Descriptive	

Finite Model Theory Lecture 16: Descriptive Complexity

Spring 2025

Announcement

• HW4 (the last one!!) is posted and due on May 30.

• No lectures on 5/26, 5/28, 6/4

Next (and last) lecture: Monday, 6/2.
 We will do a review of the topics covered this quarter.
 Please come and participate.
 If you have a particular topic to discuss, post it on Ed or email me.

Review ●000	Descriptive Complexity	∃SO and NP 0000000000	LFP(<) and PTIME 00000000	FO(TC, <) =NLOGSPACE

Review

Review: Encoding of a TM

Fix $M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$. Define: $\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$

Meaning:

- < is a total order
- $T_0(t,p), T_1(t,p)$: the tape content at time t position p is 0 or 1.
- H(t, p): the head at time t is on position p.
- $S_q(t)$: the Turing Machine is is stated q at time t.

Review: Details of the Encoding

Fix $M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$. Define: $\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$

The sentence φ_M asserts the following:

- General consistency: < is a total order, every tape has exactly one symbol, the head is on exactly one position, etc.
- At time *t* = min, the TM is in the initial configuration.
- At time *t* = max, the TM is in an accepting configuration.
- The configuration at time t yields that at time t + 1

Review

Review: the Proof of Trakhtenbrot's Theorem

 φ_M is satisfiable iff *M* terminates. **Proof:**

- If *M* terminates, then there exists an accepting computation history $C = c_1, c_2, ..., c_T$. From *C*, we constructed a structure s.t. $A \models \varphi_M$.
- If A ⊨ φ_M, then construct an accepting computation c₁,..., c_T, by reading the configuration along the chain 0 < 1 < 2…

Can we replace < with succ?

Review

Review: the Proof of Trakhtenbrot's Theorem

 φ_M is satisfiable iff *M* terminates. **Proof:**

- If *M* terminates, then there exists an accepting computation history $C = c_1, c_2, \ldots, c_T$. From *C*, we constructed a structure s.t. $A \models \varphi_M$.
- If A ⊨ φ_M, then construct an accepting computation c₁,..., c_T, by reading the configuration along the chain 0 < 1 < 2…

Can we replace < with succ?

YES The first item doesn't change, while for the second item we only use the (unique!) chain, and ignore any loops.

Review Descriptive Complexity	∃SO and NP 0000000000	LFP(<) and PTIME 00000000
-------------------------------	--------------------------	------------------------------

Descriptive Complexity

Descriptive Complexity

A problem is a function $P: \mathsf{STRUCT}[\sigma] \rightarrow \{0,1\}.$

A computational complexity class is the set of problems that can be answered within some fixed computational resources:. E.g. LOGSPACE, PTIME, PSPACE: Turing Machine M s.t. P(A) = T iff M accepts A.

00000

Descriptive Complexity

A problem is a function $P: STRUCT[\sigma] \rightarrow \{0,1\}$.

- A computational complexity class is the set of problems that can be answered within some fixed computational resources:. E.g. LOGSPACE, PTIME, PSPACE: Turing Machine M s.t. P(A) = T iff M accepts A.
- A descriptive complexity class is the set of problems that can be represented in some fixed logic language L. E.g. FO, LFP, ∃SO, SO: sentence φ s.t. P(A) = T iff A ⊨ φ.

00000

Descriptive Complexity

A problem is a function $P: STRUCT[\sigma] \rightarrow \{0,1\}$.

- A computational complexity class is the set of problems that can be answered within some fixed computational resources:. E.g. LOGSPACE, PTIME, PSPACE: Turing Machine M s.t. P(A) = T iff M accepts A.
- A descriptive complexity class is the set of problems that can be represented in some fixed logic language L. E.g. FO, LFP, ∃SO, SO: sentence φ s.t. P(A) = T iff A ⊨ φ.
- We say that a logic *L* captures a complexity class, if they can express precisely the same problems.

Descriptive Complexity: Overview of Results

- FO(+,*) = FO(<, BIT) = AC⁰
- FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;
- *LFP*(<) =PTIME
- FO(PartialFixpoint, <) = PSPACE
- ∃SO =NP

9/36

Encodings

• A Turing Machine, accepts a language $L \subseteq \{0, 1\}^*$.

• A sentence φ defines a set of models \subseteq STRUCT[σ].

• To compare them, we to encode structures as strings.

Encoding STRUCT[σ] to $\{0,1\}^*$

Encode $\mathbf{A} = ([n], R_1^A, R_2^A, \ldots)$ as follows:

- Start with 0ⁿ1.
- Encode R_i^A using "adjacency matrix", of length $n^{\operatorname{arity}(R_i)}$

• Thus,
$$enc(\mathbf{A}) = 01^n enc(R_1^A) enc(R_2^A) \cdots \in \{0,1\}^*$$

• Length of encoding: $1 + n + n^{\operatorname{arity}(R_1)} + n^{\operatorname{arity}(R_2)} + \cdots = n^{O(1)} = \operatorname{poly}(n)$.

Encoding STRUCT[σ] to $\{0,1\}^*$

Encode $\mathbf{A} = ([n], R_1^A, R_2^A, \ldots)$ as follows:

- Start with 0ⁿ1.
- Encode R_i^A using "adjacency matrix", of length $n^{\operatorname{arity}(R_i)}$

• Thus,
$$enc(\mathbf{A}) = 01^n enc(R_1^A) enc(R_2^A) \cdots \in \{0,1\}^*$$

• Length of encoding: $1 + n + n^{\operatorname{arity}(R_1)} + n^{\operatorname{arity}(R_2)} + \cdots = n^{O(1)} = \operatorname{poly}(n)$.

Example:

Encoding STRUCT[σ] to {0,1}*

Encode $\mathbf{A} = ([n], R_1^A, R_2^A, \ldots)$ as follows:

- Start with $0^n 1$.
- Encode R_i^A using "adjacency matrix", of length $n^{\operatorname{arity}(R_i)}$

• Thus,
$$enc(\mathbf{A}) = 01^n enc(R_1^A) enc(R_2^A) \cdots \in \{0,1\}^*$$

• Length of encoding: $1 + n + n^{\operatorname{arity}(R_1)} + n^{\operatorname{arity}(R_2)} + \dots = n^{O(1)} = \operatorname{polv}(n)$.

Example:

$$\operatorname{enc}(G) = \underbrace{0001}_{n=3} \underbrace{010001010}_{3\times 3 \text{ matrix}}$$

Review 0000	Descriptive Complexity	∃SO and NP ●000000000	LFP(<) and PTIME 00000000	FO(TC, <) =NLOGSPACE

$\exists SO = NP$

∃SO and NP

 \exists SO consists of sentences $\exists S_1 \cdots \exists S_m \psi$, where $\psi \in$ FO over vocabulary $\sigma \cup \{S_1, \ldots, S_m\}$.

Theorem (Fagin) $\exists SO = NP.$

∃SO and NP

 \exists SO consists of sentences $\exists S_1 \cdots \exists S_m \psi$, where $\psi \in$ FO over vocabulary $\sigma \cup \{S_1, \ldots, S_m\}$.

Theorem (Fagin) $\exists SO = NP.$

We need to prove:

• \exists SO \subseteq *NP*: the data complexity of any $\varphi \in \exists$ SO is in NP

BSO and **NP**

 \exists SO consists of sentences $\exists S_1 \cdots \exists S_m \psi$, where $\psi \in$ FO over vocabulary $\sigma \cup \{S_1, \ldots, S_m\}$.

Theorem (Fagin) $\exists SO = NP.$

We need to prove:

- \exists SO \subseteq *NP*: the data complexity of any $\varphi \in \exists$ SO is in NP
- NP ⊆ ∃SO: for any problem in NP, there exists a sentence ψ ∈ ∃SO that expresses precisely that problem.

Given: $\varphi = \exists S_1 \cdots \exists S_m \psi$, input structure $\mathbf{A} \in \text{STRUCT}[\sigma]$.

$\exists SO \subseteq NP$

Given: $\varphi = \exists S_1 \cdots \exists S_m \psi$, input structure $\boldsymbol{A} \in \text{STRUCT}[\sigma]$.

The TM starts with the input $enc(\mathbf{A}) = 0^{n} 1enc(R_{1}^{A}) \cdots enc(R_{k}^{A})$ on its tape, and does the following:

$\exists SO \subseteq NP$

Given: $\varphi = \exists S_1 \cdots \exists S_m \psi$, input structure $\mathbf{A} \in \text{STRUCT}[\sigma]$.

The TM starts with the input $enc(\mathbf{A}) = 0^n 1enc(R_1^A) \cdots enc(R_k^A)$ on its tape, and does the following:

• Guess the encodings of S_1, S_2, \ldots , and append them: $0^n 1 \operatorname{enc}(R_1^A) \cdots \operatorname{enc}(R_k^A) \operatorname{enc}(S_1) \cdots \operatorname{enc}(S_m)$

$\exists SO \subseteq NP$

Given: $\varphi = \exists S_1 \cdots \exists S_m \psi$, input structure $\mathbf{A} \in \mathsf{STRUCT}[\sigma]$.

The TM starts with the input $enc(\mathbf{A}) = 0^n 1enc(R_1^A) \cdots enc(R_k^A)$ on its tape, and does the following:

- Guess the encodings of $S_1, S_2, ...,$ and append them: $0^n 1 \operatorname{enc}(R_1^A) \cdots \operatorname{enc}(R_k^A) \operatorname{enc}(S_1) \cdots \operatorname{enc}(S_m)$
- Evaluate the FO sentence ψ on this structure.

For simplicity, consider the language of graphs $\sigma = (E)$.

For simplicity, consider the language of graphs $\sigma = (E)$.

A graph problem P is in NP if \exists non-deterministic TM M such that:

For any graph, P(G) is true iff M has an accepting computation of polynomial length on input $enc(G) \in \{0,1\}^*$.

We need to describe ψ_M s.t. $G \vDash \psi_M$ iff M accepts G.

Let's try this, like in the proof of Trakthenbrot's theorem:

 $\psi_{M} = \exists < \exists T_{0}(\cdot, \cdot) \exists T_{1}(\cdot, \cdot) \exists H(\cdot, \cdot) \exists S_{q_{0}}(\cdot) \exists S_{q_{1}}(\cdot) \cdots \varphi_{M}$

For simplicity, consider the language of graphs $\sigma = (E)$.

A graph problem P is in NP if \exists non-deterministic TM M such that:

For any graph, P(G) is true iff M has an accepting computation of polynomial length on input $enc(G) \in \{0,1\}^*$.

We need to describe ψ_M s.t. $G \vDash \psi_M$ iff M accepts G.

Let's try this, like in the proof of Trakthenbrot's theorem:

 $\psi_{M} = \exists < \exists T_{0}(\cdot, \cdot) \exists T_{1}(\cdot, \cdot) \exists H(\cdot, \cdot) \exists S_{q_{0}}(\cdot) \exists S_{q_{1}}(\cdot) \cdots \varphi_{M}$

Now the tape needs to start with enc(G).

For simplicity, consider the language of graphs $\sigma = (E)$.

A graph problem P is in NP if \exists non-deterministic TM M such that:

For any graph, P(G) is true iff M has an accepting computation of polynomial length on input $enc(G) \in \{0,1\}^*$.

We need to describe ψ_M s.t. $G \vDash \psi_M$ iff M accepts G.

Let's try this, like in the proof of Trakthenbrot's theorem:

 $\psi_{M} = \exists < \exists T_{0}(\cdot, \cdot) \exists T_{1}(\cdot, \cdot) \exists H(\cdot, \cdot) \exists S_{q_{0}}(\cdot) \exists S_{q_{1}}(\cdot) \cdots \varphi_{M}$

Now the tape needs to start with enc(G).

And we need more time stamps than |Dom(G)|.

The order relation < can only provide us with a set of size $n \stackrel{\text{def}}{=} |\text{Dom}(G)|$.

The TM may run in time T > n. However, T is a polynomial in n.

The order relation < can only provide us with a set of size $n \stackrel{\text{def}}{=} |\text{Dom}(G)|$.

The TM may run in time T > n. However, T is a polynomial in n.

For illustration, we will assume $T \le n^3$.

The order relation < can only provide us with a set of size $n \stackrel{\text{def}}{=} |\text{Dom}(G)|$.

The TM may run in time T > n. However, T is a polynomial in n.

For illustration, we will assume $T \leq n^3$.

Then we use triples $(x, y, z) \in (\text{Dom}(G))^3$ as our time stamps.

(x, y, z) < (u, v, w) is the lexicographic order.

The order relation < can only provide us with a set of size $n \stackrel{\text{def}}{=} |\text{Dom}(G)|$.

The TM may run in time T > n. However, T is a polynomial in n.

For illustration, we will assume $T \leq n^3$.

Then we use triples $(x, y, z) \in (\text{Dom}(G))^3$ as our time stamps.

. . .

(x, y, z) < (u, v, w) is the lexicographic order.

 $\min_{3} = (\min, \min, \min) = (0, 0, 0)$ succ(0, 0, 0) = (0, 0, 1) succ(0, 0, max) = (0, 1, 0)

The relations encoding the TM use triples to represent time/space:

$$T_0(x, y, z, u, v, w), T_1(x, y, z, u, v, w)$$

$$S_{q_1}(x, y, z), S_{q_2}(x, y, z), \dots$$

Remains to show:

- φ_M can check the constraints required for the TM,
- φ_M can initialize the tape with enc(G).

Proof Details: Checking the Constraints for the TM

- General consistency: every tape has exactly one symbol, the head is on exactly one position, etc: unchanged
- At time t = (0,0,0), the TM is in the initial configuration. Need to replace empty tape with enc(G)
- At time $t = (\max, \max, \max)$, the TM is in an accepting configuration.

Proof Details: Checking the Constraints for the TM

- General consistency: every tape has exactly one symbol, the head is on exactly one position, etc: unchanged
- At time t = (0,0,0), the TM is in the initial configuration. Need to replace empty tape with enc(G)
- At time *t* = (max, max, max), the TM is in an accepting configuration.
- The configuration at time t yields that at time t + 1.
 Note that t = (x, y, z) and t + 1 = (u, v, w).

Proof Details: Computing the Successor

We need to be able to compute t + 1 from t.

Assuming t = (x, y, z) and t + 1 = (u, v, w):

 $succ_3(x,y,z,u,v,w) = ???$
Proof Details: Computing the Successor

We need to be able to compute t + 1 from t.

Assuming
$$t = (x, y, z)$$
 and $t + 1 = (u, v, w)$:

$$succ_{3}(x, y, z, u, v, w) = ((x = u) \land (y = v) \land succ(z, w))$$
$$\lor (x = u \land succ(y, v) \land (z = max) \land (w = min))$$
$$\lor (succ(x, u) \land (y = max) \land (v = min) \land (z = max) \land (w = min))$$

Encoding of the Input

It remains show how to write the input enc(G) to the tape at time t = 0

Recall that $enc(G) = 0^{n} 1enc(E)$, where enc(E) is the $n \times n$ the adjacency matrix M.

Encoding of the Input

It remains show how to write the input enc(G) to the tape at time t = 0

Recall that $enc(G) = 0^{n} 1enc(E)$, where enc(E) is the $n \times n$ the adjacency matrix M.

If we didn't have the prefix $0^{n}1$, then the encoding were this:

$$T_{0}(0,0,0, 0, x, y) = \neg E(x, y)$$

$$T_{1}(\underbrace{(0,0,0, }_{t=0}, \underbrace{0, x, y}_{t=0}) = E(x, y)$$

because the bit M_{xy} is at location nx + y, whose representation is (0, x, y)

Encoding of the Input

It remains show how to write the input enc(G) to the tape at time t = 0

Recall that $enc(G) = 0^{n} 1enc(E)$, where enc(E) is the $n \times n$ the adjacency matrix M.

If we didn't have the prefix $0^{n}1$, then the encoding were this:

$$T_{0}(0,0,0, 0, x, y) = \neg E(x, y)$$

$$T_{1}(\underbrace{(0,0,0, 0, 0, x, y)}_{t=0} = E(x, y)$$

tape position

because the bit M_{xy} is at location nx + y, whose representation is (0, x, y)

To add the prefix 0^n 1 we "add" n + 1 positions. At home

- ∃SO = NP gives a characterization of NP independent of computational resources (time/space).
- Generalization:
 - Σ_k^1 = sentences of the form $(\exists \cdots \exists)(\forall \cdots \forall) \cdots$
 - ▶ Π_k^1 = sentences of the form $(\forall \dots \forall)(\exists \dots \exists) \dots$
 - Then Σ_k^1 captures Σ_k^P and Π_k^1 captures Π_k^P .
- ∃SO = ∀SO is equivalent to NP = coNP, hence an open problem. But we have seen ∃MSO ≠ ∀MSO: Monadic NP≠ Monadic coNP

Review Descriptive Complexity	3 SO and 000000
-------------------------------	---------------------------

LFP(<) = PTIME

Review

Fixpoint Logic, LFP extends FO with a least fixpoint predicate:

$$\mathsf{lfp}_{\mathcal{T},\mathbf{x}} \varphi$$

where P is a fresh relational symbol that occurs positively, and φ is a formula that uses P has free variables x.

Example: transitive closure T(u, v) becomes:

$$\mathsf{lfp}_{T,x,y}(E(x,y) \lor \exists z (E(x,z) \land T(z,y)))(u,v)$$

LFP and PTIME

Theorem (Immerman and Vardi)

(1) The data complexity of LFP is in PTIME.(2) LFP(<) captures PTIME.

(1) remains true for LFP(<): data complexity is in PTIME.

Item (2) says that, any property that is in PTIME can be checked in LFP assuming that the input structure also contains a linear order on the domain.

Why do we need a linear order?

LFP and PTIME

Theorem (Immerman and Vardi)

(1) The data complexity of LFP is in PTIME.(2) LFP(<) captures PTIME.

(1) remains true for LFP(<): data complexity is in PTIME.

Item (2) says that, any property that is in PTIME can be checked in LFP assuming that the input structure also contains a linear order on the domain.

Why do we need a linear order? Because LFP cannot express EVEN, which is in PTIME.

Let φ be an LFP sentence, and **A** an input structure.

We show that we can check $\mathbf{A} \models \varphi$ in PTIME in the size of \mathbf{A} .

Let φ be an LFP sentence, and \pmb{A} an input structure.

We show that we can check $\mathbf{A} \models \varphi$ in PTIME in the size of \mathbf{A} .

Proceed by induction on φ

• If φ is a grounded atom R(a, b, c) simply check if $(a, b, c) \in R^A$.

Let φ be an LFP sentence, and \pmb{A} an input structure.

We show that we can check $\mathbf{A} \models \varphi$ in PTIME in the size of \mathbf{A} .

Proceed by induction on φ

- If φ is a grounded atom R(a, b, c) simply check if $(a, b, c) \in R^A$.
- If $\varphi = \exists x \psi$, then for each $a \in \text{Dom}(A)$ check $A \models \psi[a/x]$.

Let φ be an LFP sentence, and \pmb{A} an input structure.

We show that we can check $\mathbf{A} \models \varphi$ in PTIME in the size of \mathbf{A} .

Proceed by induction on φ

- If φ is a grounded atom R(a, b, c) simply check if $(a, b, c) \in R^A$.
- If $\varphi = \exists x \psi$, then for each $a \in \text{Dom}(A)$ check $A \models \psi[a/x]$.
- If $\varphi = \varphi_1 \lor \varphi_2$ then

Let φ be an LFP sentence, and \pmb{A} an input structure.

We show that we can check $\mathbf{A} \models \varphi$ in PTIME in the size of \mathbf{A} .

Proceed by induction on φ

- If φ is a grounded atom R(a, b, c) simply check if $(a, b, c) \in R^A$.
- If $\varphi = \exists x \psi$, then for each $a \in \text{Dom}(A)$ check $A \models \psi[a/x]$.
- If $\varphi = \varphi_1 \vee \varphi_2$ then

The only interesting case is when $\varphi = Ifp$.

Assume $\varphi = Ifp_{T,x}\psi(a, b, c)$. It is a sentence, hence a, b, c are constants.

We compute the lfp as the limit of the Kleene sequence:

$$T^{0}(a, b, c) := \mathbf{F}$$

$$T^{1}(a, b, c) := \psi[T^{0}](a, b, c)$$

$$T^{2}(a, b, c) := \psi[T^{1}](a, b, c)$$

. . .

Each line can be computed in PTIME.

If T has arity n, then the total number of steps is $\leq |\text{Dom}(\mathbf{A})|^n$.

Total runtime is in PTIME.

Proof: $PTIME \subseteq LFP(<)$

Consider a problem P in PTIME.

There exists a deterministic TM *M* that, given the encoding $enc(\mathbf{A})$ of a structure $\mathbf{A} \in STRUCT[\sigma]$, runs in PTIME and accepts iff $P(\mathbf{A})$ is true.

Proof: $PTIME \subseteq LFP(<)$

Consider a problem P in PTIME.

There exists a deterministic TM *M* that, given the encoding $enc(\mathbf{A})$ of a structure $\mathbf{A} \in STRUCT[\sigma]$, runs in PTIME and accepts iff $P(\mathbf{A})$ is true.

We need to describe φ_M s.t. $P(\mathbf{A})$ is true iff $\mathbf{A} \models \varphi_M$

Proof: $PTIME \subseteq LFP(<)$

Consider a problem P in PTIME.

There exists a deterministic TM *M* that, given the encoding $enc(\mathbf{A})$ of a structure $\mathbf{A} \in STRUCT[\sigma]$, runs in PTIME and accepts iff $P(\mathbf{A})$ is true.

We need to describe φ_M s.t. $P(\mathbf{A})$ is true iff $\mathbf{A} \models \varphi_M$

Proof idea: φ_M will be a fixpoint $\operatorname{lfp}_{T_0,T_1,(S_q)_{q\in Q}}(\psi)$.

Proof: $PTIME \subseteq LFP(<)$ Details

• The vocabulary $T_0, T_1, H, (S_q)_{q \in Q}$ is similar to that in the proof of Fagin's theorem, i.e. arity depends on the degree of the polynomial.

Proof: $PTIME \subseteq LFP(<)$ Details

- The vocabulary $T_0, T_1, H, (S_q)_{q \in Q}$ is similar to that in the proof of Fagin's theorem, i.e. arity depends on the degree of the polynomial.
- We cannot write $|fp_{T_0,T_1,(S_q)_{q\in Q}}$, but need the fixpoint of a single relation $|fp_K$.

• The vocabulary $T_0, T_1, H, (S_q)_{q \in Q}$ is similar to that in the proof of Fagin's theorem, i.e. arity depends on the degree of the polynomial.

LFP(<) and PTIME

- We cannot write $|fp_{T_0,T_1,(S_q)_{q\in Q}}$, but need the fixpoint of a single relation $|fp_K$.
- We encode multiple relations T_0, T_1, H, S_q using one relation K: $K = T_0 \times T_1 \times H \times \prod_q S_q$

• The vocabulary $T_0, T_1, H, (S_q)_{q \in Q}$ is similar to that in the proof of Fagin's theorem, i.e. arity depends on the degree of the polynomial.

LFP(<) and PTIME

- We cannot write $|fp_{T_0,T_1,(S_q)_{q\in Q}}$, but need the fixpoint of a single relation $|fp_K$.
- We encode multiple relations T_0, T_1, H, S_q using one relation K: $K = T_0 \times T_1 \times H \times \prod_q S_q$
- Problem: if, say, $S_{q_5} = \emptyset$ then we have $K = \emptyset$.

• The vocabulary $T_0, T_1, H, (S_q)_{q \in Q}$ is similar to that in the proof of Fagin's theorem, i.e. arity depends on the degree of the polynomial.

LFP(<) and PTIME

- We cannot write $|fp_{T_0,T_1,(S_q)_{q\in Q}}$, but need the fixpoint of a single relation $|fp_K$.
- We encode multiple relations T_0, T_1, H, S_q using one relation K: $K = T_0 \times T_1 \times H \times \prod_q S_q$
- Problem: if, say, S_{q5} = Ø then we have K = Ø. To fix this, add a spurious tuple, say S_{q5}(max, max, …), assuming the time never reaches (max, max, …). Now the fixpoint is lfp_K(ψ).

Proof: $PTIME \subseteq LFP(<)$ Details

- The vocabulary $T_0, T_1, H, (S_q)_{q \in Q}$ is similar to that in the proof of Fagin's theorem, i.e. arity depends on the degree of the polynomial.
- We cannot write $|fp_{T_0,T_1,(S_q)_{q\in Q}}$, but need the fixpoint of a single relation $|fp_K$.
- We encode multiple relations T_0, T_1, H, S_q using one relation K: $K = T_0 \times T_1 \times H \times \prod_q S_q$
- Problem: if, say, S_{q5} = Ø then we have K = Ø. To fix this, add a spurious tuple, say S_{q5}(max, max, …), assuming the time never reaches (max, max, …). Now the fixpoint is lfp_K(ψ).
- ψ will (1) set the tape at time 0 to enc(A), (2) for each time step t that occurs in K, computes configuration c_{t+1} yielded by c_t.

- LFP(<) = PTIME but $LFP \subsetneq PTIME$, e.g. cannot express EVEN.
- If we add counting quantifiers to LFP, does it capture PTIME?

- LFP(<) = PTIME but $LFP \subsetneq PTIME$, e.g. cannot express EVEN.
- If we add counting quantifiers to LFP, does it capture PTIME?
 No: C^k_{∞ω} same expressive power as k-WL, hence cannot distinguish the Cai-Führer-Immerman graphs G_k, H_k

- LFP(<) = PTIME but $LFP \subsetneq PTIME$, e.g. cannot express EVEN.
- If we add counting quantifiers to LFP, does it capture PTIME? No: $C_{\infty\omega}^k$ same expressive power as k-WL, hence cannot distinguish the Cai-Führer-Immerman graphs G_k, H_k
- Major open problem: is there a logic for PTIME (without order)?

- LFP(<) = PTIME but $LFP \subsetneq PTIME$, e.g. cannot express EVEN.
- If we add counting quantifiers to LFP, does it capture PTIME? No: $C_{\infty\omega}^k$ same expressive power as k-WL, hence cannot distinguish the Cai-Führer-Immerman graphs G_k, H_k
- Major open problem: is there a logic for PTIME (without order)?
- Variation on LFP: the partial fixpoint pfp_k(ψ) does not require ψ to be monotone in K. Defined only when the Kleene sequence converges.

FO(pfp, <) = PSPACE

- LFP(<) = PTIME but $LFP \subsetneq PTIME$, e.g. cannot express EVEN.
- If we add counting quantifiers to LFP, does it capture PTIME? No: $C_{\infty\omega}^k$ same expressive power as k-WL, hence cannot distinguish the Cai-Führer-Immerman graphs G_k, H_k
- Major open problem: is there a logic for PTIME (without order)?
- Variation on LFP: the partial fixpoint pfp_k(ψ) does not require ψ to be monotone in K. Defined only when the Kleene sequence converges.

FO(pfp, <) = *PSPACE*

• Abiteboul and Vianu: FO(Ifp) = FO(pfp) iff PTIME=PSAPCE.

Descriptive	

∃SO and NP 0000000000

FO(TC, <) =NLOGSPACE

FO with Transitive Closure

If the language LFP is too powerful, one possibility is to restrict recursion to transitive closure

For any formula $\psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$ with free variables $\mathbf{x}, \mathbf{y}, \mathbf{x}$ where $|\mathbf{x}| = |\mathbf{y}|$, the following is a formula with free variables $\mathbf{u}, \mathbf{v}, \mathbf{z}$:

$$\mathsf{TC}(\psi, \mathbf{x}, \mathbf{y})(\mathbf{u}, \mathbf{v})$$

The semantics is:

- Consider the graph with edges $E(\mathbf{x}, \mathbf{y})$ defined by ψ ,
- The formula checks whether (u, v) is in the transitive closure of E.

Graph G = (V, E)

• Check if *a*, *b* are connected by a path: TC(*E*(*x*, *y*), *x*, *y*)(*a*, *b*)

Graph G = (V, E)

- Check if *a*, *b* are connected by a path: TC(*E*(*x*, *y*), *x*, *y*)(*a*, *b*)
- Check if *a*, *b* are in the same generation.

Graph G = (V, E)

- Check if *a*, *b* are connected by a path: TC(*E*(*x*, *y*), *x*, *y*)(*a*, *b*)
- Check if *a*, *b* are in the same generation.

 $\exists p \left(\mathsf{TC}((E(x,y) \land E(u,v)), x, u, y, v)\right) (p, p, a, b)$

Graph G = (V, E)

- Check if *a*, *b* are connected by a path: TC(*E*(*x*, *y*), *x*, *y*)(*a*, *b*)
- Check if *a*, *b* are in the same generation.

 $\exists p \left(\mathsf{TC}((E(x,y) \land E(u,v)), x, u, y, v)\right)(p, p, a, b)$

• Assume the edges have a color: (x, c, y) ∈ E has color c. Check if a, b are connected by a path where all edges have the same color.

Graph G = (V, E)

- Check if *a*, *b* are connected by a path: TC(*E*(*x*, *y*), *x*, *y*)(*a*, *b*)
- Check if *a*, *b* are in the same generation.

$$\exists p (\mathsf{TC}((E(x,y) \land E(u,v)), x, u, y, v)) (p, p, a, b)$$

Assume the edges have a color: (x, c, y) ∈ E has color c. Check if a, b are connected by a path where all edges have the same color.

$$\exists c(\mathsf{TC}(E(x,c,y),x,y)(a,b))$$
Examples

Graph G = (V, E)

- Check if *a*, *b* are connected by a path: TC(*E*(*x*, *y*), *x*, *y*)(*a*, *b*)
- Check if *a*, *b* are in the same generation.

$$\exists p \left(\mathsf{TC}((E(x,y) \land E(u,v)), x, u, y, v)\right)(p, p, a, b)$$

Assume the edges have a color: (x, c, y) ∈ E has color c. Check if a, b are connected by a path where all edges have the same color.

$$\exists c(\mathsf{TC}(E(x,c,y),x,y)(a,b))$$

FO(TC) is in stratified datalog. why?

Examples

Graph G = (V, E)

- Check if *a*, *b* are connected by a path: TC(*E*(*x*, *y*), *x*, *y*)(*a*, *b*)
- Check if *a*, *b* are in the same generation.

$$\exists p \left(\mathsf{TC}((E(x,y) \land E(u,v)), x, u, y, v)\right)(p, p, a, b)$$

Assume the edges have a color: (x, c, y) ∈ E has color c. Check if a, b are connected by a path where all edges have the same color.

$$\exists c(\mathsf{TC}(E(x,c,y),x,y)(a,b))$$

FO(TC) is in stratified datalog. why? Cannot express WinMove game

∃SO and NP oooooooooc LFP(<) and PTIME

FO(TC, <) = *NLOGSPACE*

Recall: NLOGSPACE is the set of problems that can be accepted by a non-deterministic TM with a read-only input tape and a working tape of logarithmic size.

Theorem FO(TC, <) = NLOGSPACE ∃SO and NP

LFP(<) and PTIME

FO(TC, <) =NLOGSPACE

FO(TC, <) = *NLOGSPACE*

Proof (sketch) We show the inclusion NLOGSPACE \subseteq FO(TC, <).

Proof (sketch) We show the inclusion NLOGSPACE \subseteq FO(TC, <).

Let *M* be the Turing machine, input $\mathbf{A} \in \text{STRUCT}[\sigma]$, and $n = |\text{Dom}(\mathbf{A})|$.

Proof (sketch) We show the inclusion NLOGSPACE \subseteq FO(TC, <).

Let *M* be the Turing machine, input $\mathbf{A} \in \text{STRUCT}[\sigma]$, and $n = |\text{Dom}(\mathbf{A})|$.

The working tape of *M* has size $O(\log n)$, hence the total number of possible configurations is $2^{O(\log n)} = n^{O(1)}$ (polynomial).

Proof (sketch) We show the inclusion NLOGSPACE \subseteq FO(TC, <).

Let *M* be the Turing machine, input $\mathbf{A} \in \text{STRUCT}[\sigma]$, and $n = |\text{Dom}(\mathbf{A})|$.

The working tape of *M* has size $O(\log n)$, hence the total number of possible configurations is $2^{O(\log n)} = n^{O(1)}$ (polynomial).

Construct the graph whose nodes are the configurations, and edges are the yield relation.

Proof (sketch) We show the inclusion NLOGSPACE \subseteq FO(TC, <).

Let *M* be the Turing machine, input $\mathbf{A} \in \text{STRUCT}[\sigma]$, and $n = |\text{Dom}(\mathbf{A})|$.

The working tape of *M* has size $O(\log n)$, hence the total number of possible configurations is $2^{O(\log n)} = n^{O(1)}$ (polynomial).

Construct the graph whose nodes are the configurations, and edges are the yield relation.

M accepts **A** iff there exists a path from the initial configuration to some final configuration.

Proof (sketch) We show the inclusion NLOGSPACE \subseteq FO(TC, <).

Let *M* be the Turing machine, input $\mathbf{A} \in \text{STRUCT}[\sigma]$, and $n = |\text{Dom}(\mathbf{A})|$.

The working tape of *M* has size $O(\log n)$, hence the total number of possible configurations is $2^{O(\log n)} = n^{O(1)}$ (polynomial).

Construct the graph whose nodes are the configurations, and edges are the yield relation.

M accepts **A** iff there exists a path from the initial configuration to some final configuration.

```
This can be checked in FO(TC, <).
```

The deterministic transitive closure is restricted to outdegree ≤ 1 :

 $\mathsf{Det}\text{-}\mathsf{TC}(\psi, \pmb{x}, \pmb{y})(\pmb{u}, \pmb{v})$

where ψ satisfies: $\forall \mathbf{x} \forall \mathbf{y} \forall \mathbf{y}' (\psi(\mathbf{x}, \mathbf{y}, \mathbf{z}) \land \psi(\mathbf{x}, \mathbf{y}', \mathbf{z}) \Rightarrow \mathbf{y} = \mathbf{y}')$

The deterministic transitive closure is restricted to outdegree ≤ 1 :

 $\mathsf{Det}\text{-}\mathsf{TC}(\psi, \pmb{x}, \pmb{y})(\pmb{u}, \pmb{v})$

where ψ satisfies: $\forall \mathbf{x} \forall \mathbf{y} \forall \mathbf{y}' (\psi(\mathbf{x}, \mathbf{y}, \mathbf{z}) \land \psi(\mathbf{x}, \mathbf{y}', \mathbf{z}) \Rightarrow \mathbf{y} = \mathbf{y}')$

Theorem FO(Det-TC, <) = LOGSPACE

Proof: Immediate.

Review 0000	Descriptive Complexity	∃SO and NP ○○○○○○○○○	LFP(<) and PTIME 00000000	FO(TC, <) =NLOGSPACE

Summary

•
$$FO(+,*) = FO(<,BIT) = AC^0$$
 In class

- FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;
- *LFP*(<) =PTIME
- FO(PartialFixpoint, <) = PSPACE
- ∃SO =NP