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Recap: the Homomorphism Theorem

Theorem Let Q1,Q2 be Boolean CQs. The following are equivalent:
Containment holds: Q1 ⊆ Q2

There exists a homomorphism h : Q2 → Q1

Q2(DQ1) = true.

Q1 ≡ Q2 iff Q1 ⊆ Q2 and Q2 ⊆ Q1
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Review from Lecture 1
R Z S = (R ⋉ S) Z S

Denote X ,Y , Z the set of variables:
R S

X Y Z

Q1(X ,Y , Z ) =R(X ,Y ) ∧ S(Y , Z )
Q2(X ,Y , Z ) = (∃Z (R(X ,Y ) ∧ S(Y , Z ))) ∧ S(Y , Z )

=∃UR(X ,Y ) ∧ S(Y ,U) ∧ S(Y , Z )

We renamed ∃Z to ∃U so it doesn’t clash with the head variable Z .
h1 : Q1 → Q2 maps (X ,Y , Z ) ↦→ (X ,Y , Z ).
h2 : Q2 → Q1 maps (X ,U,Y , Z ) ↦→ (X , Z ,Y , Z ).

Therefore, Q1 ≡ Q2 .
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HW1 Semi-Join Question

If Vars(R) ∩ Vars(T ) ⊆ Vars(S).
then R ⋉ (S Z T ) = R ⋉ (S ⋉ T )

R S

X
Y

Z

T

U

V
W

Ω

Ω doesn’t exist.

Q1(X ,Y , Z ,Ω) =∃U,V ,W (R(X ,Y , Z ,Ω) ∧ (S(Y , Z ,U,V ) ∧ T (Z ,V ,W ,Ω)))
Q2(X ,Y , Z ,Ω) =∃U,V (R(X ,Y , Z ,Ω) ∧ ∃W ,Φ(S(Y , Z ,U,V ) ∧ T (Z ,V ,W ,Φ)))

If Ω doesn’t exist, then Q1 ≡ Q2 by identity homomorphisms.
If Ω does exists, then a counterexample is the canonical database for Q2:

D =

R
X Y Z Ω

x y z 𝜔

S
Y Z U V
y z u v

T
Z V W Ω

z v w 𝜙

Q1(D) = ∅ Q2(D) = {x, y, z, 𝜔}
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Outline for Today

Quick recap of Query Optimization via Dynamic Programming.

Optimizing Large Joins.

The IKKBZ Algorithm for left-linear plans.
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Dynamic Programming

R = {R1, . . . ,Rn}

DPsize: all sets S1,S2 ⊆ R. runtime??

O(4n)

DPsub: all disjoint sets S1,S2 ⊆ R, S1 ∩ S2 = ∅. runtime??

O(3n)

DPccp Connected Component Pairs S1,S2.
▶ Chain query: runtime??

O(n3)

▶ Star query: runtime??

O(3n)
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Recap: Enumerate Connected Subgraphs

Algorithm 1: EnumerateCsg(G = (V ,E))
for i = n − 1, n − 2, . . . , 1, 0 do

emit({vi});
EnumerageCsgRec(G, {vi}, {v0, . . . , vi});

Algorithm 2: EnumerageCsgRec(G,S,X)
Output: Enumerate connected subgraphs ⊇ S, disjoint from X
N := N(S) − X ; ; // N(S) = neighbors of S
for ∅ ⊊ S′ ⊆ N do

emit(S ∪ S′);
EnumerageCsgRec(G, (S ∪ S′), (X ∪ N));

For each S1, we also enumerate S2. (The function with Errata!)
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Recap: Optimization based on Connected Component Pairs

Algorithm 3: DPccp
for Connected component pairs S1,S2 ⊆ R do

if APPLICABLE(S1,S2, ◦) then
(P1, c1) := PlanCost[S1];
(P2, c2) := PlanCost[S2];
c := c1 + c2 + Cost(P1 ◦ P2);
if c < PlanCost[S1 ∪ S2] .cost then

PlanCost[S1 ∪ S2] := (P1 ◦ P2, c);
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Discussion

Complexity: O(n3) · · ·O(3n). Hence n ≤ 14 · · · 100

Large joins (n ≫ 100) occur because of views over views over views.

Rare, but they exists [Neumann and Radke, 2018]:
▶ SAP Hana: query with 4,598, one with 2,298, a few with > 1000 relations.
▶ Tableau Public Data: long tail of queries with > 100 relations, up to 369.

Query optimizer needs to cope with large joins too.
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Large Joins
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Overview

[Neumann and Radke, 2018]:

Small query: DPccp. Optimal

Medium query (≤ 100 tables): Linearized DPccp. Almost Optimal

Large query: Greedy. Degrade Gracefully
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Small Query
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What is Small?

Runtime of DPccp depends heavily on the query’s topology:

Linear query (easiest): O(n3) n ≤ 100

Star query (hardest): O(3n) n ≤ 14.

A workable definition of “small”:

number of connected subgraphs csg ≤ 10000

csg can be computed efficiently.
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Computing the Number oF Connected Subgraphs

Almost identical to EnumerateCsg

Function csg(G, budget) G = (V ,E)
c := 0;
for i = n − 1, n − 2, . . . , 1, 0 do

if c + + > budget then return c;
c := csgRec(G, {vi}, {v0, . . . , vi}, c, budget);

Function csgRec(G,S,X , c, budget)
N := N(S) − X ;
for ∅ ⊊ S′ ⊆ N do

if c + + > budget then return c;
c := csgRec(G, (S ∪ S′), (X ∪ N), c, budget);
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Small Queries: Discussion

When csg ≤ 10000 then run DPccp.

Optimizer returns the optimal plan.

Notice that csg is the size of DP table.
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Medium Query
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Query Linearization

Fix a linear order on the relations: R1,R2, . . . ,Rn.

Modify DPccp to consider only sets S that are connected subchains.

Size of the DP table: O(n2) as opposed to O(2n).
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Query Linearization

Reduces the size of the DP table from O(2n) to O(n2).
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LinearizedDP
Algorithm 4: LinearizedDP
Data: Total Order on Relations: R1,R2, . . . ,Rn
Data: Consider only sets S = {Ri ,Ri+1, . . . ,Ri+s−1}
for s1, s2 := 1, n − 1: s1 + s2 ≤ n do

for i := 1, n − s1 − s2 do
S1 := {Ri , . . . ,Ri+s1−1};
S2 := {Ri+s1 , . . . ,Ri+s1+s2−1};
if S1,S2 are connected and joinable then

(P1, c1) := PlanCost[S1];
(P2, c2) := PlanCost[S2];
c := c1 + c2 + Cost(P1 ◦ P2);
if c < PlanCost[S1 ∪ S2] .cost then
PlanCost[S1 ∪ S2] := (P1 ◦ P2, c);

Runtime: O(n3)
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Discussion

Linearizaton reduces runtime from O(3n) to O(n3).

Output plan is no longer optimal: it depends on the linearization order.

How do we choose a good linearization order?

Answer: use the IKKBZ algorithm (coming up).
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Large Query
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Large Query

n > 100.

Use a simple Greedy algorithm to compute an initial plan P.

Iterative refinement: optimize subtrees of size k (e.g. k = 100).
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Greedy Plan

Given n ≈ 1000 relations R1, . . . ,Rn,

describe a simple greedy algorithm to compute a bushy plan
without cross products.
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Greedy Plan

[Fegaras, 1998]

Start from base tables: P1 := {R1}, . . . ,Pn := {Rn}.

Choose two join-able plans Pi ,Pj such that Cost(Pi Z Pj) is minimal.

Replace Pi ,Pj with a new plan Pk := Pi Z Pj . Repeat.

Stop when there is a single plan, with all relations.
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Iterative Refinement

Start from complete join plan P.

P

P’
≤ 𝑘

Find a subplan (subtree) P′ such that:
▶ |P′ | ≤ 100 (so we can run LinearizedDP).
▶ Cost(P′) is maximal.

Replace P′ with LinearizedDP(P′)

Replace P′ with one relation (so we don’t optimize it further). Repeat.

Stop after some fixed number of iterations.
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Summary of Large Joins from [Neumann and Radke, 2018]

Small query: DPccp.

Medium query: LinearizedDP. Need IKKBZ (next)

Large query: Greedy, then local LinearizedDP

Dan Suciu CSE599d: Advanced QP Winter 2026 27 / 36



HW1 Semi-Join Question Recap: Query Optimization via DP Large Joins IKKBZ Discussion

The IKKBZ Algorithm
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Overview of IKKBZ

Optimal left linear plan w/o cross products, time O(n2). Assumes ASI property.

ASI originates in the job scheduling literature [Monma and Sidney, 1979].

Adapted to query optimization [Ibaraki and Kameda, 1984].

Further refined [Krishnamurthy et al., 1986]: we follow this.

Called IKKBZ in [Neumann and Radke, 2018].
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Problem Setting

Input: acyclic query graph.

R1 joins with R2 and R3.
R1 does not join with R4 or R5.

R1

R2 R3

R4 R5

Goal: find optimal left linear plan w/o cross products

For each i, consider all topological orders of tree rooted at Ri

Root R1, e.g. left-linear plan: R1R3R5R2R4
Root R3, e.g. left-linear plan: R3R4R1R5R2

Z

Z

Z

Z

R1 R3

R5

R2

R4
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Assumptions on the Cost Function

Fix a root of the query, say R1. Set p(i) def
= parent(i).

Est(Rp(i ) Z Ri)
def
= 𝜃i · |Rp(i ) | · |Ri | Cost(R Z Ri)

def
= |R | · g( |Ri |)

Est(Zi=k,m Ri) =
∏

i=k,m 𝜃i |Ri |
Notice Est(Ri) = 𝜃i |Ri |.

Cost(Zi=k,m Ri) =∑
j=k+1,m

∏
i=k,j−1(𝜃i |Ri |) · g( |Rj |)

Est(S1S2) =Est(S1) · Est(S2)
Cost(S1S2) =Cost(S1) + Est(S1) · Cost(S2)

E.g. Cost(R4R5R6R7R8) = Cost(R4R5R6) + Est(R4R5R6) · Cost(R7R8)
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The ASI Property

Cost satisfies the Adjacent Sequence Interchange (ASI) property
if there exists a function Rank such that for all sequences A,B,U,V :

Rank(U) ≤ Rank(V ) iff Cost(AUVB) ≤ Cost(AVUB)
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The ASI Property for Query Optimization

Theorem Cost satisfies ASI with Rank(S) def
=
Est(S)−1
Cost(S)

Proof to check Cost(AUVB) ≤ Cost(AVUB) iff Rank(U) ≤ Rank(V )

Cost(AUVB) =Cost(A) + Est(A) · Cost(U) + Est(AU) · Cost(V ) + Est(AUV ) · Cost(B)
Cost(AVUB) =Cost(A) + Est(A) · Cost(V ) + Est(AV ) · Cost(U) + Est(AVU) · Cost(B)

Cost(AUVB) ≤Cost(AVUB)
iff Est(A) · Cost(U) + Est(AU) · Cost(V ) ≤Est(A) · Cost(V ) + Est(AV ) · Cost(U)

iff Cost(U) + Est(U) · Cost(V ) ≤Cost(V ) + Est(V ) · Cost(U)
iff Est(U) · Cost(V ) − Cost(V ) ≤Est(V ) · Cost(U) − Cost(U)

iff Rank(U) = Est(U) − 1
Cost(U) ≤Est(V ) − 1

Cost(V ) = Rank(V )
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HW1 Semi-Join Question Recap: Query Optimization via DP Large Joins IKKBZ Discussion

The IKKBZ Algorithm
Choose node R0 with two chain children.

By induction:
Rank(R1) ≤ Rank(R2) ≤ · · ·
Rank(R′

1) ≤ Rank(R′
2) ≤ · · ·

Merge the two chains to obtain:

Rank(R0)
??
≶Rank(R′′

1 ) ≤ Rank(R′′
2 ) ≤ · · ·

Cannot move R0. Instead create new relation:1
R0:i := R0R′′

1 · · ·R′′
i where

Rank(R0) > Rank(R′′
i ), Rank(R0) ≤ Rank(R′′

i+1).

Repeat, until entire tree becomes a single chain.

R0

R1

R2

.

.

.

R′
1

R′
2

.

.

.

R0

R′′
1

R′′
2

.

.

.

R′′
i

R′′
i+1

.

.

.

R0:i

R′′
i+1

R′′
i+1

.

.

.

1No future S can go between R0 and R′′
i why?. Either SR0:i or R0:iS.
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HW1 Semi-Join Question Recap: Query Optimization via DP Large Joins IKKBZ Discussion

Example: Adapted from [Krishnamurthy et al., 1986]
R35 |Ri | 𝜃i Cost(Ri ) = gi ( |Ri | ) Rank(Ri ) = Est(Ri )−1

Cost(Ri )
R1 100 1 300
R2 2000 0.5 9
R3 1000 0.1 9.9
R4 400 0.25 3
R5 100 0.1 30

R1

0.33

R2

111

R3

10

R4

33

R5

0.3

R0.33
1

R111
2 R10

3

R0.3
5

R33
4

R0.33
1

R111
2 R3.22

35

R33
4

R0.33
1

R3.22
35

R33
4

R111
2

Optimal plan so far: R1 Z R3 Z R5 Z R4 Z R2.
Next, repeat with root= R2, then root= R3, etc. Return the cheapest plan.
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HW1 Semi-Join Question Recap: Query Optimization via DP Large Joins IKKBZ Discussion

Discussion

Two specialized algorithms: Greedy and IKKBZ

IKKBZ finds optimal plan in polynomial time, but only under the ASI
assumption on Cost.

Can still use IKKBZ as a heuristics, setting Rank(S) = Est(S)−1
Cost(S) .
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