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Query Optimization Notations Counting Top Down DP Bottom Up DP

From SQL to Execution

Input: text of SQL query

Parse (⇒ AST), semantic analysis, etc, ⇒ Query Plan

Query Plan Optimization

Optional: code generation (LLVM or other)

Execute
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Query Plan Optimization

SQL is Declarative: specifies What, does not say How.

Many alternative execution plans are possible.

Goal of query optimizer: find the optimal plan.

In practice: avoid a catastrophic plan.
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Two Query Optimization Approaches

Dynamic Programming: this and the next few lectures

Extensible Query Optimization: will discuss Cascades later
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References for Today

[Moerkotte and Neumann, 2006]

[Moerkotte et al., 2013]

[Neumann and Kemper, 2015]

[Neumann and Radke, 2018]

[Meister et al., 2018]

[Neumann, 2024]

[Neumann, 2025]

[Birler and Neumann, 2025]
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Notations
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Dynamic Programming

Convert the SQL query into a query graph G

Use dynamic programming to construct an optimal plan from G.

Complications: non-reordable operators (outer joins, anti joins), nested
subqueries, large join graphs. Will discuss in future lectures.
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Operators

𝜎p (R)

e1 × e2 cross product

e1 Zp e2 join

e1 Z e2 natural join

e1 ⋉p e2 semi-join

e1 ⊲p e2 anti-join

e1 Zp e2 left outer join

e1 Z p e2 right outer join

e1 Z p e2 right outer join

𝜒a:f (e) map function (apply f , call it a)

ΓA;a:f (e) group by/aggregate

e1 ⧑p e2 dependent join
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Notations: Attributes and Free Variables

A(e) = attributes produced by the expression e;

F (e) = free variables that occur in the expression e;

AT (e), FT (e) tables used by A(e), F (e).

Examples:
A(R(A,B) ZB=C S(C,D)) = {A,B,C,D}, A(ZB=C) = {B,C}

AT (ZB=C) = {R,S}

F (R(A,B) ZB=C S(C,D)) = ∅ F (ZB=C) = {B,C}
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Dependend Join [Neumann, 2025]
e1 ⧑p e2 e2 may refer to attributes from e1: F (e2) ⊆ A(e1).

Dependent joins are bad: nested loops. Will discuss next week.

Dan Suciu CSE599d: Advanced QP Winter 2026 10 / 36



Query Optimization Notations Counting Top Down DP Bottom Up DP

Dependend Join [Neumann, 2025]
e1 ⧑p e2 e2 may refer to attributes from e1: F (e2) ⊆ A(e1).

Dependent joins are bad: nested loops. Will discuss next week.

Dan Suciu CSE599d: Advanced QP Winter 2026 10 / 36



Query Optimization Notations Counting Top Down DP Bottom Up DP

Dependend Join [Neumann, 2025]
e1 ⧑p e2 e2 may refer to attributes from e1: F (e2) ⊆ A(e1).

Dependent joins are bad: nested loops. Will discuss next week.
Dan Suciu CSE599d: Advanced QP Winter 2026 10 / 36



Query Optimization Notations Counting Top Down DP Bottom Up DP

Query Graph

Vertices = relations; Edges = represent join conditions

[Moerkotte and Neumann, 2006]

In class: discuss relationship to the query’s hypergraph
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Types of Query Plans

Z

Z

Z

R1 R2

R3

R4

Left deep

Z

Z

R1 R2

Z

R3 R4
Bushy

Z

R1 Z

R2 Z

R3 R4
Right deep
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Cross Products

Optimizers avoid query plans with cross product:

Has cross a product:
Z

Z

R(A,B) T (C,D)

S(B,C)

No cross product:
Z

Z

R(A,B) S(B,C)

T (C,D)

When can a cross product be beneficial?

When both tables are small

In that case, define the cross-product as a new table for the optimizer.
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Cost of a Query Plan

We will assume to have a function Cost(P) = the cost of plan P.

Later we will look at specific cost functions which can lead to more efficient
algorithms.
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Counting Plans
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Counting Left Linear Plans: R1 Z R2 Z · · · Z Rn
How Many Left Linear Plans?

Z

Z

Z

R1 R2

R3

R4

Z

Z

Z

R4 R1

R3

R2

n!

How many are without cross products?
Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛
2n

Star query: R1(x2, . . . , xn) Z R2(x2) Z R3(x3) Z · · ·

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

2 · (n − 1)!
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Counting Bushy Plans: R1 Z R2 Z · · · Z Rn

How many are without cross products?

Chain query: R1(x0, x1) Z R2(x1, x2) Z · · ·

𝑅1 𝑅2 𝑅3 ⋯ 𝑅𝑛

Catalan Number:
Cn−1 = 1

n
(2(n−1)

n−1
)

( (R1R2 ) (R3 (R4R5 ) ) )

(R1 ( (R2R3 ) (R4R5 ) ) )

Star query:

𝑅1

𝑅2

𝑅3

⋯

𝑅𝑛

𝑅4

𝑅5

Zig-zag plans, from R1:
2n−1(n − 1)!

How many are with cross products? Permutation plus parentheses
( (R1R2 ) (R3 (R4R5 ) ) )

( (R4R1 ) (R2 (R3R5 ) ) )

n! · Cn−1 =
(2(n−1) )!
(n−1)!
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Catalan Number

Cn = 1
n+1

(2n
n
)

# of parenthesis on R0R1 · · ·Rn

C0 = 1, Cn =
∑n−1

k=1 CkCn−k−1 ((R0 · · ·Rk−1) · (Rk · · ·Rn))

Generating function f (x) = ∑
n≥0 Cnxn f (x) = 1 + xf2(x) f (x) = 1−

√
1−4x

2x .

Cn ≈ 4n

n3/2√𝜋
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Growth Rate W/ and W/O Cross Product

Left Linear Bushy
n w/ CP w/o CP w/ CP w/o CP

Chain Star Chain Star
n! 2n 2(n − 1)! n!Cn−1 Cn−1 2n−1 (n − 1)!

1 1 2 2 1 1 1
2 2 4 2 2 1 2
3 6 8 4 12 2 8
4 24 16 12 120 5 48
5 120 32 48 1680 14 384
6 720 64 240 30240 42 3840
7 5040 128 1440 665280 132 46080
8 40320 256 10080 17297280 429 645120
9 362880 512 80640 518918400 1430 10321920

10 3628800 1024 725760 17643225600 4862 185794560

It is important to avoid cross products!
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Top-down Dynamic Programming
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Two Types of Dyanmic Programming Query Optimizers

Top-down. Easiest to describe, finds a first plan quickly.

Bottom-up. More control of the search space.
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Top-Down Algorithm

Function OptimalPlanAndCost(S) R = {R1, . . . ,Rn}
if |S | = 1 then

(plan, cost) := (scan(Ri),Cost(scan(Ri))); ; // S = {Ri}
else

(plan, cost) := (null,∞);
for S1 : ∅ ⊊ S1 ⊊ S do

S2 := S − S1;
(P1, c1) := OptimalPlanAndCost(S1);
(P2, c2) := OptimalPlanAndCost(S2);
c := c1 + c2 + Cost(P1 Z P2);
if c < cost then (plan, cost) := (P1 Z P2, c);

return (plan, cost);

What is the runtime of the top-down algorithm?
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Top-Down Algorithm

What is the runtime of the top-down algorithm?

R1R2R3R4R5

(R1 ) (R2R3R4R5 )

. . . . . .

. . .

R1 Z ( (R2 Z R3 ) Z (R4 Z R5 ) )

(R2 ) (R1R3R4R5 ) . . .

. . . . . .

. . .

R2 Z ( (R1 Z R3 ) Z (R4 Z R5 ) )

(R2R3R4R5 ) (R1 )

. . .

Runtime ≈ number of leaves = n!Cn−1.

We can improve it using memoization.
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Top-Down Algorithm with Memoization
Set PlanCost[S] := null for all ∅ ⊊ S ⊆ {R1, . . . ,Rn}.
Function OptimalPlanAndCost(S) R = {R1, . . . ,Rn}
if PlanCost[S] ≠ null then return PlanCost[S];
if |S | = 1 then

(plan, cost) := (scan(Ri),Cost(scan(Ri)));
else

(plan, cost) := (null,∞);
for S1 : ∅ ⊊ S1 ⊊ S do

S2 := S − S1;
(P1, c1) := OptimalPlanAndCost(S1);
(P2, c2) := OptimalPlanAndCost(S2);
c := c1 + c2 + Cost(P1 Z P2);
if c < cost then (plan, cost) := (P1 Z P2, c);

PlanCost[S] := (plan, cost)
return PlanCost[S];
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Top-Down Algorithm with Memoization

What is the runtime of the top-down algorithm with memoization?

Number of pairs of disjoint sets S1,S2 ⊆ {R1, . . . ,Rn} = 3n.
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Bottom-up Dynamic Programming
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Bottom Up Algorithm: Dynamic Programming

[Selinger et al., 1979]: left linear plans, wont discuss.

[Ono and Lohman, 1990]: DPSize, O(4n).

[Vance and Maier, 1996]: DPSub, O(3n).

[Moerkotte and Neumann, 2006]: DPccp. Avoids cross products; runtime
depends on topology.

[Moerkotte and Neumann, 2008]: DPhyp. Extension to “hypergraphs”
(probably wont discuss).

[Moerkotte et al., 2013]: DPsube adds non-reordable operators.
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DPSize [Ono and Lohman, 1990]

Set PlanCost[S] := (null,∞) for all ∅ ⊊ S ⊆ R := {R1, . . . ,Rn}.
Algorithm 1: DPSize
for s1 = 1, n − 1 do

for s2 = 1, n − s1 do
for S1 ⊆ R : |S1 | = s1 do

for S2 ⊆ R : |S2 | = s2 do
if S1 ∩ S2 ≠ ∅ then continue;
(P1, c1) := PlanCost[S1];
(P2, c2) := PlanCost[S2];
c := c1 + c2 + Cost(P1 Z P2);
if c < PlanCost[S1 ∪ S2] .cost then

PlanCost[S1 ∪ S2] := (P1 Z P2, c);

There are 2n − 2 sets S1 and 2n − 2 sets S2. Total runtime: O(4n).
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DPSub [Vance and Maier, 1996]

Iterate only over pair of disjoint sets S1,S2:

Algorithm 2: DBSub
for ∅ ⊊ S ⊆ R do

for ∅ ⊊ S1 ⊊ S do
S2 := S − S1;
(P1, c1) := PlanCost[S1]
(P2, c2) := PlanCost[S2]
c := c1 + c2 + Cost(P1 Z P2);
if c < PlanCost[S1 ∪ S2] .cost then

PlanCost[S1 ∪ S2] := (P1 Z P2, c);

There are 3n pairs of disjoint subsets S1,S2 ⊆ R
and only 3n − 2n+1 if we restrict S1,S2 ≠ ∅.
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DPccp [Moerkotte and Neumann, 2006]

Algorithm 3: DBccp
for S1 ⊆ R, S1 connected do

for S2 ⊆ S − S1, S2 connected and connected to S1 do
(P1, c1) := PlanCost[S1];
(P2, c2) := PlanCost[S2];
c := c1 + c2 + Cost(P1 Z P2);
if c < PlanCost[S1 ∪ S2] .cost then

PlanCost[S1 ∪ S2] := (P1 Z P2, c);

Problem: how do we enumerate efficiently the pairs (S1,S2).
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Enumerating the Pairs S1,S2

EnumerateCsg: enumerates all connected subgraphs S1.

For each S1: EnumerateCmp: enumerates the “complement” S2:
S2 ⊆ V − S1, S2 is connected, and is connected to S1.
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EnumerateCsg
[Moerkotte and Neumann, 2006]

(details on next slide)
Dan Suciu CSE599d: Advanced QP Winter 2026 32 / 36



Query Optimization Notations Counting Top Down DP Bottom Up DP

EnumerateCsg
Algorithm 4: EnumerateCsg
Input: Connected graph G = (V ,E); arbitrary order on V : v0, v1, . . . , vn−1
Output: Enumerates Connected Subgraphs, in time O(csg); subsets first
for i = n − 1, n − 2, . . . , 1, 0 do

emit({vi});
EnumerageCsgRec(G, {vi}, {v0, . . . , vi});
; // Include vi, exclude vj , j ≤ i

Function EnumerageCsgRec(G,S,X)
Output: Enumerate connected subgraphs ⊇ S, disjoint from X
N := N(S) − X ; ; // N(S) = neighbors of S
for S′ ⊆ N,S′ ≠ ∅, subsets first do

emit(S ∪ S′);
EnumerageCsgRec(G, (S ∪ S′), (X ∪ N));

Which set is emitted first: {v4, v5} or {v5, v6}?
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EnumerateCsg
Algorithm 5: EnumerateCsg
Input: Connected graph G = (V ,E); arbitrary order on V : v0, v1, . . . , vn−1
Output: Enumerates Connected Subgraphs, in time O(csg); subsets first
for i = n − 1, n − 2, . . . , 1, 0 do

emit({vi});
EnumerageCsgRec(G, {vi}, {v0, . . . , vi});
; // Include vi, exclude vj , j ≤ i

Function EnumerageCsgRec(G,S,X)
Output: Enumerate connected subgraphs ⊇ S, disjoint from X
N := N(S) − X ; ; // N(S) = neighbors of S
for S′ ⊆ N,S′ ≠ ∅, subsets first do

emit(S ∪ S′);
EnumerageCsgRec(G, (S ∪ S′), (X ∪ N));

Which set is emitted first: {v4, v5} or {v5, v6}?
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EnumerateCmp

Original algorithm had a bug. Errata in [Meister et al., 2018]:

(details on next slide)
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EnumerateCmp

Algorithm 6: EnumerateCmp
Input: Connected graph G = (V ,E), connected subset S1.
Output: Enumerate all connected subsets S2 ⊆ V − S1, connected to S1.
k := min{j | vj ∈ S1};
X := {v0, . . . , vk};
N := N(S1) − X ;
for vi ∈ N, by descending i do

emit({vi});
EnumerateCsgRec(G, {vi},X ∪ {vj ∈ N | j ≤ i});
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Discussion

DPsize, DPsub, DPccp.

It is important to enumerate only the connected component pairs. Tricky!

Enumerating efficiently S ⊆ {v0, v1, . . . , vn−1}:
▶ Use counter k = 0, 2n − 1;
▶ Convert k to a set using binary representation;
▶ O(1) per set generation.[Vance and Maier, 1996]

So far the algorithm handles only joins.

Next lecture: handling non-reordable operators (outer, semi, anti joins).
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