CSE599d: Advanced Query Processing

Lecture 3: Optimization by Dynamic Programming

Dan Suciu

University of Washington

Query Optimization Top Down DP Bottom Up I

[Jelele]

From SQL to Execution

o Input: text of SQL query

Parse (= AST), semantic analysis, etc, = Query Plan

‘ Query Plan Optimization ‘

Optional: code generation (LLVM or other)

Execute

Dan Suciu CSE599d: Advanced QP Winter 2026 2/36

Query Optimization Notations « Top Down DP

[e] Je]e] [

Query Plan Optimization

@ SQL is Declarative: specifies What, does not say How.

@ Many alternative execution plans are possible.

@ Goal of query optimizer: find the optimal plan.

@ In practice: avoid a catastrophic plan.

Dan Suciu CSE599d: Advanced QP Winter 2026 3/36

Query Optimization

[e]e] le]

Two Query Optimization Approaches

@ Dynamic Programming: this and the next few lectures

@ Extensible Query Optimization: will discuss Cascades later

Dan Suciu CSE599d: Advanced QP Winter 2026 4/36

Query Optimization otations Counting op Down DP Bottom Up

00o0e 000000000)000«

References for Today
[Moerkotte and Neumann, 2006]
[Moerkotte et al., 2013]
[Neumann and Kemper, 2015]
[Neumann and Radke, 2018]
[Meister et al., 2018]

[Neumann, 2024]
[Neumann, 2025]

[Birler and Neumann, 2025]

Dan Suciu CSE599d: Advanced QP Winter 2026 5/36

Notations
®00000000

Notations

CSE599d: Advanced QP Winter 2026 6/36

Query Optimization Notations Counting

'17‘,711 I’”,‘“,“ DP

0O®@0000000 JeJe]e]

Dynamic Programming

@ Convert the SQL query into a query graph G

@ Use dynamic programming to construct an optimal plan from G.

@ Complications: non-reordable operators (outer joins, anti joins), nested
subqueries, large join graphs. Will discuss in future lectures.

Dan Suciu CSE599d: Advanced QP Winter 2026 7136

ptimization Notations

008000000

Operators

op(R) €1 > ez left outer join

€1 X ez cross product €1 >p e right outer join

€1 ™y €z join €1 >y e right outer join

e1 > ey natural join Xa:f(€) map function (apply f, call it a)
€1 =p €2 semi-join [4.a:¢(€) group by/aggregate

€1 »p €2 anti-join €1 Kp e2 dependent join

Dan Suciu CSE599d: Advanced QP Winter 2026 8/36

Query Optimization Notations Counting

[e]e]e] Jo]ele]e]e] JeJe]e]

Notations: Attributes and Free Variables

A(e) = attributes produced by the expression e;
¥ (e) = free variables that occur in the expression e;

Ar(e), Fr(e) tables used by A(e), F(e).

Dan Suciu CSE599d: Advanced QP Winter 2026 9/36

Query Optimization Notations Counting

Top Down DP

[e]e]e] Jo]ele]e]e])OO(

Notations: Attributes and Free Variables

A(e) = attributes produced by the expression e;
¥ (e) = free variables that occur in the expression e;

Ar(e), Fr(e) tables used by A(e), F(e).

Examples:

A(R(A,B) xp=c S(C,D)) = {A,B,C, D}, A(~p=c) = {B,C}
Ar(mp=c) = {R, S}

F(R(A,B) »g-c S(C,D)) =0 F (»=c) = {B,C}

Dan Suciu CSE599d: Advanced QP Winter 2026 9/36

Dependend Join [Neumann, 2025]

eo may refer to attributes from eq: F (e2) € A(ey).

Dan Suciu CSE599d: Advanced QP Winter 2026 10/36

Dependend Join [Neumann, 2025]

eo may refer to attributes from eq: F (e2) € A(ey).

o8
true
SELECT *
FROM R - ~~
WHERE EXISTS(SELECT * R OR.x=S.y

FROM S |
WHERE R.x-S.y)

Dan Suciu CSE599d: Advanced QP Winter 2026 10/36

Query Optimization Notations

ottom Up DP
[ee]ele] Telele]le} (o]

Dependend Join [Neumann, 2025]

eo may refer to attributes from eq: F (e2) € A(ey).

X
true
SELECT *
FROM R ~
WHERE EXISTS(SELECT * R OR.x=S.y
FROM S |
WHERE R.x-S.y)
S
Mr:m>5
- ~
SELECT * ¢ mki=AUTOMOBILE To:cnr:count(*)
FROM customer | |
WHERE c_mktsegment-'AUTOMOBILE' AND M
(SELECT COUNT(*) customer ¢ £>300000
FROM orders Ve AN
WHERE o_custkey-c_custkey AND o .
(SELECT SUM(1_extendedprice) Oo.ck=c.ck Loit:sum(l.ep)
FROM lineitem | |
WHERE 1_orderkey o_orderkey)-3008000) 5 orders o Ol.ok=o.0k
lineitem 1
Fig. 1: Example Query with Nested Correlated Subqueries, the Correlations are Color Coded

Dependent joins are bad: nested loops. Will discuss next week.

Dan Suciu CSE599d: Advanced QP Winter 2026 10/36

Query Optimization Notations Top Down DP Bottom Up DP

00000e000

Query Graph

Vertices = relations; Edges = represent join conditions
Ro
Rl\Rg 7 Rs
R4
Figure 6: Sample graph to illustrate EnumerateCsgRec

[Moerkotte and Neumann, 2006]

In class: discuss relationship to the query’s hypergraph

Dan Suciu CSE599d: Advanced QP Winter 2026 11/36

Notations
000000800

Types of Query Plans

TN > > TN

> R3 P P Fr’g >
P Ry R: Rz R4 PN
Ri R Bushy Rs Ra

Left deep Right deep

Dan Suciu CSE599d: Advanced QP Winter 2026 12/36

Query Optimization Notations ounting op Down DP Bottom Up D

000000000 00000 00000

Cross Products

Optimizers avoid query plans with cross product:

Has cross a product: No cross product:
B 3
b S(B,C) > T(C,D)
/\
R(A,B) T(C,D) R(A,B) S(B,C)

When can a cross product be beneficial?

Dan Suciu CSE599d: Advanced QP Winter 2026 13/36

Query Optimization Notations

0000000e0

Cross Products

Optimizers avoid query plans with cross product:

Has cross a product: No cross product:
B 3
b S(B,C) [T(C,D)
/\
R(A,B) T(C,D) R(A,B) S(B,C)
When can a cross product be beneficial? When both tables are small

In that case, define the cross-product as a new table for the optimizer.

Dan Suciu CSE599d: Advanced QP Winter 2026 13/36

Query Optimization Notations Counting Top Down DP

3ottom Up DE
O0000000e YO OO 00

Cost of a Query Plan

We will assume to have a function Cost(P) = the cost of plan P.

Later we will look at specific cost functions which can lead to more efficient
algorithms.

Dan Suciu CSE599d: Advanced QP Winter 2026 14/36

Counting
00000

Counting Plans

CSE599d: Advanced QP Winter 2026 15/36

Counting Left Linear Plans: Ry >t Ro > -+ - > R,
How Many Left Linear Plans?

> >
> Ry »d Ry
> R3 > A3
PN PN
Ry Ry Ry Ry

Dan Suciu CSE599d: Advanced QP Winter 2026 16/36

Counting Left Linear Plans: Ry >t Ro > -+ - > R,
How Many Left Linear Plans?

Dan Suciu CSE599d: Advanced QP Winter 2026 16/36

Counting
(o] Jelele]

Counting Left Linear Plans: Ry >t Ro > -+ - > R,
How Many Left Linear Plans?

PN T
> R3 > R3
N N
Ry R Ry Ry

How many are without cross products?
Chain query: Ry (xg, X1) > Ro(Xq,X2) ba - -+

Ry —R, —R; —-+ —R,

Dan Suciu CSE599d: Advanced QP

Winter 2026 16/36

Counting
(o] Jelele]

Counting Left Linear Plans: Ry >t Ro > -+ - > R,
How Many Left Linear Plans?

PN T
> R3 > R3
N N
Ry R Ry Ry

How many are without cross products?
Chain query: Ry (xg, X1) > Ro(Xq,X2) ba - -+

Ry —R, —R; —-+ —R,

Dan Suciu CSE599d: Advanced QP Winter 2026 16/36

Counting
(o] Jelele]

Counting Left Linear Plans: Ry >t Ro > -+ - > R,
How Many Left Linear Plans?

> >
/\ /\
> R3 > A3
/\ /\
R Ry R: Ry

How many are without cross products?
Chain query: Ry (xg, X1) > Ro(Xq,X2) ba - -+

Ry —R, —R; —-+ —R,

Star query: Rq(X2,...,Xn) > Ra(x2) > R3(Xx3) > - - -

Dan Suciu CSE599d: Advanced QP Winter 2026 16/36

Counting
(o] Jelele]

Counting Left Linear Plans: Ry >t Ro > -+ - > R,
How Many Left Linear Plans?

> >
/\ /\
> R3 > A3
/\ /\
R Ry R: Ry

How many are without cross products?
Chain query: Ry (xg, X1) > Ro(Xq,X2) ba - -+

Ry —R, —R; —-+ —R,

Star query: Rq(X2,...,Xn) > Ra(x2) > R3(Xx3) > - - -

I

Dan Suciu CSE599d: Advanced QP Winter 2026 16/36

Counting Bushy Plans: Ry > Ro >t -+ > R

How many are without cross products?

Chain query: R1(Xg, X1) > Ra(x1,X2) b - -

Ry —R; —Rs —+ —Ry

Dan Suciu CSE599d: Advanced QP Winter 2026 17/36

Counting Bushy Plans: Ry > Ro >t -+ > R

How many are without cross products?
Catalan Number:

Cn—1 — 1(2(n—1))

n\ n-1
Ry —R; —R; —= —Ry ((R1R2)(R3(R4Rs)))

(R1((R2R3)(R4Rs)))

Chain query: R1(Xg, X1) > Ra(x1,X2) b - -

Dan Suciu CSE599d: Advanced QP Winter 2026 17/36

Counting Bushy Plans: Ry > Ro >t -+ > R

How many are without cross products?
Catalan Number:

Cn—1 — 1(2(n—1))

Chain query: R1(Xg, X1) > Ra(x1,X2) b - -

n\ n-1
Ry —R; —R3 — = —R, ((R1R2)(R3(R4Rs)))
(R1((R2R3)(R4Rs)))
Star query:
R,
Ry
AN // R;
Ry
‘ \R4
Rs

Dan Suciu CSE599d: Advanced QP Winter 2026 17/36

Counting Bushy Plans: Ry > Ro >t -+ > R

How many are without cross products?

. Catalan Number:
Chain query: R1(Xg, X1) > Ra(x1,X2) b - - 1 2(n-1)
Cn-1= 5(n-1)
Ry =Ry —R3 = —Rn ((R1R2)(R3(R4Rs)))
(R1((R2R3)(R4Rs)))
Star query:
Rn /RZ Zig-zag plans, from Ry:
Np s 21 (n-1)!
|
4
Rs

Dan Suciu CSE599d: Advanced QP Winter 2026 17/36

Counting Bushy Plans: Ry > Ro >t -+ > R

How many are without cross products?
Catalan Number:

Cn—1 — 1(2(n—1))

Chain query: R1(Xg, X1) > Ra(x1,X2) b - -

n\ n-1
Ry —R; —R3 — —Rx ((R1R2)(R3(R4Rs)))
(R1((R2R3)(R4Rs)))
Star query:
R .
Fa)/ : Zig-zag plans, from Ry:
N 2n=1(pn — 1)l
‘ \R4
Rs

How many are with cross products?

Dan Suciu CSE599d: Advanced QP Winter 2026 17/36

Query Optimization Notation

Counting Top Down DP Bottom Up D

Counting Bushy Plans: Ry > Ro >t -+ > R

How many are without cross products?
Catalan Number:
Cn—1 — 1(2(n—1))

Chain query: R1(Xg, X1) > Ra(x1,X2) b - -

n\ n-1
Ry —R; —R3 — —R, ((R1R2)(R3(R4Rs)))
(R1((R2R3)(R4Rs)))
Star query:
R .
Fa)/ : Zig-zag plans, from Ry:
AN R _
R1< : 2"-1(n-1)!
‘ Ry
Rs
How many are with cross products? Permutation plus parentheses
((R1R2)(R3(R4Rs5)))
((R4R1)(R2(R3Rs)))
) — @n-1))!
nt-Cn1 = 1
Wintor 2056 7735

Query Optimization N Counting

Catalan Number

Cp=-= (2") # of parenthesis on RoR1 - - - Ry

Co=1, Cp= 2;11 CkCn—k—-1 ((Ro---Rk-1) - (Rk---Rp))

Generating function f(X) = Y50 Cox” f(x) = 1+ xf2(x) f(x) = 1= '1 1ovizdx

Dan Suciu CSE599d: Advanced QP Winter 2026 18/36

Optimization

Counting

[e]e]ele]]

Growth Rate W/ and W/O Cross Product

Left Linear Bushy

n w/ CP w/o CP w/ CP w/o CP
Chain Star Chain Star
n! 2" | 2(n-1) nCyq | Chq | 27T (n=1)!
1 1 2 2 1 1 1
2 2 4 2 2 1 2
3 6 8 4 12 2 8
4 24 16 12 120 5 48
5 120 32 48 1680 14 384
6 720 64 240 30240 4 3840
7 5040 128 1440 665280 132 46080
8 40320 256 10080 17297280 429 645120
9 362880 512 80640 518918400 | 1430 10321920
10 || 3628800 | 1024 725760 || 17643225600 | 4862 185794560

It is important to avoid cross products!
Dan Suciu CSE599d: Advanced QP Winter 2026

19/36

Top Down DP
@00000

Top-down Dynamic Programming

Dan Suciu CSE599d: Advanced QP Winter 2026 20/36

Top Down DP
0O®0000

Two Types of Dyanmic Programming Query Optimizers

@ Top-down. Easiest to describe, finds a first plan quickly.

@ Bottom-up. More control of the search space.

Dan Suciu CSE599d: Advanced QP Winter 2026 21/36

Query Optimization Notations

Top Down DP
000000

Top-Down Algorithm

Function OptimalPlanAndCost(S) R={R4,...,Ry}
if |S| = 1 then

‘ (plan, cost) := (scan(R;), Cost(scan(R;))); ; // S ={R;i}
else

(plan, cost) := (null, c0);
for S;: 0 € S1 < Sdo

SQ =S - S1)

(P4, cq) := OptimalPlanAndCost(Sy);

(P2, c2) := OptimalPlanAndCost(S>);

€ :=¢Cq + Co + Cost(Pq x Po);

if ¢ < cost then (plan, cost) := (P1 > P2, C);
return (plan, cost);

Dan Suciu CSE599d: Advanced QP Winter 2026 22/36

Query Optimization Notations

Top Down DP
000000

Top-Down Algorithm

Function OptimalPlanAndCost(S) R={R4,...,Ry}
if |S| = 1 then

‘ (plan, cost) := (scan(R;), Cost(scan(R;))); ; // S ={R;i}
else

(plan, cost) := (null, c0);
for S;: 0 € S1 < Sdo

SQ =S - S1)

(P4, cq) := OptimalPlanAndCost(Sy);

(P2, c2) := OptimalPlanAndCost(S>);

€ :=¢Cq + Co + Cost(Pq x Po);

if ¢ < cost then (plan, cost) := (P1 > P2, C);
return (plan, cost);

What is the runtime of the top-down algorithm?

Dan Suciu CSE599d: Advanced QP Winter 2026 22/36

Top Down DP
000e00

Top-Down Algorithm

What is the runtime of the top-down algorithm?

Dan Suciu CSE599d: Advanced QP Winter 2026 23/36

Top-Down Algorithm

What is the runtime of the top-down algorithm?

RyRoR3R4Rs

(R1)(R2R3R4Rs) (R2)(R1R3R4Rs) ... (R2R3R4Rs)(Ry)
/\ /\ |

| |
Ry > ((Rg > R3) > (R4 > As)) Ro > ((Ry > R3) > (R4 > Rs))

Dan Suciu CSE599d: Advanced QP Winter 2026 23/36

Top-Down Algorithm

What is the runtime of the top-down algorithm?

RyRoR3R4Rs
(R1)(R2R3R4Rs) (R2)(R1R3R4Rs) ... (F'2R3H4‘F'5)(H1)
| |
Ry > ((Rg > R3) > (R4 > As)) Ro > ((Ry > R3) > (R4 > Rs))

Runtime ~ number of leaves = n!C,_1.

We can improve it using memoization.

Dan Suciu CSE599d: Advanced QP Winter 2026 23/36

Notations Counting Top Down DP Bottom Up D

000080

Top-Down Algorithm with Memoization

Set PlanCost[S] :=null forall € S C {R4, ..., Rn}.
Function OptimalPlanAndCost(S) R ={Ri,...,Rn}

if PlanCost[S] # null then return PlanCost[S];
if |S| = 1 then
(plan, cost) := (scan(R;), Cost(scan(R;)));

else
(plan, cost) := (null, c0);
forS1:0 < Sy < Sdo
82 =S - S1 '
(P4, cy) := OptimalPlanAndCost(Sy);
(P2, c2) := OptimalPlanAndCost(S>);
C:=Cq + Co + Cost(Pq x Po);
if ¢ < cost then (plan, cost) := (P1 = Pa,C);
PlanCost[S] := (plan, cost)
return PlanCost[S];

Dan Suciu CSE599d: Advanced QP Winter 2026 24/36

Top Down DP
[e]e]e]e]e]]

Top-Down Algorithm with Memoization

What is the runtime of the top-down algorithm with memoization?

Dan Suciu CSE599d: Advanced QP Winter 2026 25/36

Top Down DP
[e]e]e]e]e]]

Top-Down Algorithm with Memoization

What is the runtime of the top-down algorithm with memoization?

Number of pairs of disjoint sets S1,S> € {R1,...,R,} =3".

Dan Suciu CSE599d: Advanced QP Winter 2026 25/36

Bottom Up DP
00000000000

Bottom-up Dynamic Programming

Dan Suciu CSE599d: Advanced QP Winter 2026 26/36

Query Optimization Counting op Down DP Bottom Up DP

0@000000000

Bottom Up Algorithm: Dynamic Programming
@ [Selinger et al., 1979]: left linear plans, wont discuss.
@ [Ono and Lohman, 1990]: DPSize, O(4").
@ [Vance and Maier, 1996]: DPSub, O(3").

@ [Moerkotte and Neumann, 2006]: DPccp. Avoids cross products; runtime
depends on topology.

@ [Moerkotte and Neumann, 2008]: DPhyp. Extension to “hypergraphs”
(probably wont discuss).

@ [Moerkotte et al., 2013]: DPsube adds non-reordable operators.

Dan Suciu CSE599d: Advanced QP Winter 2026 27136

Query Optimization Notations Counting op Down DP Bottom Up DP
0000 000000000 00000 000000 00800000000

DPSize [Ono and Lohman, 1990]

Set PlanCost[S] := (null, o0) forall® ¢ S C R := {R4,...,Rn}.
Algorithm 1: DPSize

fors; =1,n-1do
fors, =1,n—5s¢ do
for S CR:|Si| =s1do
for So CR:|S:| =ssdo
if S; NS> # 0 then continue;
(P1,c¢q) := PlanCost[S4];
(P>, c2) := PlanCost[S»];
C =y + Co + Cost(Pq = P»);
if ¢ < PlanCost[S1 U Sz].cost then
| PlanCost[S1 U Sa] := (P1 ™ P, ¢);

There are 2" — 2 sets Sy and 27 — 2 sets S,. Total runtime: O(4").

Dan Suciu CSE599d: Advanced QP Winter 2026 28/36

Query Optimization Notations Counting op Down DP

DPSub [Vance and Maier, 1996]

Iterate only over pair of disjoint sets Sy, Sa:

Bottom Up DP
000@0000000

Algorithm 2: DBSub

for0 CSCRdo

for0 ¢ S; € Sdo

SQ =S - S1;

(P4, ¢q) :=PlanCost[S1]

(P>, ¢c2) := PlanCost[Ss]

€ :=Cq + Co + Cost(Pq x Po);

if ¢ < PlanCost[S1 U Sz].cost then
PlanCost[Sy U Sz] := (P1 ™ P2, c);

There are 3" pairs of disjoint subsets S1,S> C R
and only 3" — 21 if we restrict Sy, Sp # 0.

Dan Suciu CSE599d: Advanced QP Winter 2026

29/36

Top Down DP Bottom Up DP

Query Optimization of ns]
0000 000000000 0000¢ 00008000000

DPccp [Moerkotte and Neumann, 2006]

Algorithm 3: DBccp
for S1 € R, Sq connected do
for S, C S — Sy, S, connected and connected to Sy do
(Pq,c1) := PlanCost[S1];
(P2, c2) := PlanCost[S2];
€ :=cCq + Co + Cost(Pq x Po);
if ¢ < PlanCost[S1 U Sz].cost then
PlanCost[Sy U Sz] := (P4 > Pa,0);

Problem: how do we enumerate efficiently the pairs (Sy, So).

Dan Suciu CSE599d: Advanced QP Winter 2026 30/36

y Optimization [) g ¢ Bottom Up DP

[o]e]ele]e] Jeolelele]e)

Enumerating the Pairs Sy, S

o EnumerateCsg: enumerates all connected subgraphs Sy.

@ For each Sy: EnumerateCmp: enumerates the “complement” Sy:
S, € V — 84, S> is connected, and is connected to Sy.

Dan Suciu CSE599d: Advanced QP Winter 2026 31/36

Query Optimization Notations Bottom Up DP

[o]e]ele]ele] lelele]e)

EnumerateCsg
[Moerkotte and Neumann, 2006]

Using the definition B; = {v;|j < i}, the pseudocode looks
as follows:

EnumerateCsg

Input: a connected query graph G = (V, E)
Precondition: nodes in V are numbered according to a
breadth-first search

Output: emits all subsets of V inducing a connected sub-

graph of G

for alli € [n—1,...,0] descending {
emit {v;};
EnumerateCsgRec(G, {v:}, Bi);

}

EnumerateCsgRec(G, S, X)

N =N(S)\X;

for all ' C N, S’ # (), enumerate subsets first {
emit (SUS’);

for all ' C N, S’ # 0, enumerate subsets first {
EnumerateCsgRec(G, (SUS’), (X U N));
}

(details on next slide)

Dan Suciu CSE599d: Advanced QP Winter 2026 32/36

Query Optimization

Notations

Counting Top Down DP Bottom Up DP
o] O [e]e Jele) 00000008000

EnumerateCsg

Algorithm 4: EnumerateCsg

Input: Connected graph G = (V, E); arbitrary order on V: vg, vq, ..., Vp_q

Output: Enumerates Connected Subgraphs, in time O(csg); subsets first
fori=n-1,n-2,...,1,0do

emit({v;});
EnumerageCsgRec(G, {v;}, {vo, ..., Vi});

’

// Include v;, exclude v;,j <i

Dan Suciu CSE599d: Advanced QP Winter 2026 33/36

ry Optimization ot y g p Down DP Bottom Up DP

00000008000

EnumerateCsg

Algorithm 5: EnumerateCsg

Input: Connected graph G = (V, E); arbitrary order on V: vg, vq, ..., Vp_q
Output: Enumerates Connected Subgraphs, in time O(csg); subsets first
fori=n-1,n-2,...,1,0do

emit({v;});

EnumerageCsgRec(G, {v;}, {vo, ..., Vi});

; // Include v;, exclude v;,j <i

Function EnumerageCsgRec(G, S, X)
Output: Enumerate connected subgraphs 2 S, disjoint from X
N:=N(S)-X;; // N(S) = neighbors of S
for S’ C N,S’ # 0, subsets first do

emit(S U S’);

EnumerageCsgRec(G, (SU S’), (X UN));

Which set is emitted first: {vq4, v5} or {vs, vg}?

Dan Suciu CSE599d: Advanced QP Winter 2026 33/36

Optimization Countir »p Down DP Bottom Up DP
©]

0000000

EnumerateCmp

Original algorithm had a bug. Errata in [Meister et al., 2018]:

Algorithm 1: EnumerateCmp [1] Algorithm 2: EnumerateCsgRec [1]
Precondition: nodes in V are numbered according Input : a connected query graph G = (V, E),
to an arbitrary enumeration a connected subset S.
Input : a connected query graph G = (V, E), a set of excluded nodes X
a connected subset S; Output: emits connected subsets
Output : emits all complements S, for S such 1 N=N(S H
that (S1,52) is a csg-cmp-pair 2 foreach S’ C N, ' # 0 do
1 % /I?/WE:;()S:\) U Si; 3 | emit(SUS');
3 1 4 foreach S’ C N, S’ # 0 do
3 foreach v; € N by descending i do 5 | EnumerateCsgRec(G, (SUS'), (X UN));
4 emit {v;};
5 | EnumerateCsgRec(G, {vi}, X UN — X UB;(N));

(details on next slide)

CSE599d: Advanced QP Winter 2026 34/36

Query Optimization

Bottom Up DP
00000000080

EnumerateCmp

Algorithm 6: EnumerateCmp

Input: Connected graph G = (V, E), connected subset Sy.
Output: Enumerate all connected subsets S C V — Sy, connected to Sy.
k:=min{j|v; € 51},
X = {Vo, ey Vk};
N = N(Sy) - X;
for v; € N, by descending i do
emit({v;});
EnumerateCsgRec(G, {v;}, X U {v; e N |j < i});

Dan Suciu CSE599d: Advanced QP Winter 2026 35/36

Query Optimization Notations Counting Top Down DP Bottom Up DP

0000000000

Discussion

@ DPsize, DPsub, DPccp.

@ [t is important to enumerate only the connected component pairs. Tricky!

@ Enumerating efficiently S C {vo, V1,...,Va-1}:
» Use counter k = 0,2" — 1;
» Convert K to a set using binary representation;
» O(1) per set generation.[Vance and Maier, 1996]

@ So far the algorithm handles only joins.

@ Next lecture: handling non-reordable operators (outer, semi, anti joins).

Dan Suciu CSE599d: Advanced QP Winter 2026 36/36

Bottom Up DP
000000000

Birler, A. and Neumann, T. (2025).
Efficient enumeration of the complete join search space.

In Proceedings of the 19th International Symposium on Database Programming Languages, DBPL 2025, Berlin, Germany, June 22-27,
2025, pages 5:1-5:12. ACM.

Meister, A., Moerkotte, G., and Saake, G. (2018).

Errata for "analysis of two existing and one new dynamic programming algorithm for the generation of optimal bushy join trees without
cross products”.

Proc. VLDB Endow., 11(10):1069-1070.

On the correct and complete enumeration of the core search space.
In Ross, K. A., Srivastava, D., and Papadias, D., editors, Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 493-504. ACM.

@ Moerkotte, G., Fender, P., and Eich, M. (2013).

Moerkotte, G. and Neumann, T. (2006).

Analysis of two existing and one new dynamic programming algorithm for the generation of optimal bushy join trees without cross
products.

In Dayal, U., Whang, K., Lomet, D. B., Alonso, G., Lohman, G. M., Kersten, M. L., Cha, S. K., and Kim, Y., editors, Proceedings of the
32nd International Conference on Very Large Data Bases, Seoul, Korea, September 12-15, 2006, pages 930-941. ACM.

Moerkotte, G. and Neumann, T. (2008).

Dynamic programming strikes back.
In Wang, J. T., editor, Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver,
BC, Canada, June 10-12, 2008, pages 539-552. ACM.

B =

Neumann, T. (2024).

A formalization of top-down unnesting.
CoRR, abs/2412.04294.

@ Neumann, T. (2025).

Improving unnesting of complex queries.

Winter 2026 36/36

Bottom Up DP
000000000

In Klettke, M., Schenkel, R., Henrich, A., Nicklas, D., Schiile, M. E., and Meyer-Wegener, K., editors, Datenbanksysteme fiir Business,
Technologie und Web (BTW 2025), 21. Fachtagung des GI-Fachbereichs ”Datenbanken und Informationssysteme” (DBIS), 03.-07, Mirz
2025, Bamberg, Germany, Proceedings, volume P-361 of LNI, pages 25-47. Gesellschaft fiir Informatik e.V.

Neumann, T. and Kemper, A. (2015).

Unnesting arbitrary queries.

In Seidl, T., Ritter, N., Schoning, H., Sattler, K., Hérder, T., Friedrich, S., and Wingerath, W., editors, Datenbanksysteme fiir Business,
Technologie und Web (BI W), 16. Fachtagung (lm GI-Fachbereichs ”Datenbanken und Informmmmx\st('m(' (DBIS), 4.-6.3.2015 in

Hamburg, Germany. Proceedings, volume P-241 of LNI, pages 383-402. GI.

Neumann, T. and Radke, B. (2018).

Adaptive optimization of very large join queries.

In Das, G., Jermaine, C. M., and Bernstein, P. A., editors, Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 677-692. ACM.

Ono, K. and Lohman, G. M. (1990).

Measuring the complexity of join enumeration in query optimization.
In McLeod, D., Sacks-Davis, R., and Schek, H., editors, 16th International Conference on Very Large Data Bases, August 13-16, 1990,
Brisbane, Queensland, Australia, Proceedings, pages 314-325. Morgan Kaufmann.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price, T. G. (1979).

Access path selection in a relational database management system.
In Bernstein, P. A., editor, Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data, Boston,
Massachusetts, USA, May 30 - June 1, pages 23-34. ACM.

Vance, B. and Maier, D. (1996).

Rapid bushy join-order optimization with cartesian products.
In Jagadish, H. V. and Mumick, 1. S., editors, Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data,
Montreal, Quebec, Canada, June 4-6, 1996, pages 35-46. ACM Press.

	Query Optimization
	Notations
	Counting
	Top Down DP
	Bottom Up DP

