R0.33
1 1
mA 10 R(\Rw Rmzz
R> Rs 2 3 2 3‘5
P (L
3 33
R,33  Rs%3 Fi’? R 7
33
R4
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Example: Adapted from [Krishnamurthy et al., 1986]

Ry -1
Ril | 6 Cost(Ri) = gi(|1Ril) Est(R;) = 6i|Ri| | Rank(R;) = %
R4 100 1 300 100 0.33
Ro 2000 | 0.5 9 1000 111
R3 1000 | 0.1 9.9 100 10
Ry 400 025 | 3 100 33
Rs 100 0.1 30 10 0.3
Rss Cost(R3) + Est(R3)Cost(Rs) Est(R3)Est(Rs)
1000 309.9 3.223620523
R;0-33 R0-33 RO-33 R0-33
1 1 1
mA 0 R(\Fﬂ 0 Rmzz R3‘_22
Rg R3 2 3 2 3‘5 3‘5
P (L
3 33 33
R,33  Rs%3 Fi’? R, R ‘4
33 111
R; R,
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Example: Adapted from [Krishnamurthy et al., 1986]

Ry -1
Ril | 6 Cost(Ri) = gi(|1Ril) Est(R;) = 6i|Ri| | Rank(R;) = %
R4 100 1 300 100 0.33
Ro 2000 | 0.5 9 1000 111
R3 1000 | 0.1 9.9 100 10
Ry 400 025 | 3 100 33
Rs 100 0.1 30 10 0.3
Rss Cost(R3) + Est(R3)Cost(Rs) Est(R3)Est(Rs)
1000 309.9 3.223620523
R;0-33 R0-33 RO-33 R0-33
1 1 1
mA 0 R(\Fﬂ 0 Rmzz Rs‘.gg
Rg R3 2 3 2 3‘5 3‘5
P (L
3 33 33
R,33  Rs%3 Fi’? R, R ‘4
33 111
R; R,

Optimal plan so far: Ry >4 A3 > Rs > R4 >4 Ro.
Next, repeat with root= Ry, then root= Rs, etc. Return the cheapest plan.
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Optimality Proof: Overview

@ None of [Krishnamurthy et al., 1986, Ibaraki and Kameda, 1984,
Neumann and Radke, 2018] gives the correctness proof.

@ A proof will give us better understanding.

@ One key step is to explain the need to combine Ry, R4, ..., R; into Ry.;:
this is the Key Lemma

@ Another subtlety is that we want to prove that the output is globally
optimal, not locally optimal.
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Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”
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Query Optimization via DP
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Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”

Proof
Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:
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Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”

Proof
Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:
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Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”
Proof
Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:
@ If Rank(S) < Rank(Rg) then Cost(RoSR1) > Cost(SRgR1).
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Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”
Proof
Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:
@ If Rank(S) < Rank(Rg) then Cost(RoSR1) > Cost(SRgR1).
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Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”

Proof

Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:
@ If Rank(S) < Rank(Rg) then Cost(RoSR1) > Cost(SRgR1).
o If Rank(S) > Rank(Ry) then Cost(RoSR1) > Cost(RgR1S).
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Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”

Proof

Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:
@ If Rank(S) < Rank(Rg) then Cost(RoSR1) > Cost(SRgR1).
o If Rank(S) > Rank(Ry) then Cost(RoSR1) > Cost(RgR1S).

Rank(Ryp.1) > Rank(Rz) implies Ro.1 SRy is suboptimal.

Rank(Rp.2) > Rank(Rj3) implies Ry.2SRj3 is suboptimal. Etc.
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Key Lemma

Assume Rank(Rg) > Rank(R1), ... Rank(Rg.;_1) > Rank(R;). Then
\ Cost(Ro - - - Ri-1SR; - - Ri) > min(Cost(SRo - - - R;), Cost(Ro - - - R;S))

“Inserting S between Ry - - - A; is suboptimal”

Proof

Rank(Rp) > Rank(Ry) implies Ry SR is suboptimal:
@ If Rank(S) < Rank(Rg) then Cost(RoSR1) > Cost(SRgR1).
o If Rank(S) > Rank(Ry) then Cost(RoSR1) > Cost(RgR1S).

Rank(Ryp.1) > Rank(Rz) implies Ro.1 SRy is suboptimal.
Rank(Rp.2) > Rank(Rj3) implies Ry.2SRj3 is suboptimal. Etc.

Justifies combining Ry - - - R; into Ry.; for the rest of algorithm
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Optimality of the IKKBZ Algorithm: Overview

Let R1R> ... Ry be the sequence returned by IKKBZ.

Does it suffices to prove Rank(Ry) < Rank(Rp) < ---?

!f we also prove Rank(RR2R3) < Rank(R4Rs), etc.
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Optimality of the IKKBZ Algorithm: Overview

Let R1R> ... Ry be the sequence returned by IKKBZ.
Does it suffices to prove Rank(Ry) < Rank(Rp) < ---?

No! That only proves local optimality'

!f we also prove Rank(RR2R3) < Rank(R4Rs), etc.
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Optimality of the IKKBZ Algorithm: Overview
Let R1R> ... Ry be the sequence returned by IKKBZ.

Does it suffices to prove Rank(Ry) < Rank(Rp) < ---?

No! That only proves local optimality'

Instead we need to prove this:

If Opt is the optimal sequence, then IKKBZ returns Opt

!f we also prove Rank(RR2R3) < Rank(R4Rs), etc.
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Optimality of the IKKBZ Algorithm: Proof 1/2

Theorem Fix R as the tree root, and let Optg be the optimal starting at this root.
Then IKKBZ on root R returns Optg.

R
Sq T4 K4
S
s > \ \
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Optimality of the IKKBZ Algorithm: Proof 1/2

Theorem Fix R as the tree root, and let Optg be the optimal starting at this root.
Then IKKBZ on root R returns Optg.

R
Notice that Optg must start with R (why?). 31/’T1\K1

. <N [ [
IKKBZ also returns a sequence that starts with A. S . :
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Optimality of the IKKBZ Algorithm: Proof 1/2

Theorem Fix R as the tree root, and let Optg be the optimal starting at this root.
Then IKKBZ on root R returns Optg.

R
Notice that Optg must start with R (why?). S1/T’1\K1

. <N [ [
IKKBZ also returns a sequence that starts with A. S . :

Let Optg N T be the subsequence consisting of relations in subtree 7.

E.g. if Optg = RT1S1T3K1S4S2T5 - - - then Opt N Tree(Sy) = S1S4S2 - - -
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Optimality of the IKKBZ Algorithm: Proof 1/2

Theorem Fix R as the tree root, and let Optg be the optimal starting at this root.
Then IKKBZ on root R returns Optg.

R
Notice that Optg must start with R (why?). /31\/7’1\;9
IKKBZ also returns a sequence that starts with R. Sz .

Let Optg N T be the subsequence consisting of relations in subtree 7.
E.g. if OptR = RT1S51T3K154S2T5 - - - then Opt N Tree(S1) =85154S5---

Subsequence Lemma: For every subtree 7~ of the root R, Opt; N 7 is the
optimal sequence Opts of 7
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Proof of the Subsequence Lemma

Forest F = {77, 73, ...} (set of ordered trees) A
Ry R 3‘2 . K‘z .
L

Claim Let Optg be optimal topological order of F.
Then, for all 7 € F, Opte N 7 is optimal sequence Opt4 of 7.
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Proof of the Subsequence Lemma
Forest F = {71, 72, . . .} (set of ordered trees) Ay S K

R Rz S22 . Ko
| |

Claim Let Optg be optimal topological order of F.
Then, for all 7 € F, Opte N 7 is optimal sequence Opt4 of 7.

Proof by induction on the number of nodes in the forest.

Let the first node of Optg be S1: | Opte = S1Rest
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Proof of the Subsequence Lemma
Forest F = {71, 72, . . .} (set of ordered trees) Ay S K

R Rz S22 . Ko
| |

Claim Let Optg be optimal topological order of F.
Then, for all 7 € F, Opte N 7 is optimal sequence Opt4 of 7.

Proof by induction on the number of nodes in the forest.

Let the first node of Optg be S1: | Opte = S1Rest

@ Sj is the root of some tree 7~ € F why?
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Query Optimization via DP

Proof of the Subsequence Lemma

Forest F = {77, 75, . ..} (set of ordered trees) R S K
Ay R 3‘2 . K‘z .
! :
: !
Claim Let Optg be optimal topological order of F. :
Then, for all 7 € F, Opte N 7 is optimal sequence Opt4 of 7.

Proof by induction on the number of nodes in the forest.

Let the first node of Optg be S1: | Opte = S1Rest ‘

@ Sj is the root of some tree 7~ € F why?

@ and Rest is optimal topological order of F — {S1} why?
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Proof of the Subsequence Lemma

Forest F = {71, 72, . . .} (set of ordered trees) Ay S K

Claim Let Optg be optimal topological order of F.
Then, for all 7 € F, Opte N 7 is optimal sequence Opt4 of 7.

Proof by induction on the number of nodes in the forest.

Let the first node of Optg be Sy: ‘ Opt: = SiRest ‘

@ Sj is the root of some tree 7~ € F why?

@ and Rest is optimal topological order of F — {S1} why?
Because Cost(Optg) = Cost(S1Rest) = Cost(S1) + Est(Sy)Cost(Rest)
Improving Cost(Rest) would improve Cost(Optg).
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Proof of the Subsequence Lemma

Forest F = {71, 72, . . .} (set of ordered trees) Ry S K
FIZ/\FI;; 3‘2 . K‘z .
! :
: !
Claim Let Optg be optimal topological order of F. :
Then, for all 7 € F, Opte N 7 is optimal sequence Opt4 of 7.

Proof by induction on the number of nodes in the forest.

Let the first node of Optg be Sy: ‘ Opte = S1Rest ‘

@ Sj is the root of some tree 7~ € F why?

@ and Rest is optimal topological order of F — {S1} why?
Because Cost(Optg) = Cost(S1Rest) = Cost(S1) + Est(Sy)Cost(Rest)
Improving Cost(Rest) would improve Cost(Optg).

Lemma follows from induction hypothesis on F — {S1}.
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Optimality of the IKKBZ Algorithm: Proof 2/2

IKKBZ on root R returns Optg.
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Optimality of the IKKBZ Algorithm: Proof 2/2

IKKBZ on root R returns Optg.

Assume for simplicity that R has two children: 77, 72
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Optimality of the IKKBZ Algorithm: Proof 2/2
IKKBZ on root R returns Optg.
Assume for simplicity that R has two children: 77, 72

By induction, IKKBZ computes their optimal order:
Opt(ﬁ = 8182 cee
Opth = T1T2~-'
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Optimality of the IKKBZ Algorithm: Proof 2/2

IKKBZ on root R returns Optg.
Assume for simplicity that R has two children: 77, 72

By induction, IKKBZ computes their optimal order:
Opt(ﬁ = 8182 cee
Opth = T1T2~-'

By the Subsequence Lemma:
OptgNT1 =515, -
Opte, NT2 =TT
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Optimality of the IKKBZ Algorithm: Proof 2/2
IKKBZ on root R returns Optg.
Assume for simplicity that R has two children: 77, 72

By induction, IKKBZ computes their optimal order:
Opt(ﬁ = 8182 cee
Opth = T1T2~-'

By the Subsequence Lemma:
OptgNT1 =51S5---
Opte, NT2 =TT

By the Key Lemma, if S;; was combined by the algorithm, then Optz will not
have any Ty between S; - - - S;.

By ASI, Optg is obtained by merging their ranks.
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Discussion

o IKKBZ finds optimal plan in polynomial time, but only under the ASI
assumption on Cost.

Est(S)-1

@ Can still use IKKBZ as a heuristics, setting Rank(S) = =& ()

@ Searches only for left-linear plans. This is useful for the linearization used
to optimize very large joins: next.
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Overview

[Neumann and Radke, 2018]:

@ Small query: DPccp. Optimal
@ Medium query (< 100 tables): Linearized DPccp. Almost Optimal
o Large query: Greedy. Degrade Gracefully

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 29/37



Small Query

CSE599d: Advanced QP ‘Winter 2026 30/37




Query Optimization via DP

Large Joins
[e]e]e] le]ele]ele]e)

Small Query
What is Small?
Runtime of DPccp depends heavily on the query’s topology:
e Linear query (easiest): O(n®) n <100
@ Star query (hardest): O(3") n<14.
A workable definition of “small”:
number of connected subgraphs csg < 10000

csg can be computed efficiently.
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Medium Query

@ Fix a linear order on the relations: R4, R>, ..., Rn.

@ Modify DPccp to consider only sets S that are connected subchains.

@ Size of the DP table: O(n?) as opposed to O(2").
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Query Linearization

R3 — R4 o~
/_\
R1 — R2 R2—R1 R3 R5—R6 R4

N\

Rs—R 0 1 2 3 4 5

enumerations by full DP:

{R1,R2}, {R2,R3}, {R2,R5}, {R3,R4}, {R5,R6},
{R1,R2,R3}, {R1,R2R5}, {R2,R3,R4}, {RZR3,R5},
{R2R5,R6}, {R1,RZR3,R4}, {R1,RZ,R3,RS},
{R1R2R5,R6}, RZR3R4,R5}, {R1,R2,R3,R4,R5},
{R2,R3,R4,R5,R6}, {R1,R2,R3,R4,R5,R6}

enumerations by linearized DP:

{R1,R2}, {R5,R6}, {R1,R2,R3}, {R1,R2Z,R3,R5},
{R1,R2,R3,R5,R6}, {R1,R2,R3,R4,R5,R6}

Figure 4: Example for Search Space Linearization
Reduces the size of the DP table from O(2") to O(n?).
Use IKKBZ to find a good linearization order.

LinearizedDP: a simplified version of DPccp, runtime O(n®).
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Discussion

e Linearizaton reduces runtime from O(3") to O(n®).

@ Output plan is no longer optimal: it depends on the linearization order.

o Use the IKKBZ algorithm to find a good linearization order.
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Large Query

e n>100.

@ Use greedy algorithm to compute an initial plan P.

o Iterative refinement: optimize subtrees of size k (e.g. k = 100).

Dan Suciu CSE599d: Advanced QP ‘Winter 2026 35/37



Query Optimization via DP e Algorithm IKKBZ Large Joins

[e]e]e]e]e]ele]e] o)

Iterative Refinement

@ Start from complete join plan P. A

o Find a subplan (subtree) P’ such that:

> |P’| <100 (so we can run LinearizedDP).
» Cost(P’) is maximal.

@ Replace P’ with LinearizedDP(P’)
@ Replace P’ with one relation (so we don’t optimize it further). Repeat.

@ Stop after some fixed number of iterations.
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Summary of Large Joins from [Neumann and Radke, 2018]

@ Small query: DPccp.
@ Medium query: LinearizedDP. Need IKKBZ (next)

o Large query: Greedy, then local LinearizedDP
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