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Announcement

@ HWH4 (the last one!l) is posted and due on May 30.

@ No lectures on 5/26, 5/28, 6/4

@ Next (and last) lecture: Monday, 6/2.
We will do a review of the topics covered this quarter.
Please come and participate.
If you have a particular topic to discuss, post it on Ed or email me.
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Review: Encoding of a TM

Fix M= (Q,{0,1}, A, qo, QF).
Define: op = (<, To(+-), T1 (), H(+5+), (Sq(+)) qe@)

Meaning:

@ < is a total order
e To(t,p), T1(t,p): the tape content at time t position p is 0 or 1.
e H(t,p): the head at time t is on position p.

@ Sq(t): the Turing Machine is is stated g at time t.
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Review: Details of the Encoding

Fix M= (Q,{0,1}, A, qo, QF).
Define: opm = (<7 TO('?')a Tl('v ')7 H(7 ')7 (Sq('))qu)

The sentence ), asserts the following:

o General consistency: < is a total order, every tape has exactly one
symbol, the head is on exactly one position, etc.

@ At time t = min, the TM is in the initial configuration.
@ At time t = max, the TM is in an accepting configuration.

@ The configuration at time t yields that at time t+1
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Review: the Proof of Trakhtenbrot's Theorem

pm is satisfiable iff M terminates. Proof:

o If M terminates, then there exists an accepting computation history
C=q,c,...,ct. From C, we constructed a structure s.t. AE pp.

o If AE pp, then construct an accepting computation ¢y, ..., cr, by
reading the configuration along the chain 0 <1< 2.

Can we replace < with succ?
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Review: the Proof of Trakhtenbrot's Theorem

pm is satisfiable iff M terminates. Proof:

o If M terminates, then there exists an accepting computation history
C=q,c,...,ct. From C, we constructed a structure s.t. AE pp.

o If AE pp, then construct an accepting computation ¢y, ..., cr, by
reading the configuration along the chain 0 <1< 2.

Can we replace < with succ?

YES The first item doesn't change, while for the second item we only use
the (unique!) chain, and ignore any loops.

Finite Model Theory Lecture 16 Spring 2025 6/36



Descriptive Complexity
©0000

Descriptive Complexity

Finite Model Theory Lecture 16 Spring 2025 7/36



Descriptive Complexity

[e] Jele]e}

Descriptive Complexity

A problem is a function P:STRUCT[c] — {0,1}.

@ A computational complexity class is the set of problems that can be
answered within some fixed computational resources:. E.g.
LOGSPACE, PTIME, PSPACE: Turing Machine M s.t. P(A) = T iff

M accepts A.
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Descriptive Complexity

A problem is a function P:STRUCT[c] — {0,1}.

@ A computational complexity class is the set of problems that can be
answered within some fixed computational resources:. E.g.
LOGSPACE, PTIME, PSPACE: Turing Machine M s.t. P(A) = T iff
M accepts A.

@ A descriptive complexity class is the set of problems that can be
represented in some fixed logic language L. E.g. FO, LFP, 3SO, SO:
sentence ¢ s.t. P(A) =T iff AE .
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Descriptive Complexity

A problem is a function P:STRUCT[c] — {0,1}.

@ A computational complexity class is the set of problems that can be
answered within some fixed computational resources:. E.g.
LOGSPACE, PTIME, PSPACE: Turing Machine M s.t. P(A) = T iff
M accepts A.

@ A descriptive complexity class is the set of problems that can be
represented in some fixed logic language L. E.g. FO, LFP, 3SO, SO:
sentence ¢ s.t. P(A) =T iff AE .

@ We say that a logic L captures a complexity class, if they can express
precisely the same problems.
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Descriptive Complexity: Overview of Results

FO(+,*) = FO(<,BIT) = AC®

FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;

LFP(<) =PTIME

FO(PartialFixpoint, <) =PSPACE

3SO =NP
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Encodings

@ A Turing Machine, accepts a language L < {0,1}*.

@ A sentence ¢ defines a set of models € STRUCT[c].

@ To compare them, we to encode structures as strings.
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Encoding STRUCT[c] to {0,1}*

Encode A= ([n], R}, RS\, ...) as follows:
e Start with 0"1.

@ Encode R,-A using “adjacency matrix", of length n

o Thus, |enc(A) = 01"enc(R{})enc(R})--- | € {0,1}*

arity(R;)

o Length of encoding: 1+ n+ n? (R 4 parity(Re) o ... = O() = poly(n).
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Encoding STRUCT[c] to {0,1}*

Encode A= ([n], R}, RS\, ...) as follows:
e Start with 0"1.

@ Encode R,-A using “adjacency matrix", of length n

o Thus, |enc(A) = 01"enc(R{})enc(R})--- | € {0,1}*

arity(R;)

o Length of encoding: 1+ n+ n? (R 4 parity(Re) o ... = O() = poly(n).

Example:
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Encoding STRUCT[c] to {0,1}*

Encode A= ([n], R}, RS\, ...) as follows:
e Start with 0"1.

[e]e]ele] ] 0000000000 00000

@ Encode R,-A using “adjacency matrix”, of length n?ty(Ri)
o Thus, |enc(A) = 01"enc(R{})enc(R})--- | € {0,1}*
o Length of encoding: 1+ n+ n? (R 4 parity(Re) o ... = O() = poly(n).
Example:
enc(G) =0001010001010
n=3 3x3 matrix
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35S0 = NP
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3S0 and NP

SO consists of sentences 157---35,%, where 1) € FO over vocabulary
au{Sl,...,Sm}.

Theorem (Fagin)

350 = NP. J
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3S0O and NP
35S0 and NP
SO consists of sentences 157---35,%, where 1) € FO over vocabulary
au{Sl,...,Sm}.

Theorem (Fagin)
35S0 = NP.

d P =NLOGSPACE
0000000000 o ) ( eJe

We need to prove:

@ 13S0 c NP: the data complexity of any ¢ € 3SO is in NP
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3S0O and NP

SO consists of sentences 157---35,%, where 1) € FO over vocabulary
au{Sl,...,Sm}.

Theorem (Fagin)
350 = NP. J

We need to prove:

@ 13S0 c NP: the data complexity of any ¢ € 3SO is in NP

@ NP c 350: for any problem in NP, there exists a sentence ¢ € 3SO
that expresses precisely that problem.

Finite Model Theory Lecture 16 Spring 2025 13 /36



3S0O and NP
00®0000000

iSO c NP

Given: ¢ = 35;---35,,%, input structure A e STRUCT[o].
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Given: ¢ = 35;---35,,%, input structure A e STRUCT[o].

The TM starts with the input enc(A) = 0"lenc(R}')---enc(R}') on its
tape, and does the following:
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iSO c NP

Given: ¢ = 35;---35,,%, input structure A e STRUCT[o].

The TM starts with the input enc(A) = 0"lenc(R}')---enc(R}') on its
tape, and does the following:

@ Guess the encodings of 51,5, ..., and append them:
0"lenc(R{})--enc(RM)enc(S1)--enc(Sm)
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Given: ¢ = 35;---35,,%, input structure A e STRUCT[o].

The TM starts with the input enc(A) = 0"lenc(R}')---enc(R}') on its
tape, and does the following:

@ Guess the encodings of 51,5, ..., and append them:
0"lenc(R{})--enc(RM)enc(S1)--enc(Sm)

@ Evaluate the FO sentence 1 on this structure.
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The plan for proving NP c 350

For simplicity, consider the language of graphs o = (E).
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The plan for proving NP c 35S0
For simplicity, consider the language of graphs o = (E).
A graph problem P is in NP if 3 non-deterministic TM M such that:

For any graph, P(G) is true iff M has an accepting computation of
polynomial length on input enc(G) € {0,1}*.

We need to describe ¢y s.t. G =y iff M accepts G.

Let's try this, like in the proof of Trakthenbrot's theorem:

tpm =3 <3To(+,-)3T1(,-)TH(,-)ISg(-)3Sq, () om
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The plan for proving NP c 35S0
For simplicity, consider the language of graphs o = (E).
A graph problem P is in NP if 3 non-deterministic TM M such that:

For any graph, P(G) is true iff M has an accepting computation of
polynomial length on input enc(G) € {0,1}*.

We need to describe ¢y s.t. G =y iff M accepts G.

Let's try this, like in the proof of Trakthenbrot's theorem:

tpm =3 <3To(+,-)3T1(,-)TH(,-)ISg(-)3Sq, () om

Now the tape needs to start with enc(G).
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The plan for proving NP c 35S0
For simplicity, consider the language of graphs o = (E).
A graph problem P is in NP if 3 non-deterministic TM M such that:

For any graph, P(G) is true iff M has an accepting computation of
polynomial length on input enc(G) € {0,1}*.

We need to describe ¢y s.t. G =y iff M accepts G.

Let's try this, like in the proof of Trakthenbrot's theorem:

tpm =3 <3To(+,-)3T1(,-)TH(,-)ISg(-)3Sq, () om

Now the tape needs to start with enc(G).

And we need more time stamps than |Dom(G)|.
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Proof Details

The order relation < can only provide us with a set of size n e |[Dom(G)|.

The TM may run in time T > n. However, T is a polynomial in n.
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Proof Details

The order relation < can only provide us with a set of size n e |[Dom(G)|.
The TM may run in time T > n. However, T is a polynomial in n.

For illustration, we will assume T < n3
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Proof Details

The order relation < can only provide us with a set of size n e |[Dom(G)|.
The TM may run in time T > n. However, T is a polynomial in n.

For illustration, we will assume T < n3

Then we use triples (x,y,z) € (Dom(G))3 as our time stamps.

(x,y,2) < (u,v,w) is the lexicographic order.
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Proof Details

The order relation < can only provide us with a set of size n e |[Dom(G)|.

The TM may run in time T > n. However, T is a polynomial in n.

For illustration, we will assume T < n3

Then we use triples (x,y,z) € (Dom(G))3 as our time stamps.

(x,y,2) < (u,v,w) is the lexicographic order.

ming =(min, min, min) = (0,0,0)
succ(0,0,0) =(0,0,1)
succ(0,0,max) =(0,1,0)
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Proof Details

The relations encoding the TM use triples to represent time/space:

TO(X7y7Z7u7 v, W)7 Tl(Xa)/:Za u,v, W)
S(h(va:Z)aqu(vavz)v- .

Remains to show:

@ oy can check the constraints required for the TM,

@ ) can initialize the tape with enc(G).
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Proof Details: Checking the Constraints for the TM

@ General consistency: every tape has exactly one symbol, the head is
on exactly one position, etc: unchanged

e At time t =(0,0,0), the TM is in the initial configuration. Need to
replace empty tape with enc(G)

@ At time t = (max, max, max), the TM is in an accepting configuration.
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Proof Details: Checking the Constraints for the TM

@ General consistency: every tape has exactly one symbol, the head is
on exactly one position, etc: unchanged

e At time t =(0,0,0), the TM is in the initial configuration. Need to
replace empty tape with enc(G)

@ At time t = (max, max, max), the TM is in an accepting configuration.

@ The configuration at time t yields that at time t + 1.
Note that t = (x,y,z) and t+ 1= (u,v,w).
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Proof Details: Computing the Successor

We need to be able to compute t + 1 from t.

Assuming t = (x,y,z) and t+ 1= (u,v,w):

succs(x,y,z,u,v,w) =777
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Proof Details: Computing the Successor

We need to be able to compute t + 1 from t.

Assuming t = (x,y,z) and t+ 1= (u,v,w):

succz(x,y,z,u,v,w) = ((x=u) A (y = v) Asucc(z,w))
V(x = uAsucc(y,v)A(z=max) A (w =min))

V(succ(x,u) A (y =max) A (v =min) A (z=max) A (w =min))
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Encoding of the Input

It remains show how to write the input enc(G) to the tape at time t =0

Recall that |enc(G) =0"1lenc(E) |,

where enc(E) is the n x n the adjacency matrix M.
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Encoding of the Input

It remains show how to write the input enc(G) to the tape at time t =0

Recall that |enc(G) =0"1lenc(E) |,

where enc(E) is the n x n the adjacency matrix M.

If we didn't have the prefix 0”1, then the encoding were this:

T0(070707 07X7.y): _'E(X7y)

Tl(OaOaOa vaay) = E(va)
— —
t=0 tape position

because the bit M, is at location nx + y, whose representation is (0, x,y)
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Encoding of the Input

It remains show how to write the input enc(G) to the tape at time t =0

Recall that |enc(G) =0"1lenc(E) |,

where enc(E) is the n x n the adjacency matrix M.

If we didn't have the prefix 0”1, then the encoding were this:

T0(070707 07X7.y): _'E(X7y)

Tl(OaOaOa vaay) = E(va)
— —
t=0 tape position

because the bit M, is at location nx + y, whose representation is (0, x,y)

To add the prefix 0”1 we “add” n+ 1 positions. At home
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Discussion
@ 350 = NP gives a characterization of NP independent of
computational resources (time/space).

@ Generalization:

» ¥} = sentences of the form (3--3)(V---V)---

» I} = sentences of the form (V:--¥)(3:+-3) -
Then Zi captures Zf and I'Ii captures I'If.

@ S0 = VSO is equivalent to NP = coNP, hence an open problem.
But we have seen IMSO # YMSO: Monadic NP+ Monadic coNP
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LFP(<) = PTIME
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Review

Fixpoint Logic, LFP extends FO with a least fixpoint predicate:

Ifpr x

where P is a fresh relational symbol that occurs positively, and ¢ is a
formula that uses P has free variables x.

Example: transitive closure T (u,v) becomes:

o7y (E(x,y) v 32(E(x,2) A T(2,y)))(u,v)

Finite Model Theory Lecture 16 Spring 2025 23/36



Review ptiv SO 2 LFP(<) and PTIME FO(
9 000 000 00800000

LFP and PTIME

Theorem (Immerman and Vardi)

(1) The data complexity of LFP is in PTIME.
(2) LFP(<) captures PTIME.

(1) remains true for LFP(<): data complexity is in PTIME.
Item (2) says that, any property that is in PTIME can be checked in LFP
assuming that the input structure also contains a linear order on the

domain.

Why do we need a linear order?
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LFP and PTIME

Theorem (Immerman and Vardi)

(1) The data complexity of LFP is in PTIME.
(2) LFP(<) captures PTIME.

(1) remains true for LFP(<): data complexity is in PTIME.
Item (2) says that, any property that is in PTIME can be checked in LFP
assuming that the input structure also contains a linear order on the

domain.

Why do we need a linear order?
Because LFP cannot express EVEN, which is in PTIME.
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Proof: LFPcPTIME

Let ¢ be an LFP sentence, and A an input structure.

We show that we can check A = ¢ in PTIME in the size of A.
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Proof: LFPcPTIME

Let ¢ be an LFP sentence, and A an input structure.

We show that we can check A = ¢ in PTIME in the size of A.

Proceed by induction on ¢

e If ¢ is a grounded atom R(a, b, c) simply check if (a, b, c) € RA.

Finite Model Theory Lecture 16
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Let ¢ be an LFP sentence, and A an input structure.
We show that we can check A = ¢ in PTIME in the size of A.

Proceed by induction on ¢
e If ¢ is a grounded atom R(a, b, c) simply check if (a, b, c) € RA.

@ If p = 3x1), then for each a € Dom(A) check A E ¢[a/x].
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Proof: LFPcPTIME

Let ¢ be an LFP sentence, and A an input structure.
We show that we can check A = ¢ in PTIME in the size of A.

Proceed by induction on ¢
e If ¢ is a grounded atom R(a, b, c) simply check if (a, b, c) € RA.
@ If p = 3x1), then for each a € Dom(A) check A E ¢[a/x].

o If p=p1 Vs then ...
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Proof: LFPcPTIME

Let ¢ be an LFP sentence, and A an input structure.
We show that we can check A = ¢ in PTIME in the size of A.

Proceed by induction on ¢
e If ¢ is a grounded atom R(a, b, c) simply check if (a, b, c) € RA.
@ If p = 3x1), then for each a € Dom(A) check A E ¢[a/x].
o If o =1 Vs then ...

The only interesting case is when ¢ = Ifp.
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Proof: LFPcPTIME
Assume ¢ = pr-,—7xlb(a, b,c). It is a sentence, hence a, b, c are constants.

We compute the Ifp as the limit of the Kleene sequence:

T%a, b,c) :=F
T (a, b, c) :=1p[ T°](a, b, )
T%(a, b, c) :=tp[ T ](a, b, c)

Each line can be computed in PTIME.
If T has arity n, then the total number of steps is < |Dom(A)|".

Total runtime is in PTIME.
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Proof: PTIMEC LFP(<)
Consider a problem P in PTIME.

There exists a deterministic TM M that, given the encoding enc(A) of a
structure A€ STRUCT([o], runs in PTIME and accepts iff P(A) is true.
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Proof: PTIMEC LFP(<)
Consider a problem P in PTIME.

There exists a deterministic TM M that, given the encoding enc(A) of a
structure A€ STRUCT([o], runs in PTIME and accepts iff P(A) is true.

We need to describe oy s.t. P(A) is true iff A= oy
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Proof: PTIMEC LFP(<)
Consider a problem P in PTIME.

There exists a deterministic TM M that, given the encoding enc(A) of a
structure A€ STRUCT([o], runs in PTIME and accepts iff P(A) is true.

We need to describe oy s.t. P(A) is true iff A= oy

Proof idea: ¢p will be a fixpoint |pr0,T1:(5q)qu(¢)'
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Proof: PTIMEC LFP(<) Details

@ The vocabulary To, T1, H,(S5q)qeq is similar to that in the proof of
Fagin's theorem, i.e. arity depends on the degree of the polynomial.
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Proof: PTIMEC LFP(<) Details

@ The vocabulary To, T1, H,(S5q)qeq is similar to that in the proof of
Fagin's theorem, i.e. arity depends on the degree of the polynomial.

o We cannot write Ifpr, 7, (s, but need the fixpoint of a single

relation Ifpy.

)qu'
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@ The vocabulary To, T1, H,(S5q)qeq is similar to that in the proof of
Fagin's theorem, i.e. arity depends on the degree of the polynomial.

o We cannot write Ifpr, 7, (s,
relation Ifp.

)qeq: DUt need the fixpoint of a single

@ We encode multiple relations T, T1, H, Sq using one relation K:
K=Tox Ty xHx[I4Sq
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Proof: PTIMEC LFP(<) Details

@ The vocabulary To, T1, H,(S5q)qeq is similar to that in the proof of
Fagin's theorem, i.e. arity depends on the degree of the polynomial.

o We cannot write Ifpr, 7, (s,
relation Ifp.

)qeq: DUt need the fixpoint of a single

@ We encode multiple relations T, T1, H, Sq using one relation K:
K=Tox Ty xHx[I4Sq

o Problem: if, say, S¢; = @ then we have K = &.
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Proof: PTIMEC LFP(<) Details

@ The vocabulary To, T1, H,(S5q)qeq is similar to that in the proof of
Fagin's theorem, i.e. arity depends on the degree of the polynomial.

o We cannot write Ifpr, 7, (s, but need the fixpoint of a single

relation Ifp.

)qu'

@ We encode multiple relations T, T1, H, Sq using one relation K:
K=Tox Ty xHx[I4Sq

o Problem: if, say, S¢; = @ then we have K = &.

To fix this, add a spurious tuple, say Sg, (max, max,---), assuming the
time never reaches (max, max,---). Now the fixpoint is Ifp, ().
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Proof:

@ The vocabulary To, T1, H,(S5q)qeq is similar to that in the proof of
Fagin’s theorem, i.e. arity depends on the degree of the polynomial.

o We cannot write Ifpr, 7, (s, but need the fixpoint of a single

relation Ifp.

)qu'

@ We encode multiple relations T, T1, H, Sq using one relation K:
K=Tox Ty xHx[I4Sq

o Problem: if, say, S¢; = @ then we have K = &.
To fix this, add a spurious tuple, say Sg, (max, max,---), assuming the
time never reaches (max, max,---). Now the fixpoint is Ifp, (?)).

o ¢ will (1) set the tape at time 0 to enc(A), (2) for each time step t
that occurs in K, computes configuration c¢¢,1 yielded by c;.
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Discussion

e LFP(<) =PTIME but LFP ¢ PTIME, e.g. cannot express EVEN.

o If we add counting quantifiers to LFP, does it capture PTIME?
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Discussion
e LFP(<) =PTIME but LFP ¢ PTIME, e.g. cannot express EVEN.

o If we add counting quantifiers to LFP, does it capture PTIME?
No: Cfow same expressive power as k-WL, hence cannot distinguish

the Cai-Fihrer-Immerman graphs Gy, H
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Discussion

e LFP(<) =PTIME but LFP ¢ PTIME, e.g. cannot express EVEN.
o If we add counting quantifiers to LFP, does it capture PTIME?
No: Cfow same expressive power as k-WL, hence cannot distinguish

the Cai-Fihrer-Immerman graphs Gy, H

@ Major open problem: is there a logic for PTIME (without order)?
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Discussion

e LFP(<) =PTIME but LFP ¢ PTIME, e.g. cannot express EVEN.

o If we add counting quantifiers to LFP, does it capture PTIME?
No: Cfow same expressive power as k-WL, hence cannot distinguish
the Cai-Fihrer-Immerman graphs Gy, H

@ Major open problem: is there a logic for PTIME (without order)?

@ Variation on LFP: the partial fixpoint pfp, (1)) does not require 1) to
be monotone in K. Defined only when the Kleene sequence converges.

FO(pfp, <) = PSPACE
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Discussion

e LFP(<) =PTIME but LFP ¢ PTIME, e.g. cannot express EVEN.

o If we add counting quantifiers to LFP, does it capture PTIME?
No: Cfow same expressive power as k-WL, hence cannot distinguish
the Cai-Fihrer-Immerman graphs Gy, H

@ Major open problem: is there a logic for PTIME (without order)?

@ Variation on LFP: the partial fixpoint pfp, (1)) does not require 1) to
be monotone in K. Defined only when the Kleene sequence converges.

FO(pfp, <) = PSPACE

@ Abiteboul and Vianu: FO(Ifp) = FO(pfp) iff PTIME=PSAPCE.
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FO(TC,<) =NLOGSPACE
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FO with Transitive Closure

If the language LFP is too powerful, one possibility is to restrict recursion
to transitive closure

For any formula v (x,y, z) with free variables x, y, x where |x| = |y|, the
following is a formula with free variables u, v, z:

[ TC(¢, x,y)(u,v)

The semantics is:

e Consider the graph with edges E(x,y) defined by %,

@ The formula checks whether (u, v) is in the transitive closure of E.
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Examples
Graph G =(V,E)

@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)
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@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)

@ Check if a, b are in the same generation.
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Examples
Graph G =(V,E)

@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)

@ Check if a, b are in the same generation.

Ip(TC(E(x,y) A E(u,v)),x,u,y,v)) (P, p;a, b)
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Examples
Graph G =(V,E)

@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)

@ Check if a, b are in the same generation.
3p (TC(E(x,y) A E(u,v)), x,u,y,v)) (P, p, 3, b)

@ Assume the edges have a color: (x,c,y) € E has color c. Check if a, b
are connected by a path where all edges have the same color.
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Examples
Graph G =(V,E)

@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)

@ Check if a, b are in the same generation.
3p (TC(E(x,y) A E(u,v)), x,u,y,v)) (P, p, 3, b)

@ Assume the edges have a color: (x,c,y) € E has color c. Check if a, b
are connected by a path where all edges have the same color.

Jc(TC(E(x,c,y),x,y)(a, b))
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Examples
Graph G =(V,E)

@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)

@ Check if a, b are in the same generation.
3p (TC(E(x,y) A E(u,v)), x,u,y,v)) (P, p, 3, b)

@ Assume the edges have a color: (x,c,y) € E has color c. Check if a, b
are connected by a path where all edges have the same color.

Jc(TC(E(x,c,y),x,y)(a, b))

FO(TCQ) is in stratified datalog. why?
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Examples
Graph G =(V,E)

@ Check if a, b are connected by a path:
TC(E(x,y),x,y)(a,b)

@ Check if a, b are in the same generation.
3p (TC(E(x,y) A E(u,v)), x,u,y,v)) (P, p, 3, b)

@ Assume the edges have a color: (x,c,y) € E has color c. Check if a, b
are connected by a path where all edges have the same color.

Jc(TC(E(x,c,y),x,y)(a, b))

FO(TC) is in stratified datalog. why? Cannot express WinMove game
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Review tive Complexity

FO(TC,<) = NLOGSPACE

Recall: NLOGSPACE is the set of problems that can be accepted by a
non-deterministic TM with a read-only input tape and a working tape of
logarithmic size.

Theorem
FO(TC,<) = NLOGSPACE J
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FO(TC,<) = NLOGSPACE

Proof (sketch) We show the inclusion NLOGSPACE c FO(TC, <).
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FO(TC, <) = NLOGSPACE
Proof (sketch) We show the inclusion NLOGSPACE c FO(TC, <).

Let M be the Turing machine, input A€ STRUCT[c], and n = |Dom(A)|.
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FO(TC, <) =NLOGSPACE
0000800

Proof (sketch) We show the inclusion NLOGSPACE c FO(TC, <).
Let M be the Turing machine, input A€ STRUCT[c], and n = |Dom(A)|.

The working tape of M has size O(log n), hence the total number of
possible configurations is 20(°&" = nO() (polynomial).
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FO(TC, <) = NLOGSPACE
Proof (sketch) We show the inclusion NLOGSPACE c FO(TC, <).

Let M be the Turing machine, input A€ STRUCT[c], and n = |Dom(A)|.

The working tape of M has size O(log n), hence the total number of
possible configurations is 20(°&" = nO() (polynomial).

Construct the graph whose nodes are the configurations, and edges are the
yield relation.
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FO(TC, <) = NLOGSPACE
Proof (sketch) We show the inclusion NLOGSPACE c FO(TC, <).
Let M be the Turing machine, input A€ STRUCT[c], and n = |Dom(A)|.

The working tape of M has size O(log n), hence the total number of
possible configurations is 20(°&" = nO() (polynomial).

Construct the graph whose nodes are the configurations, and edges are the
yield relation.

M accepts A iff there exists a path from the initial configuration to some
final configuration.
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FO(TC, <) = NLOGSPACE

Proof (sketch) We show the inclusion NLOGSPACE c FO(TC, <).

Let M be the Turing machine, input A€ STRUCT[c], and n = |Dom(A)|.

The working tape of M has size O(log n), hence the total number of
possible configurations is 20(°&" = nO() (polynomial).

Construct the graph whose nodes are the configurations, and edges are the
yield relation.

M accepts A iff there exists a path from the initial configuration to some
final configuration.

This can be checked in FO(TC,<).
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FO(Det-TC, <) = NLOGSPACE

The deterministic transitive closure is restricted to outdegree < 1:

Det-TC(¢, x,y)(u, v)

where 1) satisfies: VxVyVy'((x,y,z) np(x,y',z) =y=y')
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FO(Det-TC, <) = NLOGSPAC

The deterministic transitive closure is restricted to outdegree < 1:

Det-TC(¢, x,y)(u, v)

where 1) satisfies: VxVyVy'((x,y,z) np(x,y',z) =y=y')

Theorem
FO(Det-TC,<) = LOGSPACE J

Proof: Immediate.
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Summary

FO(+,+) = FO(<,BIT) = AC? In class

FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;

LFP(<) =PTIME

FO(PartialFixpoint, <) =PSPACE

3SO =NP
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