
CSE599d: Advanced Query Processing

Lecture 2: Provenance, Semirings, and K-Relations

Dan Suciu

University of Washington

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Provenance1

1Slides borrowed from [Tannen, 2023]
Dan Suciu CSE599d: Advanced QP Winter 2026 2 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Binary Trust

Dan’s notes (★)

Pred. Prey

cat mouse

cat rat

Val’s notes (★)

Animal Color
mouse gray

mouse red

rat gray

COMPUTATION ⇒

Sudeepa’s data (★★)

Pred. Food color

cat gray

cat red

(★) Dan and Val are noted zoologists (★★) Sudeepa is a noted computational zoologist.

Dan Suciu CSE599d: Advanced QP Winter 2026 3 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Binary Trust

D
Pred. Prey

cat mouse Y
cat rat Y

V
Animal Color
mouse gray N
mouse red N
rat gray Y

COMPUTATION ⇒

S(x, z) :- D(x, y) ∧ V (y, z)

S
Pred. Food color

cat gray Y
cat red N

Y = (Y ∧ N) ∨ (Y ∧ Y)
N = Y ∧ N

Dan Suciu CSE599d: Advanced QP Winter 2026 4 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Access Control

D
Pred. Prey

cat mouse P
cat rat P

V
Animal Color
mouse gray T
mouse red T
rat gray C

COMPUTATION ⇒

S(x, z) :- D(x, y) ∧ V (y, z)

S
Pred. Food color

cat gray C
cat red T

P=public < C=confidential < S=secret < T=top secret

Dan Suciu CSE599d: Advanced QP Winter 2026 5 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Confidence Scores (non-binary trust)

D
Pred. Prey

cat mouse 0.9
cat rat 0.9

V
Animal Color
mouse gray 0.6
mouse red 0.1
rat gray 0.8

COMPUTATION ⇒

S(x, z) :- D(x, y) ∧ V (y, z)

S
Pred. Food color

cat gray 0.72
cat red 0.09

0.72 = max(0.9 · 0.8, 0.9 · 0.6)
0.09 = 0.9 · 0.1

Dan Suciu CSE599d: Advanced QP Winter 2026 6 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Provenance

Sudeepa’s data depends on Dan and Val’s data. But how?

Provenance is an abstract way of capturing this dependence. Use the previous
examples as sanity checks.

Useful: do provenance once and use it repeatedly for different applications.

Label (annotate) input items abstractly with provenance tokens.

Provenance tracking: propagate expressions involving tokens, to annotate
intermediate data and, finally, outputs.

Dan Suciu CSE599d: Advanced QP Winter 2026 7 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Provenance

Sudeepa’s data depends on Dan and Val’s data. But how?

Provenance is an abstract way of capturing this dependence. Use the previous
examples as sanity checks.

Useful: do provenance once and use it repeatedly for different applications.

Label (annotate) input items abstractly with provenance tokens.

Provenance tracking: propagate expressions involving tokens, to annotate
intermediate data and, finally, outputs.

Dan Suciu CSE599d: Advanced QP Winter 2026 7 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Provenance

Sudeepa’s data depends on Dan and Val’s data. But how?

Provenance is an abstract way of capturing this dependence. Use the previous
examples as sanity checks.

Useful: do provenance once and use it repeatedly for different applications.

Label (annotate) input items abstractly with provenance tokens.

Provenance tracking: propagate expressions involving tokens, to annotate
intermediate data and, finally, outputs.

Dan Suciu CSE599d: Advanced QP Winter 2026 7 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Provenance

Sudeepa’s data depends on Dan and Val’s data. But how?

Provenance is an abstract way of capturing this dependence. Use the previous
examples as sanity checks.

Useful: do provenance once and use it repeatedly for different applications.

Label (annotate) input items abstractly with provenance tokens.

Provenance tracking: propagate expressions involving tokens, to annotate
intermediate data and, finally, outputs.

Dan Suciu CSE599d: Advanced QP Winter 2026 7 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Provenance

Sudeepa’s data depends on Dan and Val’s data. But how?

Provenance is an abstract way of capturing this dependence. Use the previous
examples as sanity checks.

Useful: do provenance once and use it repeatedly for different applications.

Label (annotate) input items abstractly with provenance tokens.

Provenance tracking: propagate expressions involving tokens, to annotate
intermediate data and, finally, outputs.

Dan Suciu CSE599d: Advanced QP Winter 2026 7 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Provenance Expression Propagation

D
Pred. Prey

cat mouse p
cat rat q

V
Animal Color
mouse gray r
mouse red s
rat gray t

S(x, z) :- D(x, y) ∧ V (y, z)

S
Pred. Food color

cat gray p · r + q · t
cat red p · s

p · r + q · t is the abstract version of 0.72 = max(0.9 · 0.8, 0.9 · 0.6)

Dan Suciu CSE599d: Advanced QP Winter 2026 8 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

End of slides borrowed from [Tannen, 2023]

Dan Suciu CSE599d: Advanced QP Winter 2026 9 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Semirings

Dan Suciu CSE599d: Advanced QP Winter 2026 10 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Monoids

Definition A monoid is a tuple M = (M, ◦, 1), where:

◦ : M × M → M, 1 ∈ M.

◦ is associative: (x ◦ y) ◦ z = x ◦ (y ◦ z).

1 is a left and right identity: 1 ◦ x = x ◦ 1 = x.

The monoid is commutative if x ◦ y = y ◦ x.

Examples:
(N,+, 0), ([0,∞],min,∞), ({0, 1},∨, 0).

Dan Suciu CSE599d: Advanced QP Winter 2026 11 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Semirings

Definition A semiring is a tuple S = (S, ⊕, ⊗, 0, 1) where:

(S, ⊕, 0) commutative monoid; (S, ⊗, 1) monoid.

⊗ distributes over ⊕: x ⊗ (y ⊕ z) =(x ⊗ y) ⊕ (x ⊗ z)
(y ⊕ z) ⊗ x =(y ⊗ x) ⊕ (z ⊗ x)

0 is absorbing, also called annihilating: x ⊗ 0 = 0 ⊗ x = 0

S is a commutative semiring if ⊗ is commutative.

Dan Suciu CSE599d: Advanced QP Winter 2026 12 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Examples

B = ({0, 1},∨,∧, 0, 1)
Booleans

(N,+, ·, 0, 1)
Natural numbers

Trop = ([0,∞],min,+,∞, 0)
Tropical Semiring

V = ([0, 1],max, ∗, 0, 1)
Viterbi semiring
confidence scores

(N[x],+, ·, 0, 1)
Multivariate polynomials in
variables x = {x1, x2, . . .}

F = ([0, 1],max,min, 0, 1)
Fuzzy Logic semiring

Dan Suciu CSE599d: Advanced QP Winter 2026 13 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

K-Relations

Dan Suciu CSE599d: Advanced QP Winter 2026 14 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Overview

A standard relation associates to each tuple a Boolean value: 0 or 1.

A K-relation associates to each tuple a value from a semiring K.

By choosing different semirings, we can support different applications.

Dan Suciu CSE599d: Advanced QP Winter 2026 15 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

K-Relations [Green et al., 2007]

Domain Dom, semiring K = (K , ⊕, ⊗, 0, 1).

Definition
A K-relation is a function R : Domm → K with “finite support”:

Supp(R) def
= {t ∈ Domm | R(t) ≠ 0} is finite.

A B-relation:
Name City
Alice SF 1
Alice NYC 0
Bob Seattle 1

Set semantics:
2 tuples

A N-relation:
Name City
Alice SF 5
Alice NYC 0
Bob Seattle 3

Bag semantics:
8 tuples

An R-relation:
Name City
Alice SF -0.5
Alice NYC 0.1
Bob Seattle 3.4

A sparse 2 × 3 matrix

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

K-Relations [Green et al., 2007]

Domain Dom, semiring K = (K , ⊕, ⊗, 0, 1).

Definition
A K-relation is a function R : Domm → K with “finite support”:

Supp(R) def
= {t ∈ Domm | R(t) ≠ 0} is finite.

A B-relation:
Name City
Alice SF 1
Alice NYC 0
Bob Seattle 1

Set semantics:
2 tuples

A N-relation:
Name City
Alice SF 5
Alice NYC 0
Bob Seattle 3

Bag semantics:
8 tuples

An R-relation:
Name City
Alice SF -0.5
Alice NYC 0.1
Bob Seattle 3.4

A sparse 2 × 3 matrix

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

K-Relations [Green et al., 2007]

Domain Dom, semiring K = (K , ⊕, ⊗, 0, 1).

Definition
A K-relation is a function R : Domm → K with “finite support”:

Supp(R) def
= {t ∈ Domm | R(t) ≠ 0} is finite.

A B-relation:
Name City
Alice SF 1
Alice NYC 0
Bob Seattle 1

Set semantics:
2 tuples

A N-relation:
Name City
Alice SF 5
Alice NYC 0
Bob Seattle 3

Bag semantics:
8 tuples

An R-relation:
Name City
Alice SF -0.5
Alice NYC 0.1
Bob Seattle 3.4

A sparse 2 × 3 matrix

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

K-Relations [Green et al., 2007]

Domain Dom, semiring K = (K , ⊕, ⊗, 0, 1).

Definition
A K-relation is a function R : Domm → K with “finite support”:

Supp(R) def
= {t ∈ Domm | R(t) ≠ 0} is finite.

A B-relation:
Name City
Alice SF 1
Alice NYC 0
Bob Seattle 1

Set semantics:
2 tuples

A N-relation:
Name City
Alice SF 5
Alice NYC 0
Bob Seattle 3

Bag semantics:
8 tuples

An R-relation:
Name City
Alice SF -0.5
Alice NYC 0.1
Bob Seattle 3.4

A sparse 2 × 3 matrix

Dan Suciu CSE599d: Advanced QP Winter 2026 16 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Discussion

In [Green et al., 2007] queries have standard notation, e.g.
E (X ,Y) ∧ E (Y , Z), but compute both the standard answer and the
provenance annotation.

We take a more radical view: the query computes the semiring value.
New notation: sum-product query, e.g. E [X ,Y] ⊗ E [Y , Z]

Dan Suciu CSE599d: Advanced QP Winter 2026 17 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Sum-product Queries

Dan Suciu CSE599d: Advanced QP Winter 2026 18 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Sum-Product Queries, SPQ

Conjunctive Query: Q(X) = ∃Y (R1(Z1) ∧ R2(Z2) ∧ · · ·)
or, simply: Q(X) = R1(Z1) ∧ R2(Z2) ∧ · · ·

Q(D) def
= {x ∈ DomX | ∃h : Q → D, h(X) = x}

Sum-Product Query: Q(X) =
⊕

Y (R1 [Z1] ⊗ R2 [Z2] ⊗ · · ·)
or, simply: Q(X) = R1 [Z1] ⊗ R2 [Z2] ⊗ · · ·

Q(D) [x] def
=

⊕
h:Q→D:h(X)=x R1 [h(Z1)] ⊗ R2 [h(Z2)] ⊗ · · ·

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Sum-Product Queries, SPQ

Conjunctive Query: Q(X) = ∃Y (R1(Z1) ∧ R2(Z2) ∧ · · ·)
or, simply: Q(X) = R1(Z1) ∧ R2(Z2) ∧ · · ·

Q(D) def
= {x ∈ DomX | ∃h : Q → D, h(X) = x}

Sum-Product Query: Q(X) =
⊕

Y (R1 [Z1] ⊗ R2 [Z2] ⊗ · · ·)
or, simply: Q(X) = R1 [Z1] ⊗ R2 [Z2] ⊗ · · ·

Q(D) [x] def
=

⊕
h:Q→D:h(X)=x R1 [h(Z1)] ⊗ R2 [h(Z2)] ⊗ · · ·

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Sum-Product Queries, SPQ

Conjunctive Query: Q(X) = ∃Y (R1(Z1) ∧ R2(Z2) ∧ · · ·)
or, simply: Q(X) = R1(Z1) ∧ R2(Z2) ∧ · · ·

Q(D) def
= {x ∈ DomX | ∃h : Q → D, h(X) = x}

Sum-Product Query: Q(X) =
⊕

Y (R1 [Z1] ⊗ R2 [Z2] ⊗ · · ·)
or, simply: Q(X) = R1 [Z1] ⊗ R2 [Z2] ⊗ · · ·

Q(D) [x] def
=

⊕
h:Q→D:h(X)=x R1 [h(Z1)] ⊗ R2 [h(Z2)] ⊗ · · ·

Dan Suciu CSE599d: Advanced QP Winter 2026 19 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Sum-Product Queries, SPQ

In a nutshell, the semantics over K-relations is:

Replace ∨,∧, ∃x with ⊕, ⊗,
⊕

x

Dan Suciu CSE599d: Advanced QP Winter 2026 20 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Example: Sparse Tensors

R-relations are logically equivalent to sparse tensors.

A sparse matrix:

A =
©­«

9 0 0
0 0 7

1.1 −5 0

ª®¬
Representation as an R-relation:

i j
1 1 9
2 3 7
3 1 1.1
3 2 −5

A CQ:
Q(X , Z) = ∃Y (A(X ,Y) ∧ B(Y , Z))

A SPQ:
Q[i, k] = ∑

j A[i, j] · B[j, k]

Dan Suciu CSE599d: Advanced QP Winter 2026 21 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Example: Sparse Tensors

R-relations are logically equivalent to sparse tensors.

A sparse matrix:

A =
©­«

9 0 0
0 0 7

1.1 −5 0

ª®¬
Representation as an R-relation:

i j
1 1 9
2 3 7
3 1 1.1
3 2 −5

A CQ:
Q(X , Z) = ∃Y (A(X ,Y) ∧ B(Y , Z))

A SPQ:
Q[i, k] = ∑

j A[i, j] · B[j, k]

Dan Suciu CSE599d: Advanced QP Winter 2026 21 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Example: Sparse Tensors

R-relations are logically equivalent to sparse tensors.

A sparse matrix:

A =
©­«

9 0 0
0 0 7

1.1 −5 0

ª®¬
Representation as an R-relation:

i j
1 1 9
2 3 7
3 1 1.1
3 2 −5

A CQ:
Q(X , Z) = ∃Y (A(X ,Y) ∧ B(Y , Z))

A SPQ:
Q[i, k] = ∑

j A[i, j] · B[j, k]

Dan Suciu CSE599d: Advanced QP Winter 2026 21 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Einsums2: Drop Quantifier
⊕

MM: Q[i, k] = A[i, j] · B[j, k] torch.einsum(’ij,jk->ik’, [a,b])

Transpose: B[i, j] = A[i, j] torch.einsum(’ij->ji’, [a])

Summation: S = A[i, j] torch.einsum(’ij->’, [a])

Row sum: R[i] = A[i, j] torch.einsum(’ij->i’, [a])

Dot product: P = A[i] · B[i] torch.einsum(’i,i->’, [a, b])

Outer product T [i, j] = A[i] · B[j] torch.einsum(’i,j->ij’, [a, b])

Batch MM: C[i, k,m] = A[i, j,m] · B[j, k,m]
torch.einsum(’ijk,ikl->ijl’,[a,b])

2https://rockt.github.io/2018/04/30/einsum
Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 34

https://rockt.github.io/2018/04/30/einsum

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Einsums2: Drop Quantifier
⊕

MM: Q[i, k] = A[i, j] · B[j, k] torch.einsum(’ij,jk->ik’, [a,b])

Transpose: B[i, j] = A[i, j] torch.einsum(’ij->ji’, [a])

Summation: S = A[i, j] torch.einsum(’ij->’, [a])

Row sum: R[i] = A[i, j] torch.einsum(’ij->i’, [a])

Dot product: P = A[i] · B[i] torch.einsum(’i,i->’, [a, b])

Outer product T [i, j] = A[i] · B[j] torch.einsum(’i,j->ij’, [a, b])

Batch MM: C[i, k,m] = A[i, j,m] · B[j, k,m]
torch.einsum(’ijk,ikl->ijl’,[a,b])

2https://rockt.github.io/2018/04/30/einsum
Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 34

https://rockt.github.io/2018/04/30/einsum

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Einsums2: Drop Quantifier
⊕

MM: Q[i, k] = A[i, j] · B[j, k] torch.einsum(’ij,jk->ik’, [a,b])

Transpose: B[i, j] = A[i, j] torch.einsum(’ij->ji’, [a])

Summation: S = A[i, j] torch.einsum(’ij->’, [a])

Row sum: R[i] = A[i, j] torch.einsum(’ij->i’, [a])

Dot product: P = A[i] · B[i] torch.einsum(’i,i->’, [a, b])

Outer product T [i, j] = A[i] · B[j] torch.einsum(’i,j->ij’, [a, b])

Batch MM: C[i, k,m] = A[i, j,m] · B[j, k,m]
torch.einsum(’ijk,ikl->ijl’,[a,b])

2https://rockt.github.io/2018/04/30/einsum
Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 34

https://rockt.github.io/2018/04/30/einsum

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Einsums2: Drop Quantifier
⊕

MM: Q[i, k] = A[i, j] · B[j, k] torch.einsum(’ij,jk->ik’, [a,b])

Transpose: B[i, j] = A[i, j] torch.einsum(’ij->ji’, [a])

Summation: S = A[i, j] torch.einsum(’ij->’, [a])

Row sum: R[i] = A[i, j] torch.einsum(’ij->i’, [a])

Dot product: P = A[i] · B[i] torch.einsum(’i,i->’, [a, b])

Outer product T [i, j] = A[i] · B[j] torch.einsum(’i,j->ij’, [a, b])

Batch MM: C[i, k,m] = A[i, j,m] · B[j, k,m]
torch.einsum(’ijk,ikl->ijl’,[a,b])

2https://rockt.github.io/2018/04/30/einsum
Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 34

https://rockt.github.io/2018/04/30/einsum

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Einsums2: Drop Quantifier
⊕

MM: Q[i, k] = A[i, j] · B[j, k] torch.einsum(’ij,jk->ik’, [a,b])

Transpose: B[i, j] = A[i, j] torch.einsum(’ij->ji’, [a])

Summation: S = A[i, j] torch.einsum(’ij->’, [a])

Row sum: R[i] = A[i, j] torch.einsum(’ij->i’, [a])

Dot product: P = A[i] · B[i] torch.einsum(’i,i->’, [a, b])

Outer product T [i, j] = A[i] · B[j] torch.einsum(’i,j->ij’, [a, b])

Batch MM: C[i, k,m] = A[i, j,m] · B[j, k,m]
torch.einsum(’ijk,ikl->ijl’,[a,b])

2https://rockt.github.io/2018/04/30/einsum
Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 34

https://rockt.github.io/2018/04/30/einsum

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Einsums2: Drop Quantifier
⊕

MM: Q[i, k] = A[i, j] · B[j, k] torch.einsum(’ij,jk->ik’, [a,b])

Transpose: B[i, j] = A[i, j] torch.einsum(’ij->ji’, [a])

Summation: S = A[i, j] torch.einsum(’ij->’, [a])

Row sum: R[i] = A[i, j] torch.einsum(’ij->i’, [a])

Dot product: P = A[i] · B[i] torch.einsum(’i,i->’, [a, b])

Outer product T [i, j] = A[i] · B[j] torch.einsum(’i,j->ij’, [a, b])

Batch MM: C[i, k,m] = A[i, j,m] · B[j, k,m]
torch.einsum(’ijk,ikl->ijl’,[a,b])

2https://rockt.github.io/2018/04/30/einsum
Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 34

https://rockt.github.io/2018/04/30/einsum

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Einsums2: Drop Quantifier
⊕

MM: Q[i, k] = A[i, j] · B[j, k] torch.einsum(’ij,jk->ik’, [a,b])

Transpose: B[i, j] = A[i, j] torch.einsum(’ij->ji’, [a])

Summation: S = A[i, j] torch.einsum(’ij->’, [a])

Row sum: R[i] = A[i, j] torch.einsum(’ij->i’, [a])

Dot product: P = A[i] · B[i] torch.einsum(’i,i->’, [a, b])

Outer product T [i, j] = A[i] · B[j] torch.einsum(’i,j->ij’, [a, b])

Batch MM: C[i, k,m] = A[i, j,m] · B[j, k,m]
torch.einsum(’ijk,ikl->ijl’,[a,b])

2https://rockt.github.io/2018/04/30/einsum
Dan Suciu CSE599d: Advanced QP Winter 2026 22 / 34

https://rockt.github.io/2018/04/30/einsum

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Shortest Path

Labeled graph G = (V ,E)

Trop = ([0,∞],min,+,∞, 0)

b

c

a d

e f

5
3

1 6

2

6 2

What does this query compute?

Q(X ,Y) = E [X ,Y] ⊕
⊕

Z (E [X , Z] ⊗ E [Z ,Y])

a b

5

a c

1

a d

7

a e . . .

a f . . .

b d . . .

.

Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Shortest Path

Labeled graph G = (V ,E)

Trop = ([0,∞],min,+,∞, 0)

b

c

a d

e f

5
3

1 6

2

6 2

What does this query compute?

Q(X ,Y) = E [X ,Y] ⊕
⊕

Z (E [X , Z] ⊗ E [Z ,Y])

a b ?

5

a c ?

1

a d ?

7

a e . . .

a f . . .

b d . . .

.

Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Shortest Path

Labeled graph G = (V ,E)

Trop = ([0,∞],min,+,∞, 0)

b

c

a d

e f

5
3

1 6

2

6 2

What does this query compute?

Q(X ,Y) = E [X ,Y] ⊕
⊕

Z (E [X , Z] ⊗ E [Z ,Y])

a b 5
a c 1
a d ?

7

a e . . .

a f . . .

b d . . .

.

Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Shortest Path

Labeled graph G = (V ,E)

Trop = ([0,∞],min,+,∞, 0)

b

c

a d

e f

5
3

1 6

2

6 2

What does this query compute?

Q(X ,Y) = E [X ,Y] ⊕
⊕

Z (E [X , Z] ⊗ E [Z ,Y])

a b 5
a c 1
a d 7
a e . . .

a f . . .

b d . . .

.

Dan Suciu CSE599d: Advanced QP Winter 2026 23 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

. . . and Set Semantics!

Boolean Semiring: B = ({0, 1},∨,∧, 0, 1).

B-relations are standard relations under set semantics.

Evaluating a SPQ in the B-semiring is standard evaluation of a CQ.

Dan Suciu CSE599d: Advanced QP Winter 2026 24 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Mandatory Access Control

The access control semiring: (A,min,max, 0,P)

A = {Public < Confidential < Secret < Top-secret < 0}

0 means “No Such Thing”

Pics
PID
p1 S
p2 T

Occ
PID DID
p1 d1 P
p2 d1 P
p2 d2 P

Docs
DID
d1 C
d2 0

Answer
PID
p1

S

p2

T

Q(p) = Pics(p) ∧ Occ(p, d) ∧ Docs(d)

Dan Suciu CSE599d: Advanced QP Winter 2026 25 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Mandatory Access Control

The access control semiring: (A,min,max, 0,P)

A = {Public < Confidential < Secret < Top-secret < 0}

0 means “No Such Thing”

Pics
PID
p1 S
p2 T

Occ
PID DID
p1 d1 P
p2 d1 P
p2 d2 P

Docs
DID
d1 C
d2 0

Answer
PID
p1

S

p2

T

Q(p) = Pics(p) ∧ Occ(p, d) ∧ Docs(d)

Dan Suciu CSE599d: Advanced QP Winter 2026 25 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Mandatory Access Control

The access control semiring: (A,min,max, 0,P)

A = {Public < Confidential < Secret < Top-secret < 0}

0 means “No Such Thing”

Pics
PID
p1 S
p2 T

Occ
PID DID
p1 d1 P
p2 d1 P
p2 d2 P

Docs
DID
d1 C
d2 0

Answer
PID
p1 ?

S

p2 ?

T

Q(p) = Pics(p) ∧ Occ(p, d) ∧ Docs(d)

Dan Suciu CSE599d: Advanced QP Winter 2026 25 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Mandatory Access Control

The access control semiring: (A,min,max, 0,P)

A = {Public < Confidential < Secret < Top-secret < 0}

0 means “No Such Thing”

Pics
PID
p1 S
p2 T

Occ
PID DID
p1 d1 P
p2 d1 P
p2 d2 P

Docs
DID
d1 C
d2 0

Answer
PID
p1 S
p2 T

Q(p) = Pics(p) ∧ Occ(p, d) ∧ Docs(d)

Dan Suciu CSE599d: Advanced QP Winter 2026 25 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Discussion

K-Relations: powerful abstraction that allows us to apply concepts from
the relational model to other domains

Einsum notation popular in ML: numpy, TensorFlow, pytorch

The original motivation of K-relations in [Green et al., 2007] was to
model provenance. Will discuss next.

Dan Suciu CSE599d: Advanced QP Winter 2026 26 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Provenance Polynomials

Dan Suciu CSE599d: Advanced QP Winter 2026 27 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Provenance Polynomials

Input tuple: annotated with provenance token x = {x1, x2, . . .}
Output tuple: annotated with provenance polynomial N[x]

R =

A B C
a b c x
d b e y
f g e z

Q (A, C) =
∃A1B1C1 (R (A, B1, C1) ∧ R (A1, B1, C))
∨∃A1B1B2 (R (A, B1, C) ∧ R (A1, B2, C))

[Green et al., 2007]

Q =

A C
a c

2x2

a e

xy

d c

xy

d e

2y2 + yz

f e

2z2 + yz

(a, e) is derived from x and y.

(a, c) is derived in two ways:
using x twice, and using x twice again.

(d , e) is derived . . .

Dan Suciu CSE599d: Advanced QP Winter 2026 28 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Provenance Polynomials

Input tuple: annotated with provenance token x = {x1, x2, . . .}
Output tuple: annotated with provenance polynomial N[x]

R =

A B C
a b c x
d b e y
f g e z

Q (A, C) =
∃A1B1C1 (R (A, B1, C1) ∧ R (A1, B1, C))
∨∃A1B1B2 (R (A, B1, C) ∧ R (A1, B2, C))

[Green et al., 2007]

Q =

A C
a c 2x2

a e xy
d c xy
d e 2y2 + yz
f e 2z2 + yz

(a, e) is derived from x and y.

(a, c) is derived in two ways:
using x twice, and using x twice again.

(d , e) is derived . . .

Dan Suciu CSE599d: Advanced QP Winter 2026 28 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Provenance Polynomials

Input tuple: annotated with provenance token x = {x1, x2, . . .}
Output tuple: annotated with provenance polynomial N[x]

R =

A B C
a b c x
d b e y
f g e z

Q (A, C) =
∃A1B1C1 (R (A, B1, C1) ∧ R (A1, B1, C))
∨∃A1B1B2 (R (A, B1, C) ∧ R (A1, B2, C))

[Green et al., 2007]

Q =

A C
a c 2x2

a e xy
d c xy
d e 2y2 + yz
f e 2z2 + yz

(a, e) is derived from x and y.

(a, c) is derived in two ways:
using x twice, and using x twice again.

(d , e) is derived . . .

Dan Suciu CSE599d: Advanced QP Winter 2026 28 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Provenance Polynomials

Input tuple: annotated with provenance token x = {x1, x2, . . .}
Output tuple: annotated with provenance polynomial N[x]

R =

A B C
a b c x
d b e y
f g e z

Q (A, C) =
∃A1B1C1 (R (A, B1, C1) ∧ R (A1, B1, C))
∨∃A1B1B2 (R (A, B1, C) ∧ R (A1, B2, C))

[Green et al., 2007]

Q =

A C
a c 2x2

a e xy
d c xy
d e 2y2 + yz
f e 2z2 + yz

(a, e) is derived from x and y.

(a, c) is derived in two ways:
using x twice, and using x twice again.

(d , e) is derived . . .

Dan Suciu CSE599d: Advanced QP Winter 2026 28 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Provenance Polynomials

Input tuple: annotated with provenance token x = {x1, x2, . . .}
Output tuple: annotated with provenance polynomial N[x]

R =

A B C
a b c x
d b e y
f g e z

Q (A, C) =
∃A1B1C1 (R (A, B1, C1) ∧ R (A1, B1, C))
∨∃A1B1B2 (R (A, B1, C) ∧ R (A1, B2, C))

[Green et al., 2007]

Q =

A C
a c 2x2

a e xy
d c xy
d e 2y2 + yz
f e 2z2 + yz

(a, e) is derived from x and y.

(a, c) is derived in two ways:
using x twice, and using x twice again.

(d , e) is derived . . .

Dan Suciu CSE599d: Advanced QP Winter 2026 28 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Landscape of Provenance Formalisms

N[X]
2x2y + xy + 5y2 + xz

B[X]
x2y + xy + y2 + xz

↓coeff.

idemp.< Trio(X)
3xy + 5y + xz

↓exp.

>

Sorp(X)
xy + y2 + xz

absorb< Why (X)
xy + y + xz

↓coeff.

idemp.<

↓exp.

>

PosBool (X)
y + xz

absorb<

↓exp.
>

Which(X)
xyz

+ = ·

>

Dan Suciu CSE599d: Advanced QP Winter 2026 29 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Query Equivalence

Dan Suciu CSE599d: Advanced QP Winter 2026 30 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Query Equivalence

Last lecture:

Q1 ≡ Q2 if Q1(D) = Q2(D) for all D, using set semantics.

Now:

Q1 ≡ Q2 if Q1(D) = Q2(D) for all D and all semirings K .

It turns out that this is the same as equivalence under bag semantics!

Dan Suciu CSE599d: Advanced QP Winter 2026 31 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Semiring Homomorphisms, and Universality Property

A homomorphism f : (S, ⊕, ⊗, 0, 1) → (K ,+, ·, 0, 1) is a function f : S →
K such that:

f (0) =0 f (1) =1
f (x ⊕ y) =f (x) + f (y) f (x ⊗ y) =f (x) · f (y)

Theorem (N[x],+, ·, 0, 1) is the freely generated commutative semiring

x inclusion
> N[x]

K

∃!f∗ (hom)
∨

∀f

>

Dan Suciu CSE599d: Advanced QP Winter 2026 32 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Semiring Homomorphisms, and Universality Property

A homomorphism f : (S, ⊕, ⊗, 0, 1) → (K ,+, ·, 0, 1) is a function f : S →
K such that:

f (0) =0 f (1) =1
f (x ⊕ y) =f (x) + f (y) f (x ⊗ y) =f (x) · f (y)

Theorem (N[x],+, ·, 0, 1) is the freely generated commutative semiring

x inclusion
> N[x]

K

∃!f∗ (hom)
∨

∀f

>

Dan Suciu CSE599d: Advanced QP Winter 2026 32 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Applications to Query Equivalence
Fix a semiring identity E1 = E2. The following are equivalent:

1 E1 = E2 holds in (N,+, ·, 0, 1).
2 E1 = E2 holds in (N[x],+, ·, 0, 1).
3 E1 = E2 holds in all commutative

semirings.

Proof (in class) Item 1 ⇒ Item 2 ⇒ Item 3 ⇒ Item 1

This identity in (N[x, y , z], +, ∗, 0, 1):

(x + y) (x + z) (y + z) = xy (x + y) + xz (x + z) + yz (y + z) + 2xyz

implies this identity in Trop = ([0,∞],min, +,∞, 0):

min(a, b) +min(a, c) +min(b, c) =
min(a + b +min(a, b) , a + c +min(a, c) , b + c +min(b, c) , a + b + c)

Dan Suciu CSE599d: Advanced QP Winter 2026 33 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Applications to Query Equivalence
Fix a semiring identity E1 = E2. The following are equivalent:

1 E1 = E2 holds in (N,+, ·, 0, 1).
2 E1 = E2 holds in (N[x],+, ·, 0, 1).
3 E1 = E2 holds in all commutative

semirings.

Proof (in class) Item 1 ⇒ Item 2 ⇒ Item 3 ⇒ Item 1
This identity in (N[x, y , z], +, ∗, 0, 1):

(x + y) (x + z) (y + z) = xy (x + y) + xz (x + z) + yz (y + z) + 2xyz

implies this identity in Trop = ([0,∞],min, +,∞, 0):

min(a, b) +min(a, c) +min(b, c) =
min(a + b +min(a, b) , a + c +min(a, c) , b + c +min(b, c) , a + b + c)

Dan Suciu CSE599d: Advanced QP Winter 2026 33 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Conclusion

An identity of SPQs E1 ≡ E2 holds in all semirings iff it holds under bag
semantics, i.e. (N,+, ∗, 0, 1).

In particular, R Z R ≡ R does NOT hold in all semirings; it only holds in
idempotent semirings, where x ⊗ x = x.

Similarly for R ∪ R ≡ R.

Cost-based query optimizers designed for SQL apply, out of the box, to
any other domains, e.g. Einsum kernels.

Dan Suciu CSE599d: Advanced QP Winter 2026 34 / 34

Provenance Semirings K-Relations Sum-Product Queries Provenance Polynomials Query Equivalence

Green, T. J., Karvounarakis, G., and Tannen, V. (2007).
Provenance semirings.
In Libkin, L., editor, Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 11-13, 2007, Beijing, China, pages 31–40. ACM.

Tannen, V. (2023).
Algebraic Structures in Logic and Query Evaluation 1.
https://simons.berkeley.edu/talks/val-tannen-university-pennsylvania-2023-08-23.
Workshop on Logic and Algorithms in Database Theory and AI Boot Camp.

Dan Suciu CSE599d: Advanced QP Winter 2026 34 / 34

https://simons.berkeley.edu/talks/val-tannen-university-pennsylvania-2023-08-23

	Provenance
	Semirings
	K-Relations
	Sum-Product Queries
	Provenance Polynomials
	Query Equivalence

