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Provenance1

1Slides borrowed from [Tannen, 2023]
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Binary Trust

Dan’s notes (★)

Pred. Prey

cat mouse

cat rat

Val’s notes (★)

Animal Color
mouse gray

mouse red

rat gray

COMPUTATION ⇒

Sudeepa’s data (★★)

Pred. Food color

cat gray

cat red

(★) Dan and Val are noted zoologists (★★) Sudeepa is a noted computational zoologist.
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Binary Trust

D
Pred. Prey

cat mouse Y
cat rat Y

V
Animal Color
mouse gray N
mouse red N
rat gray Y

COMPUTATION ⇒

S(x, z) :- D(x, y) ∧ V (y, z)

S
Pred. Food color

cat gray Y
cat red N

Y = (Y ∧ N) ∨ (Y ∧ Y)
N = Y ∧ N
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Access Control

D
Pred. Prey

cat mouse P
cat rat P

V
Animal Color
mouse gray T
mouse red T
rat gray C

COMPUTATION ⇒

S(x, z) :- D(x, y) ∧ V (y, z)

S
Pred. Food color

cat gray C
cat red T

P=public < C=confidential < S=secret < T=top secret
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Confidence Scores (non-binary trust)

D
Pred. Prey

cat mouse 0.9
cat rat 0.9

V
Animal Color
mouse gray 0.6
mouse red 0.1
rat gray 0.8

COMPUTATION ⇒

S(x, z) :- D(x, y) ∧ V (y, z)

S
Pred. Food color

cat gray 0.72
cat red 0.09

0.72 = max(0.9 · 0.8, 0.9 · 0.6)
0.09 = 0.9 · 0.1
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Provenance

Sudeepa’s data depends on Dan and Val’s data. But how?

Provenance is an abstract way of capturing this dependence. Use the previous
examples as sanity checks.

Useful: do provenance once and use it repeatedly for different applications.

Label (annotate) input items abstractly with provenance tokens.

Provenance tracking: propagate expressions involving tokens, to annotate
intermediate data and, finally, outputs.
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Provenance Expression Propagation

D
Pred. Prey

cat mouse p
cat rat q

V
Animal Color
mouse gray r
mouse red s
rat gray t

S(x, z) :- D(x, y) ∧ V (y, z)

S
Pred. Food color

cat gray p · r + q · t
cat red p · s

p · r + q · t is the abstract version of 0.72 = max(0.9 · 0.8, 0.9 · 0.6)
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End of slides borrowed from [Tannen, 2023]
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Semirings
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Monoids

Definition A monoid is a tuple M = (M, ◦, 1), where:

◦ : M × M → M, 1 ∈ M.

◦ is associative: (x ◦ y) ◦ z = x ◦ (y ◦ z).

1 is a left and right identity: 1 ◦ x = x ◦ 1 = x.

The monoid is commutative if x ◦ y = y ◦ x.

Examples:
(N,+, 0), ( [0,∞],min,∞), ({0, 1},∨, 0).
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Semirings

Definition A semiring is a tuple S = (S, ⊕, ⊗, 0, 1) where:

(S, ⊕, 0) commutative monoid; (S, ⊗, 1) monoid.

⊗ distributes over ⊕: x ⊗ (y ⊕ z) =(x ⊗ y) ⊕ (x ⊗ z)
(y ⊕ z) ⊗ x =(y ⊗ x) ⊕ (z ⊗ x)

0 is absorbing, also called annihilating: x ⊗ 0 = 0 ⊗ x = 0

S is a commutative semiring if ⊗ is commutative.
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Examples

B = ({0, 1},∨,∧, 0, 1)
Booleans

(N,+, ·, 0, 1)
Natural numbers

Trop = ( [0,∞],min,+,∞, 0)
Tropical Semiring

V = ( [0, 1],max, ∗, 0, 1)
Viterbi semiring
confidence scores

(N[x],+, ·, 0, 1)
Multivariate polynomials in
variables x = {x1, x2, . . .}

F = ( [0, 1],max,min, 0, 1)
Fuzzy Logic semiring
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K-Relations
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Overview

A standard relation associates to each tuple a Boolean value: 0 or 1.

A K-relation associates to each tuple a value from a semiring K.

By choosing different semirings, we can support different applications.
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K-Relations [Green et al., 2007]

Domain Dom, semiring K = (K , ⊕, ⊗, 0, 1).

Definition
A K-relation is a function R : Domm → K with “finite support”:

Supp(R) def
= {t ∈ Domm | R(t) ≠ 0} is finite.

A B-relation:
Name City
Alice SF 1
Alice NYC 0
Bob Seattle 1

Set semantics:
2 tuples

A N-relation:
Name City
Alice SF 5
Alice NYC 0
Bob Seattle 3

Bag semantics:
8 tuples

An R-relation:
Name City
Alice SF -0.5
Alice NYC 0.1
Bob Seattle 3.4

A sparse 2 × 3 matrix
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Discussion

In [Green et al., 2007] queries have standard notation, e.g.
E (X ,Y ) ∧ E (Y , Z), but compute both the standard answer and the
provenance annotation.

We take a more radical view: the query computes the semiring value.
New notation: sum-product query, e.g. E [X ,Y ] ⊗ E [Y , Z]
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Sum-product Queries
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Sum-Product Queries, SPQ

Conjunctive Query: Q(X ) = ∃Y (R1(Z1) ∧ R2(Z2) ∧ · · · )
or, simply: Q(X ) = R1(Z1) ∧ R2(Z2) ∧ · · ·

Q(D) def
= {x ∈ DomX | ∃h : Q → D, h(X ) = x}

Sum-Product Query: Q(X ) =
⊕

Y (R1 [Z1] ⊗ R2 [Z2] ⊗ · · · )
or, simply: Q(X ) = R1 [Z1] ⊗ R2 [Z2] ⊗ · · ·

Q(D) [x] def
=

⊕
h:Q→D:h(X )=x R1 [h(Z1)] ⊗ R2 [h(Z2)] ⊗ · · ·
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Sum-Product Queries, SPQ

In a nutshell, the semantics over K-relations is:

Replace ∨,∧, ∃x with ⊕, ⊗,
⊕

x
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Example: Sparse Tensors

R-relations are logically equivalent to sparse tensors.

A sparse matrix:

A =
©­«

9 0 0
0 0 7

1.1 −5 0

ª®¬
Representation as an R-relation:

i j
1 1 9
2 3 7
3 1 1.1
3 2 −5

A CQ:
Q(X , Z) = ∃Y (A(X ,Y ) ∧ B(Y , Z))

A SPQ:
Q[i, k] = ∑

j A[i, j] · B[j, k]
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Einsums2: Drop Quantifier
⊕

MM: Q[i, k] = A[i, j] · B[j, k] torch.einsum(’ij,jk->ik’, [a,b])

Transpose: B[i, j] = A[i, j] torch.einsum(’ij->ji’, [a])

Summation: S = A[i, j] torch.einsum(’ij->’, [a])

Row sum: R[i] = A[i, j] torch.einsum(’ij->i’, [a])

Dot product: P = A[i] · B[i] torch.einsum(’i,i->’, [a, b])

Outer product T [i, j] = A[i] · B[j] torch.einsum(’i,j->ij’, [a, b])

Batch MM: C[i, k,m] = A[i, j,m] · B[j, k,m]
torch.einsum(’ijk,ikl->ijl’,[a,b])

2https://rockt.github.io/2018/04/30/einsum
Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 34
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Shortest Path

Labeled graph G = (V ,E)

Trop = ( [0,∞],min,+,∞, 0)

b

c

a d

e f

5
3

1 6

2

6 2

What does this query compute?

Q(X ,Y ) = E [X ,Y ] ⊕
⊕

Z (E [X , Z] ⊗ E [Z ,Y ])

a b

5

a c

1

a d

7

a e . . .

a f . . .

b d . . .

. . . . . . . . .
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a e . . .

a f . . .

b d . . .

. . . . . . . . .
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. . . and Set Semantics!

Boolean Semiring: B = ({0, 1},∨,∧, 0, 1).

B-relations are standard relations under set semantics.

Evaluating a SPQ in the B-semiring is standard evaluation of a CQ.
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Mandatory Access Control

The access control semiring: (A,min,max, 0,P)

A = {Public < Confidential < Secret < Top-secret < 0}

0 means “No Such Thing”

Pics
PID
p1 S
p2 T

Occ
PID DID
p1 d1 P
p2 d1 P
p2 d2 P

Docs
DID
d1 C
d2 0

Answer
PID
p1

S

p2

T

Q(p) = Pics(p) ∧ Occ(p, d) ∧ Docs(d)
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Discussion

K-Relations: powerful abstraction that allows us to apply concepts from
the relational model to other domains

Einsum notation popular in ML: numpy, TensorFlow, pytorch

The original motivation of K-relations in [Green et al., 2007] was to
model provenance. Will discuss next.
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Provenance Polynomials
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Provenance Polynomials

Input tuple: annotated with provenance token x = {x1, x2, . . .}
Output tuple: annotated with provenance polynomial N[x]

R =

A B C
a b c x
d b e y
f g e z

Q (A, C) =
∃A1B1C1 (R (A, B1, C1 ) ∧ R (A1, B1, C) )
∨∃A1B1B2 (R (A, B1, C) ∧ R (A1, B2, C) )

[Green et al., 2007]

Q =

A C
a c

2x2

a e

xy

d c

xy

d e

2y2 + yz

f e

2z2 + yz

(a, e) is derived from x and y.

(a, c) is derived in two ways:
using x twice, and using x twice again.

(d , e) is derived . . .
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Landscape of Provenance Formalisms

N[X]
2x2y + xy + 5y2 + xz

B[X]
x2y + xy + y2 + xz

↓coeff.

idemp.< Trio(X)
3xy + 5y + xz

↓exp.

>

Sorp(X)
xy + y2 + xz

absorb< Why (X)
xy + y + xz

↓coeff.

idemp.<

↓exp.

>

PosBool (X)
y + xz

absorb<

↓exp.
>

Which(X)
xyz

+ = ·

>
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Query Equivalence
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Query Equivalence

Last lecture:

Q1 ≡ Q2 if Q1(D) = Q2(D) for all D, using set semantics.

Now:

Q1 ≡ Q2 if Q1(D) = Q2(D) for all D and all semirings K .

It turns out that this is the same as equivalence under bag semantics!

Dan Suciu CSE599d: Advanced QP Winter 2026 31 / 34



Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Semiring Homomorphisms, and Universality Property

A homomorphism f : (S, ⊕, ⊗, 0, 1) → (K ,+, ·, 0, 1) is a function f : S →
K such that:

f (0) =0 f (1) =1
f (x ⊕ y) =f (x) + f (y) f (x ⊗ y) =f (x) · f (y)

Theorem (N[x],+, ·, 0, 1) is the freely generated commutative semiring

x inclusion
> N[x]

K

∃!f∗ (hom)
∨

∀f

>
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Applications to Query Equivalence
Fix a semiring identity E1 = E2. The following are equivalent:

1 E1 = E2 holds in (N,+, ·, 0, 1).
2 E1 = E2 holds in (N[x],+, ·, 0, 1).
3 E1 = E2 holds in all commutative

semirings.

Proof (in class) Item 1 ⇒ Item 2 ⇒ Item 3 ⇒ Item 1

This identity in (N[x, y , z], +, ∗, 0, 1):

(x + y ) (x + z) (y + z) = xy (x + y ) + xz (x + z) + yz (y + z) + 2xyz

implies this identity in Trop = ( [0,∞],min, +,∞, 0):

min(a, b) +min(a, c) +min(b, c) =
min(a + b +min(a, b) , a + c +min(a, c) , b + c +min(b, c) , a + b + c)
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Conclusion

An identity of SPQs E1 ≡ E2 holds in all semirings iff it holds under bag
semantics, i.e. (N,+, ∗, 0, 1).

In particular, R Z R ≡ R does NOT hold in all semirings; it only holds in
idempotent semirings, where x ⊗ x = x.

Similarly for R ∪ R ≡ R.

Cost-based query optimizers designed for SQL apply, out of the box, to
any other domains, e.g. Einsum kernels.

Dan Suciu CSE599d: Advanced QP Winter 2026 34 / 34



Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Green, T. J., Karvounarakis, G., and Tannen, V. (2007).
Provenance semirings.
In Libkin, L., editor, Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 11-13, 2007, Beijing, China, pages 31–40. ACM.

Tannen, V. (2023).
Algebraic Structures in Logic and Query Evaluation 1.
https://simons.berkeley.edu/talks/val-tannen-university-pennsylvania-2023-08-23.
Workshop on Logic and Algorithms in Database Theory and AI Boot Camp.

Dan Suciu CSE599d: Advanced QP Winter 2026 34 / 34

https://simons.berkeley.edu/talks/val-tannen-university-pennsylvania-2023-08-23

	Provenance
	Semirings
	K-Relations
	Sum-Product Queries
	Provenance Polynomials
	Query Equivalence

