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Non-Reordable Operators Identitie Conflict Detection Approach

CD( Final Dis
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Motivation

Dynamic Programming: query graph = optimal join tree.

Joins are “reordable” and any join tree is correct.

When operators are non-reordable: need to restrict to correct plans.

[Moerkotte and Neumann, 2008]
[Moerkotte et al., 2013]
[Birler and Neumann, 2025]
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Non-Reordable Operators
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Non-Reordable Operators
Left semi join »

Left anti join »

Left outer join 3

Right outer join <

Full outer join <
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Non-Reordable Operators
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Query Definition

The Query Graph is insufficient to define the query.
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Non-Reordable Operators
[e]e] le]

Query Definition

The Query Graph is insufficient to define the query.

Ry(a,b) ———— Ry(b,c) ——— Rs(c,d)
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Non-Reordable Operators
00@0

Query Definition

The Query Graph is insufficient to define the query.

Ry(a,b) ———— Ry(b,c) ——— Rs(c,d)

It may represent any of these two inequivalent queries:

/\Rs(c ., . (é{\
/\ /\
Ri(a,b)  Ra(b,c)

Rg(b,c) Hg(c, d)
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Non-Reordable Operators
00@0

Query Definition

The Query Graph is insufficient to define the query.

Ry(a,b) ———— Ry(b,c) ——— Rs(c,d)

It may represent any of these two inequivalent queries:

/\Rs(c ., . (é{\
/\ /\
Ri(a,b)  Ra(b,c)

Rg(b,c) Hg(c, d)

| @by (b.oh={)=0| | ((a,0)) 34 ({(b,©)} < {}) = {(a,b,null)}
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Non-Reordable Operators Id

tion Approach
[e]e] le] [©] OC

CD( Final Discussion

Query Definition

The Query Graph is insufficient to define the query.

Ry(a,b) ———— Ry(b,c) ——— Rs(c,d)

It may represent any of these two inequivalent queries:

/\Rs(c ., . (é{\
/\ /\
Ri(a,b)  Ra(b,c)

Rg(b, C) Hg(c, d)

[d@by=(bon=0=0] # [{@b)}({(b.0)={(})={(@bmi)}

The query must be given as an Initial Operator Tree.
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Non-Reordable Operators

[e]e]e] )

Notation for Operands

We use indices to indicate where the operands come from.

‘ (e 012 €2) 013 €3 ‘v.s. ‘ (€1 012 €2) 023 €3 ‘
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Identities
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Identities for Non-reordable Operators
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Identities
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Query Equivalence

Two ways to prove an equivalence .
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Identities
0000000000

Query Equivalence

Two ways to prove an equivalence .

@ Semantic.

» Useful for pen-and-paper proofs.
> Left- and right-linearity can simplify the proof (next slides).

Dan Suciu CSE599d: Advanced QP Winter 2026 7141



dable Operators Identities etec ; ; CD-( Final Discussion

O®00000000

Query Equivalence

Two ways to prove an equivalence .

@ Semantic.

» Useful for pen-and-paper proofs.
> Left- and right-linearity can simplify the proof (next slides).

o Using Identities.

> Establish a fix, small set of simple identities.
> Check that they are sound.

» Use them to derive Eq = Eo.

> Basis of query optimizers.
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Left- and Right-Linearity

An operator o is left linear if | (Ri{UR2) oS =(R1oS)U(R20S) |
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Non-Reordable Operators Identities Conflict Detection Approach

D- i Final Discussion
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Left- and Right-Linearity

An operator o is left linear if ‘ (Ri{UR2) oS =(R1oS)U(R20S) ‘

Left linear operators: b, 34, >, x (R{UR2)>S =(R1»S)U(R2>S)

Right linear operators: b4, <t

If Eq, E» are linear in R, then check E1 = E; by setting R := single tuple.
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Example: Prove Ey = E»

Ro(a.b) 01 Ra(c.e)

/\ Ra(d.f) Ro(a,b) =13

Ri(blc.d)  Ro(c.e) Ry(blc.d)  Rs(d.f)

Question 1: what is the output schema?
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Example: Prove Ey = E»

Ro(a.b) 01 Ra(c.e)

/\ e e -~

Ri(blc.d)  Ro(c.e) Ry(blc.d)  Rs(d.f)

Question 1: what is the output schema? Q(a,b,c,d,e)
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Example: Prove Ey = E»

Ro(a.b) 01 Ra(c.e)

/\ e e -~

Ri(blc.d)  Ro(c.e) Ry(blc.d)  Rs(d.f)

Question 1: what is the output schema? Q(a,b,c,d,e)

Question 2: prove equivalence.
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Identities
[e]e]e] lelelelele]e]

Example: Prove Ey = E»

Ro(a.b) 01 Ra(c.e)

/\ e e -~

Ri(blc.d)  Ro(c.e) Ry(blc.d)  Rs(d.f)

Question 1: what is the output schema? Q(a,b,c,d,e)

Question 2: prove equivalence. Linear in Rj.
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Identities
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Example: Prove Ey = E»

/Mm\ -
Ro(a, b) o1 Ra(c,e)
Ra(d,f) Ro(a, b) Sk
Ry (bmc e Ri(bc.d)  Rsld.f)
Question 1: what is the output schema? Q(a,b,c,d,e)

Question 2: prove equivalence. Linear in Ry. Ry := {(b,c,d)}
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Identities
[e]e]e] lelelelele]e]

Example: Prove Ey = E»

/Mm\ 5
Ro(a, b) 01 Ra(c,e)
Ra(d,f) Ro(a,b) <13
Ry (bmc e Ri(bc.d)  Rsld.f)
Question 1: what is the output schema? Q(a,b,c,d,e)

Question 2: prove equivalence. Linear in Ry. Ry := {(b,c,d)}

If d ¢ R3 then both expressions are (.
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Example: Prove Ey = E»

RO(/\ /\RZ(C .
/\Rs(d f) Ro (ab)/\
Ay <bmc o) 2 <bm¢ "
Question 1: what is the output schema? Q(a,b,c,d,e)

Question 2: prove equivalence. Linear in Ry. Ry := {(b,c,d)}

If d ¢ R3 then both expressions are (. If d € Rj then:
> >

Ro(a,b) 3] > Ra(c,e)
Ry(b,c,d) Ro(c,e) Ro(a,b) Ry (b,c,d)
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rdable Operators Identities tion Approach ; ; CD-( Final Discussion

Identity Patterns

o-Commutativity: ‘ €1 012 82 = €5 012 €4 ‘
(02, oP)-Associativity: (e1 0%, e2) 03, €3 = €1 0F, (e o, €3)
(o2, oP)-Left-Asscom (l-asscom) (€1 0, €2) 011’3 e3 = (e4 011’3 e3) o5, 2

(o2, oP)-Right-Asscom (r-asscom) e1 0%, (e2 012’3 e3) = e ogs (€1 0%, €3)
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o-Commutativity

o PR SRS
comm(o) | + |+ | -|-| - |+ | -

Table 1: The comm(o)-property

€1 01262 = €2°12 &4 \

[Moerkotte et al., 2013]
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Reordable Operators Identities
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Assoc(o?, oP)

CD( Final Discussion

5
0% °
X X X > X X X
X + + | + + + - +
X + + | + + + - +
X - - - - - - -
> - - - - - - -
™ - - - - +1 - -
> _ 41| 42
M - - - - - - -

L if pas rejects nulls on A(e2) (Eqv. 1)
2 if p1o and pa3 reject nulls on A(ez) (Eqv. 1)

Table 2: The assoc(c?, o’)-property

(e1 03, €2) 03, €3 = €1 05, (€2 035 €3)

Prove in class:
(R(a,b) < S(b,c)) > T(c,d) = R(a,b) < (S(b,c) < T(c,d))
[Moerkotte et al., 2013]
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0000000e00

Null Rejection

A predicate p is null rejecting for a set of attributes A if it evaluates to FALSE
or UNKNOWN when all attributes A are NULL.
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Non-Reordable Operators Identities Conflict Detection Approach “D-A "D-B - Final Discussion

[e]e]e]e]e]ele] Jele)

Null Rejection

A predicate p is null rejecting for a set of attributes A if it evaluates to FALSE
or UNKNOWN when all attributes A are NULL.

‘ (1 212 €2) Ip3 €3 = €1 M2 (€2 23 €3) ‘

holds if pog rejects NULLs on A(ez).
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[e]e]e]e]e]ele] Jele) [ )OO

Null Rejection

A predicate p is null rejecting for a set of attributes A if it evaluates to FALSE
or UNKNOWN when all attributes A are NULL.

‘ (1 212 €2) Ip3 €3 = €1 M2 (€2 23 €3) ‘

holds if pog rejects NULLs on A(ez).

(R(a, b) >p=¢ S(c,d)) >4=e T(e,f) =R(a,b) Hp=c (5(¢,d) g=¢ T(e,1))

(R(a, b) MNp=c S(C, d)) Mcoalesce(d,0)=e T(e, f) *:ER(a’ b) Mp=c (S(C’ d) Mcoalesce(d,0)=e T(e’ f))
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[e]e]e]e]e]ele] Jele) [ )OO

Null Rejection

A predicate p is null rejecting for a set of attributes A if it evaluates to FALSE
or UNKNOWN when all attributes A are NULL.

‘ (1 212 €2) Ip3 €3 = €1 M2 (€2 23 €3) ‘

holds if pog rejects NULLs on A(ez).

(R(a, b) >p=¢ S(c,d)) >4=e T(e,f) =R(a,b) Hp=c (5(¢,d) g=¢ T(e,1))

(R(a, b) MNp=c S(C, d)) Mcoalesce(d,0)=e T(e, f) *:ER(a’ b) Mp=c (S(C’ d) Mcoalesce(d,0)=e T(e’ f))

SQL refresher: coalesce(NULL,7) =7, coalesce(5,7) = 5.
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L/R-Asscom(o?, oP)
o X X X > X X X
X [ +/+ | +/+ |+ +-1 +-1 - | +F-
T e I A I A A I S I
o Bl AN B A B A B O B CR B S
O Bl AR I A B A N I B e
S I O I S I A Y A I A I SN B
R S I S B A I s I A e IS
L I o7 e N o ol s o s i Y At Y b

L if p1 rejects nulls on A(e1) (Eqv. 2)

% if p13 rejects nulls on A(es) (Eqv. 2)

3 if p1 and py3 rejects nulls on A(e1) (Eqv. 2)

4 if p13 and pa3 reject nulls on A(es) (Eqv. 3)
Table 3: The I-/r-asscom(o%, o) property

(e1 0%, 2) 08, €3 = (€1 08, €3) 0%, €2
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dable Operators Identities tion Approach ; ; CD-( Final Discussio

[e]e]e]e]e]ele]e] o)

L/R-Asscom(o?, oP)
o X X X 4 pad X M
XV +/+ [ +/+ |+ +- ] -] - | +/-
N S I A I I Co Y E B &
< || | | | |
o B B I I N A I VA
S I O I S I A Y A I A I SN B
ol o B B B I e BV
Ll B VT N S A O B R

L if p1 rejects nulls on A(e1) (Eqv. 2)
% if p13 rejects nulls on A(es) (Eqv. 2)
3 if p1 and py3 rejects nulls on A(e1) (Eqv. 2)
4 if p13 and pa3 reject nulls on A(es) (Eqv. 3)

Table 3: The I-/r-asscom(o%, o) property

(e1 0%, 2) 08, €3 = (€1 08, €3) 0%, €2

Prove in class:
(R(a,b,c)> S(a,d)) >« T(b,e) = (R(a,b,c) = T(b,e)) = S(a,d)

[Moerkotte et al., 2013]
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000000000 e

Notation and Discussion

if, for any database D, E{(D) = Ex(D).

if £1 can be written to £z using COMM, ASSOC, L/R-ASSCOM
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Non-Reordable Operators Identities Conflict Detection Approach

0O00000000e 00000«

Final Discussion

Notation and Discussion
if, for any database D, E{(D) = Ex(D).

if E; can be written to E» using COMM, ASSOC, L/R-ASSCOM

Soundness ‘ Ey=E ‘ = ‘ Ei=E ‘ easy to check.

Completeness |Ei = E>|<=|E =By Does it hold??

None of the papers asks the completeness question!
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Conflict Detection Approach
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[e] le]ele]ele]e)

Overview

@ The query is given by some initial operator tree E.

@ Consider some DP algorithm:
[Moerkotte et al., 2013] use DPsub
[Birler and Neumann, 2025] use DPccp

@ Add a conflict detector to prevent it from returning a plan E” # E.
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Conflict Detection Approach CD-
[e]e] lele]ele]e) 00000000

Final Discussion

From DPsub to DPsube

Algorithm 1: DPsub

for0 C SCRdo
for0 ¢ S; € Sdo
82 =S - S1;
if Applicable(o, S, S>) then
(P1,c¢q) := PlanCost[S1]
(P>, co) := PlanCost[Ss]
€ :=Cq + Co + Cost(Pq = Po);
if ¢ < PlanCost[S1 U S»].cost then
| PlanCost[Sq U S2] := (Py & P2, c)

Need to design Applicable(o, Sy, So).
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on-Reordable Operators Identit Conflict Detection Approach

Final Discussion
[e]e]e] le]elele) [¢]

Soundness and Completeness of Dynamic Programming

The function Applicable(o, S1, S») is sound if for any input E,
DPsub returns an optimized E’ s.t. E ~ E’.

The function Applicable(o, S1, S») is complete if, for any input E,
if E’ ~ E and E’ is optimal, then DPsub returns E’.

Soundness is necessary. Completeness is nice to have.
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Non-Reordable Operators Iden

Conflict Detection Approach

Conflict Detection (CD)

Applicable(o, S1, S») is called a conflict detector, CD.

[Moerkotte et al., 2013] define 3 variants: CD-A, CD-B, CD-C.

[Birler and Neumann, 2025] define CD-E, a more efficient variant of CD-C.

Dan Suciu CSE599d: Advanced QP Winter 2026
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[e]e]e]e]le] lele)

Assumptions

The input is given by:

2
. [e]
e Relations Ry, Ro, ..., R, 1/13\
. °12 34
o Initial operator tree E P P

Ry R Rs Ra

1

@ Operators o', ..., o1

2 —
° ﬂT(°1),---,ﬂT(On_1), ‘?{7(013) = {R1,R3}, etc.
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Conflict Detection Approach

00000080

Syntactic Eligibility Set: SES

SES(op) € A7 (p)

(R »4 S) mR.as5.6=T.crk.a (T > K) requires R, S on the left, T, K on the right.
T S



Non-Reordable Operators Iden

Conflict Detection Approach “D-A > Final Discussion
00000080 00000000 0000000 o

Syntactic Eligibility Set: SES

SES(op) € A7 (p)

L-SES(0p) €' SES(op) N T (left(op))

R-SES(0p) £ SES(0p) N T (right(op))

where left(op), right(op) refer to the initial operator tree.

(R »4 S) mR.as5.6=T.crk.a (T > K) requires R, S on the left, T, K on the right.
T S



Non-Reordable Operators Identities Conflict Detection Approach °D-. "D-B - Final Discussion
0000000 00000080 00000000 0000000 00 o

Syntactic Eligibility Set: SES

SES(0p) = Ar(p)

L-SES(0p) €' SES(op) N T (left(op))

R-SES(0p) £ SES(0p) N T (right(op))

where left(op), right(op) refer to the initial operator tree.

In any CD, Applicable(o, Sy, So) must check:'

|L-SES(o) C Sy and R-SES(o) C Sy |

(R »4 S) mR.as5.6=T.crk.a (T > K) requires R, S on the left, T, K on the right.
T S
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Example of Using SES

Initial operator tree:

CSE599d: Advanced QP

Winter 2026
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Conflict Detection Approach

Example of Using SES
Initial operator tree:
02
13
i 3
°12 34

SES OK?
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Conflict Detection Approach

Example of Using SES
Initial operator tree:
02
13
i 3
°12 34

SES OK? YES
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Conflict Detection Approach

Example of Using SES
Initial operator tree:
02
13
i 3
°12 34

3 2
34 °13
°13 Ra a4 R4
012/\,:{3 012/\,?3
PN PN
Ry Ry Ry Ro
SES OK? YES SES OK?

Dan Suciu CSE599d: Advanced QP Winter 2026 23/41



Conflict Detection Approach

[e]e]e]ele]ele] )

Example of Using SES
Initial operator tree:
02
13
i 3
°12 34

3 2
34 °13
°13 Ra 34 R4
012/\,:{3 012/\,?3
N N
Ri R> Ry R
SES OK? YES SES OK? NO
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Overview

Extend SES to a larger set: TES = Total Eligibility Set.

Applicable(o, Sy, Sz) checks:

|L-TES(o) C Sy and RTES(0) C S, |

Will define TES next, as used by CD-A.
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TES

Start with| TES(o) := SES(o) | Then:

Dan Suciu CSE599d: Advanced QP Winter 2026 26/41



CD-A
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TES

Start with| TES(o) := SES(o) | Then:

ob

N

oé es

/\
e4 ez
Initial tree.

Dan Suciu CSE599d: Advanced QP Winter 2026 26/41



CD-A
[e]e] Jelelelele}

TES

Start with| TES(o) := SES(o) | Then:

ob
oa/\eg If —assoc (02, oP) then
~ TES(c?) U= 7 (ey)
e4 ez

Initial tree.

Dan Suciu CSE599d: Advanced QP Winter 2026 26/41



CD-A
[e]e] Jelelelele}

TES

Start with| TES(o) := SES(o) | Then:

ob oé
Oa/\eg assoc e1/\ob If ﬂaSSOC(Oa, Ob) then
=
N PN TES(Ob) U= 7 (e1)
ey €2 €2 €3
Initial tree. Conflict.

Dan Suciu CSE599d: Advanced QP Winter 2026 26/41
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[e]e] le]ele]ele]

TES

Start with| TES(o) := SES(o) | Then:

ob oé
Oa/\eg assoc e1/\ob If ﬂaSSOC(Oa, Ob) then
=
P P TES(Ob) U= 7 (e1)
ey ez €> e3
Initial tree. Conflict.
ob o
a/\ l-asscom b/\ If —d—asscom(oa, Ob) then
o e = o e
’ 2 TES(o®) U= T (ey)
N N
e1 eo e1 es

Dan Suciu CSE599d: Advanced QP Winter 2026 26/41
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From the Paper [Moerkotte et al., 2013]

ob o
/ AN assqc VRN
0% e3 = e1 o?
/\ /\
e e ez €3

if massoc(o®,o®) then TES(o®) U= T (e1)
o
1-asscom VRN
8eg o e

/\

€1 €3
if ~l-asscom(o®,0”) then TES(o®) U= 7 (e2)

o® o
PN assag AN
es o® = ot ez
/ /\

e e es el

if massoc(o?, 0%) then TES(o®) U= 7 (e2)

0%

r-asscom
= el 70 o
/ \
€3 €2
if —r-asscom(o”, 0%) then TES(o®) U= 7 (e1)
Figure 5: Calculating TES for simple operator trees
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CD-A Summary

Start by computing TES.

Dan Suciu CSE599d: Advanced QP Winter 2026 28/41
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[e]e]e]e] leele]

CD-A Summary

CD-A(o%)
> Input: operator o”

1 TES(ob) — CALCSEs(Ob)

2 for V o € STO(left(o”))
Start by computing TES. 3 if —assoc(o®, o®)
4 TES(0?) « TES(0®) U T (left(o®))
5 if —l-asscom(o®, o®)
6 TES(0?) « TES(0®) U T (right(0%))
7 for V o® € STO(right(o®))
8 if —assoc(o?, o%)
9 TES(0?) « TES(0®) U T (right(0%))
0 if —r-asscom(o®, 0®)
1 TES(o?) « TES(0®) U T (left(o®))

1
1

Dan Suciu CSE599d: Advanced QP Winter 2026 28/41
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[e]e]e]e] leele]

CD-A Summary

CD-A(o?)
> Input: operator o”
1 TES(Ob) — CALCSEs(Ob)
2 for V o € STO(left(o”))
Start by computing TES. 3 if —assoc(o®, o®)
4 TES(0?) « TES(0®) U T (left(o®))
5 if —l-asscom(o®, o®)
STO = subtree operators 6 TES(o?) — TES(o%) U 7 (right(o®))
o? = any descendent of o? 7 for V o € STO(right(c?))
8 if —assoc(o?, 0%)
9 TES(0?) « TES(0®) U T (right(0%))
0 if —r-asscom(c®, 0®)
1 TES(o?) « TES(0®) U T (left(o®))

1
1

Dan Suciu CSE599d: Advanced QP Winter 2026 28/41
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t Detection Approach CD-A
9 [e]e]e]e] Jolele}

CD-A Summary

Start by computing TES.

STO = subtree operators
o? = any descendent of o?

Finally:

CD-A(o%)
> Input: operator o®
1 TES(ob) — CALCSEs(Ob)
2 for V o € STO(left(o”))
3 if —assoc(o?, o?)
TES(0?) « TES(0®) U T (left(o®))
if —l-asscom(o®, o®)
TES(o%) « TES(o®) U 7 (right (o))
for V o € STO(right(o?))
if —assoc(o?, 0%)
TES(o%) « TES(o®) U 7 (right (o))
10 if —r-asscom(o®, 0®)
11 TES(0®) « TES(o”) U T (left(0))

© 00 O Ut

APPLICABLE4 (0, 51, 52)

> Input: binary operator o, set of tables Si, S2
1 return L-TES(c) C S1 AR-TES(0) C S5
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Example

Initial operator tree:

™ Candidate plan:

X<
> R3 (C, d)
R (a, b) g
Ry (a, b) Rg(b, C)
Ra(b,c) Rs(c,d)
—assoc(, 2x)
-APPLICABLE

TES(><)U= {R1}
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Discussion

@ The paper claims that CD-A is “correct”, i.e. that it is sound.

@ The claim may be true, but the proof provided is bogus.

@ Another concern: can DPsub get stuck? Maybe the optimal plan for Sy is
such, for all Sp, =Applicable(S1, Sz, o). This is not discussed in either
[Moerkotte et al., 2013, Birler and Neumann, 2025].

@ The paper shows that CD-A is incomplete (next).
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Incompleteness of CD-A

My 3 Xo,1
/ \ / \
Xo,2 No,2 Xo,2
/\ /N /\
Xo1  Ra Xo,1 N3 Ry M3

R/\R /NN R/\R

Ro R R Rs
initial plan Plan 1 Plan 2

Figure 6: Example for incompleteness of CD-A

Dan Suciu CSE599d: Advanced QP Winter 2026 31/41



CD-A
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Incompleteness of CD-A

My 3 Xo,1
/ \ / \
Xo,2 No,2 Xo,2
/\ /N /\
Xo1  Ra Xo,1 N3 Ry M3

R/\R /NN R/\R

Ro R R Rs
initial plan Plan 1 Plan 2

Figure 6: Example for incompleteness of CD-A

In class: prove | Initial-Plan = Plan-1 = Plan-2
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Incompleteness of CD-A

My 3 Xo,1
/ \ / \
Xo,2 No,2 Xo,2
/\ /N /\
Xo1  Ra Xo,1 N3 Ry M3

R/\R /NN R/\R

Ro R R Rs
initial plan Plan 1 Plan 2

Figure 6: Example for incompleteness of CD-A

In class: prove | Initial-Plan = Plan-1 = Plan-2 |

—assoc(i<q,1, >p,3) implies Ry € TES(342,3): Plans 1&2 have conflicts.
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Overview

Replace TES(o) = set of tables T, with CD(o) = set of rules Ty — T»
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Overview

Replace TES(o) = set of tables T, with CD(o) = set of rules Ty — T»

Applicable(o, Sy, S2) checks:

@ Check SES as before:
|L-SES(o) C S1, R-SES(0) C S|

@ Forall Ty — T, € CD(o), check:

‘IfT1ﬂS¢(Z)thenT2§S‘ where S = S1 U Ss.
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CD-B
ob o?
N assoc N If —|assoc(oa, Ob) then
o2 es = ey ob CR( b) T(es) — T(e1)
o =
P P + €2 €4
e1 eo > €3
ob ol
N l-asscom N If —d—asscom(oa, Ob) then
od e3 = ob eo TES( b) 7_( ) - 7_( )
o =
N PN + e1 G2
e1 eo e1 es
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From the Paper [Moerkotte et al., 2013]

o [}
VAN assqc S\
o% es e el o?
/\ / \
er e ez e3

if massoc(0?, 0”) then CR(o%) + = T(e2) — 7 (e1)

o
l-asscom VRN
b

€2

o
/ \
€1 €3
if —l-asscom(0?, o%) then CR(c®) + = T(e1) — T (e2)

o? o
RN assac /N
€3 o® = o? ez
/\ /\
e1 e e3 el

—assoc(o”,0%) then CR(c®) + = T (e1) — T (e2)
oa
r-asscom VRN
e o?

/ \

ez e2
if —r-asscom(o”, 0%) then CR(o®) + = T(e2) — T (e1)
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CD-B Summary

Start by computing CD.
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CD-B Summary
CD-B(o%)
> Input: operator o®
1 TES(o®) « CALCsgps(c®)
. 2 for V o® € STO(left (o))

Start by computing CD. 3 if —assoc(o”, o)

4 CR(o®) + = T (right(o®)) — T (left(o))
5 if —l-asscom(o?, o")
6 CR(o®) + = T (left(c)) — T (right(o®))
7 for V o® € STO(right(c®))

8 if —assoc(o”, 0%)

9 CR(o®) + = T (left(o)) — T (right(o®))
10 if —r-asscom(o”, o)
11 CR(0®) + = T (right(o®)) — 7T (left(o))

Figure 8: Pseudocode for CD-B
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CD-B Summary
CD-B(o?)

> Input: operator o®

1 TES(o®) « CALCsgps(c®)
. 2 for V o® € STO(left(c”))
Start by computing CD. 3 if —assoc(o?, o°)
4 CR(c%) + = T (right(o®)) — T (left(o®))
5 if —l-asscom(o®,0")
6 CR(o®) + = T (left(c)) — T (right(o®))
7 for ¥ o® € STO(right(c?))
_ 8 if - (0%, 0%)
o? = any descendant of o2, 0 az;‘zf,b) 22 T (ef()) — T (right())
10 if —r-asscom(o”, o)
11 CR(0®) + = T (right(o®)) — 7T (left(o))

Figure 8: Pseudocode for CD-B
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CD-B Summary

Start by computing CD.

o? = any descendant of o2,

Finally

Dan Suciu

ction Approach CD CD-B Final Di
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CD-B(o%)
> Input: operator o®
TES(o®) «— CALCsps(0®)
for V o € STO(left(o”))
if —assoc(o?, 0”)
CR(c%) + = T (right(o®)) — T (left(o®))
if —l-asscom(o?, o)
CR(o®) + = T (left(c)) — T (right(o®))
for V o € STO(right (o))
if —assoc(o®,0%)
CR(o®) + = T (left(o)) — T (right(o®))
if —r-asscom(o?, 0%)

CR(0®) + = T (right(o®)) — 7T (left(o))

= O ©oo DU WN =

=

Figure 8: Pseudocode for CD-B

APPLICABLE ¢ (0, 51, S2)
> Input: binary operator o, set of tables Si,S2
if L-TES(0) C Sy AR-TES(0) C S
for all (T1 — T%) € CR(o)
if TiN(S1US:2) #0
if To Z (S1U82)
return FALSE
return TRUE
else
return FALSE

00 ~J O UL W N

Figure 9: Pseudocode for APPLICABLEg,¢
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CD-B Summary

Start by computing CD.

o? = any descendant of o2,

Finally

Warning:
here TES:=SES

Dan Suciu

ction Approach CD CD-B Final Di
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CD-B(o%)
> Input: operator o®
TES(o®) «— CALCsps(0®)
for V o € STO(left(o”))
if —assoc(o?, 0”)
CR(c%) + = T (right(o®)) — T (left(o®))
if —l-asscom(o?, o)
CR(o®) + = T (left(c)) — T (right(o®))
for V o € STO(right (o))
if —assoc(o®,0%)
CR(o®) + = T (left(o)) — T (right(o®))
if —r-asscom(o?, 0%)

CR(0®) + = T (right(o®)) — 7T (left(o))

= O ©oo DU WN =

=

Figure 8: Pseudocode for CD-B

APPLICABLE ¢ (0, 51, S2)
> Input: binary operator o, set of tables Si, 52
if L-TES(0) C Sy AR-TES(0) C Sy
for all (T1 — T%) € CR(o)
if TiN(S1US2) #0
if To Z (S1U82)
return FALSE
return TRUE
else
return FALSE

00 ~J O UL W N

Figure 9: Pseudocode for APPLICABLEg,¢
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Example
Ha3 Xo,1
/\ / N\
No,2 Mo, 2 Xo,2 Ry
/\ /N /\
Xo,1 Ry Xo,1 Ha,3 Ry Mo3

Y /NSNS

Ro R Ry Rs R Rs
initial plan Plan 1 Plan 2

Figure 6: Example for incompleteness of CD-A

—assoc(i<q,1, ™2, 3) implies CR(242 3) contains Ry — Ry

Both PLAN 1 and PLAN 2 are applicable.
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000000

Incompleteness of CD-B

initial plan valid plan prevented

Figure 10: Example for incompleteness of CD-B

—r-asscom(Mp1, <13) thus CR(»p1) contains R3 — R{Ro.
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cp-C

CD-C relaxes the rules of CD-B

But we wont discuss them.

Paper claims that CD-C is complete; no proof is offered.

[Birler and Neumann, 2025] shows that CD-C fails to be complete for “arbitrary
hypothetical operators”. But may still be complete for the “usual” operators.
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Discussion

@ Non-reordable operators are complicated!!!

e CD-A/CD-B/CD-C appear incapable of handling simple cyclic queries:

/\/\

T(A,0) R(A,B)

/\ /\

R(A,B) S(B,C) S(B,C) T(A,C)

Not permitted because SES(=') = {R, S, T}.
@ Soundness claims are credible, but proofs are bogus.
o Completeness proof of CD-C is missing.

@ Progress of DPsub is not discussed at all.
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