CSE599d: Advanced Query Processing

Lecture 4: Non-Reordable Operators

Dan Suciu

University of Washington

Non-Reordable Operators Identitie Conflict Detection Approach

CD(Final Dis
[Jelele] © 00 [¢]

Motivation

Dynamic Programming: query graph = optimal join tree.

Joins are “reordable” and any join tree is correct.

When operators are non-reordable: need to restrict to correct plans.

[Moerkotte and Neumann, 2008]
[Moerkotte et al., 2013]
[Birler and Neumann, 2025]

Dan Suciu CSE599d: Advanced QP Winter 2026 2/41

Non-Reordable Operators

[e] Je]e]

Non-Reordable Operators
Left semi join »

Left anti join »

Left outer join 3

Right outer join <

Full outer join <

Dan Suciu CSE599d: Advanced QP Winter 2026 3/41

Non-Reordable Operators
[e]e] le]

Query Definition

The Query Graph is insufficient to define the query.

CSE599d: Advanced QP Winter 2026 4/41

Non-Reordable Operators
[e]e] le]

Query Definition

The Query Graph is insufficient to define the query.

Ry(a,b) ———— Ry(b,c) ——— Rs(c,d)

CSE599d: Advanced QP Winter 2026 4/41

Non-Reordable Operators
00@0

Query Definition

The Query Graph is insufficient to define the query.

Ry(a,b) ———— Ry(b,c) ——— Rs(c,d)

It may represent any of these two inequivalent queries:

/\Rs(c ., . (é{\
/\ /\
Ri(a,b) Ra(b,c)

Rg(b,c) Hg(c, d)

Dan Suciu CSE599d: Advanced QP Winter 2026 4/41

Non-Reordable Operators
00@0

Query Definition

The Query Graph is insufficient to define the query.

Ry(a,b) ———— Ry(b,c) ——— Rs(c,d)

It may represent any of these two inequivalent queries:

/\Rs(c ., . (é{\
/\ /\
Ri(a,b) Ra(b,c)

Rg(b,c) Hg(c, d)

| @by (b.oh={)=0| | ((a,0)) 34 ({(b,©)} < {}) = {(a,b,null)}

Dan Suciu CSE599d: Advanced QP Winter 2026 4/41

Dan Suciu CSE599d: Advanced QP

Non-Reordable Operators Id

tion Approach
[e]e] le] [©] OC

CD(Final Discussion

Query Definition

The Query Graph is insufficient to define the query.

Ry(a,b) ———— Ry(b,c) ——— Rs(c,d)

It may represent any of these two inequivalent queries:

/\Rs(c ., . (é{\
/\ /\
Ri(a,b) Ra(b,c)

Rg(b, C) Hg(c, d)

[d@by=(bon=0=0] # [{@b)}({(b.0)={(})={(@bmi)}

The query must be given as an Initial Operator Tree.

Winter 2026 4741

Non-Reordable Operators

[e]e]e])

Notation for Operands

We use indices to indicate where the operands come from.

‘ (e 012 €2) 013 €3 ‘v.s. ‘ (€1 012 €2) 023 €3 ‘

Dan Suciu CSE599d: Advanced QP Winter 2026 5/41

Identities
000000000

Identities for Non-reordable Operators

Dan Suciu CSE599d: Advanced QP Winter 2026 6/41

Identities
0000000000

Query Equivalence

Two ways to prove an equivalence .

CSE599d: Advanced QP Winter 2026 7141

Identities
0000000000

Query Equivalence

Two ways to prove an equivalence .

@ Semantic.

» Useful for pen-and-paper proofs.
> Left- and right-linearity can simplify the proof (next slides).

Dan Suciu CSE599d: Advanced QP Winter 2026 7141

dable Operators Identities etec ; ; CD-(Final Discussion

O®00000000

Query Equivalence

Two ways to prove an equivalence .

@ Semantic.

» Useful for pen-and-paper proofs.
> Left- and right-linearity can simplify the proof (next slides).

o Using Identities.

> Establish a fix, small set of simple identities.
> Check that they are sound.

» Use them to derive Eq = Eo.

> Basis of query optimizers.

Dan Suciu CSE599d: Advanced QP Winter 2026 7141

Identities
[e]e] lelelelelele]e]

Left- and Right-Linearity

An operator o is left linear if | (Ri{UR2) oS =(R1oS)U(R20S) |

Dan Suciu CSE599d: Advanced QP Winter 2026 8/41

Non-Reordable Operators Identities Conflict Detection Approach

D- i Final Discussion
[e]e] lelelelelele]e] 00000« 00000000 0000000 o

Left- and Right-Linearity

An operator o is left linear if ‘ (Ri{UR2) oS =(R1oS)U(R20S) ‘

Left linear operators: b, 34, >, x (R{UR2)>S =(R1»S)U(R2>S)

Right linear operators: b4, <t

If Eq, E» are linear in R, then check E1 = E; by setting R := single tuple.

Dan Suciu CSE599d: Advanced QP Winter 2026 8/41

Identities
[e]e]e] lelelelele]e]

Example: Prove Ey = E»

Ro(a.b) 01 Ra(c.e)

/\ Ra(d.f) Ro(a,b) =13

Ri(blc.d) Ro(c.e) Ry(blc.d) Rs(d.f)

Question 1: what is the output schema?

Dan Suciu CSE599d: Advanced QP Winter 2026 9/41

Identities
[e]e]e] lelelelele]e]

Example: Prove Ey = E»

Ro(a.b) 01 Ra(c.e)

/\ e e -~

Ri(blc.d) Ro(c.e) Ry(blc.d) Rs(d.f)

Question 1: what is the output schema? Q(a,b,c,d,e)

Dan Suciu CSE599d: Advanced QP Winter 2026 9/41

Identities
[e]e]e] lelelelele]e]

Example: Prove Ey = E»

Ro(a.b) 01 Ra(c.e)

/\ e e -~

Ri(blc.d) Ro(c.e) Ry(blc.d) Rs(d.f)

Question 1: what is the output schema? Q(a,b,c,d,e)

Question 2: prove equivalence.

Dan Suciu CSE599d: Advanced QP Winter 2026 9/41

Identities
[e]e]e] lelelelele]e]

Example: Prove Ey = E»

Ro(a.b) 01 Ra(c.e)

/\ e e -~

Ri(blc.d) Ro(c.e) Ry(blc.d) Rs(d.f)

Question 1: what is the output schema? Q(a,b,c,d,e)

Question 2: prove equivalence. Linear in Rj.

Dan Suciu CSE599d: Advanced QP Winter 2026 9/41

Identities
[e]e]e] lelelelele]e]

Example: Prove Ey = E»

/Mm\ -
Ro(a, b) o1 Ra(c,e)
Ra(d,f) Ro(a, b) Sk
Ry (bmc e Ri(bc.d) Rsld.f)
Question 1: what is the output schema? Q(a,b,c,d,e)

Question 2: prove equivalence. Linear in Ry. Ry := {(b,c,d)}

Dan Suciu CSE599d: Advanced QP Winter 2026 9/41

Identities
[e]e]e] lelelelele]e]

Example: Prove Ey = E»

/Mm\ 5
Ro(a, b) 01 Ra(c,e)
Ra(d,f) Ro(a,b) <13
Ry (bmc e Ri(bc.d) Rsld.f)
Question 1: what is the output schema? Q(a,b,c,d,e)

Question 2: prove equivalence. Linear in Ry. Ry := {(b,c,d)}

If d ¢ R3 then both expressions are (.

Dan Suciu CSE599d: Advanced QP Winter 2026 9/41

Identities
[e]e]e] lelelelele]e]

Example: Prove Ey = E»

RO(/\ /\RZ(C .
/\Rs(d f) Ro (ab)/\
Ay <bmc o) 2 <bm¢ "
Question 1: what is the output schema? Q(a,b,c,d,e)

Question 2: prove equivalence. Linear in Ry. Ry := {(b,c,d)}

If d ¢ R3 then both expressions are (. If d € Rj then:
> >

Ro(a,b) 3] > Ra(c,e)
Ry(b,c,d) Ro(c,e) Ro(a,b) Ry (b,c,d)

Dan Suciu CSE599d: Advanced QP Winter 2026 9/41

[e]e]e]e] lele]elele)

rdable Operators Identities tion Approach ; ; CD-(Final Discussion

Identity Patterns

o-Commutativity: ‘ €1 012 82 = €5 012 €4 ‘
(02, oP)-Associativity: (e1 0%, e2) 03, €3 = €1 0F, (e o, €3)
(o2, oP)-Left-Asscom (l-asscom) (€1 0, €2) 011’3 e3 = (e4 011’3 e3) o5, 2

(o2, oP)-Right-Asscom (r-asscom) e1 0%, (e2 012’3 e3) = e ogs (€1 0%, €3)

Dan Suciu CSE599d: Advanced QP Winter 2026 10/41

Identities
[e]e]e]e]le] lelele]e]

o-Commutativity

o PR SRS
comm(o) | + |+ | -|-| - |+ | -

Table 1: The comm(o)-property

€1 01262 = €2°12 &4 \

[Moerkotte et al., 2013]

Dan Suciu CSE599d: Advanced QP Winter 2026 11/41

Reordable Operators Identities
[e]e]e]e]e]e] Jelele)

Assoc(o?, oP)

CD(Final Discussion

5
0% °
X X X > X X X
X + + | + + + - +
X + + | + + + - +
X - - - - - - -
> - - - - - - -
™ - - - - +1 - -
> _ 41| 42
M - - - - - - -

L if pas rejects nulls on A(e2) (Eqv. 1)
2 if p1o and pa3 reject nulls on A(ez) (Eqv. 1)

Table 2: The assoc(c?, o’)-property

(e1 03, €2) 03, €3 = €1 05, (€2 035 €3)

Prove in class:
(R(a,b) < S(b,c)) > T(c,d) = R(a,b) < (S(b,c) < T(c,d))
[Moerkotte et al., 2013]

Dan Suciu CSE599d: Advanced QP Winter 2026 12/41

Identities
0000000e00

Null Rejection

A predicate p is null rejecting for a set of attributes A if it evaluates to FALSE
or UNKNOWN when all attributes A are NULL.

Dan Suciu CSE599d: Advanced QP Winter 2026 13/41

Non-Reordable Operators Identities Conflict Detection Approach “D-A "D-B - Final Discussion

[e]e]e]e]e]ele] Jele)

Null Rejection

A predicate p is null rejecting for a set of attributes A if it evaluates to FALSE
or UNKNOWN when all attributes A are NULL.

‘ (1 212 €2) Ip3 €3 = €1 M2 (€2 23 €3) ‘

holds if pog rejects NULLs on A(ez).

Dan Suciu CSE599d: Advanced QP Winter 2026 13/41

on-Reordable Operators Identities Conflict Detection Approach ; "D-B - Final Discussion

[e]e]e]e]e]ele] Jele) [)OO

Null Rejection

A predicate p is null rejecting for a set of attributes A if it evaluates to FALSE
or UNKNOWN when all attributes A are NULL.

‘ (1 212 €2) Ip3 €3 = €1 M2 (€2 23 €3) ‘

holds if pog rejects NULLs on A(ez).

(R(a, b) >p=¢ S(c,d)) >4=e T(e,f) =R(a,b) Hp=c (5(¢,d) g=¢ T(e,1))

(R(a, b) MNp=c S(C, d)) Mcoalesce(d,0)=e T(e, f) *:ER(a’ b) Mp=c (S(C’ d) Mcoalesce(d,0)=e T(e’ f))

Dan Suciu CSE599d: Advanced QP Winter 2026 13/41

on-Reordable Operators Identities Conflict Detection Approach ; "D-B - Final Discussion

[e]e]e]e]e]ele] Jele) [)OO

Null Rejection

A predicate p is null rejecting for a set of attributes A if it evaluates to FALSE
or UNKNOWN when all attributes A are NULL.

‘ (1 212 €2) Ip3 €3 = €1 M2 (€2 23 €3) ‘

holds if pog rejects NULLs on A(ez).

(R(a, b) >p=¢ S(c,d)) >4=e T(e,f) =R(a,b) Hp=c (5(¢,d) g=¢ T(e,1))

(R(a, b) MNp=c S(C, d)) Mcoalesce(d,0)=e T(e, f) *:ER(a’ b) Mp=c (S(C’ d) Mcoalesce(d,0)=e T(e’ f))

SQL refresher: coalesce(NULL,7) =7, coalesce(5,7) = 5.

Dan Suciu CSE599d: Advanced QP Winter 2026 13/41

ordable Operators Identities Conflict Detection Approach "D- "D-B CD-(Final Dis

L/R-Asscom(o?, oP)
o X X X > X X X
X [+/+ | +/+ |+ +-1 +-1 - | +F-
T e I A I A A I S I
o Bl AN B A B A B O B CR B S
O Bl AR I A B A N I B e
S I O I S I A Y A I A I SN B
R S I S B A I s I A e IS
L I o7 e N o ol s o s i Y At Y b

L if p1 rejects nulls on A(e1) (Eqv. 2)

% if p13 rejects nulls on A(es) (Eqv. 2)

3 if p1 and py3 rejects nulls on A(e1) (Eqv. 2)

4 if p13 and pa3 reject nulls on A(es) (Eqv. 3)
Table 3: The I-/r-asscom(o%, o) property

(e1 0%, 2) 08, €3 = (€1 08, €3) 0%, €2

Dan Suciu CSE599d: Advanced QP Winter 2026 14741

dable Operators Identities tion Approach ; ; CD-(Final Discussio

[e]e]e]e]e]ele]e] o)

L/R-Asscom(o?, oP)
o X X X 4 pad X M
XV +/+ [+/+ |+ +-] -] - | +/-
N S I A I I Co Y E B &
< || | | | |
o B B I I N A I VA
S I O I S I A Y A I A I SN B
ol o B B B I e BV
Ll B VT N S A O B R

L if p1 rejects nulls on A(e1) (Eqv. 2)
% if p13 rejects nulls on A(es) (Eqv. 2)
3 if p1 and py3 rejects nulls on A(e1) (Eqv. 2)
4 if p13 and pa3 reject nulls on A(es) (Eqv. 3)

Table 3: The I-/r-asscom(o%, o) property

(e1 0%, 2) 08, €3 = (€1 08, €3) 0%, €2

Prove in class:
(R(a,b,c)> S(a,d)) >« T(b,e) = (R(a,b,c) = T(b,e)) = S(a,d)

[Moerkotte et al., 2013]
Winter 2026 14/41

Identities
000000000 e

Notation and Discussion

if, for any database D, E{(D) = Ex(D).

if £1 can be written to £z using COMM, ASSOC, L/R-ASSCOM

Dan Suciu CSE599d: Advanced QP Winter 2026 15/41

Non-Reordable Operators Identities Conflict Detection Approach

0O00000000e 00000«

Final Discussion

Notation and Discussion
if, for any database D, E{(D) = Ex(D).

if E; can be written to E» using COMM, ASSOC, L/R-ASSCOM

Soundness ‘ Ey=E ‘ = ‘ Ei=E ‘ easy to check.

Completeness |Ei = E>|<=|E =By Does it hold??

None of the papers asks the completeness question!

Dan Suciu CSE599d: Advanced QP Winter 2026 15/41

Conflict Detection Approach

[Jele]ele]ele]e)

Conflict Detection Approach

CSE599d: Advanced QP Winter 2026 16/41

dable Operators Identitie Conflict Detection Approach “D-A "D-B Final Discussion

[e] le]ele]ele]e)

Overview

@ The query is given by some initial operator tree E.

@ Consider some DP algorithm:
[Moerkotte et al., 2013] use DPsub
[Birler and Neumann, 2025] use DPccp

@ Add a conflict detector to prevent it from returning a plan E” # E.

Dan Suciu CSE599d: Advanced QP Winter 2026 17/41

Conflict Detection Approach CD-
[e]e] lele]ele]e) 00000000

Final Discussion

From DPsub to DPsube

Algorithm 1: DPsub

for0 C SCRdo
for0 ¢ S; € Sdo
82 =S - S1;
if Applicable(o, S, S>) then
(P1,c¢q) := PlanCost[S1]
(P>, co) := PlanCost[Ss]
€ :=Cq + Co + Cost(Pq = Po);
if ¢ < PlanCost[S1 U S»].cost then
| PlanCost[Sq U S2] := (Py & P2, c)

Need to design Applicable(o, Sy, So).

Dan Suciu CSE599d: Advanced QP Winter 2026 18/41

on-Reordable Operators Identit Conflict Detection Approach

Final Discussion
[e]e]e] le]elele) [¢]

Soundness and Completeness of Dynamic Programming

The function Applicable(o, S1, S») is sound if for any input E,
DPsub returns an optimized E’ s.t. E ~ E’.

The function Applicable(o, S1, S») is complete if, for any input E,
if E’ ~ E and E’ is optimal, then DPsub returns E’.

Soundness is necessary. Completeness is nice to have.

Dan Suciu CSE599d: Advanced QP Winter 2026 19/41

Non-Reordable Operators Iden

Conflict Detection Approach

Conflict Detection (CD)

Applicable(o, S1, S») is called a conflict detector, CD.

[Moerkotte et al., 2013] define 3 variants: CD-A, CD-B, CD-C.

[Birler and Neumann, 2025] define CD-E, a more efficient variant of CD-C.

Dan Suciu CSE599d: Advanced QP Winter 2026

i Final Dis
[e]e]e]e] Jelele) 00000000 0000000 o

cussion

20/41

able Operators I 2 Conflict Detection Approach "D-A "D CD-(Final Disct

[e]e]e]e]le] lele)

Assumptions

The input is given by:

2
. [e]
e Relations Ry, Ro, ..., R, 1/13\
. °12 34
o Initial operator tree E P P

Ry R Rs Ra

1

@ Operators o', ..., o1

2 —
° ﬂT(°1),---,ﬂT(On_1), ‘?{7(013) = {R1,R3}, etc.

Dan Suciu CSE599d: Advanced QP Winter 2026 21/41

Conflict Detection Approach

00000080

Syntactic Eligibility Set: SES

SES(op) € A7 (p)

(R »4 S) mR.as5.6=T.crk.a (T > K) requires R, S on the left, T, K on the right.
T S

Non-Reordable Operators Iden

Conflict Detection Approach “D-A > Final Discussion
00000080 00000000 0000000 o

Syntactic Eligibility Set: SES

SES(op) € A7 (p)

L-SES(0p) €' SES(op) N T (left(op))

R-SES(0p) £ SES(0p) N T (right(op))

where left(op), right(op) refer to the initial operator tree.

(R »4 S) mR.as5.6=T.crk.a (T > K) requires R, S on the left, T, K on the right.
T S

Non-Reordable Operators Identities Conflict Detection Approach °D-. "D-B - Final Discussion
0000000 00000080 00000000 0000000 00 o

Syntactic Eligibility Set: SES

SES(0p) = Ar(p)

L-SES(0p) €' SES(op) N T (left(op))

R-SES(0p) £ SES(0p) N T (right(op))

where left(op), right(op) refer to the initial operator tree.

In any CD, Applicable(o, Sy, So) must check:'

|L-SES(o) C Sy and R-SES(o) C Sy |

(R »4 S) mR.as5.6=T.crk.a (T > K) requires R, S on the left, T, K on the right.
T S

Conflict Detection Approach

[e]e]e]ele]ele])

Example of Using SES

Initial operator tree:

CSE599d: Advanced QP

Winter 2026

23/41

Conflict Detection Approach

Example of Using SES
Initial operator tree:
02
13
i 3
°12 34

SES OK?

Dan Suciu CSE599d: Advanced QP Winter 2026 23/41

Conflict Detection Approach

Example of Using SES
Initial operator tree:
02
13
i 3
°12 34

SES OK? YES

Dan Suciu CSE599d: Advanced QP Winter 2026 23/41

Conflict Detection Approach

Example of Using SES
Initial operator tree:
02
13
i 3
°12 34

3 2
34 °13
°13 Ra a4 R4
012/\,:{3 012/\,?3
PN PN
Ry Ry Ry Ro
SES OK? YES SES OK?

Dan Suciu CSE599d: Advanced QP Winter 2026 23/41

Conflict Detection Approach

[e]e]e]ele]ele])

Example of Using SES
Initial operator tree:
02
13
i 3
°12 34

3 2
34 °13
°13 Ra 34 R4
012/\,:{3 012/\,?3
N N
Ri R> Ry R
SES OK? YES SES OK? NO

Dan Suciu CSE599d: Advanced QP Winter 2026 23/41

CD-A
€0000000

CD-A

‘Winter 2026 24/41

CD-A
0®000000

Overview

Extend SES to a larger set: TES = Total Eligibility Set.

Applicable(o, Sy, Sz) checks:

|L-TES(o) C Sy and RTES(0) C S, |

Will define TES next, as used by CD-A.

Dan Suciu CSE599d: Advanced QP Winter 2026 25/41

CD-A
[e]e] Jelelelele}

TES

Start with| TES(o) := SES(o) | Then:

Dan Suciu CSE599d: Advanced QP Winter 2026 26/41

CD-A
[e]e] Jelelelele}

TES

Start with| TES(o) := SES(o) | Then:

ob

N

oé es

/\
e4 ez
Initial tree.

Dan Suciu CSE599d: Advanced QP Winter 2026 26/41

CD-A
[e]e] Jelelelele}

TES

Start with| TES(o) := SES(o) | Then:

ob
oa/\eg If —assoc (02, oP) then
~ TES(c?) U= 7 (ey)
e4 ez

Initial tree.

Dan Suciu CSE599d: Advanced QP Winter 2026 26/41

CD-A
[e]e] Jelelelele}

TES

Start with| TES(o) := SES(o) | Then:

ob oé
Oa/\eg assoc e1/\ob If ﬂaSSOC(Oa, Ob) then
=
N PN TES(Ob) U= 7 (e1)
ey €2 €2 €3
Initial tree. Conflict.

Dan Suciu CSE599d: Advanced QP Winter 2026 26/41

tion Approach CD-A (_ CD< Final Discussion

[e]e] le]ele]ele]

TES

Start with| TES(o) := SES(o) | Then:

ob oé
Oa/\eg assoc e1/\ob If ﬂaSSOC(Oa, Ob) then
=
P P TES(Ob) U= 7 (e1)
ey ez €> e3
Initial tree. Conflict.
ob o
a/\ l-asscom b/\ If —d—asscom(oa, Ob) then
o e = o e
’ 2 TES(o®) U= T (ey)
N N
e1 eo e1 es

Dan Suciu CSE599d: Advanced QP Winter 2026 26/41

CD-A
[e]e]e] Jelolele}

From the Paper [Moerkotte et al., 2013]

ob o
/ AN assqc VRN
0% e3 = e1 o?
/\ /\
e e ez €3

if massoc(o®,o®) then TES(o®) U= T (e1)
o
1-asscom VRN
8eg o e

/\

€1 €3
if ~l-asscom(o®,0”) then TES(o®) U= 7 (e2)

o® o
PN assag AN
es o® = ot ez
/ /\

e e es el

if massoc(o?, 0%) then TES(o®) U= 7 (e2)

0%

r-asscom
= el 70 o
/ \
€3 €2
if —r-asscom(o”, 0%) then TES(o®) U= 7 (e1)
Figure 5: Calculating TES for simple operator trees

CSE599d: Advanced QP Winter 2026 27141

CD-A
[e]e]e]e] Jolele}

CD-A Summary

Start by computing TES.

Dan Suciu CSE599d: Advanced QP Winter 2026 28/41

yrdable Operators Id tion Approach CD-A

[e]e]e]e] leele]

CD-A Summary

CD-A(o%)
> Input: operator o”

1 TES(ob) — CALCSEs(Ob)

2 for V o € STO(left(o”))
Start by computing TES. 3 if —assoc(o®, o®)
4 TES(0?) « TES(0®) U T (left(o®))
5 if —l-asscom(o®, o®)
6 TES(0?) « TES(0®) U T (right(0%))
7 for V o® € STO(right(o®))
8 if —assoc(o?, o%)
9 TES(0?) « TES(0®) U T (right(0%))
0 if —r-asscom(o®, 0®)
1 TES(o?) « TES(0®) U T (left(o®))

1
1

Dan Suciu CSE599d: Advanced QP Winter 2026 28/41

rdable Operators 1d tion Approach ~ CD-A . CD(Final Discussio

[e]e]e]e] leele]

CD-A Summary

CD-A(o?)
> Input: operator o”
1 TES(Ob) — CALCSEs(Ob)
2 for V o € STO(left(o”))
Start by computing TES. 3 if —assoc(o®, o®)
4 TES(0?) « TES(0®) U T (left(o®))
5 if —l-asscom(o®, o®)
STO = subtree operators 6 TES(o?) — TES(o%) U 7 (right(o®))
o? = any descendent of o? 7 for V o € STO(right(c?))
8 if —assoc(o?, 0%)
9 TES(0?) « TES(0®) U T (right(0%))
0 if —r-asscom(c®, 0®)
1 TES(o?) « TES(0®) U T (left(o®))

1
1

Dan Suciu CSE599d: Advanced QP Winter 2026 28/41

rdable Operators Identit

t Detection Approach CD-A
9 [e]e]e]e] Jolele}

CD-A Summary

Start by computing TES.

STO = subtree operators
o? = any descendent of o?

Finally:

CD-A(o%)
> Input: operator o®
1 TES(ob) — CALCSEs(Ob)
2 for V o € STO(left(o”))
3 if —assoc(o?, o?)
TES(0?) « TES(0®) U T (left(o®))
if —l-asscom(o®, o®)
TES(o%) « TES(o®) U 7 (right (o))
for V o € STO(right(o?))
if —assoc(o?, 0%)
TES(o%) « TES(o®) U 7 (right (o))
10 if —r-asscom(o®, 0®)
11 TES(0®) « TES(o”) U T (left(0))

© 00 O Ut

APPLICABLE4 (0, 51, 52)

> Input: binary operator o, set of tables Si, S2
1 return L-TES(c) C S1 AR-TES(0) C S5

Dan Suciu CSE599d: Advanced QP Winter 2026 28/41

CD-A
[e]e]e]ele] Jole}

Example

Initial operator tree:

™ Candidate plan:

X<
> R3 (C, d)
R (a, b) g
Ry (a, b) Rg(b, C)
Ra(b,c) Rs(c,d)
—assoc(, 2x)
-APPLICABLE

TES(><)U= {R1}

Dan Suciu CSE599d: Advanced QP Winter 2026 29/41

n-Reordable Operators Identiti CD-A "D-B CD- Final Discussion

00) 00000 00000000

Discussion

@ The paper claims that CD-A is “correct”, i.e. that it is sound.

@ The claim may be true, but the proof provided is bogus.

@ Another concern: can DPsub get stuck? Maybe the optimal plan for Sy is
such, for all Sp, =Applicable(S1, Sz, o). This is not discussed in either
[Moerkotte et al., 2013, Birler and Neumann, 2025].

@ The paper shows that CD-A is incomplete (next).

Dan Suciu CSE599d: Advanced QP Winter 2026 30/41

CD-A
[e]e]e]elelolel }

Incompleteness of CD-A

My 3 Xo,1
/ \ / \
Xo,2 No,2 Xo,2
/\ /N /\
Xo1 Ra Xo,1 N3 Ry M3

R/\R /NN R/\R

Ro R R Rs
initial plan Plan 1 Plan 2

Figure 6: Example for incompleteness of CD-A

Dan Suciu CSE599d: Advanced QP Winter 2026 31/41

CD-A
[e]e]e]elelolel }

Incompleteness of CD-A

My 3 Xo,1
/ \ / \
Xo,2 No,2 Xo,2
/\ /N /\
Xo1 Ra Xo,1 N3 Ry M3

R/\R /NN R/\R

Ro R R Rs
initial plan Plan 1 Plan 2

Figure 6: Example for incompleteness of CD-A

In class: prove | Initial-Plan = Plan-1 = Plan-2

Dan Suciu CSE599d: Advanced QP Winter 2026 31/41

ordable Operators Identitie Conflict I on Approach CD-A CD-B CD(Final Discussion

0000000e

Incompleteness of CD-A

My 3 Xo,1
/ \ / \
Xo,2 No,2 Xo,2
/\ /N /\
Xo1 Ra Xo,1 N3 Ry M3

R/\R /NN R/\R

Ro R R Rs
initial plan Plan 1 Plan 2

Figure 6: Example for incompleteness of CD-A

In class: prove | Initial-Plan = Plan-1 = Plan-2 |

—assoc(i<q,1, >p,3) implies Ry € TES(342,3): Plans 1&2 have conflicts.

Dan Suciu CSE599d: Advanced QP Winter 2026 31/41

CD-B

Winter 2026 32/41

CD-B
(o] Jelelelele}

Overview

Replace TES(o) = set of tables T, with CD(o) = set of rules Ty — T»

Dan Suciu CSE599d: Advanced QP Winter 2026 33/41

CD-B CD-(Final Discussion

0®@00000

Overview

Replace TES(o) = set of tables T, with CD(o) = set of rules Ty — T»

Applicable(o, Sy, S2) checks:

@ Check SES as before:
|L-SES(o) C S1, R-SES(0) C S|

@ Forall Ty — T, € CD(o), check:

‘IfT1ﬂS¢(Z)thenT2§S‘ where S = S1 U Ss.

Dan Suciu CSE599d: Advanced QP Winter 2026

33/41

CD-B
[e]e] Jelelele}

CD-B
ob o?
N assoc N If —|assoc(oa, Ob) then
o2 es = ey ob CR(b) T(es) — T(e1)
o =
P P + €2 €4
e1 eo > €3
ob ol
N l-asscom N If —d—asscom(oa, Ob) then
od e3 = ob eo TES(b) 7_() - 7_()
o =
N PN + e1 G2
e1 eo e1 es

Dan Suciu CSE599d: Advanced QP Winter 2026 34/41

CD-B
[e]e]e] Jolele}

From the Paper [Moerkotte et al., 2013]

o [}
VAN assqc S\
o% es e el o?
/\ / \
er e ez e3

if massoc(0?, 0”) then CR(o%) + = T(e2) — 7 (e1)

o
l-asscom VRN
b

€2

o
/ \
€1 €3
if —l-asscom(0?, o%) then CR(c®) + = T(e1) — T (e2)

o? o
RN assac /N
€3 o® = o? ez
/\ /\
e1 e e3 el

—assoc(o”,0%) then CR(c®) + = T (e1) — T (e2)
oa
r-asscom VRN
e o?

/ \

ez e2
if —r-asscom(o”, 0%) then CR(o®) + = T(e2) — T (e1)

CSE599d: Advanced QP Winter 2026 35/41

CD-B
0000800

CD-B Summary

Start by computing CD.

Dan Suciu CSE599d: Advanced QP Winter 2026 36/41

CD-B
0000800

CD-B Summary
CD-B(o%)
> Input: operator o®
1 TES(o®) « CALCsgps(c®)
. 2 for V o® € STO(left (o))

Start by computing CD. 3 if —assoc(o”, o)

4 CR(o®) + = T (right(o®)) — T (left(o))
5 if —l-asscom(o?, o")
6 CR(o®) + = T (left(c)) — T (right(o®))
7 for V o® € STO(right(c®))

8 if —assoc(o”, 0%)

9 CR(o®) + = T (left(o)) — T (right(o®))
10 if —r-asscom(o”, o)
11 CR(0®) + = T (right(o®)) — 7T (left(o))

Figure 8: Pseudocode for CD-B

Dan Suciu CSE599d: Advanced QP Winter 2026 36/41

CD-B
0000800

CD-B Summary
CD-B(o?)

> Input: operator o®

1 TES(o®) « CALCsgps(c®)
. 2 for V o® € STO(left(c”))
Start by computing CD. 3 if —assoc(o?, o°)
4 CR(c%) + = T (right(o®)) — T (left(o®))
5 if —l-asscom(o®,0")
6 CR(o®) + = T (left(c)) — T (right(o®))
7 for ¥ o® € STO(right(c?))
_ 8 if - (0%, 0%)
o? = any descendant of o2, 0 az;‘zf,b) 22 T (ef()) — T (right())
10 if —r-asscom(o”, o)
11 CR(0®) + = T (right(o®)) — 7T (left(o))

Figure 8: Pseudocode for CD-B

Dan Suciu CSE599d: Advanced QP Winter 2026 36/41

CD-B Summary

Start by computing CD.

o? = any descendant of o2,

Finally

Dan Suciu

ction Approach CD CD-B Final Di

[e]e]e]e] Jele)

CD-B(o%)
> Input: operator o®
TES(o®) «— CALCsps(0®)
for V o € STO(left(o”))
if —assoc(o?, 0”)
CR(c%) + = T (right(o®)) — T (left(o®))
if —l-asscom(o?, o)
CR(o®) + = T (left(c)) — T (right(o®))
for V o € STO(right (o))
if —assoc(o®,0%)
CR(o®) + = T (left(o)) — T (right(o®))
if —r-asscom(o?, 0%)

CR(0®) + = T (right(o®)) — 7T (left(o))

= O ©oo DU WN =

=

Figure 8: Pseudocode for CD-B

APPLICABLE ¢ (0, 51, S2)
> Input: binary operator o, set of tables Si,S2
if L-TES(0) C Sy AR-TES(0) C S
for all (T1 — T%) € CR(o)
if TiN(S1US:2) #0
if To Z (S1U82)
return FALSE
return TRUE
else
return FALSE

00 ~J O UL W N

Figure 9: Pseudocode for APPLICABLEg,¢

CSE599d: Advanced QP Winter 2026

36/41

CD-B Summary

Start by computing CD.

o? = any descendant of o2,

Finally

Warning:
here TES:=SES

Dan Suciu

ction Approach CD CD-B Final Di

[e]e]e]e] Jele)

CD-B(o%)
> Input: operator o®
TES(o®) «— CALCsps(0®)
for V o € STO(left(o”))
if —assoc(o?, 0”)
CR(c%) + = T (right(o®)) — T (left(o®))
if —l-asscom(o?, o)
CR(o®) + = T (left(c)) — T (right(o®))
for V o € STO(right (o))
if —assoc(o®,0%)
CR(o®) + = T (left(o)) — T (right(o®))
if —r-asscom(o?, 0%)

CR(0®) + = T (right(o®)) — 7T (left(o))

= O ©oo DU WN =

=

Figure 8: Pseudocode for CD-B

APPLICABLE ¢ (0, 51, S2)
> Input: binary operator o, set of tables Si, 52
if L-TES(0) C Sy AR-TES(0) C Sy
for all (T1 — T%) € CR(o)
if TiN(S1US2) #0
if To Z (S1U82)
return FALSE
return TRUE
else
return FALSE

00 ~J O UL W N

Figure 9: Pseudocode for APPLICABLEg,¢

CSE599d: Advanced QP Winter 2026

36/41

dable Operators on Approach "D-A CD-B Final Dis

Example
Ha3 Xo,1
/\ / N\
No,2 Mo, 2 Xo,2 Ry
/\ /N /\
Xo,1 Ry Xo,1 Ha,3 Ry Mo3

Y /NSNS

Ro R Ry Rs R Rs
initial plan Plan 1 Plan 2

Figure 6: Example for incompleteness of CD-A

—assoc(i<q,1, ™2, 3) implies CR(242 3) contains Ry — Ry

Both PLAN 1 and PLAN 2 are applicable.

Dan Suciu CSE599d: Advanced QP Winter 2026 37/41

ordable Operators Identitie o Conflict I on Approach CD-A » CD-B CD-(Final Dis

000000

Incompleteness of CD-B

initial plan valid plan prevented

Figure 10: Example for incompleteness of CD-B

—r-asscom(Mp1, <13) thus CR(»p1) contains R3 — R{Ro.

Dan Suciu CSE599d: Advanced QP Winter 2026 38/41

CD-C

‘Winter 2026 39/41

on-Reordable Operators Identi Conflict Detection Approach °D- °D-B CD-C Final Discussior

00000000 0000000 0@

cp-C

CD-C relaxes the rules of CD-B

But we wont discuss them.

Paper claims that CD-C is complete; no proof is offered.

[Birler and Neumann, 2025] shows that CD-C fails to be complete for “arbitrary
hypothetical operators”. But may still be complete for the “usual” operators.

Dan Suciu CSE599d: Advanced QP Winter 2026 40/41

Reordable Operators de etection Approach °D- ¥ CD-(Final Discussion

Discussion

@ Non-reordable operators are complicated!!!

e CD-A/CD-B/CD-C appear incapable of handling simple cyclic queries:

/\/\

T(A,0) R(A,B)

/\ /\

R(A,B) S(B,C) S(B,C) T(A,C)

Not permitted because SES(=') = {R, S, T}.
@ Soundness claims are credible, but proofs are bogus.
o Completeness proof of CD-C is missing.

@ Progress of DPsub is not discussed at all.

Dan Suciu CSE599d: Advanced QP Winter 2026 41/41

@ Birler, A. and Neumann, T. (2025).
Efficient enumeration of the complete join search space.

In Proceedings of the 19th International Symposium on Database Programming Languages, DBPL 2025, Berlin, Germany, June 22-27,
2025, pages 5:1-5:12. ACM.

@ Moerkotte, G., Fender, P., and Eich, M. (2013).

On the correct and complete enumeration of the core search space.
In Ross, K. A., Srivastava, D., and Papadias, D., editors, Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 493-504. ACM.

@ Moerkotte, G. and Neumann, T. (2008).
Dynamic programming strikes back.
In Wang, J. T., editor, Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver,
BC, Canada, June 10-12, 2008, pages 539-552. ACM.

9d: Advanced QP ‘Winter 2026 41/41

	Non-Reordable Operators
	Identities
	Conflict Detection Approach
	CD-A
	CD-B
	CD-C
	Final Discussion

