Finite Model Theory
Lecture 16: Descriptive Complexity

Spring 2025

Finite Model Theory Lecture 16 Spring 2025 1/36

riptive Complexity 3SO and NP LFP(<) and PTIME i) =NLOGSPACE

Announcement

@ HWH4 (the last one!l) is posted and due on May 30.

@ No lectures on 5/26, 5/28, 6/4

@ Next (and last) lecture: Monday, 6/2.
We will do a review of the topics covered this quarter.
Please come and participate.
If you have a particular topic to discuss, post it on Ed or email me.

Finite Model Theory Lecture 16 Spring 2025 2/36

Review
@000

Review

Finite Model Theory Lecture 16 Spring 2025 3/36

Review
[o] le]e}

) =NLOGSPACE

Review: Encoding of a TM

Fix M= (Q,{0,1}, A, qo, QF).
Define: op = (<, To(+-), T1 (), H(+5+), (Sq(+)) qe@)

Meaning:

@ < is a total order
e To(t,p), T1(t,p): the tape content at time t position p is 0 or 1.
e H(t,p): the head at time t is on position p.

@ Sq(t): the Turing Machine is is stated g at time t.

Finite Model Theory Lecture 16

Spring 2025 4/36

Review riptive Complexity

3S0O and NP LFP(<) and PTIME
0000)

Review: Details of the Encoding

Fix M= (Q,{0,1}, A, qo, QF).
Define: opm = (<7 TO('?')a Tl('v ')7 H(7 ')7 (Sq('))qu)

The sentence), asserts the following:

o General consistency: < is a total order, every tape has exactly one
symbol, the head is on exactly one position, etc.

@ At time t = min, the TM is in the initial configuration.
@ At time t = max, the TM is in an accepting configuration.

@ The configuration at time t yields that at time t+1

Finite Model Theory Lecture 16 Spring 2025

5/36

Review D e) LFP(<) and PTIME

[e]e]e])

Review: the Proof of Trakhtenbrot's Theorem

pm is satisfiable iff M terminates. Proof:

o If M terminates, then there exists an accepting computation history
C=q,c,...,ct. From C, we constructed a structure s.t. AE pp.

o If AE pp, then construct an accepting computation ¢y, ..., cr, by
reading the configuration along the chain 0 <1< 2.

Can we replace < with succ?

Finite Model Theory Lecture 16 Spring 2025 6/36

Review riptive Complexity 3SO and NP LFP(<) and PTIME

000e o) ¢)

Review: the Proof of Trakhtenbrot's Theorem

pm is satisfiable iff M terminates. Proof:

o If M terminates, then there exists an accepting computation history
C=q,c,...,ct. From C, we constructed a structure s.t. AE pp.

o If AE pp, then construct an accepting computation ¢y, ..., cr, by
reading the configuration along the chain 0 <1< 2.

Can we replace < with succ?

YES The first item doesn't change, while for the second item we only use
the (unique!) chain, and ignore any loops.

Finite Model Theory Lecture 16 Spring 2025 6/36

Descriptive Complexity
©0000

Descriptive Complexity

Finite Model Theory Lecture 16 Spring 2025 7/36

Descriptive Complexity

[e] Jele]e}

Descriptive Complexity

A problem is a function P:STRUCT[c] — {0,1}.

@ A computational complexity class is the set of problems that can be
answered within some fixed computational resources:. E.g.
LOGSPACE, PTIME, PSPACE: Turing Machine M s.t. P(A) = T iff

M accepts A.
Finite Model Theory Lecture 16 Spring 2025 8/36

Descriptive Complexity 3SO and NP LFP(<) and PTIME ",Q(T(:',) =NLOGSPACE

[e] Jele]e}) [)

Descriptive Complexity

A problem is a function P:STRUCT[c] — {0,1}.

@ A computational complexity class is the set of problems that can be
answered within some fixed computational resources:. E.g.
LOGSPACE, PTIME, PSPACE: Turing Machine M s.t. P(A) = T iff
M accepts A.

@ A descriptive complexity class is the set of problems that can be
represented in some fixed logic language L. E.g. FO, LFP, 3SO, SO:
sentence ¢ s.t. P(A) =T iff AE .

Finite Model Theory Lecture 16 Spring 2025 8/36

Descriptive Complexity 3SO and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE

[e] Jele]e}) [)

Descriptive Complexity

A problem is a function P:STRUCT[c] — {0,1}.

@ A computational complexity class is the set of problems that can be
answered within some fixed computational resources:. E.g.
LOGSPACE, PTIME, PSPACE: Turing Machine M s.t. P(A) = T iff
M accepts A.

@ A descriptive complexity class is the set of problems that can be
represented in some fixed logic language L. E.g. FO, LFP, 3SO, SO:
sentence ¢ s.t. P(A) =T iff AE .

@ We say that a logic L captures a complexity class, if they can express
precisely the same problems.

Finite Model Theory Lecture 16 Spring 2025 8/36

Descriptive Complexity

[e]e] le]e]

Descriptive Complexity: Overview of Results

FO(+,*) = FO(<,BIT) = AC®

FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;

LFP(<) =PTIME

FO(PartialFixpoint, <) =PSPACE

3SO =NP

Finite Model Theory Lecture 16 Spring 2025 9/36

Descriptive Complexity

0O00e0

Encodings

@ A Turing Machine, accepts a language L < {0,1}*.

@ A sentence ¢ defines a set of models € STRUCT[c].

@ To compare them, we to encode structures as strings.

Finite Model Theory Lecture 16 Spring 2025 10 /36

Revie Descriptive Complexity
0000 0000@

C, <) =NLOGSPACE

Encoding STRUCT[c] to {0,1}*

Encode A= ([n], R}, RS\, ...) as follows:
e Start with 0"1.

@ Encode R,-A using “adjacency matrix", of length n

o Thus, |enc(A) = 01"enc(R{})enc(R})--- | € {0,1}*

arity(R;)

o Length of encoding: 1+ n+ n? (R 4 parity(Re) o ... = O() = poly(n).

Finite Model Theory Lecture 16 Spring 2025 11/36

Review Descriptive Complexity

iSO
0000@ 00C

Encoding STRUCT[c] to {0,1}*

Encode A= ([n], R}, RS\, ...) as follows:
e Start with 0"1.

@ Encode R,-A using “adjacency matrix", of length n

o Thus, |enc(A) = 01"enc(R{})enc(R})--- | € {0,1}*

arity(R;)

o Length of encoding: 1+ n+ n? (R 4 parity(Re) o ... = O() = poly(n).

Example:

Finite Model Theory Lecture 16 Spring 2025 11/36

Review Descriptive Complexity 3S0 and NP

Encoding STRUCT[c] to {0,1}*

Encode A= ([n], R}, RS\, ...) as follows:
e Start with 0"1.

[e]e]ele]] 0000000000 00000

@ Encode R,-A using “adjacency matrix”, of length n?ty(Ri)
o Thus, |enc(A) = 01"enc(R{})enc(R})--- | € {0,1}*
o Length of encoding: 1+ n+ n? (R 4 parity(Re) o ... = O() = poly(n).
Example:
enc(G) =0001010001010
n=3 3x3 matrix
Finite Model Theory Lecture 16 Spring 2025 11/36

3S0O and NP
©000000000

35S0 = NP

Finite Model Theory Lecture 16 Spring 2025 12/36

3S0 and NP

SO consists of sentences 157---35,%, where 1) € FO over vocabulary
au{Sl,...,Sm}.

Theorem (Fagin)

350 = NP. J

Spring 2025 13/36

3S0O and NP
35S0 and NP
SO consists of sentences 157---35,%, where 1) € FO over vocabulary
au{Sl,...,Sm}.

Theorem (Fagin)
35S0 = NP.

d P =NLOGSPACE
0000000000 o) (eJe

We need to prove:

@ 13S0 c NP: the data complexity of any ¢ € 3SO is in NP

Finite Model Theory Lecture 16 Spring 2025

13/36

Review ptive Complexity 3S0O and NP

3S0O and NP

SO consists of sentences 157---35,%, where 1) € FO over vocabulary
au{Sl,...,Sm}.

Theorem (Fagin)
350 = NP. J

We need to prove:

@ 13S0 c NP: the data complexity of any ¢ € 3SO is in NP

@ NP c 350: for any problem in NP, there exists a sentence ¢ € 3SO
that expresses precisely that problem.

Finite Model Theory Lecture 16 Spring 2025 13 /36

3S0O and NP
00®0000000

iSO c NP

Given: ¢ = 35;---35,,%, input structure A e STRUCT[o].

Finite Model Theory Lecture 16 Spring 2025 14 /36

Reviey Descriptive Complexity 35S0 and NP LFP(<) and PTIME FO(TC, <

iSO c NP

00@0000000

Given: ¢ = 35;---35,,%, input structure A e STRUCT[o].

The TM starts with the input enc(A) = 0"lenc(R}')---enc(R}') on its
tape, and does the following:

Finite Model Theory Lecture 16 Spring 2025 14 /36

Review Descriptive Complexity 35S0 and NP

iSO c NP

Given: ¢ = 35;---35,,%, input structure A e STRUCT[o].

The TM starts with the input enc(A) = 0"lenc(R}')---enc(R}') on its
tape, and does the following:

@ Guess the encodings of 51,5, ..., and append them:
0"lenc(R{})--enc(RM)enc(S1)--enc(Sm)

Finite Model Theory Lecture 16 Spring 2025 14 /36

riptive Complexity 35S0 and NP LFP(<) and PTIME

iSO c NP

00@0000000 [e]e]e]e]e]e]e]e)

Given: ¢ = 35;---35,,%, input structure A e STRUCT[o].

The TM starts with the input enc(A) = 0"lenc(R}')---enc(R}') on its
tape, and does the following:

@ Guess the encodings of 51,5, ..., and append them:
0"lenc(R{})--enc(RM)enc(S1)--enc(Sm)

@ Evaluate the FO sentence 1 on this structure.

Finite Model Theory Lecture 16 Spring 2025 14 /36

The plan for proving NP c 350

For simplicity, consider the language of graphs o = (E).

Finite Model Theory Lecture 16 Spring 2025 15/36

criptive Complexity 3S0O and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE

[e]e]e] le]ele]elele) 00000000)

The plan for proving NP c 35S0
For simplicity, consider the language of graphs o = (E).
A graph problem P is in NP if 3 non-deterministic TM M such that:

For any graph, P(G) is true iff M has an accepting computation of
polynomial length on input enc(G) € {0,1}*.

We need to describe ¢y s.t. G =y iff M accepts G.

Let's try this, like in the proof of Trakthenbrot's theorem:

tpm =3 <3To(+,-)3T1(,-)TH(,-)ISg(-)3Sq, () om

Finite Model Theory Lecture 16 Spring 2025 15 /36

criptive Complexity 3S0O and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE

[e]e]e] le]ele]elele) [)

The plan for proving NP c 35S0
For simplicity, consider the language of graphs o = (E).
A graph problem P is in NP if 3 non-deterministic TM M such that:

For any graph, P(G) is true iff M has an accepting computation of
polynomial length on input enc(G) € {0,1}*.

We need to describe ¢y s.t. G =y iff M accepts G.

Let's try this, like in the proof of Trakthenbrot's theorem:

tpm =3 <3To(+,-)3T1(,-)TH(,-)ISg(-)3Sq, () om

Now the tape needs to start with enc(G).

Finite Model Theory Lecture 16 Spring 2025 15 /36

criptive Complexity 3S0O and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE

[e]e]e] le]ele]elele) [)

The plan for proving NP c 35S0
For simplicity, consider the language of graphs o = (E).
A graph problem P is in NP if 3 non-deterministic TM M such that:

For any graph, P(G) is true iff M has an accepting computation of
polynomial length on input enc(G) € {0,1}*.

We need to describe ¢y s.t. G =y iff M accepts G.

Let's try this, like in the proof of Trakthenbrot's theorem:

tpm =3 <3To(+,-)3T1(,-)TH(,-)ISg(-)3Sq, () om

Now the tape needs to start with enc(G).

And we need more time stamps than |Dom(G)|.

Finite Model Theory Lecture 16 Spring 2025 15 /36

Proof Details

The order relation < can only provide us with a set of size n e |[Dom(G)|.

The TM may run in time T > n. However, T is a polynomial in n.

Finite Model Theory Lecture 16 Spring 2025 16 / 36

iptive Complexity 3S0O and NP

[e]e]e]e] lele]elele)

Proof Details

The order relation < can only provide us with a set of size n e |[Dom(G)|.
The TM may run in time T > n. However, T is a polynomial in n.

For illustration, we will assume T < n3

Finite Model Theory Lecture 16

Spring 2025 16 / 36

3S0O and NP LFP(

[e]e]e]e] lele]elele)

Proof Details

The order relation < can only provide us with a set of size n e |[Dom(G)|.
The TM may run in time T > n. However, T is a polynomial in n.

For illustration, we will assume T < n3

Then we use triples (x,y,z) € (Dom(G))3 as our time stamps.

(x,y,2) < (u,v,w) is the lexicographic order.

Finite Model Theory Lecture 16 Spring 2025 16 / 36

criptive Complexity 35S0 and NP LFP(<) and PTIME

[e]e]e]e] lele]elele) [)

Proof Details

The order relation < can only provide us with a set of size n e |[Dom(G)|.

The TM may run in time T > n. However, T is a polynomial in n.

For illustration, we will assume T < n3

Then we use triples (x,y,z) € (Dom(G))3 as our time stamps.

(x,y,2) < (u,v,w) is the lexicographic order.

ming =(min, min, min) = (0,0,0)
succ(0,0,0) =(0,0,1)
succ(0,0,max) =(0,1,0)

Finite Model Theory Lecture 16 Spring 2025

16 /36

ve Complexity 35S0 and NP LFP(<) and PTIME

[e]e]e]e]e] le]elele)

Proof Details

The relations encoding the TM use triples to represent time/space:

TO(X7y7Z7u7 v, W)7 Tl(Xa)/:Za u,v, W)
S(h(va:Z)aqu(vavz)v- .

Remains to show:

@ oy can check the constraints required for the TM,

@) can initialize the tape with enc(G).

Finite Model Theory Lecture 16 Spring 2025 17 /36

riptive Complexity 3S0O and NP LFP(<) and PTIN , <) =NLOGSPACE

[e]e]e]e]e]e] Jelele)

Proof Details: Checking the Constraints for the TM

@ General consistency: every tape has exactly one symbol, the head is
on exactly one position, etc: unchanged

e At time t =(0,0,0), the TM is in the initial configuration. Need to
replace empty tape with enc(G)

@ At time t = (max, max, max), the TM is in an accepting configuration.

Finite Model Theory Lecture 16 Spring 2025 18 /36

ve Complexity 350 and NP FO(TC, <) =NLOGSPACE

0000000000

Proof Details: Checking the Constraints for the TM

@ General consistency: every tape has exactly one symbol, the head is
on exactly one position, etc: unchanged

e At time t =(0,0,0), the TM is in the initial configuration. Need to
replace empty tape with enc(G)

@ At time t = (max, max, max), the TM is in an accepting configuration.

@ The configuration at time t yields that at time t + 1.
Note that t = (x,y,z) and t+ 1= (u,v,w).

Finite Model Theory Lecture 16 Spring 2025 18 /36

3S0O and NP
0000000800

Proof Details: Computing the Successor

We need to be able to compute t + 1 from t.

Assuming t = (x,y,z) and t+ 1= (u,v,w):

succs(x,y,z,u,v,w) =777

Finite Model Theory Lecture 16 Spring 2025 19/36

ve Complexity 3S0O and NP _FP ‘and P C, <) =NLOGSPACE

[e]e]e]e]e]ele] Jele)

Proof Details: Computing the Successor

We need to be able to compute t + 1 from t.

Assuming t = (x,y,z) and t+ 1= (u,v,w):

succz(x,y,z,u,v,w) = ((x=u) A (y = v) Asucc(z,w))
V(x = uAsucc(y,v)A(z=max) A (w =min))

V(succ(x,u) A (y =max) A (v =min) A (z=max) A (w =min))

Finite Model Theory Lecture 16 Spring 2025 19 /36

criptive Complexity 3S0O and NP LFP(

) and PTIME

[e]e]e]e]e]ele]e] o) [

Encoding of the Input

It remains show how to write the input enc(G) to the tape at time t =0

Recall that |enc(G) =0"1lenc(E) |,

where enc(E) is the n x n the adjacency matrix M.

Finite Model Theory Lecture 16 Spring 2025 20/36

riptive Complexity 35S0 and NP LFP(<) and PTIME

[e]e]e]e]e]ele]e] o) [)

Encoding of the Input

It remains show how to write the input enc(G) to the tape at time t =0

Recall that |enc(G) =0"1lenc(E) |,

where enc(E) is the n x n the adjacency matrix M.

If we didn't have the prefix 0”1, then the encoding were this:

T0(070707 07X7.y): _'E(X7y)

Tl(OaOaOa vaay) = E(va)
— —
t=0 tape position

because the bit M, is at location nx + y, whose representation is (0, x,y)

Finite Model Theory Lecture 16 Spring 2025 20/36

escriptive Complexity 35S0 and NP LFP(<) and PTIME g ,<) =NLOGSPACE

[e]e]e]e]e]ele]e] o) [)

Encoding of the Input

It remains show how to write the input enc(G) to the tape at time t =0

Recall that |enc(G) =0"1lenc(E) |,

where enc(E) is the n x n the adjacency matrix M.

If we didn't have the prefix 0”1, then the encoding were this:

T0(070707 07X7.y): _'E(X7y)

Tl(OaOaOa vaay) = E(va)
— —
t=0 tape position

because the bit M, is at location nx + y, whose representation is (0, x,y)

To add the prefix 0”1 we “add” n+ 1 positions. At home

Finite Model Theory Lecture 16 Spring 2025 20/36

escriptive Complexity 3S0O and NP LFP(<) and PTIME 7 , <) =NLOGSPACE

000000000 e [)

Discussion
@ 350 = NP gives a characterization of NP independent of
computational resources (time/space).

@ Generalization:

» ¥} = sentences of the form (3--3)(V---V)---

» I} = sentences of the form (V:--¥)(3:+-3) -
Then Zi captures Zf and I'Ii captures I'If.

@ S0 = VSO is equivalent to NP = coNP, hence an open problem.
But we have seen IMSO # YMSO: Monadic NP+ Monadic coNP

Finite Model Theory Lecture 16 Spring 2025 21/36

LFP(<) and PTIME
00000000

LFP(<) = PTIME

Finite Model Theory Lecture 16 Spring 2025 22/36

LFP(<) and PTIME FO(TC, <) =NLOGSPACE

0O®@000000

Review

Fixpoint Logic, LFP extends FO with a least fixpoint predicate:

Ifpr x

where P is a fresh relational symbol that occurs positively, and ¢ is a
formula that uses P has free variables x.

Example: transitive closure T (u,v) becomes:

o7y (E(x,y) v 32(E(x,2) A T(2,y)))(u,v)

Finite Model Theory Lecture 16 Spring 2025 23/36

Review ptiv SO 2 LFP(<) and PTIME FO(
9 000 000 00800000

LFP and PTIME

Theorem (Immerman and Vardi)

(1) The data complexity of LFP is in PTIME.
(2) LFP(<) captures PTIME.

(1) remains true for LFP(<): data complexity is in PTIME.
Item (2) says that, any property that is in PTIME can be checked in LFP
assuming that the input structure also contains a linear order on the

domain.

Why do we need a linear order?

Finite Model Theory Lecture 16 Spring 2025 24 /36

350 and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE

0000000000 00800000

LFP and PTIME

Theorem (Immerman and Vardi)

(1) The data complexity of LFP is in PTIME.
(2) LFP(<) captures PTIME.

(1) remains true for LFP(<): data complexity is in PTIME.
Item (2) says that, any property that is in PTIME can be checked in LFP
assuming that the input structure also contains a linear order on the

domain.

Why do we need a linear order?
Because LFP cannot express EVEN, which is in PTIME.

Finite Model Theory Lecture 16 Spring 2025 24 /36

LFP(<) and PTIME
[e]e]e] lelelele]

Proof: LFPcPTIME

Let ¢ be an LFP sentence, and A an input structure.

We show that we can check A = ¢ in PTIME in the size of A.

Finite Model Theory Lecture 16 Spring 2025 25/36

riptive Complexity 350 and NP LFP(<) and PTIME FO(TC

Proof: LFPcPTIME

Let ¢ be an LFP sentence, and A an input structure.

We show that we can check A = ¢ in PTIME in the size of A.

Proceed by induction on ¢

e If ¢ is a grounded atom R(a, b, c) simply check if (a, b, c) € RA.

Finite Model Theory Lecture 16

Spring 2025

, <) =NLOGSPACE

25 /36

LFP(<) and PTIME FO(

[e]e]e] lele]ele)

Let ¢ be an LFP sentence, and A an input structure.
We show that we can check A = ¢ in PTIME in the size of A.

Proceed by induction on ¢
e If ¢ is a grounded atom R(a, b, c) simply check if (a, b, c) € RA.

@ If p = 3x1), then for each a € Dom(A) check A E ¢[a/x].

Finite Model Theory Lecture 16 Spring 2025 25/36

Review tive Complexity 350 and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE

0000000000) [e]e]e] lele]ele)

Proof: LFPcPTIME

Let ¢ be an LFP sentence, and A an input structure.
We show that we can check A = ¢ in PTIME in the size of A.

Proceed by induction on ¢
e If ¢ is a grounded atom R(a, b, c) simply check if (a, b, c) € RA.
@ If p = 3x1), then for each a € Dom(A) check A E ¢[a/x].

o If p=p1 Vs then ...

Finite Model Theory Lecture 16 Spring 2025 25/36

Review tive Complexity 350 and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE

0000000000) [e]e]e] lele]ele)

Proof: LFPcPTIME

Let ¢ be an LFP sentence, and A an input structure.
We show that we can check A = ¢ in PTIME in the size of A.

Proceed by induction on ¢
e If ¢ is a grounded atom R(a, b, c) simply check if (a, b, c) € RA.
@ If p = 3x1), then for each a € Dom(A) check A E ¢[a/x].
o If o =1 Vs then ...

The only interesting case is when ¢ = Ifp.

Finite Model Theory Lecture 16 Spring 2025 25/36

ve Complexity SO a > LFP(<) and PTIME ,<) =NLOGSPACE
00000000

Proof: LFPcPTIME
Assume ¢ = pr-,—7xlb(a, b,c). It is a sentence, hence a, b, c are constants.

We compute the Ifp as the limit of the Kleene sequence:

T%a, b,c) :=F
T (a, b, c) :=1p[T°](a, b,)
T%(a, b, c) :=tp[T](a, b, c)

Each line can be computed in PTIME.
If T has arity n, then the total number of steps is < |Dom(A)|".

Total runtime is in PTIME.

Finite Model Theory Lecture 16 Spring 2025 26 /36

ve Complexity 3S0 a 2 LFP(<) and PTIME FO(, <) =NLOGSPACE
0000000000 00000@00 0000000

Proof: PTIMEC LFP(<)
Consider a problem P in PTIME.

There exists a deterministic TM M that, given the encoding enc(A) of a
structure A€ STRUCT([o], runs in PTIME and accepts iff P(A) is true.

Finite Model Theory Lecture 16 Spring 2025 27 /36

ve Complexity 350 > LFP(<) and PTIME FO(
00C 000 [e]e]e]e]e] lele] [ee]¢

Proof: PTIMEC LFP(<)
Consider a problem P in PTIME.

There exists a deterministic TM M that, given the encoding enc(A) of a
structure A€ STRUCT([o], runs in PTIME and accepts iff P(A) is true.

We need to describe oy s.t. P(A) is true iff A= oy

Finite Model Theory Lecture 16 Spring 2025 27 /36

Review tive Complexity 35S0 and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE
0000000000) 00000000 0000000

Proof: PTIMEC LFP(<)
Consider a problem P in PTIME.

There exists a deterministic TM M that, given the encoding enc(A) of a
structure A€ STRUCT([o], runs in PTIME and accepts iff P(A) is true.

We need to describe oy s.t. P(A) is true iff A= oy

Proof idea: ¢p will be a fixpoint |pr0,T1:(5q)qu(¢)'

Finite Model Theory Lecture 16 Spring 2025 27 /36

Proof: PTIMEC LFP(<) Details

@ The vocabulary To, T1, H,(S5q)qeq is similar to that in the proof of
Fagin's theorem, i.e. arity depends on the degree of the polynomial.

Finite Model Theory Lecture 16 Spring 2025 28/36

Revie riptive Complexity 35S0 and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE
5 00 00000000 0000000

Proof: PTIMEC LFP(<) Details

@ The vocabulary To, T1, H,(S5q)qeq is similar to that in the proof of
Fagin's theorem, i.e. arity depends on the degree of the polynomial.

o We cannot write Ifpr, 7, (s, but need the fixpoint of a single

relation Ifpy.

)qu'

Finite Model Theory Lecture 16 Spring 2025 28/36

LFP(<) and PTIME
00000080

@ The vocabulary To, T1, H,(S5q)qeq is similar to that in the proof of
Fagin's theorem, i.e. arity depends on the degree of the polynomial.

o We cannot write Ifpr, 7, (s,
relation Ifp.

)qeq: DUt need the fixpoint of a single

@ We encode multiple relations T, T1, H, Sq using one relation K:
K=Tox Ty xHx[I4Sq

Finite Model Theory Lecture 16 Spring 2025 28/36

riptive Complexity 35S0 and NP LFP(<) and PTIME
0000000000 00000080

Proof: PTIMEC LFP(<) Details

@ The vocabulary To, T1, H,(S5q)qeq is similar to that in the proof of
Fagin's theorem, i.e. arity depends on the degree of the polynomial.

o We cannot write Ifpr, 7, (s,
relation Ifp.

)qeq: DUt need the fixpoint of a single

@ We encode multiple relations T, T1, H, Sq using one relation K:
K=Tox Ty xHx[I4Sq

o Problem: if, say, S¢; = @ then we have K = &.

Finite Model Theory Lecture 16 Spring 2025 28/36

riptive Complexity 350 a LFP(<) and PTIME FO() =NLOGSPACE
000000«) 00000080 0000000

Proof: PTIMEC LFP(<) Details

@ The vocabulary To, T1, H,(S5q)qeq is similar to that in the proof of
Fagin's theorem, i.e. arity depends on the degree of the polynomial.

o We cannot write Ifpr, 7, (s, but need the fixpoint of a single

relation Ifp.

)qu'

@ We encode multiple relations T, T1, H, Sq using one relation K:
K=Tox Ty xHx[I4Sq

o Problem: if, say, S¢; = @ then we have K = &.

To fix this, add a spurious tuple, say Sg, (max, max,---), assuming the
time never reaches (max, max,---). Now the fixpoint is Ifp, ().

Finite Model Theory Lecture 16 Spring 2025 28 /36

LFP(<) and PTIME FO(, <) =NLOGSPACE
00000000 0000000

Proof:

@ The vocabulary To, T1, H,(S5q)qeq is similar to that in the proof of
Fagin’s theorem, i.e. arity depends on the degree of the polynomial.

o We cannot write Ifpr, 7, (s, but need the fixpoint of a single

relation Ifp.

)qu'

@ We encode multiple relations T, T1, H, Sq using one relation K:
K=Tox Ty xHx[I4Sq

o Problem: if, say, S¢; = @ then we have K = &.
To fix this, add a spurious tuple, say Sg, (max, max,---), assuming the
time never reaches (max, max,---). Now the fixpoint is Ifp, (?)).

o ¢ will (1) set the tape at time 0 to enc(A), (2) for each time step t
that occurs in K, computes configuration c¢¢,1 yielded by c;.

Finite Model Theory Lecture 16 Spring 2025 28 /36

LFP(<) and PTIME
O000000e

Discussion

e LFP(<) =PTIME but LFP ¢ PTIME, e.g. cannot express EVEN.

o If we add counting quantifiers to LFP, does it capture PTIME?

Finite Model Theory Lecture 16 Spring 2025 29/36

LFP(<) and PTIME FO(TC, <) =NLOGSPACE

0O000000e

Discussion
e LFP(<) =PTIME but LFP ¢ PTIME, e.g. cannot express EVEN.

o If we add counting quantifiers to LFP, does it capture PTIME?
No: Cfow same expressive power as k-WL, hence cannot distinguish

the Cai-Fihrer-Immerman graphs Gy, H

Finite Model Theory Lecture 16 Spring 2025 29/36

ve Complexity SO and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE

0O000000e

Discussion

e LFP(<) =PTIME but LFP ¢ PTIME, e.g. cannot express EVEN.
o If we add counting quantifiers to LFP, does it capture PTIME?
No: Cfow same expressive power as k-WL, hence cannot distinguish

the Cai-Fihrer-Immerman graphs Gy, H

@ Major open problem: is there a logic for PTIME (without order)?

Finite Model Theory Lecture 16 Spring 2025 29/36

ptive Complexity 35S0 and NP LFP(<) and PTIME FO(

0000000000 0000000e

Discussion

e LFP(<) =PTIME but LFP ¢ PTIME, e.g. cannot express EVEN.

o If we add counting quantifiers to LFP, does it capture PTIME?
No: Cfow same expressive power as k-WL, hence cannot distinguish
the Cai-Fihrer-Immerman graphs Gy, H

@ Major open problem: is there a logic for PTIME (without order)?

@ Variation on LFP: the partial fixpoint pfp, (1)) does not require 1) to
be monotone in K. Defined only when the Kleene sequence converges.

FO(pfp, <) = PSPACE

Finite Model Theory Lecture 16 Spring 2025 29 /36

3SO and NP LFP(<) and PTIME) =NLOGSPACE

0O000000e

Discussion

e LFP(<) =PTIME but LFP ¢ PTIME, e.g. cannot express EVEN.

o If we add counting quantifiers to LFP, does it capture PTIME?
No: Cfow same expressive power as k-WL, hence cannot distinguish
the Cai-Fihrer-Immerman graphs Gy, H

@ Major open problem: is there a logic for PTIME (without order)?

@ Variation on LFP: the partial fixpoint pfp, (1)) does not require 1) to
be monotone in K. Defined only when the Kleene sequence converges.

FO(pfp, <) = PSPACE

@ Abiteboul and Vianu: FO(Ifp) = FO(pfp) iff PTIME=PSAPCE.

Finite Model Theory Lecture 16 Spring 2025 29 /36

FO(TC, <) =NLOGSPACE
[Jelelele]ele]

FO(TC,<) =NLOGSPACE

Finite Model Theory Lecture 16 Spring 2025 30/36

riptive Complexity 35S0 and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE
) () [e] lelele]ele}

FO with Transitive Closure

If the language LFP is too powerful, one possibility is to restrict recursion
to transitive closure

For any formula v (x,y, z) with free variables x, y, x where |x| = |y|, the
following is a formula with free variables u, v, z:

[TC(¢, x,y)(u,v)

The semantics is:

e Consider the graph with edges E(x,y) defined by %,

@ The formula checks whether (u, v) is in the transitive closure of E.

Finite Model Theory Lecture 16 Spring 2025 31/36

Examples
Graph G =(V,E)

@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)

Finite Model Theory Lecture 16 Spring 2025 32/36

Examples
Graph G =(V,E)

@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)

@ Check if a, b are in the same generation.

Finite Model Theory Lecture 16 Spring 2025 32/36

stive Complexity ER d NP X FO(TC, <) =NLOGSPACE

[e]e] lele]e]e)

Examples
Graph G =(V,E)

@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)

@ Check if a, b are in the same generation.

Ip(TC(E(x,y) A E(u,v)),x,u,y,v)) (P, p;a, b)

Finite Model Theory Lecture 16 Spring 2025 32/36

FO(TC, <) =NLOGSPACE

[e]e] lele]e]e)

Examples
Graph G =(V,E)

@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)

@ Check if a, b are in the same generation.
3p (TC(E(x,y) A E(u,v)), x,u,y,v)) (P, p, 3, b)

@ Assume the edges have a color: (x,c,y) € E has color c. Check if a, b
are connected by a path where all edges have the same color.

Finite Model Theory Lecture 16 Spring 2025 32/36

tive Complexity 3S0 and NP FO(TC, <) =NLOGSPACE

[) ¢ [e]e] lele]e]e)

Examples
Graph G =(V,E)

@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)

@ Check if a, b are in the same generation.
3p (TC(E(x,y) A E(u,v)), x,u,y,v)) (P, p, 3, b)

@ Assume the edges have a color: (x,c,y) € E has color c. Check if a, b
are connected by a path where all edges have the same color.

Jc(TC(E(x,c,y),x,y)(a, b))

Finite Model Theory Lecture 16 Spring 2025 32/36

tive Complexity 3SO and NP FO(TC, <) =NLOGSPACE

[e]e] lele]e]e)

Examples
Graph G =(V,E)

@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)

@ Check if a, b are in the same generation.
3p (TC(E(x,y) A E(u,v)), x,u,y,v)) (P, p, 3, b)

@ Assume the edges have a color: (x,c,y) € E has color c. Check if a, b
are connected by a path where all edges have the same color.

Jc(TC(E(x,c,y),x,y)(a, b))

FO(TCQ) is in stratified datalog. why?

Finite Model Theory Lecture 16 Spring 2025 32/36

3SO and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE

[) [e]e] lele]e]e)

Examples
Graph G =(V,E)

@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)

@ Check if a, b are in the same generation.
3p (TC(E(x,y) A E(u,v)), x,u,y,v)) (P, p, 3, b)

@ Assume the edges have a color: (x,c,y) € E has color c. Check if a, b
are connected by a path where all edges have the same color.

Jc(TC(E(x,c,y),x,y)(a, b))

FO(TC) is in stratified datalog. why? Cannot express WinMove game

Finite Model Theory Lecture 16 Spring 2025 32/36

3S0O and NP E FO(TC, <) =NLOGSPACE
00000000 00000000 0008000

Review tive Complexity

FO(TC,<) = NLOGSPACE

Recall: NLOGSPACE is the set of problems that can be accepted by a
non-deterministic TM with a read-only input tape and a working tape of
logarithmic size.

Theorem
FO(TC,<) = NLOGSPACE J

Finite Model Theory Lecture 16 Spring 2025 33/36

FO(TC, <) =NLOGSPACE
0000800

FO(TC,<) = NLOGSPACE

Proof (sketch) We show the inclusion NLOGSPACE c FO(TC, <).

Finite Model Theory Lecture 16 Spring 2025 34 /36

Reviey Descriptive Complexity 3 > F d P FO(TC, <) =NLOGSPACE

FO(TC, <) = NLOGSPACE
Proof (sketch) We show the inclusion NLOGSPACE c FO(TC, <).

Let M be the Turing machine, input A€ STRUCT[c], and n = |Dom(A)|.

Finite Model Theory Lecture 16 Spring 2025 34 /36

ve Complexity 350

FO(TC,<) = NLOGSPACE

FO(TC, <) =NLOGSPACE
0000800

Proof (sketch) We show the inclusion NLOGSPACE c FO(TC, <).
Let M be the Turing machine, input A€ STRUCT[c], and n = |Dom(A)|.

The working tape of M has size O(log n), hence the total number of
possible configurations is 20(°&" = nO() (polynomial).

Finite Model Theory Lecture 16 Spring 2025 34 /36

Review Descriptive Complexity 3SO and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE

,,,,,,,,,,,,,,,) [e]e]e]e]e]e]e]e) [e]e]e]e] Jele)

FO(TC, <) = NLOGSPACE
Proof (sketch) We show the inclusion NLOGSPACE c FO(TC, <).

Let M be the Turing machine, input A€ STRUCT[c], and n = |Dom(A)|.

The working tape of M has size O(log n), hence the total number of
possible configurations is 20(°&" = nO() (polynomial).

Construct the graph whose nodes are the configurations, and edges are the
yield relation.

Finite Model Theory Lecture 16 Spring 2025 34 /36

3SO and NP LFP(<) and PTIME FO(TC, <) =NLOGSPACE

0000000000 [) [e]e]e]e] Jele)

FO(TC, <) = NLOGSPACE
Proof (sketch) We show the inclusion NLOGSPACE c FO(TC, <).
Let M be the Turing machine, input A€ STRUCT[c], and n = |Dom(A)|.

The working tape of M has size O(log n), hence the total number of
possible configurations is 20(°&" = nO() (polynomial).

Construct the graph whose nodes are the configurations, and edges are the
yield relation.

M accepts A iff there exists a path from the initial configuration to some
final configuration.

Finite Model Theory Lecture 16 Spring 2025 34 /36

e oo - 3500660000 06059000 | N i
FO(TC, <) = NLOGSPACE

Proof (sketch) We show the inclusion NLOGSPACE c FO(TC, <).

Let M be the Turing machine, input A€ STRUCT[c], and n = |Dom(A)|.

The working tape of M has size O(log n), hence the total number of
possible configurations is 20(°&" = nO() (polynomial).

Construct the graph whose nodes are the configurations, and edges are the
yield relation.

M accepts A iff there exists a path from the initial configuration to some
final configuration.

This can be checked in FO(TC,<).

Finite Model Theory Lecture 16 Spring 2025 34 /36

FO(TC, <) =NLOGSPACE
[ee]elele] Jo}

FO(Det-TC, <) = NLOGSPACE

The deterministic transitive closure is restricted to outdegree < 1:

Det-TC(¢, x,y)(u, v)

where 1) satisfies: VxVyVy'((x,y,z) np(x,y',z) =y=y')

Finite Model Theory Lecture 16 Spring 2025 35/36

Review tive Complexity 3S0O and NP E FO(TC, <) =NLOGSPACE

0000000000 000C 0000 [e]e]e]e]e] o)

FO(Det-TC, <) = NLOGSPAC

The deterministic transitive closure is restricted to outdegree < 1:

Det-TC(¢, x,y)(u, v)

where 1) satisfies: VxVyVy'((x,y,z) np(x,y',z) =y=y')

Theorem
FO(Det-TC,<) = LOGSPACE J

Proof: Immediate.

Finite Model Theory Lecture 16 Spring 2025 35/36

FO(TC, <) =NLOGSPACE

[e]e]e]ele]e])

Summary

FO(+,+) = FO(<,BIT) = AC? In class

FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;

LFP(<) =PTIME

FO(PartialFixpoint, <) =PSPACE

3SO =NP

Finite Model Theory Lecture 16 Spring 2025 36 /36

	Review
	Descriptive Complexity
	SO and NP
	LFP(<) and PTIME
	FO (TC,<)=NLOGSPACE

