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Announcement

HW4 (the last one!!) is posted and due on May 30.

No lectures on 5/26, 5/28, 6/4

Next (and last) lecture: Monday, 6/2.
We will do a review of the topics covered this quarter.
Please come and participate.
If you have a particular topic to discuss, post it on Ed or email me.
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Review: Encoding of a TM

Fix M = (Q,{0,1},∆,q0,QF ).
Define: σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

Meaning:

< is a total order

T0(t,p),T1(t,p): the tape content at time t position p is 0 or 1.

H(t,p): the head at time t is on position p.

Sq(t): the Turing Machine is is stated q at time t.
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Review: Details of the Encoding

Fix M = (Q,{0,1},∆,q0,QF ).
Define: σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

The sentence φM asserts the following:

General consistency: < is a total order, every tape has exactly one
symbol, the head is on exactly one position, etc.

At time t = min, the TM is in the initial configuration.

At time t = max, the TM is in an accepting configuration.

The configuration at time t yields that at time t + 1
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Review: the Proof of Trakhtenbrot’s Theorem

φM is satisfiable iff M terminates. Proof:

If M terminates, then there exists an accepting computation history
C = c1, c2, . . . , cT . From C , we constructed a structure s.t. A ⊧ φM .

If A ⊧ φM , then construct an accepting computation c1, . . . , cT , by
reading the configuration along the chain 0 < 1 < 2⋯

Can we replace < with succ?

YES The first item doesn’t change, while for the second item we only use
the (unique!) chain, and ignore any loops.
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Descriptive Complexity
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Descriptive Complexity

A problem is a function P ∶ STRUCT[σ]→ {0,1}.

A computational complexity class is the set of problems that can be
answered within some fixed computational resources:. E.g.
LOGSPACE, PTIME, PSPACE: Turing Machine M s.t. P(A) = T iff
M accepts A.

A descriptive complexity class is the set of problems that can be
represented in some fixed logic language L. E.g. FO, LFP, ∃SO, SO:
sentence φ s.t. P(A) = T iff A ⊧ φ.

We say that a logic L captures a complexity class, if they can express
precisely the same problems.
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Descriptive Complexity: Overview of Results

FO(+,∗) = FO(<,BIT) = AC 0

FO(det-TC,<) =LOGSPACE, and FO(TC,<) =NLOGSPACE;

LFP(<) =PTIME

FO(PartialFixpoint,<) =PSPACE

∃SO =NP
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Encodings

A Turing Machine, accepts a language L ⊆ {0,1}∗.

A sentence φ defines a set of models ⊆ STRUCT[σ].

To compare them, we to encode structures as strings.
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Encoding STRUCT[σ] to {0,1}∗

Encode A = ([n],RA
1 ,R

A
2 , . . .) as follows:

Start with 0n1.

Encode RA
i using “adjacency matrix”, of length narity(Ri)

Thus, enc(A) = 01nenc(RA
1 )enc(RA

2 )⋯ ∈ {0,1}∗

Length of encoding: 1+ n + narity(R1) + narity(R2) +⋯ = nO(1) = poly(n).

Example:

enc(G) = 0001±
n=3

010001010
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3×3 matrix
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∃SO = NP
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∃SO and NP

∃SO consists of sentences ∃S1⋯∃Smψ, where ψ ∈ FO over vocabulary
σ ∪ {S1, . . . ,Sm}.

Theorem (Fagin)

∃SO = NP.

We need to prove:

∃SO ⊆ NP: the data complexity of any φ ∈ ∃SO is in NP

NP ⊆ ∃SO: for any problem in NP, there exists a sentence ψ ∈ ∃SO
that expresses precisely that problem.
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∃SO ⊆ NP

Given: φ = ∃S1⋯∃Smψ, input structure A ∈ STRUCT[σ].

The TM starts with the input enc(A) = 0n1enc(RA
1 )⋯enc(RA

k ) on its
tape, and does the following:

Guess the encodings of S1,S2, . . ., and append them:
0n1enc(RA

1 )⋯enc(RA
k )enc(S1)⋯enc(Sm)

Evaluate the FO sentence ψ on this structure.
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The plan for proving NP ⊆ ∃SO

For simplicity, consider the language of graphs σ = (E).

A graph problem P is in NP if ∃ non-deterministic TM M such that:

For any graph, P(G) is true iff M has an accepting computation of
polynomial length on input enc(G) ∈ {0,1}∗.

We need to describe ψM s.t. G ⊧ ψM iff M accepts G .

Let’s try this, like in the proof of Trakthenbrot’s theorem:

ψM =∃ < ∃T0(⋅, ⋅)∃T1(⋅, ⋅)∃H(⋅, ⋅)∃Sq0(⋅)∃Sq1(⋅)⋯φM

Now the tape needs to start with enc(G).

And we need more time stamps than ∣Dom(G)∣.
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Proof Details

The order relation < can only provide us with a set of size n
def= ∣Dom(G)∣.

The TM may run in time T > n. However, T is a polynomial in n.

For illustration, we will assume T ≤ n3.

Then we use triples (x , y , z) ∈ (Dom(G))3 as our time stamps.

(x , y , z) < (u, v ,w) is the lexicographic order.

min3 =(min,min,min) = (0,0,0)
succ(0,0,0) =(0,0,1)

succ(0,0,max) =(0,1,0)
. . .
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Proof Details

The relations encoding the TM use triples to represent time/space:

T0(x , y , z ,u, v ,w),T1(x , y , z ,u, v ,w)
Sq1(x , y , z),Sq2(x , y , z), . . .

Remains to show:

φM can check the constraints required for the TM,

φM can initialize the tape with enc(G).
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Proof Details: Checking the Constraints for the TM

General consistency: every tape has exactly one symbol, the head is
on exactly one position, etc: unchanged

At time t = (0,0,0), the TM is in the initial configuration. Need to
replace empty tape with enc(G)

At time t = (max,max,max), the TM is in an accepting configuration.

The configuration at time t yields that at time t + 1.
Note that t = (x , y , z) and t + 1 = (u, v ,w).
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Proof Details: Computing the Successor

We need to be able to compute t + 1 from t.

Assuming t = (x , y , z) and t + 1 = (u, v ,w):

succ3(x ,y , z ,u, v ,w) = ???

((x = u) ∧ (y = v) ∧ succ(z ,w))
∨(x = u ∧ succ(y , v) ∧ (z = max) ∧ (w = min))
∨(succ(x ,u) ∧ (y = max) ∧ (v = min) ∧ (z = max) ∧ (w = min))
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Encoding of the Input

It remains show how to write the input enc(G) to the tape at time t = 0

Recall that enc(G) = 0n1enc(E) ,
where enc(E) is the n × n the adjacency matrix M.

If we didn’t have the prefix 0n1, then the encoding were this:

T0(0,0,0, 0, x , y) = ¬E(x , y)
T1 (0,0,0
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

t=0

, 0, x , y)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

tape position

= E(x , y)

because the bit Mxy is at location nx + y , whose representation is (0, x , y)

To add the prefix 0n1 we “add” n + 1 positions. At home
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Discussion

∃SO = NP gives a characterization of NP independent of
computational resources (time/space).

Generalization:

▸ Σ1
k = sentences of the form (∃⋯∃)(∀⋯∀)⋯

▸ Π1
k = sentences of the form (∀⋯∀)(∃⋯∃)⋯

Then Σ1
k captures ΣP

k and Π1
k captures ΠP

k .

∃SO = ∀SO is equivalent to NP = coNP, hence an open problem.
But we have seen ∃MSO ≠ ∀MSO: Monadic NP≠ Monadic coNP
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LFP(<) = PTIME
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Review

Fixpoint Logic, LFP extends FO with a least fixpoint predicate:

lfpT ,xφ

where P is a fresh relational symbol that occurs positively, and φ is a
formula that uses P has free variables x .

Example: transitive closure T (u, v) becomes:

lfpT ,x ,y(E(x , y) ∨ ∃z(E(x , z) ∧T (z , y)))(u, v)
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LFP and PTIME

Theorem (Immerman and Vardi)

(1) The data complexity of LFP is in PTIME.
(2) LFP(<) captures PTIME.

(1) remains true for LFP(<): data complexity is in PTIME.

Item (2) says that, any property that is in PTIME can be checked in LFP
assuming that the input structure also contains a linear order on the
domain.

Why do we need a linear order?

Because LFP cannot express EVEN, which is in PTIME.
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Proof: LFP⊆PTIME

Let φ be an LFP sentence, and A an input structure.

We show that we can check A ⊧ φ in PTIME in the size of A.

Proceed by induction on φ

If φ is a grounded atom R(a,b, c) simply check if (a,b, c) ∈ RA.

If φ = ∃xψ, then for each a ∈ Dom(A) check A ⊧ ψ[a/x].

If φ = φ1 ∨ φ2 then . . ..

The only interesting case is when φ = lfp.
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Proof: LFP⊆PTIME

Assume φ = lfpT ,xψ(a,b, c). It is a sentence, hence a,b, c are constants.

We compute the lfp as the limit of the Kleene sequence:

T 0(a,b, c) ∶=F
T 1(a,b, c) ∶=ψ[T 0](a,b, c)
T 2(a,b, c) ∶=ψ[T 1](a,b, c)

. . .

Each line can be computed in PTIME.

If T has arity n, then the total number of steps is ≤ ∣Dom(A)∣n.

Total runtime is in PTIME.
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Proof: PTIME⊆ LFP(<)

Consider a problem P in PTIME.

There exists a deterministic TM M that, given the encoding enc(A) of a
structure A ∈ STRUCT[σ], runs in PTIME and accepts iff P(A) is true.

We need to describe φM s.t. P(A) is true iff A ⊧ φM

Proof idea: φM will be a fixpoint lfpT0,T1,(Sq)q∈Q(ψ).
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Review Descriptive Complexity ∃SO and NP LFP(<) and PTIME FO(TC,<) =NLOGSPACE

Proof: PTIME⊆ LFP(<) Details

The vocabulary T0,T1,H, (Sq)q∈Q is similar to that in the proof of
Fagin’s theorem, i.e. arity depends on the degree of the polynomial.

We cannot write lfpT0,T1,(Sq)q∈Q , but need the fixpoint of a single
relation lfpK .

We encode multiple relations T0,T1,H,Sq using one relation K :
K = T0 ×T1 ×H ×∏q Sq

Problem: if, say, Sq5 = ∅ then we have K = ∅.
To fix this, add a spurious tuple, say Sq5(max,max,⋯), assuming the
time never reaches (max,max,⋯). Now the fixpoint is lfpK(ψ).

ψ will (1) set the tape at time 0 to enc(A), (2) for each time step t
that occurs in K , computes configuration ct+1 yielded by ct .
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Review Descriptive Complexity ∃SO and NP LFP(<) and PTIME FO(TC,<) =NLOGSPACE

Discussion

LFP(<) =PTIME but LFP ⊊ PTIME , e.g. cannot express EVEN.

If we add counting quantifiers to LFP, does it capture PTIME?

No: C k∞ω same expressive power as k-WL, hence cannot distinguish
the Cai-Führer-Immerman graphs Gk ,Hk

Major open problem: is there a logic for PTIME (without order)?

Variation on LFP: the partial fixpoint pfpk(ψ) does not require ψ to
be monotone in K . Defined only when the Kleene sequence converges.

FO(pfp,<) = PSPACE

Abiteboul and Vianu: FO(lfp) = FO(pfp) iff PTIME=PSAPCE.
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FO(TC,<) =NLOGSPACE
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Review Descriptive Complexity ∃SO and NP LFP(<) and PTIME FO(TC,<) =NLOGSPACE

FO with Transitive Closure

If the language LFP is too powerful, one possibility is to restrict recursion
to transitive closure

For any formula ψ(x ,y , z) with free variables x ,y ,x where ∣x ∣ = ∣y ∣, the
following is a formula with free variables u,v , z :

TC(ψ,x ,y)(u,v)

The semantics is:

Consider the graph with edges E(x ,y) defined by ψ,

The formula checks whether (u,v) is in the transitive closure of E .
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Review Descriptive Complexity ∃SO and NP LFP(<) and PTIME FO(TC,<) =NLOGSPACE

Examples

Graph G = (V ,E)

Check if a,b are connected by a path:
TC(E(x , y), x , y)(a,b)

Check if a,b are in the same generation.

∃p (TC((E(x , y) ∧ E(u, v)), x ,u, y , v)) (p,p, a,b)

Assume the edges have a color: (x , c, y) ∈ E has color c . Check if a,b
are connected by a path where all edges have the same color.

∃c(TC(E(x , c, y), x , y)(a,b))

FO(TC) is in stratified datalog. why? Cannot express WinMove game
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Review Descriptive Complexity ∃SO and NP LFP(<) and PTIME FO(TC,<) =NLOGSPACE

FO(TC,<) = NLOGSPACE

Recall: NLOGSPACE is the set of problems that can be accepted by a
non-deterministic TM with a read-only input tape and a working tape of
logarithmic size.

Theorem

FO(TC,<) = NLOGSPACE
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Review Descriptive Complexity ∃SO and NP LFP(<) and PTIME FO(TC,<) =NLOGSPACE

FO(TC,<) = NLOGSPACE

Proof (sketch) We show the inclusion NLOGSPACE ⊆ FO(TC,<).

Let M be the Turing machine, input A ∈ STRUCT[σ], and n = ∣Dom(A)∣.

The working tape of M has size O(log n), hence the total number of
possible configurations is 2O(log n) = nO(1) (polynomial).

Construct the graph whose nodes are the configurations, and edges are the
yield relation.

M accepts A iff there exists a path from the initial configuration to some
final configuration.

This can be checked in FO(TC,<).
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FO(TC,<) = NLOGSPACE

Proof (sketch) We show the inclusion NLOGSPACE ⊆ FO(TC,<).
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The working tape of M has size O(log n), hence the total number of
possible configurations is 2O(log n) = nO(1) (polynomial).
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yield relation.
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FO(Det-TC,<) = NLOGSPACE

The deterministic transitive closure is restricted to outdegree ≤ 1:

Det-TC(ψ,x ,y)(u,v)

where ψ satisfies: ∀x∀y∀y ′(ψ(x ,y , z) ∧ ψ(x ,y ′, z)⇒ y = y ′)

Theorem

FO(Det-TC,<) = LOGSPACE

Proof: Immediate.
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Summary

FO(+,∗) = FO(<,BIT) = AC 0 In class

FO(det-TC,<) =LOGSPACE, and FO(TC,<) =NLOGSPACE;

LFP(<) =PTIME

FO(PartialFixpoint,<) =PSPACE

∃SO =NP
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