Cascades and the Scope
system

MarcFr@ microsoft.com
2026-Feb-9

Who is this guy?

Marc Friedman was the first Ph.D. graduate from the UW CSE’s
newly-formed database group in 1999. When you make pancakes,
you always throw away the first one, right? Marc sat where you are
now, alongside: Alon Levy (advisor), Zack Ives, Anhai Doan, Rachel
Pottinger, Todd Millstein, and apologies to the other one or two
people who came to database seminar that | cannot recall at this

| moment.

® Marc studied planning and scheduling, database query optimization
8N and data integration. He worked at 2 startups (both dead) doing
data virtualization, and then back to query optimization at
Microsoft, first in SQL Server, then MatrixDB (dead), then U-
SQL(dead) and Scope. Marc lives walking distance from UW campus
with his spouse, has one child in college, and is a big fan of ceramics
and board games.

Terminology

* Distribution/distributed => could be referring either to data at rest or
data-centric computation

e Partitioned => distributed
e Parallel => distributed

* Cascades => Microsoft SQL Server’s implementation thereof

Real problems with QO and Scope (1/2)

[Scope] Data skew is a user issue ... sometimes
* Working despite data skew is a key goal of Scope
* Sometimes the optimizer introduces it: SELECT DISTINCT * -- what to partition on?

Plan stability over time
Error compounds

Cost given expected card # expected cost
* |.e. uncertainty is ignored

Model of execution is just a model

Resources

How to hint the plan you really want

There is no universal metric

Cascades transforms are local. Global heuristics are hard.

Real problems with QO & Scope (2/2)

* You need to do adaptive OR interleaved OR feedback today
* Expensive to build, maintain

* “Why that plan?” Is difficult to answer (even worse with above)

* Improving something (estimates, cost function, etc.) causes some
regressions

* Tuning suggestions are easy; getting customers’ attention is not

What is Scope (1/3)

* One of ~10 database engines at Microsoft

* Big data engine
* MaxColumnSize=MaxRowSize = 250MB
* Page size = 250MB
* We put a limit of 5PB on job inputs but customers have started hitting it

* Scope is 1/3 of the ‘Cosmos’ ecosystem, alongside Yarn++ resource mgr and
cosmos store

* SQL-like language (also called ‘Scope’) with MAP/ARRAY/STRUCT
* CH types

e C# scalar expression language

e Full .Net library support

 Related systems: HIVE, Cassandra, BigTable, BigQuery, Spark, ...

What is Scope: the big data domain

The workload is analytics, data mining, ETL, data prep, billing, ML
* Lots of scanning, merging, shuffling, and custom code

* Extensible: Integration with C#, Python user defined things:
Operators: Extractors, Outputters, Processors, Combiners, Reducers
Scalar functions

Aggregate functions

Types

e Batch, i.e. job form factor. All datais cold. You want a batch to do everything
while it has the data in flight. Hence multiple inputs, multiple outputs. 1job =1
script = 1 DAG.

* Lots of automated pipelines consisting of 10s of related jobs
* Price performance at scale is supreme
* Highly reliable execution despite every component being unreliable

What is Scope (3/3)

Dryad execution model

Reads/writes files, structured streams, and now delta tables

Not available to the public, not open-source

Used to also have interactive, streaming, and ML variants (all dead)

Structured streams

* We recommend all cosmos-internal data be in structured streams.

A partitioned clustered index:
OUTPUT “/out/x.ss” HASH CLUSTERED BY cust_id INTO 100 SORTED BY cust_id, order_id
OUTPUT “outly.ss” RANGE CLUSTERED BY url ASC SORTED BY url

Each partition is SORTED the same way.
Stored as a conventionally-organized folder with a metadata file.

Immutable (originally)

» more /out/x.ss*
X.SS I a folder
x.ss.metadata // contains the guid

> s Jout/x.ss/<guid>
unit_0.data
unit_1.data ...
unit_99.data

Limited to built-in types

The Scope query optimizer

Forked from the Microsoft SQL Server optimizer 2006
Input and output are DAGs

Shuffle is a physical operator

Key goals

* Minimize data movement (shuffling)

e Shuffle placement

* Choose DOP to trade off parallel (distributed) execution vs. overhead
* Protection from data skew

e Everything can be hinted

* More recently, learn from history
* Automatic materialized views
* Interesting columns, card, container size, operator memory, tokens

Job
view

urldelta.ss

(3 streams)

628,188 vertices F: 342057TB
1118 sfvertex. W: 10281 TB
1,176,178320,708 ¢

progress 100.00%

209,396 vertices Ri 12003 T8

5,60 s/vertex: W: 69.77 MB
382,878 rows

progress 100.00%

5V11 Combine

209,396 vertices R: 146.70 ME
0.43 sfvertex. W: 51.50 MB
426,337 rows

progress 100.00%

5V12 Process

200,396 vertices R: 5150 MB

0,44 sfvertex W: 51.50 MB
426,337 rows

progress 100.00%

SV13 PodAggregate IndexedPa
838 vertices R: 51.50 MB

6.12 sfvertex: W: 50.07 MB
476,337 rows

progress 100.00%

R: 78.22 MB
W: 78,62 MB-

progress 100.00%

V5 Extract Cross
209396 vertices Ri 2287.117TB
3.10 minfvertex W: 51.99 MB
421,070 rows
progress 100.00%

SV21 Process

209,396 vertices R: 5149 MB
0.86 sfvertex W: 1.60 MB
95,449 rows-

SV4 Extract

1 vertex R: 7822 MB

5.16 sfvertex W 78.62 ME
progress 100.00%

V2 IndexedPartition
1 vertex R: 49,14 M8
8.89 s/vertex W:50.33 MB
411,210 rows
progress 100.00%

progress 100.00%

Mm

83vertices R

7.29 sfvertex W:

95,449 rows
progress

1,60 MB
6.88 ME

100.00%

411,210 rows
progress

5V3 Process

1 vertex
414 s/vertex

[3 rows

progress

R: 78.22 MB
W:49.14 MB

100.00%

Ri 4914 MB
W: 47.00 bytes

100.00%

SV10: Stages are pipelines (sort of)

¢

Vertex Runtime Statistics Vertex Operator View

Data Read Cross Prod 0.00 bytes
LY / |

Average Vertex Execution Time 65

Total Compute Time 325h 34m 56s
Total Rows Written

Total Vertex Data Read

Total Vertex Data to Read

Total Vertex Data Written

Vertex Read Failure

<sight cick garfige s copy al coksmn

—

Vertex Duplicate Discards
Vertex Revocations

Vertex Scheduled Executions

HazhCross

Min Vertex Data Read 78.62 MB

Average Vertex Data Read 601.06 MB Sodres “':
Execution Time

Max Vertex Data Read 40.82 GB

Total Wait Time 21m 12s

Inclusive Time 215h 45m 44s

Exclusive Time &m 47s

Total Throttling Time N/A Operator Class ScopeHashGrouper_1
‘Operator Wait on 10 Time 21m 12s Frow Count 332378

ExecutionTime 2h 21m 7=
Max Time in GC 0

Overall Memory Peak Size 419,364,864

10 Memory Peak Size 58,720,256

Managed Memory Peak Size N/A

Max Row Data Size 2,145

Max Row Count

Input Total Wait Time 16h 45m 29s
Qutput Total Wait Time 21m 12s
Input Total Throttling Time N/A

‘Output Total Throttling Time N/A

Input Operator Wait on 10 Time 16h 45m 29s

‘Output Operator Wait on 10 Time 2im 12s

Urkstring
hashcstring
morketsirng
Countrystring
T
iy s

gt chck o g o ey o ol

How do you express DAGs in Scope?

// MULTIPLE CONSUMERS OF @b

@a = SSTREAM “2026/01/01/00/clicks_us_hourly.ss”;
@b = PROCESS @a USING ClickFraudDetector();
@c = SELECT * FROM @b WHERE @b.fraud == true;
OUTPUT @c TO ...;

@d = SELECT * FROM @b WHERE @b.fraud != true;
OUTPUT @d TO ...;

My plan for today

0. Background: Scope (done!)

1. Optimality and the real problems with Cascades
2. Partition (distribution) property

3. DAGs

* Physical spools
* Sharing

Story 1: Principle of optimality

* Principle: “A subplan of an optimal plan is optimal.”
* This is the assumption underlying DP & memoization of QO.

* Last week’s slide showed Volcano pruning because
* Cost(Subtree2) = Cost(Nodel(Subtree?)) - LocalCost(Nodel)
* This relies on a much stronger assumption: total work metric.
* j.e. Cost = LocalCost + Subtree costs.
* (Aside: Not sure how to apply that to branching ops like join.)

* If you use a latency metric...
e Cost(MJ1(A,B)) = LocalCost(MJ1) + MAX(Cost(A),Cost(B))
* The Volcano trick is no longer theoretically sound

Metrics and optimality

e Butit’s much worse than that: latency metrics violate the principle of optimality too!

MJ2
MJ1 , \

As AN

« Cost(MJ1) = 1+ MAX(10,3)
* Cost(MJ2) =1+ MAX(8,8)
* ... but optimizing for distributed or parallel execution requires a latency term

Everything violates the principle of optimality

Any resource constraint violates it.
Pipelining violates it. (Adds a negative term.)

Shared subtrees violate it:

UNIA

//\\

SubT1 SubT2 SubT3 SubT4

AN

Which subtrees should be charged for S? There’s no right answer.
Why do distributed and parallel optimizers even work at all? Via a LEAP OF FAITH.

... but it works well enough

e Optimizers are economically significant
e “Just work” most of the time

* [In Scope] the bigger problem is: customers want different metrics
* Complex relationship between parallelism and multiple concurrent jobs
* Some have a deadline, and are cost-insensitive
* Some just want 99.9% reliability
* Some grow the number of jobs each day
* Some grow the size of input to a massive job each day

Story 2: partition property

* Physical plans contain shuffle operations
* There is no corresponding logical operator
* Similar to sorting

* In every subplan PhysOp1(T1, ... Tn)
* PhysOp1 requires property Pi of its input Ti
* Ti must deliver Pi’ such that Pi’ satisfies Pi

* First let’s look at sorting...

Sort property of MJ

SELECT MAX(price) FROM order AS O JOIN orderdetails AS D ON orderid
GROUP BY orderid;
=> GB, x(JOIN; 4(0; 0,0,)
You implemented GB, , as GroupedGB, ,
(Expects input grouped by value of ordered. Emits a row when orderid changes.)
You are implementing Group 3. What is the SORT reqd by GroupedGB, ,?
What about the children?

Cascades note: Implementing JOIN; , means running all the implementation rules that
match JOIN, .

JOIN=>MJ creates a MJ.
JOIN=> HJ creates a HJ.
SORT enforcer=> creates a SORT whose child is group 3 and whose sort reqd = {}.

The sort lattice

e Assume ascending

» “satisfies” relation opposite of “prefix of” relation
* Sort(A,B,C) satisfies Sort(A,B) satisfies Sort(A) satisfies Sort(nil)

/\—

I

AB CA CB

So if reqd = A, you could deliver anything that starts with A.

Physical properties of joins

* In Cascades all decisions are local. Consider 2 join column case:
SELECT AVG(price) FROM order AS O JOIN orderdetails AS D

ON O.orderid == D.orderid AND O.date=D.date;

You are implementing the JOIN with reqd sort {}.

If you use MJ, what sort do you choose?

You have ? options: any sequence in any asc/desc from {orderid, date}

But you have to decide now!

Partitioning lattice is not finite because of
DOP

e P (Type, Columns, DOP)
* TYPE is HASH or RANGE
e HASH uses the built-in hash function
* Columns is a bag if hash function is symmetric, sequence otherwise
» Satisfaction = everything matches exactly
* P(HASH,[x, x],null) satisfies-P(HASH, [x], null)
* RANGE
Columns is a sequence of ordered (asc/desc)
[x, x] simplified to [x]
Satisfaction is opposite from sort: [x] satisfies [x, y]
RANGE case needs a 4th field, the range spec, specifying the split points, e.g.
* {[-inf,7), [7,31),[31,inf]}
 All fields may be unspecified: P(nil, null, null)

GB(orderid) requires what partitioning?

Partition property for join

* You are implementing Join(A,B) for required partitioning P(nil, null,
null). You want to use paired (shuffled, in spark) merge join.

* What required partitioning do you assign A and B? What DOP?
* You can pick anything. But they have to be the same!
* You must assign MJ1 a ground partitioning right now.

* If you want multiple options for DOP, you have to create multiple MJs
now.

* Any JOIN or UNIA must do this.

Story 3: DAGs

Spool operator

Scope and SQL Server insert an operator to represent multiconsumer rowsets.

SELECT *, SUM(price) OVER (PARTITION BY orderid) FROM T;

Join
GbAgg
Joinon orderid 4 \
GbAgg on orderid 3
| Spool Sp1 2 Spool

| | GetT 1
Spool Sp1 2 Get

Shared subtrees will be shared

* Opposite decision made in SQL Server.
* Why might it be better to expand? To share?

* Problem: How to do implementation?
* By construction, spools end up in their own groups.

* Group 2 will be optimized for each consumer, potentially with
different sort and partitioning reqd.

* We do not allow enforcers in spool groups.

Spools: after implementation they get
unshared

Join on orderid 4

| GbAgg on orderid 3
| | Spool Sp1 2

| | | Get T 1

| Spool Sp1 2

MJ 4.1

| GroupedGbAgg 3.1

| | PhySpool 2.1

| | | Clustered indexscanT 1.1
| PhySpool 2.2

| Clustered indexscan T 1.2

Reshare them again (credit to Nico Bruno)

After optimization, restitch them back together with any fixup (enforcers)
Mini-optimization problem: Choose the cheapest such plan.

MJ 4.1

| GroupedGbAgg 3.1

| | PhySpool 2.1

| | | Clustered index scanT 1.1
+PhySpool—————2.2
Felustered-index-seanT—:2

| // You might need enforcers here
| PhySpool 2.1

