
CSE599d: Advanced Query Processing

Lecture 3: Optimization by Dynamic Programming

Dan Suciu

University of Washington

Query Optimization Notations Counting Top Down DP Bottom Up DP

From SQL to Execution

Input: text of SQL query

Parse (⇒ AST), semantic analysis, etc, ⇒ Query Plan

Query Plan Optimization

Optional: code generation (LLVM or other)

Execute

Dan Suciu CSE599d: Advanced QP Winter 2026 2 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Query Plan Optimization

SQL is Declarative: specifies What, does not say How.

Many alternative execution plans are possible.

Goal of query optimizer: find the optimal plan.

In practice: avoid a catastrophic plan.

Dan Suciu CSE599d: Advanced QP Winter 2026 3 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Two Query Optimization Approaches

Dynamic Programming: this and the next few lectures

Extensible Query Optimization: will discuss Cascades later

Dan Suciu CSE599d: Advanced QP Winter 2026 4 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

References for Today

[Moerkotte and Neumann, 2006]

[Moerkotte et al., 2013]

[Neumann and Kemper, 2015]

[Neumann and Radke, 2018]

[Meister et al., 2018]

[Neumann, 2024]

[Neumann, 2025]

[Birler and Neumann, 2025]

Dan Suciu CSE599d: Advanced QP Winter 2026 5 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Notations

Dan Suciu CSE599d: Advanced QP Winter 2026 6 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Dynamic Programming

Convert the SQL query into a query graph G

Use dynamic programming to construct an optimal plan from G.

Complications: non-reordable operators (outer joins, anti joins), nested
subqueries, large join graphs. Will discuss in future lectures.

Dan Suciu CSE599d: Advanced QP Winter 2026 7 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Operators

𝜎p (R)

e1 × e2 cross product

e1 Zp e2 join

e1 Z e2 natural join

e1 ⋉p e2 semi-join

e1 ⊲p e2 anti-join

e1 Zp e2 left outer join

e1 Z p e2 right outer join

e1 Z p e2 right outer join

𝜒a:f (e) map function (apply f , call it a)

ΓA;a:f (e) group by/aggregate

e1 ⧑p e2 dependent join

Dan Suciu CSE599d: Advanced QP Winter 2026 8 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Notations: Attributes and Free Variables

A(e) = attributes produced by the expression e;

F (e) = free variables that occur in the expression e;

AT (e), FT (e) tables used by A(e), F (e).

Examples:
A(R(A,B) ZB=C S(C,D)) = {A,B,C,D}, A(ZB=C) = {B,C}

AT (ZB=C) = {R,S}

F (R(A,B) ZB=C S(C,D)) = ∅ F (ZB=C) = {B,C}

Dan Suciu CSE599d: Advanced QP Winter 2026 9 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Notations: Attributes and Free Variables

A(e) = attributes produced by the expression e;

F (e) = free variables that occur in the expression e;

AT (e), FT (e) tables used by A(e), F (e).

Examples:
A(R(A,B) ZB=C S(C,D)) = {A,B,C,D}, A(ZB=C) = {B,C}

AT (ZB=C) = {R,S}

F (R(A,B) ZB=C S(C,D)) = ∅ F (ZB=C) = {B,C}

Dan Suciu CSE599d: Advanced QP Winter 2026 9 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Dependend Join [Neumann, 2025]
e1 ⧑p e2 e2 may refer to attributes from e1: F (e2) ⊆ A(e1).

Dependent joins are bad: nested loops. Will discuss next week.

Dan Suciu CSE599d: Advanced QP Winter 2026 10 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Dependend Join [Neumann, 2025]
e1 ⧑p e2 e2 may refer to attributes from e1: F (e2) ⊆ A(e1).

Dependent joins are bad: nested loops. Will discuss next week.

Dan Suciu CSE599d: Advanced QP Winter 2026 10 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Dependend Join [Neumann, 2025]
e1 ⧑p e2 e2 may refer to attributes from e1: F (e2) ⊆ A(e1).

Dependent joins are bad: nested loops. Will discuss next week.
Dan Suciu CSE599d: Advanced QP Winter 2026 10 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Query Graph

Vertices = relations; Edges = represent join conditions

[Moerkotte and Neumann, 2006]

In class: discuss relationship to the query’s hypergraph

Dan Suciu CSE599d: Advanced QP Winter 2026 11 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Types of Query Plans

Z

Z

Z

R1 R2

R3

R4

Left deep

Z

Z

R1 R2

Z

R3 R4
Bushy

Z

R1 Z

R2 Z

R3 R4
Right deep

Dan Suciu CSE599d: Advanced QP Winter 2026 12 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Cross Products

Optimizers avoid query plans with cross product:

Has cross a product:
Z

Z

R(A,B) T (C,D)

S(B,C)

No cross product:
Z

Z

R(A,B) S(B,C)

T (C,D)

When can a cross product be beneficial?

When both tables are small

In that case, define the cross-product as a new table for the optimizer.

Dan Suciu CSE599d: Advanced QP Winter 2026 13 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Cross Products

Optimizers avoid query plans with cross product:

Has cross a product:
Z

Z

R(A,B) T (C,D)

S(B,C)

No cross product:
Z

Z

R(A,B) S(B,C)

T (C,D)

When can a cross product be beneficial? When both tables are small

In that case, define the cross-product as a new table for the optimizer.

Dan Suciu CSE599d: Advanced QP Winter 2026 13 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Cost of a Query Plan

We will assume to have a function Cost(P) = the cost of plan P.

Later we will look at specific cost functions which can lead to more efficient
algorithms.

Dan Suciu CSE599d: Advanced QP Winter 2026 14 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Counting Plans

Dan Suciu CSE599d: Advanced QP Winter 2026 15 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Counting Left Linear Plans: R1 Z R2 Z · · · Z Rn
How Many Left Linear Plans?

Z

Z

Z

R1 R2

R3

R4

Z

Z

Z

R4 R1

R3

R2

n!

How many are without cross products?
Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛
2n

Star query: R1(x2, . . . , xn) Z R2(x2) Z R3(x3) Z · · ·

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

2 · (n − 1)!

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Counting Left Linear Plans: R1 Z R2 Z · · · Z Rn
How Many Left Linear Plans?

Z

Z

Z

R1 R2

R3

R4

Z

Z

Z

R4 R1

R3

R2 n!

How many are without cross products?
Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛
2n

Star query: R1(x2, . . . , xn) Z R2(x2) Z R3(x3) Z · · ·

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

2 · (n − 1)!

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Counting Left Linear Plans: R1 Z R2 Z · · · Z Rn
How Many Left Linear Plans?

Z

Z

Z

R1 R2

R3

R4

Z

Z

Z

R4 R1

R3

R2 n!

How many are without cross products?
Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛

2n

Star query: R1(x2, . . . , xn) Z R2(x2) Z R3(x3) Z · · ·

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

2 · (n − 1)!

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Counting Left Linear Plans: R1 Z R2 Z · · · Z Rn
How Many Left Linear Plans?

Z

Z

Z

R1 R2

R3

R4

Z

Z

Z

R4 R1

R3

R2 n!

How many are without cross products?
Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛
2n

Star query: R1(x2, . . . , xn) Z R2(x2) Z R3(x3) Z · · ·

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

2 · (n − 1)!

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Counting Left Linear Plans: R1 Z R2 Z · · · Z Rn
How Many Left Linear Plans?

Z

Z

Z

R1 R2

R3

R4

Z

Z

Z

R4 R1

R3

R2 n!

How many are without cross products?
Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛
2n

Star query: R1(x2, . . . , xn) Z R2(x2) Z R3(x3) Z · · ·

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

2 · (n − 1)!

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Counting Left Linear Plans: R1 Z R2 Z · · · Z Rn
How Many Left Linear Plans?

Z

Z

Z

R1 R2

R3

R4

Z

Z

Z

R4 R1

R3

R2 n!

How many are without cross products?
Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛
2n

Star query: R1(x2, . . . , xn) Z R2(x2) Z R3(x3) Z · · ·

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

2 · (n − 1)!

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Counting Bushy Plans: R1 Z R2 Z · · · Z Rn

How many are without cross products?

Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛

Catalan Number:
Cn−1 = 1

n
(2(n−1)

n−1
)

((R1R2) (R3 (R4R5)))

(R1 ((R2R3) (R4R5)))

Star query:

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

Zig-zag plans, from R1:
2n−1(n − 1)!

How many are with cross products? Permutation plus parentheses
((R1R2) (R3 (R4R5)))

((R4R1) (R2 (R3R5)))

n! · Cn−1 =
(2(n−1))!
(n−1)!

Dan Suciu CSE599d: Advanced QP Winter 2026 17 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Counting Bushy Plans: R1 Z R2 Z · · · Z Rn

How many are without cross products?

Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛

Catalan Number:
Cn−1 = 1

n
(2(n−1)

n−1
)

((R1R2) (R3 (R4R5)))

(R1 ((R2R3) (R4R5)))

Star query:

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

Zig-zag plans, from R1:
2n−1(n − 1)!

How many are with cross products? Permutation plus parentheses
((R1R2) (R3 (R4R5)))

((R4R1) (R2 (R3R5)))

n! · Cn−1 =
(2(n−1))!
(n−1)!

Dan Suciu CSE599d: Advanced QP Winter 2026 17 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Counting Bushy Plans: R1 Z R2 Z · · · Z Rn

How many are without cross products?

Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛

Catalan Number:
Cn−1 = 1

n
(2(n−1)

n−1
)

((R1R2) (R3 (R4R5)))

(R1 ((R2R3) (R4R5)))

Star query:

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

Zig-zag plans, from R1:
2n−1(n − 1)!

How many are with cross products? Permutation plus parentheses
((R1R2) (R3 (R4R5)))

((R4R1) (R2 (R3R5)))

n! · Cn−1 =
(2(n−1))!
(n−1)!

Dan Suciu CSE599d: Advanced QP Winter 2026 17 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Counting Bushy Plans: R1 Z R2 Z · · · Z Rn

How many are without cross products?

Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛

Catalan Number:
Cn−1 = 1

n
(2(n−1)

n−1
)

((R1R2) (R3 (R4R5)))

(R1 ((R2R3) (R4R5)))

Star query:

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

Zig-zag plans, from R1:
2n−1(n − 1)!

How many are with cross products? Permutation plus parentheses
((R1R2) (R3 (R4R5)))

((R4R1) (R2 (R3R5)))

n! · Cn−1 =
(2(n−1))!
(n−1)!

Dan Suciu CSE599d: Advanced QP Winter 2026 17 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Counting Bushy Plans: R1 Z R2 Z · · · Z Rn

How many are without cross products?

Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛

Catalan Number:
Cn−1 = 1

n
(2(n−1)

n−1
)

((R1R2) (R3 (R4R5)))

(R1 ((R2R3) (R4R5)))

Star query:

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

Zig-zag plans, from R1:
2n−1(n − 1)!

How many are with cross products?

Permutation plus parentheses
((R1R2) (R3 (R4R5)))

((R4R1) (R2 (R3R5)))

n! · Cn−1 =
(2(n−1))!
(n−1)!

Dan Suciu CSE599d: Advanced QP Winter 2026 17 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Counting Bushy Plans: R1 Z R2 Z · · · Z Rn

How many are without cross products?

Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛

Catalan Number:
Cn−1 = 1

n
(2(n−1)

n−1
)

((R1R2) (R3 (R4R5)))

(R1 ((R2R3) (R4R5)))

Star query:

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

Zig-zag plans, from R1:
2n−1(n − 1)!

How many are with cross products? Permutation plus parentheses
((R1R2) (R3 (R4R5)))

((R4R1) (R2 (R3R5)))

n! · Cn−1 =
(2(n−1))!
(n−1)!

Dan Suciu CSE599d: Advanced QP Winter 2026 17 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Catalan Number

Cn = 1
n+1

(2n
n
)

of parenthesis on R0R1 · · ·Rn

C0 = 1, Cn =
∑n−1

k=1 CkCn−k−1 ((R0 · · ·Rk−1) · (Rk · · ·Rn))

Generating function f (x) = ∑
n≥0 Cnxn f (x) = 1 + xf2(x) f (x) = 1−

√
1−4x

2x .

Cn ≈ 4n

n3/2√𝜋

Dan Suciu CSE599d: Advanced QP Winter 2026 18 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Growth Rate W/ and W/O Cross Product

Left Linear Bushy
n w/ CP w/o CP w/ CP w/o CP

Chain Star Chain Star
n! 2n 2(n − 1)! n!Cn−1 Cn−1 2n−1 (n − 1)!

1 1 2 2 1 1 1
2 2 4 2 2 1 2
3 6 8 4 12 2 8
4 24 16 12 120 5 48
5 120 32 48 1680 14 384
6 720 64 240 30240 42 3840
7 5040 128 1440 665280 132 46080
8 40320 256 10080 17297280 429 645120
9 362880 512 80640 518918400 1430 10321920

10 3628800 1024 725760 17643225600 4862 185794560

It is important to avoid cross products!

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Top-down Dynamic Programming

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Two Types of Dyanmic Programming Query Optimizers

Top-down. Easiest to describe, finds a first plan quickly.

Bottom-up. More control of the search space.

Dan Suciu CSE599d: Advanced QP Winter 2026 21 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Top-Down Algorithm

Function OptimalPlanAndCost(S) R = {R1, . . . ,Rn}
if |S | = 1 then

(plan, cost) := (scan(Ri),Cost(scan(Ri))); ; // S = {Ri}
else

(plan, cost) := (null,∞);
for S1 : ∅ ⊊ S1 ⊊ S do

S2 := S − S1;
(P1, c1) := OptimalPlanAndCost(S1);
(P2, c2) := OptimalPlanAndCost(S2);
c := c1 + c2 + Cost(P1 Z P2);
if c < cost then (plan, cost) := (P1 Z P2, c);

return (plan, cost);

What is the runtime of the top-down algorithm?

Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Top-Down Algorithm

Function OptimalPlanAndCost(S) R = {R1, . . . ,Rn}
if |S | = 1 then

(plan, cost) := (scan(Ri),Cost(scan(Ri))); ; // S = {Ri}
else

(plan, cost) := (null,∞);
for S1 : ∅ ⊊ S1 ⊊ S do

S2 := S − S1;
(P1, c1) := OptimalPlanAndCost(S1);
(P2, c2) := OptimalPlanAndCost(S2);
c := c1 + c2 + Cost(P1 Z P2);
if c < cost then (plan, cost) := (P1 Z P2, c);

return (plan, cost);
What is the runtime of the top-down algorithm?

Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Top-Down Algorithm

What is the runtime of the top-down algorithm?

R1R2R3R4R5

(R1) (R2R3R4R5)

.

. . .

R1 Z ((R2 Z R3) Z (R4 Z R5))

(R2) (R1R3R4R5) . . .

.

. . .

R2 Z ((R1 Z R3) Z (R4 Z R5))

(R2R3R4R5) (R1)

. . .

Runtime ≈ number of leaves = n!Cn−1.

We can improve it using memoization.

Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Top-Down Algorithm

What is the runtime of the top-down algorithm?
R1R2R3R4R5

(R1) (R2R3R4R5)

.

. . .

R1 Z ((R2 Z R3) Z (R4 Z R5))

(R2) (R1R3R4R5) . . .

.

. . .

R2 Z ((R1 Z R3) Z (R4 Z R5))

(R2R3R4R5) (R1)

. . .

Runtime ≈ number of leaves = n!Cn−1.

We can improve it using memoization.

Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Top-Down Algorithm

What is the runtime of the top-down algorithm?
R1R2R3R4R5

(R1) (R2R3R4R5)

.

. . .

R1 Z ((R2 Z R3) Z (R4 Z R5))

(R2) (R1R3R4R5) . . .

.

. . .

R2 Z ((R1 Z R3) Z (R4 Z R5))

(R2R3R4R5) (R1)

. . .

Runtime ≈ number of leaves = n!Cn−1.

We can improve it using memoization.

Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Top-Down Algorithm with Memoization
Set PlanCost[S] := null for all ∅ ⊊ S ⊆ {R1, . . . ,Rn}.
Function OptimalPlanAndCost(S) R = {R1, . . . ,Rn}
if PlanCost[S] ≠ null then return PlanCost[S];
if |S | = 1 then

(plan, cost) := (scan(Ri),Cost(scan(Ri)));
else

(plan, cost) := (null,∞);
for S1 : ∅ ⊊ S1 ⊊ S do

S2 := S − S1;
(P1, c1) := OptimalPlanAndCost(S1);
(P2, c2) := OptimalPlanAndCost(S2);
c := c1 + c2 + Cost(P1 Z P2);
if c < cost then (plan, cost) := (P1 Z P2, c);

PlanCost[S] := (plan, cost)
return PlanCost[S];

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Top-Down Algorithm with Memoization

What is the runtime of the top-down algorithm with memoization?

Number of pairs of disjoint sets S1,S2 ⊆ {R1, . . . ,Rn} = 3n.

Dan Suciu CSE599d: Advanced QP Winter 2026 25 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Top-Down Algorithm with Memoization

What is the runtime of the top-down algorithm with memoization?

Number of pairs of disjoint sets S1,S2 ⊆ {R1, . . . ,Rn} = 3n.

Dan Suciu CSE599d: Advanced QP Winter 2026 25 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Bottom-up Dynamic Programming

Dan Suciu CSE599d: Advanced QP Winter 2026 26 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Bottom Up Algorithm: Dynamic Programming

[Selinger et al., 1979]: left linear plans, wont discuss.

[Ono and Lohman, 1990]: DPSize, O(4n).

[Vance and Maier, 1996]: DPSub, O(3n).

[Moerkotte and Neumann, 2006]: DPccp. Avoids cross products; runtime
depends on topology.

[Moerkotte and Neumann, 2008]: DPhyp. Extension to “hypergraphs”
(probably wont discuss).

[Moerkotte et al., 2013]: DPsube adds non-reordable operators.

Dan Suciu CSE599d: Advanced QP Winter 2026 27 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

DPSize [Ono and Lohman, 1990]

Set PlanCost[S] := (null,∞) for all ∅ ⊊ S ⊆ R := {R1, . . . ,Rn}.
Algorithm 1: DPSize
for s1 = 1, n − 1 do

for s2 = 1, n − s1 do
for S1 ⊆ R : |S1 | = s1 do

for S2 ⊆ R : |S2 | = s2 do
if S1 ∩ S2 ≠ ∅ then continue;
(P1, c1) := PlanCost[S1];
(P2, c2) := PlanCost[S2];
c := c1 + c2 + Cost(P1 Z P2);
if c < PlanCost[S1 ∪ S2] .cost then

PlanCost[S1 ∪ S2] := (P1 Z P2, c);

There are 2n − 2 sets S1 and 2n − 2 sets S2. Total runtime: O(4n).

Dan Suciu CSE599d: Advanced QP Winter 2026 28 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

DPSub [Vance and Maier, 1996]

Iterate only over pair of disjoint sets S1,S2:

Algorithm 2: DBSub
for ∅ ⊊ S ⊆ R do

for ∅ ⊊ S1 ⊊ S do
S2 := S − S1;
(P1, c1) := PlanCost[S1]
(P2, c2) := PlanCost[S2]
c := c1 + c2 + Cost(P1 Z P2);
if c < PlanCost[S1 ∪ S2] .cost then

PlanCost[S1 ∪ S2] := (P1 Z P2, c);

There are 3n pairs of disjoint subsets S1,S2 ⊆ R
and only 3n − 2n+1 if we restrict S1,S2 ≠ ∅.

Dan Suciu CSE599d: Advanced QP Winter 2026 29 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

DPccp [Moerkotte and Neumann, 2006]

Algorithm 3: DBccp
for S1 ⊆ R, S1 connected do

for S2 ⊆ S − S1, S2 connected and connected to S1 do
(P1, c1) := PlanCost[S1];
(P2, c2) := PlanCost[S2];
c := c1 + c2 + Cost(P1 Z P2);
if c < PlanCost[S1 ∪ S2] .cost then

PlanCost[S1 ∪ S2] := (P1 Z P2, c);

Problem: how do we enumerate efficiently the pairs (S1,S2).

Dan Suciu CSE599d: Advanced QP Winter 2026 30 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Enumerating the Pairs S1,S2

EnumerateCsg: enumerates all connected subgraphs S1.

For each S1: EnumerateCmp: enumerates the “complement” S2:
S2 ⊆ V − S1, S2 is connected, and is connected to S1.

Dan Suciu CSE599d: Advanced QP Winter 2026 31 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

EnumerateCsg
[Moerkotte and Neumann, 2006]

(details on next slide)
Dan Suciu CSE599d: Advanced QP Winter 2026 32 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

EnumerateCsg
Algorithm 4: EnumerateCsg
Input: Connected graph G = (V ,E); arbitrary order on V : v0, v1, . . . , vn−1
Output: Enumerates Connected Subgraphs, in time O(csg); subsets first
for i = n − 1, n − 2, . . . , 1, 0 do

emit({vi});
EnumerageCsgRec(G, {vi}, {v0, . . . , vi});
; // Include vi, exclude vj , j ≤ i

Function EnumerageCsgRec(G,S,X)
Output: Enumerate connected subgraphs ⊇ S, disjoint from X
N := N(S) − X ; ; // N(S) = neighbors of S
for S′ ⊆ N,S′ ≠ ∅, subsets first do

emit(S ∪ S′);
EnumerageCsgRec(G, (S ∪ S′), (X ∪ N));

Which set is emitted first: {v4, v5} or {v5, v6}?

Dan Suciu CSE599d: Advanced QP Winter 2026 33 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

EnumerateCsg
Algorithm 5: EnumerateCsg
Input: Connected graph G = (V ,E); arbitrary order on V : v0, v1, . . . , vn−1
Output: Enumerates Connected Subgraphs, in time O(csg); subsets first
for i = n − 1, n − 2, . . . , 1, 0 do

emit({vi});
EnumerageCsgRec(G, {vi}, {v0, . . . , vi});
; // Include vi, exclude vj , j ≤ i

Function EnumerageCsgRec(G,S,X)
Output: Enumerate connected subgraphs ⊇ S, disjoint from X
N := N(S) − X ; ; // N(S) = neighbors of S
for S′ ⊆ N,S′ ≠ ∅, subsets first do

emit(S ∪ S′);
EnumerageCsgRec(G, (S ∪ S′), (X ∪ N));

Which set is emitted first: {v4, v5} or {v5, v6}?
Dan Suciu CSE599d: Advanced QP Winter 2026 33 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

EnumerateCmp

Original algorithm had a bug. Errata in [Meister et al., 2018]:

(details on next slide)

Dan Suciu CSE599d: Advanced QP Winter 2026 34 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

EnumerateCmp

Algorithm 6: EnumerateCmp
Input: Connected graph G = (V ,E), connected subset S1.
Output: Enumerate all connected subsets S2 ⊆ V − S1, connected to S1.
k := min{j | vj ∈ S1};
X := {v0, . . . , vk};
N := N(S1) − X ;
for vi ∈ N, by descending i do

emit({vi});
EnumerateCsgRec(G, {vi},X ∪ {vj ∈ N | j ≤ i});

Dan Suciu CSE599d: Advanced QP Winter 2026 35 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Discussion

DPsize, DPsub, DPccp.

It is important to enumerate only the connected component pairs. Tricky!

Enumerating efficiently S ⊆ {v0, v1, . . . , vn−1}:
▶ Use counter k = 0, 2n − 1;
▶ Convert k to a set using binary representation;
▶ O(1) per set generation.[Vance and Maier, 1996]

So far the algorithm handles only joins.

Next lecture: handling non-reordable operators (outer, semi, anti joins).

Dan Suciu CSE599d: Advanced QP Winter 2026 36 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

Birler, A. and Neumann, T. (2025).
Efficient enumeration of the complete join search space.
In Proceedings of the 19th International Symposium on Database Programming Languages, DBPL 2025, Berlin, Germany, June 22-27,
2025, pages 5:1–5:12. ACM.

Meister, A., Moerkotte, G., and Saake, G. (2018).
Errata for ”analysis of two existing and one new dynamic programming algorithm for the generation of optimal bushy join trees without
cross products”.
Proc. VLDB Endow., 11(10):1069–1070.

Moerkotte, G., Fender, P., and Eich, M. (2013).
On the correct and complete enumeration of the core search space.
In Ross, K. A., Srivastava, D., and Papadias, D., editors, Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 493–504. ACM.

Moerkotte, G. and Neumann, T. (2006).
Analysis of two existing and one new dynamic programming algorithm for the generation of optimal bushy join trees without cross
products.
In Dayal, U., Whang, K., Lomet, D. B., Alonso, G., Lohman, G. M., Kersten, M. L., Cha, S. K., and Kim, Y., editors, Proceedings of the
32nd International Conference on Very Large Data Bases, Seoul, Korea, September 12-15, 2006, pages 930–941. ACM.

Moerkotte, G. and Neumann, T. (2008).
Dynamic programming strikes back.
In Wang, J. T., editor, Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver,
BC, Canada, June 10-12, 2008, pages 539–552. ACM.

Neumann, T. (2024).
A formalization of top-down unnesting.
CoRR, abs/2412.04294.

Neumann, T. (2025).
Improving unnesting of complex queries.

Dan Suciu CSE599d: Advanced QP Winter 2026 36 / 36

Query Optimization Notations Counting Top Down DP Bottom Up DP

In Klettke, M., Schenkel, R., Henrich, A., Nicklas, D., Schüle, M. E., and Meyer-Wegener, K., editors, Datenbanksysteme für Business,
Technologie und Web (BTW 2025), 21. Fachtagung des GI-Fachbereichs ”Datenbanken und Informationssysteme” (DBIS), 03.-07, März
2025, Bamberg, Germany, Proceedings, volume P-361 of LNI, pages 25–47. Gesellschaft für Informatik e.V.

Neumann, T. and Kemper, A. (2015).
Unnesting arbitrary queries.
In Seidl, T., Ritter, N., Schöning, H., Sattler, K., Härder, T., Friedrich, S., and Wingerath, W., editors, Datenbanksysteme für Business,
Technologie und Web (BTW), 16. Fachtagung des GI-Fachbereichs ”Datenbanken und Informationssysteme” (DBIS), 4.-6.3.2015 in
Hamburg, Germany. Proceedings, volume P-241 of LNI, pages 383–402. GI.

Neumann, T. and Radke, B. (2018).
Adaptive optimization of very large join queries.
In Das, G., Jermaine, C. M., and Bernstein, P. A., editors, Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 677–692. ACM.

Ono, K. and Lohman, G. M. (1990).
Measuring the complexity of join enumeration in query optimization.
In McLeod, D., Sacks-Davis, R., and Schek, H., editors, 16th International Conference on Very Large Data Bases, August 13-16, 1990,
Brisbane, Queensland, Australia, Proceedings, pages 314–325. Morgan Kaufmann.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price, T. G. (1979).
Access path selection in a relational database management system.
In Bernstein, P. A., editor, Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data, Boston,
Massachusetts, USA, May 30 - June 1, pages 23–34. ACM.

Vance, B. and Maier, D. (1996).
Rapid bushy join-order optimization with cartesian products.
In Jagadish, H. V. and Mumick, I. S., editors, Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data,
Montreal, Quebec, Canada, June 4-6, 1996, pages 35–46. ACM Press.

Dan Suciu CSE599d: Advanced QP Winter 2026 36 / 36

	Query Optimization
	Notations
	Counting
	Top Down DP
	Bottom Up DP

