
Cascades and the Scope
system

MarcFr@microsoft.com
2026-Feb-9

Who is this guy?

Marc Friedman was the first Ph.D. graduate from the UW CSE’s
newly-formed database group in 1999. When you make pancakes,
you always throw away the first one, right? Marc sat where you are
now, alongside: Alon Levy (advisor), Zack Ives, Anhai Doan, Rachel
Pottinger, Todd Millstein, and apologies to the other one or two
people who came to database seminar that I cannot recall at this
moment.
Marc studied planning and scheduling, database query optimization
and data integration. He worked at 2 startups (both dead) doing
data virtualization, and then back to query optimization at
Microsoft, first in SQL Server, then MatrixDB (dead), then U-
SQL(dead) and Scope. Marc lives walking distance from UW campus
with his spouse, has one child in college, and is a big fan of ceramics
and board games.

Terminology

• Distribution/distributed => could be referring either to data at rest or
data-centric computation

• Partitioned => distributed
• Parallel => distributed
• Cascades => Microsoft SQL Server’s implementation thereof

Real problems with QO and Scope (1/2)

• [Scope] Data skew is a user issue … sometimes
• Working despite data skew is a key goal of Scope
• Sometimes the optimizer introduces it: SELECT DISTINCT * -- what to partition on?

• Plan stability over time
• Error compounds
• Cost given expected card ≠ expected cost

• I.e. uncertainty is ignored
• Model of execution is just a model
• Resources
• How to hint the plan you really want
• There is no universal metric
• Cascades transforms are local. Global heuristics are hard.

Real problems with QO & Scope (2/2)

• You need to do adaptive OR interleaved OR feedback today
• Expensive to build, maintain

• “Why that plan?” Is difficult to answer (even worse with above)
• Improving something (estimates, cost function, etc.) causes some

regressions
• Tuning suggestions are easy; getting customers’ attention is not

What is Scope (1/3)

• One of ~10 database engines at Microsoft
• Big data engine

• MaxColumnSize=MaxRowSize = 250MB
• Page size = 250MB
• We put a limit of 5PB on job inputs but customers have started hitting it

• Scope is 1/3 of the ‘Cosmos’ ecosystem, alongside Yarn++ resource mgr and
cosmos store

• SQL-like language (also called ‘Scope’) with MAP/ARRAY/STRUCT
• C# types
• C# scalar expression language
• Full .Net library support
• Related systems: HIVE, Cassandra, BigTable, BigQuery, Spark, …

What is Scope: the big data domain

• The workload is analytics, data mining, ETL, data prep, billing, ML
• Lots of scanning, merging, shuffling, and custom code
• Extensible: Integration with C#, Python user defined things:

• Operators: Extractors, Outputters, Processors, Combiners, Reducers
• Scalar functions
• Aggregate functions
• Types

• Batch, i.e. job form factor. All data is cold. You want a batch to do everything
while it has the data in flight. Hence multiple inputs, multiple outputs. 1 job = 1
script = 1 DAG.

• Lots of automated pipelines consisting of 10s of related jobs
• Price performance at scale is supreme
• Highly reliable execution despite every component being unreliable

What is Scope (3/3)

• Dryad execution model
• Reads/writes files, structured streams, and now delta tables
• Not available to the public, not open-source
• Used to also have interactive, streaming, and ML variants (all dead)

Structured streams
• We recommend all cosmos-internal data be in structured streams.
• A partitioned clustered index:

OUTPUT “/out/x.ss” HASH CLUSTERED BY cust_id INTO 100 SORTED BY cust_id, order_id
OUTPUT “/out/y.ss” RANGE CLUSTERED BY url ASC SORTED BY url

• Each partition is SORTED the same way.
• Stored as a conventionally-organized folder with a metadata file.
• Immutable (originally)

 more /out/x.ss*
x.ss // a folder
x.ss.metadata // contains the guid

 ls /out/x.ss/<guid>
unit_0.data
unit_1.data ...
unit_99.data

• Limited to built-in types

The Scope query optimizer

• Forked from the Microsoft SQL Server optimizer 2006
• Input and output are DAGs
• Shuffle is a physical operator
• Key goals

• Minimize data movement (shuffling)
• Shuffle placement
• Choose DOP to trade off parallel (distributed) execution vs. overhead
• Protection from data skew
• Everything can be hinted

• More recently, learn from history
• Automatic materialized views
• Interesting columns, card, container size, operator memory, tokens

Job
view

SV10: Stages are pipelines (sort of)

How do you express DAGs in Scope?

// MULTIPLE CONSUMERS OF @b
@a = SSTREAM “2026/01/01/00/clicks_us_hourly.ss”;

@b = PROCESS @a USING ClickFraudDetector();

@c = SELECT * FROM @b WHERE @b.fraud == true;

OUTPUT @c TO …;

@d = SELECT * FROM @b WHERE @b.fraud != true;

OUTPUT @d TO …;

My plan for today

0. Background: Scope (done!)
1. Optimality and the real problems with Cascades
2. Partition (distribution) property
3. DAGs

• Physical spools
• Sharing

Story 1: Principle of optimality

• Principle: “A subplan of an optimal plan is optimal.”
• This is the assumption underlying DP & memoization of QO.

• Last week’s slide showed Volcano pruning because
• Cost(Subtree2) = Cost(Node1(Subtree2)) - LocalCost(Node1)
• This relies on a much stronger assumption: total work metric.
• i.e. Cost = LocalCost + Subtree costs.
• (Aside: Not sure how to apply that to branching ops like join.)

• If you use a latency metric…
• Cost(MJ1(A,B)) = LocalCost(MJ1) + MAX(Cost(A),Cost(B))
• The Volcano trick is no longer theoretically sound

Metrics and optimality
• But it’s much worse than that: latency metrics violate the principle of optimality too!

• Cost(MJ1) = 1+ MAX(10,3)
• Cost(MJ2) = 1 + MAX(8,8)
• … but optimizing for distributed or parallel execution requires a latency term

MJ1 MJ2

Everything violates the principle of optimality
Any resource constraint violates it.
Pipelining violates it. (Adds a negative term.)
Shared subtrees violate it:

Which subtrees should be charged for S? There’s no right answer.
Why do distributed and parallel optimizers even work at all? Via a LEAP OF FAITH.

SubT1 SubT2 SubT3 SubT4

UNIA

… but it works well enough

• Optimizers are economically significant
• “Just work” most of the time
• [In Scope] the bigger problem is: customers want different metrics

• Complex relationship between parallelism and multiple concurrent jobs
• Some have a deadline, and are cost-insensitive
• Some just want 99.9% reliability
• Some grow the number of jobs each day
• Some grow the size of input to a massive job each day

Story 2: partition property

• Physical plans contain shuffle operations
• There is no corresponding logical operator
• Similar to sorting

• In every subplan PhysOp1(T1, … Tn)
• PhysOp1 requires property Pi of its input Ti
• Ti must deliver Pi’ such that Pi’ satisfies Pi

• First let’s look at sorting…

Sort property of MJ

SELECT MAX(price) FROM order AS O JOIN orderdetails AS D ON orderid
GROUP BY orderid;
=> GB4.0(JOIN3.0(O1.0,D2.0))
You implemented GB4.0 as GroupedGB4.1

(Expects input grouped by value of ordered. Emits a row when orderid changes.)
You are implementing Group 3. What is the SORT reqd by GroupedGB4.1?
What about the children?
Cascades note: Implementing JOIN3.0 means running all the implementation rules that
match JOIN3.0.

JOIN=>MJ creates a MJ.
JOIN=> HJ creates a HJ.
SORT enforcer=> creates a SORT whose child is group 3 and whose sort reqd = {}.

The sort lattice

• Assume ascending
• “satisfies” relation opposite of “prefix of” relation

• Sort(A,B,C) satisfies Sort(A,B) satisfies Sort(A) satisfies Sort(nil)

nil

A B C

AB AC BA BC CA CB

So if reqd = A, you could deliver anything that starts with A.

Physical properties of joins

• In Cascades all decisions are local. Consider 2 join column case:
SELECT AVG(price) FROM order AS O JOIN orderdetails AS D

ON O.orderid == D.orderid AND O.date=D.date;
You are implementing the JOIN with reqd sort {}.
If you use MJ, what sort do you choose?
You have ? options: any sequence in any asc/desc from {orderid, date}
But you have to decide now!

Partitioning lattice is not finite because of
DOP
• P (Type, Columns, DOP)

• TYPE is HASH or RANGE
• HASH uses the built-in hash function

• Columns is a bag if hash function is symmetric, sequence otherwise
• Satisfaction = everything matches exactly
• P(HASH,[x, x],null) satisfies P(HASH, [x], null)

• RANGE
• Columns is a sequence of ordered (asc/desc)
• [x, x] simplified to [x]
• Satisfaction is opposite from sort: [x] satisfies [x, y]
• RANGE case needs a 4th field, the range spec, specifying the split points, e.g.

• {[-inf,7), [7,31),[31,inf]}
• All fields may be unspecified: P(nil, null, null)

GB(orderid) requires what partitioning?

Partition property for join

• You are implementing Join(A,B) for required partitioning P(nil, null,
null). You want to use paired (shuffled, in spark) merge join.

• What required partitioning do you assign A and B? What DOP?
• You can pick anything. But they have to be the same!
• You must assign MJ1 a ground partitioning right now.
• If you want multiple options for DOP, you have to create multiple MJs

now.
• Any JOIN or UNIA must do this.

Story 3: DAGs

Spool operator

Scope and SQL Server insert an operator to represent multiconsumer rowsets.

SELECT *, SUM(price) OVER (PARTITION BY orderid) FROM T;
Join

GbAgg
Join on orderid 4
| GbAgg on orderid 3
| | Spool Sp1 2 Spool
| | | Get T 1
| Spool Sp1 2 Get

Shared subtrees will be shared

• Opposite decision made in SQL Server.
• Why might it be better to expand? To share?

• Problem: How to do implementation?
• By construction, spools end up in their own groups.
• Group 2 will be optimized for each consumer, potentially with

different sort and partitioning reqd.
• We do not allow enforcers in spool groups.

Spools: after implementation they get
unshared

Join on orderid 4
| GbAgg on orderid 3
| | Spool Sp1 2
| | | Get T 1
| Spool Sp1 2

MJ 4.1
| GroupedGbAgg 3.1
| | PhySpool 2.1
| | | Clustered index scan T 1.1
| PhySpool 2.2
| Clustered index scan T 1.2

Reshare them again (credit to Nico Bruno)

After optimization, restitch them back together with any fixup (enforcers)
Mini-optimization problem: Choose the cheapest such plan.

MJ 4.1
| GroupedGbAgg 3.1
| | PhySpool 2.1
| | | Clustered index scan T 1.1
| PhySpool 2.2
| Clustered index scan T 1.2
| // You might need enforcers here
| PhySpool 2.1

