
Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Finite Model Theory
Lecture 15: Logic and Turing Machines

Spring 2025

Finite Model Theory Lecture 15 Spring 2025 1 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Announcement

HW4 (the last one!!) is posted and due on May 30.

Topic for today and Wednesday: connection between logic and Turing
machines.

No lectures next week

Finite Model Theory Lecture 15 Spring 2025 2 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Trakhtenbrot’s Theorem

Finite Model Theory Lecture 15 Spring 2025 3 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Trakhtenbrot’s Theorem

A sentence φ is finitely satisfiable if there exists a structure A such that:
A ⊧ φ

Theorem (Trakhtenbrot)

Suppose the vocabulary σ has at least one relation with arity ≥ 2. Then
the problem given φ check if it is finitely satisfiable is undecidable.

Thus, the set of sentences φ that are finitely satisfiable
is recursively enumerable, but not decidable.

Finite Model Theory Lecture 15 Spring 2025 4 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Why Binary Relation

What happens if the vocabulary σ has only unary relations U1, . . . ,Um?

Is finite satisfiability decidable?

YES: Satisfiability and finite satisfiability coincide, and are decidable. HW3

Structure A, s.t. A ⊧ φ
U1 U2

U3

Small structure B, A ∼3 B
U1 U2

U3

Before we prove Trakhtenbrot’s theorem, we discuss 3 consequences.

Finite Model Theory Lecture 15 Spring 2025 5 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Why Binary Relation

What happens if the vocabulary σ has only unary relations U1, . . . ,Um?

Is finite satisfiability decidable?

YES: Satisfiability and finite satisfiability coincide, and are decidable. HW3

Structure A, s.t. A ⊧ φ
U1 U2

U3

Small structure B, A ∼3 B
U1 U2

U3

Before we prove Trakhtenbrot’s theorem, we discuss 3 consequences.

Finite Model Theory Lecture 15 Spring 2025 5 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Trakthenbrot’s Theorem: Consequence 1

Let L be some logic; e.g. L ⊆ FO.

Definition

We say that L has the small model property if there exists a computable
function f ∶ N→ N s.t. the following holds:

∀φ ∈ L, φ has a model iff φ has a finite model of size ≤ f (∣φ∣)

Example: if σ is unary, then FO has the small model property, where
f (φ) = (k + 1)2n , where k = number of variables1 in φ.

1Or take k = ∣φ∣.
Finite Model Theory Lecture 15 Spring 2025 6 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Trakthenbrot’s Theorem: Consequence 1

Let L be some logic; e.g. L ⊆ FO.

Definition

We say that L has the small model property if there exists a computable
function f ∶ N→ N s.t. the following holds:

∀φ ∈ L, φ has a model iff φ has a finite model of size ≤ f (∣φ∣)

Example: if σ is unary, then FO has the small model property, where
f (φ) = (k + 1)2n , where k = number of variables1 in φ.

1Or take k = ∣φ∣.
Finite Model Theory Lecture 15 Spring 2025 6 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Trakthenbrot’s Theorem: Consequence 1

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2, then FO does
not have the small model property. above.

Proof: Assume the contrary, that f ∶ N→ N exists such that φ has a
model iff φ has a finite model of size ≤ f (∣φ∣).

Then we can check finite satisfiability as follows. Given φ, compute
n = f (∣φ∣), and try out all structures of size ≤ n:

If one of the structures is a model then answer YES.

Otherwise answer NO.

Finite Model Theory Lecture 15 Spring 2025 7 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Trakthenbrot’s Theorem: Consequence 1

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2, then FO does
not have the small model property. above.

Proof: Assume the contrary, that f ∶ N→ N exists such that φ has a
model iff φ has a finite model of size ≤ f (∣φ∣).

Then we can check finite satisfiability as follows. Given φ, compute
n = f (∣φ∣), and try out all structures of size ≤ n:

If one of the structures is a model then answer YES.

Otherwise answer NO.

Finite Model Theory Lecture 15 Spring 2025 7 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Trakthenbrot’s Theorem: Consequence 2

Denote φ ≡fin ψ if φ,ψ are equivalent on all finite structures:

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2, then the
following problem is undecidable:

Given two sentences φ,ψ, check whether φ ≡fin ψ

Proof

Reduce it to UNSAT. Assume we have an oracle for φ ≡fin ψ.
Then we can check UNSAT by checking if φ ≡fin F .

Finite Model Theory Lecture 15 Spring 2025 8 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Trakthenbrot’s Theorem: Consequence 2

Denote φ ≡fin ψ if φ,ψ are equivalent on all finite structures:

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2, then the
following problem is undecidable:

Given two sentences φ,ψ, check whether φ ≡fin ψ

Proof

Reduce it to UNSAT. Assume we have an oracle for φ ≡fin ψ.
Then we can check UNSAT by checking if φ ≡fin F .

Finite Model Theory Lecture 15 Spring 2025 8 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Trakhtenbrot’s Theorem: Consequence 3

We say that φ is finitely valid, ⊧fin φ, if it holds in every finite model A.

Corollary

The set of finitely valid sentences it not recursively enumerable.

Proof φ is finitely satisfiable iff ¬φ is not finitely valid.

Assume finitely valid sentences are r.e.
Then we could check if φ is finitely satisfiable by enumerating in parallel:

All finite structures A, checking if A ⊧ φ
All finitely valid sentences, checking if ¬φ shows up.

Corollary (Finiteness not axiomatizable)

There is no r.e. set of axioms Σ such that Σ ⊢ φ iff ⊧fin φ.

Finite Model Theory Lecture 15 Spring 2025 9 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Trakhtenbrot’s Theorem: Consequence 3

We say that φ is finitely valid, ⊧fin φ, if it holds in every finite model A.

Corollary

The set of finitely valid sentences it not recursively enumerable.

Proof φ is finitely satisfiable iff ¬φ is not finitely valid.

Assume finitely valid sentences are r.e.
Then we could check if φ is finitely satisfiable by enumerating in parallel:

All finite structures A, checking if A ⊧ φ
All finitely valid sentences, checking if ¬φ shows up.

Corollary (Finiteness not axiomatizable)

There is no r.e. set of axioms Σ such that Σ ⊢ φ iff ⊧fin φ.

Finite Model Theory Lecture 15 Spring 2025 9 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Trakhtenbrot’s Theorem: Consequence 3

We say that φ is finitely valid, ⊧fin φ, if it holds in every finite model A.

Corollary

The set of finitely valid sentences it not recursively enumerable.

Proof φ is finitely satisfiable iff ¬φ is not finitely valid.

Assume finitely valid sentences are r.e.
Then we could check if φ is finitely satisfiable by enumerating in parallel:

All finite structures A, checking if A ⊧ φ
All finitely valid sentences, checking if ¬φ shows up.

Corollary (Finiteness not axiomatizable)

There is no r.e. set of axioms Σ such that Σ ⊢ φ iff ⊧fin φ.

Finite Model Theory Lecture 15 Spring 2025 9 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Review: Turing Machines

Finite Model Theory Lecture 15 Spring 2025 10 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Review: Turing Machines Basics

M = (Q,Σ,∆,q0,QF ) where:

Q = {q0,q1, . . . ,qm} are the states;
q0 is the initial state;
QF ⊆ Q are the final states.

Σ is the tape alphabet; we take
Σ = {0,1}

∆ ⊆ Q ×Σ ×Σ × {Left,Right} ×Q
are the transitions.

0 1 1 0 1 0 1 0 0 0 1 0 0 …

State: qi Head

Finite Model Theory Lecture 15 Spring 2025 11 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Review: Turing Machines Basics

A configuration is a triple c = (w ,h,q) where:
w ⊆ Σ∗ is a tape content.

h ∈ N is the head position.

q ∈ Q is a state.

The usual notation of a configuration is: uqv ,

where uv = w and ∣u∣ = h.

Finite Model Theory Lecture 15 Spring 2025 12 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Review: Turing Machine Basics

A configuration c yields a configuration c ′ if one of the following two
conditions hold:

c = uqav , c ′ = ubq′v , and (q, a,b,Right,q′) ∈∆, or

c = uaqv , c ′ = uq′bv , and (q, a,b,Left,q′) ∈∆.

An computation history is a sequence C = c1, c2, . . . , cT where:

c1 is the initial configuration: c1 = q0.
ci−1 yields ci , for i = 2,T .

A computation history is accepting if it ends in a final configuration:
cT = uqv , with q ∈ QF .

Finite Model Theory Lecture 15 Spring 2025 13 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Review: Turing Machine Basics

A configuration c yields a configuration c ′ if one of the following two
conditions hold:

c = uqav , c ′ = ubq′v , and (q, a,b,Right,q′) ∈∆, or

c = uaqv , c ′ = uq′bv , and (q, a,b,Left,q′) ∈∆.

An computation history is a sequence C = c1, c2, . . . , cT where:

c1 is the initial configuration: c1 = q0.
ci−1 yields ci , for i = 2,T .

A computation history is accepting if it ends in a final configuration:
cT = uqv , with q ∈ QF .

Finite Model Theory Lecture 15 Spring 2025 13 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Review: Turing Machine Basics

A configuration c yields a configuration c ′ if one of the following two
conditions hold:

c = uqav , c ′ = ubq′v , and (q, a,b,Right,q′) ∈∆, or

c = uaqv , c ′ = uq′bv , and (q, a,b,Left,q′) ∈∆.

An computation history is a sequence C = c1, c2, . . . , cT where:

c1 is the initial configuration: c1 = q0.
ci−1 yields ci , for i = 2,T .

A computation history is accepting if it ends in a final configuration:
cT = uqv , with q ∈ QF .

Finite Model Theory Lecture 15 Spring 2025 13 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof of Trakhtenbrot’s Theorem

Finite Model Theory Lecture 15 Spring 2025 14 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof of Trakhtenbrot’s Theorem

“Given φ check if it is finitely satisfiable” is undecidable.

By reduction from the Halting Problem:

Given a Turing Machine M, does M halt on the empty input?

The proof consist of the following: given M we will construct a sentence
φM s.t. M halts iff φM is finitely satisfiable.

Finite Model Theory Lecture 15 Spring 2025 15 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Plan

M halts iff
∃C , C is an accepting computation of M.

φ is finitely satisfiable iff
∃A such that A ⊧ φ.

This suggests the proof plan:

Computation history C = structure A.

C is an accepting computation iff A is a model of φ.

Finite Model Theory Lecture 15 Spring 2025 16 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Plan

M halts iff
∃C , C is an accepting computation of M.

φ is finitely satisfiable iff
∃A such that A ⊧ φ.

This suggests the proof plan:

Computation history C = structure A.

C is an accepting computation iff A is a model of φ.

Finite Model Theory Lecture 15 Spring 2025 16 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Plan

M halts iff
∃C , C is an accepting computation of M.

φ is finitely satisfiable iff
∃A such that A ⊧ φ.

This suggests the proof plan:

Computation history C = structure A.

C is an accepting computation iff A is a model of φ.

Finite Model Theory Lecture 15 Spring 2025 16 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details

Fix a Turing Machine M.

Describe a binary vocabulary σM and sentence φM whose models
correspond precisely to accepting computations of M.

Later: describe an FO encoding of σM and φM into the language of
graphs σ = (E).

Finite Model Theory Lecture 15 Spring 2025 17 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details

Fix M = (Q,{0,1},∆,q0,QF ).
Define: σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

Intended meaning:

< is a total order

T0(t,p),T1(t,p): the tape content at time t position p is 0 or 1.

H(t,p): the head at time t is on position p.

Sq(t): the Turning Machine is is stated q at time t.

Finite Model Theory Lecture 15 Spring 2025 18 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details

Fix M = (Q,{0,1},∆,q0,QF ).
Define: σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

Intended meaning:

< is a total order

T0(t,p),T1(t,p): the tape content at time t position p is 0 or 1.

H(t,p): the head at time t is on position p.

Sq(t): the Turning Machine is is stated q at time t.

Finite Model Theory Lecture 15 Spring 2025 18 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details

Fix M = (Q,{0,1},∆,q0,QF ).
Define: σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

Intended meaning:

< is a total order

T0(t,p),T1(t,p): the tape content at time t position p is 0 or 1.

H(t,p): the head at time t is on position p.

Sq(t): the Turning Machine is is stated q at time t.

Finite Model Theory Lecture 15 Spring 2025 18 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details

Fix M = (Q,{0,1},∆,q0,QF ).
Define: σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

Intended meaning:

< is a total order

T0(t,p),T1(t,p): the tape content at time t position p is 0 or 1.

H(t,p): the head at time t is on position p.

Sq(t): the Turning Machine is is stated q at time t.

Finite Model Theory Lecture 15 Spring 2025 18 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details

Fix M = (Q,{0,1},∆,q0,QF ).
Define: σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

Intended meaning:

< is a total order

T0(t,p),T1(t,p): the tape content at time t position p is 0 or 1.

H(t,p): the head at time t is on position p.

Sq(t): the Turning Machine is is stated q at time t.

Finite Model Theory Lecture 15 Spring 2025 18 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

The sentence φM asserts the following:

General consistency: < is a total order, every tape has exactly one
symbol, the head is on exactly one position, etc.

At time t = min, the TM is in the initial configuration.

At time t = max, the TM is in an accepting configuration.

The configuration at time t yields that at time t + 1

Finite Model Theory Lecture 15 Spring 2025 19 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

The sentence φM asserts the following:

General consistency: < is a total order, every tape has exactly one
symbol, the head is on exactly one position, etc.

At time t = min, the TM is in the initial configuration.

At time t = max, the TM is in an accepting configuration.

The configuration at time t yields that at time t + 1

Finite Model Theory Lecture 15 Spring 2025 19 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

The sentence φM asserts the following:

General consistency: < is a total order, every tape has exactly one
symbol, the head is on exactly one position, etc.

At time t = min, the TM is in the initial configuration.

At time t = max, the TM is in an accepting configuration.

The configuration at time t yields that at time t + 1

Finite Model Theory Lecture 15 Spring 2025 19 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details: General Consistency

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

< is a total order.

Exactly one tape symbol:
∀t,∀p(T0(t,p) ∨T1(t,p)) ∧ ¬(T0(t,p) ∧T1(t,p))

Exactly one head position at each time: . . .

Exactly one state at each time: . . .

Finite Model Theory Lecture 15 Spring 2025 20 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details: Initial Configuration

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

At time t = min, the TM is in the initial configuration:

∀pT0(min,p) ∧H(min,min) ∧ Sq0(min)

Note that we can name min by ∃x¬∃y(y < x); similarly max.

Finite Model Theory Lecture 15 Spring 2025 21 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details: Final Configuration

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

At time t = max, the TM is in the final configuration:

⋁
q∈QF

Sq(max)

Finite Model Theory Lecture 15 Spring 2025 22 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details: All Transitions are Correct

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

Each transition from t to t + 1 corresponds to one valid δ ∈∆:

∀t(t < max→ ⋁
δ∈∆

CHECKδ(t))

Finite Model Theory Lecture 15 Spring 2025 23 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details: All Transitions are Correct (Detail)

M = (Q,{0,1},∆,q0,QF )
σM = (<,T0(⋅, ⋅),T1(⋅, ⋅),H(⋅, ⋅), (Sq(⋅))q∈Q)

Example transition: δ = (q5,1,0,Left,q3)
(“If in state q5 and the tape is 1, then write 0, move Left, enter q3”)

CHECKδ(t) =Sq5(t) Check we are in q5

∧∀s(¬H(t, s)→ (T0(t, s)↔ T0(t + 1, s))) Leave non-head

symbols unchaged

∧∀s(H(t, s)→ T1(t, s) ∧T0(t + 1, s)) the head was 1

set it to 0

∧H(t + 1, s − 1) move to the left

∧Sq3(t + 1) enter q3
Finite Model Theory Lecture 15 Spring 2025 24 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details: Finalizing the Proof

Claim: φM is satisfiable iff M terminates.

Proof:

If M terminates, then there exists an accepting computation history
C = c1, c2, . . . , cT . From C , we construct a structure A as follows:

▸ The domain is [T ], and < is the standard order.
▸ The relations T0,T1,H,Sq are defined according to C .

Then A ⊧ φM .

If A ⊧ φM , then construct an accepting computation c1, . . . , cT :

▸ Set T
def= ∣Dom(A)∣.

▸ Configuration ci defined based on T0(i , ⋅),T1(i , ⋅),H(i , ⋅), (Sq(i))q.
Since A ⊧ φM it follows that C is an accepting computation for M.

Finite Model Theory Lecture 15 Spring 2025 25 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details: Finalizing the Proof

Claim: φM is satisfiable iff M terminates. Proof:

If M terminates, then there exists an accepting computation history
C = c1, c2, . . . , cT . From C , we construct a structure A as follows:

▸ The domain is [T ], and < is the standard order.
▸ The relations T0,T1,H,Sq are defined according to C .

Then A ⊧ φM .

If A ⊧ φM , then construct an accepting computation c1, . . . , cT :

▸ Set T
def= ∣Dom(A)∣.

▸ Configuration ci defined based on T0(i , ⋅),T1(i , ⋅),H(i , ⋅), (Sq(i))q.
Since A ⊧ φM it follows that C is an accepting computation for M.

Finite Model Theory Lecture 15 Spring 2025 25 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details: Finalizing the Proof

Claim: φM is satisfiable iff M terminates. Proof:

If M terminates, then there exists an accepting computation history
C = c1, c2, . . . , cT . From C , we construct a structure A as follows:

▸ The domain is [T ], and < is the standard order.
▸ The relations T0,T1,H,Sq are defined according to C .

Then A ⊧ φM .

If A ⊧ φM , then construct an accepting computation c1, . . . , cT :

▸ Set T
def= ∣Dom(A)∣.

▸ Configuration ci defined based on T0(i , ⋅),T1(i , ⋅),H(i , ⋅), (Sq(i))q.
Since A ⊧ φM it follows that C is an accepting computation for M.

Finite Model Theory Lecture 15 Spring 2025 25 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details: Finalizing the Proof

Claim: φM is satisfiable iff M terminates. Proof:

If M terminates, then there exists an accepting computation history
C = c1, c2, . . . , cT . From C , we construct a structure A as follows:

▸ The domain is [T ], and < is the standard order.
▸ The relations T0,T1,H,Sq are defined according to C .

Then A ⊧ φM .

If A ⊧ φM , then construct an accepting computation c1, . . . , cT :

▸ Set T
def= ∣Dom(A)∣.

▸ Configuration ci defined based on T0(i , ⋅),T1(i , ⋅),H(i , ⋅), (Sq(i))q.
Since A ⊧ φM it follows that C is an accepting computation for M.

Finite Model Theory Lecture 15 Spring 2025 25 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details: Finalizing the Proof

Claim: φM is satisfiable iff M terminates. Proof:

If M terminates, then there exists an accepting computation history
C = c1, c2, . . . , cT . From C , we construct a structure A as follows:

▸ The domain is [T ], and < is the standard order.
▸ The relations T0,T1,H,Sq are defined according to C .

Then A ⊧ φM .

If A ⊧ φM , then construct an accepting computation c1, . . . , cT :

▸ Set T
def= ∣Dom(A)∣.

▸ Configuration ci defined based on T0(i , ⋅),T1(i , ⋅),H(i , ⋅), (Sq(i))q.

Since A ⊧ φM it follows that C is an accepting computation for M.

Finite Model Theory Lecture 15 Spring 2025 25 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Proof Details: Finalizing the Proof

Claim: φM is satisfiable iff M terminates. Proof:

If M terminates, then there exists an accepting computation history
C = c1, c2, . . . , cT . From C , we construct a structure A as follows:

▸ The domain is [T ], and < is the standard order.
▸ The relations T0,T1,H,Sq are defined according to C .

Then A ⊧ φM .

If A ⊧ φM , then construct an accepting computation c1, . . . , cT :

▸ Set T
def= ∣Dom(A)∣.

▸ Configuration ci defined based on T0(i , ⋅),T1(i , ⋅),H(i , ⋅), (Sq(i))q.
Since A ⊧ φM it follows that C is an accepting computation for M.

Finite Model Theory Lecture 15 Spring 2025 25 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Discussion

A structure s.t. A ⊧ φM is precisely an accepting computation C of
the Turing Machine M.

how large is ∣Dom(A)∣?

The number of time steps needed by M to
terminate.

Is A unique? Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <? We need < because succ is not
finitely axiomatizable. succ is enough. (Needs axioms to say that
indegree and outdegree of each element is 1, except for two elements
that have indegree 0 and outdegree 0 respectively.)

We still need to reduce the vocabulary σM to a vocabulary with a
single binary relation E . We do this next

Finite Model Theory Lecture 15 Spring 2025 26 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Discussion

A structure s.t. A ⊧ φM is precisely an accepting computation C of
the Turing Machine M.

how large is ∣Dom(A)∣? The number of time steps needed by M to
terminate.

Is A unique? Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <? We need < because succ is not
finitely axiomatizable. succ is enough. (Needs axioms to say that
indegree and outdegree of each element is 1, except for two elements
that have indegree 0 and outdegree 0 respectively.)

We still need to reduce the vocabulary σM to a vocabulary with a
single binary relation E . We do this next

Finite Model Theory Lecture 15 Spring 2025 26 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Discussion

A structure s.t. A ⊧ φM is precisely an accepting computation C of
the Turing Machine M.

how large is ∣Dom(A)∣? The number of time steps needed by M to
terminate.

Is A unique?

Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <? We need < because succ is not
finitely axiomatizable. succ is enough. (Needs axioms to say that
indegree and outdegree of each element is 1, except for two elements
that have indegree 0 and outdegree 0 respectively.)

We still need to reduce the vocabulary σM to a vocabulary with a
single binary relation E . We do this next

Finite Model Theory Lecture 15 Spring 2025 26 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Discussion

A structure s.t. A ⊧ φM is precisely an accepting computation C of
the Turing Machine M.

how large is ∣Dom(A)∣? The number of time steps needed by M to
terminate.

Is A unique? Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <? We need < because succ is not
finitely axiomatizable. succ is enough. (Needs axioms to say that
indegree and outdegree of each element is 1, except for two elements
that have indegree 0 and outdegree 0 respectively.)

We still need to reduce the vocabulary σM to a vocabulary with a
single binary relation E . We do this next

Finite Model Theory Lecture 15 Spring 2025 26 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Discussion

A structure s.t. A ⊧ φM is precisely an accepting computation C of
the Turing Machine M.

how large is ∣Dom(A)∣? The number of time steps needed by M to
terminate.

Is A unique? Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <?

We need < because succ is not
finitely axiomatizable. succ is enough. (Needs axioms to say that
indegree and outdegree of each element is 1, except for two elements
that have indegree 0 and outdegree 0 respectively.)

We still need to reduce the vocabulary σM to a vocabulary with a
single binary relation E . We do this next

Finite Model Theory Lecture 15 Spring 2025 26 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Discussion

A structure s.t. A ⊧ φM is precisely an accepting computation C of
the Turing Machine M.

how large is ∣Dom(A)∣? The number of time steps needed by M to
terminate.

Is A unique? Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <? We need < because succ is not
finitely axiomatizable. succ is enough. (Needs axioms to say that
indegree and outdegree of each element is 1, except for two elements
that have indegree 0 and outdegree 0 respectively.)

We still need to reduce the vocabulary σM to a vocabulary with a
single binary relation E . We do this next

Finite Model Theory Lecture 15 Spring 2025 26 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Discussion

A structure s.t. A ⊧ φM is precisely an accepting computation C of
the Turing Machine M.

how large is ∣Dom(A)∣? The number of time steps needed by M to
terminate.

Is A unique? Not necessarily. But it is unique when M is
deterministic.

Is succ enough, or do we need <? We need < because succ is not
finitely axiomatizable. succ is enough. (Needs axioms to say that
indegree and outdegree of each element is 1, except for two elements
that have indegree 0 and outdegree 0 respectively.)

We still need to reduce the vocabulary σM to a vocabulary with a
single binary relation E . We do this next

Finite Model Theory Lecture 15 Spring 2025 26 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

FO Reductions

Finite Model Theory Lecture 15 Spring 2025 27 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

FO Reduction

Let σ = {S1, . . . ,Sm}, τ = {T1, . . . ,Tn} be two relational vocabularies.

A query from σ to τ is a function Q ∶ STRUCT[σ]→ STRUCT[τ].

A Boolean query, or a problem, is a function P ∶ STRUCT[σ]→ {0,1}.

A First Order Query Q consists of n formulas, Q = (q1, . . . ,qn), where each
qj has arity(Tj) free variables; it defines the mapping Q(A) def= B where:

B
def= A same domain

∀j ∶ TB
j

def= {b ∣ A ⊧ qj(b)}

Q maps problems on STRUCT[τ] to problems on STRUCT[σ]
(“in reverse”): P ↦ P ○Q, i.e. P̂(A) def= P(Q(A)).

Finite Model Theory Lecture 15 Spring 2025 28 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

FO Reduction

Let σ = {S1, . . . ,Sm}, τ = {T1, . . . ,Tn} be two relational vocabularies.

A query from σ to τ is a function Q ∶ STRUCT[σ]→ STRUCT[τ].

A Boolean query, or a problem, is a function P ∶ STRUCT[σ]→ {0,1}.

A First Order Query Q consists of n formulas, Q = (q1, . . . ,qn), where each
qj has arity(Tj) free variables; it defines the mapping Q(A) def= B where:

B
def= A same domain

∀j ∶ TB
j

def= {b ∣ A ⊧ qj(b)}

Q maps problems on STRUCT[τ] to problems on STRUCT[σ]
(“in reverse”): P ↦ P ○Q, i.e. P̂(A) def= P(Q(A)).

Finite Model Theory Lecture 15 Spring 2025 28 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

FO Reduction

Let σ = {S1, . . . ,Sm}, τ = {T1, . . . ,Tn} be two relational vocabularies.

A query from σ to τ is a function Q ∶ STRUCT[σ]→ STRUCT[τ].

A Boolean query, or a problem, is a function P ∶ STRUCT[σ]→ {0,1}.

A First Order Query Q consists of n formulas, Q = (q1, . . . ,qn), where each
qj has arity(Tj) free variables; it defines the mapping Q(A) def= B where:

B
def= A same domain

∀j ∶ TB
j

def= {b ∣ A ⊧ qj(b)}

Q maps problems on STRUCT[τ] to problems on STRUCT[σ]
(“in reverse”): P ↦ P ○Q, i.e. P̂(A) def= P(Q(A)).

Finite Model Theory Lecture 15 Spring 2025 28 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

FO Reduction

Let σ = {S1, . . . ,Sm}, τ = {T1, . . . ,Tn} be two relational vocabularies.

A query from σ to τ is a function Q ∶ STRUCT[σ]→ STRUCT[τ].

A Boolean query, or a problem, is a function P ∶ STRUCT[σ]→ {0,1}.

A First Order Query Q consists of n formulas, Q = (q1, . . . ,qn), where each
qj has arity(Tj) free variables; it defines the mapping Q(A) def= B where:

B
def= A same domain

∀j ∶ TB
j

def= {b ∣ A ⊧ qj(b)}

Q maps problems on STRUCT[τ] to problems on STRUCT[σ]
(“in reverse”): P ↦ P ○Q, i.e. P̂(A) def= P(Q(A)).

Finite Model Theory Lecture 15 Spring 2025 28 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

FO Reduction

Let σ = {S1, . . . ,Sm}, τ = {T1, . . . ,Tn} be two relational vocabularies.

A query from σ to τ is a function Q ∶ STRUCT[σ]→ STRUCT[τ].

A Boolean query, or a problem, is a function P ∶ STRUCT[σ]→ {0,1}.

A First Order Query Q consists of n formulas, Q = (q1, . . . ,qn), where each
qj has arity(Tj) free variables; it defines the mapping Q(A) def= B where:

B
def= A same domain

∀j ∶ TB
j

def= {b ∣ A ⊧ qj(b)}

Q maps problems on STRUCT[τ] to problems on STRUCT[σ]
(“in reverse”): P ↦ P ○Q, i.e. P̂(A) def= P(Q(A)).

Finite Model Theory Lecture 15 Spring 2025 28 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

FO Reduction

Query STRUCT[σ]→ STRUCT[τ]
(Problems on STRUCT[τ] ) → (Problems on STRUCT[σ])

Definition

A First Order Reduction is an FO query Q from σ to τ .

It “reduces” a problem P ′ on τ from the problem P
def= P ′ ○Q on σ.

Obviously, P ′ is at least as hard as P.

Finite Model Theory Lecture 15 Spring 2025 29 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.
Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Finite Model Theory Lecture 15 Spring 2025 30 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.
Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

a R
a b
a c
c a

S
a c
c c

b

c

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Finite Model Theory Lecture 15 Spring 2025 30 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.
Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

a R
a b
a c
c a

S
a c
c c

b

c

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Finite Model Theory Lecture 15 Spring 2025 30 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.
Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

a R
a b
a c
c a

S
a c
c c

b

c

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Finite Model Theory Lecture 15 Spring 2025 30 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.
Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

a R
a b
a c
c a

S
a c
c c

b

c

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Finite Model Theory Lecture 15 Spring 2025 30 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.
Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

a R
a b
a c
c a

S
a c
c c

b

c

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Finite Model Theory Lecture 15 Spring 2025 30 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Every Structure is FO-Reducible to a Graph
σ = {E} a graph.
τ = any vocabulary. For simplicity, assume τ = {R(⋅, ⋅),S(⋅, ⋅)}.
Question: Given a τ -structure A = (RA,SA), encode it as a graph G s.t.
you can decode it: RA = Q1(G), SA = Q2(G)

a R
a b
a c
c a

S
a c
c c

b

c

Use small gadgets for R and S

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Finite Model Theory Lecture 15 Spring 2025 30 / 31



Trakhtenbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot’s Theorem FO Reductions

Discussion

Main take away: we can encode an accepting computation of a Turing
Machine as a structure, and verify its correctness using a sentence.

Next lecture we use small variants of this encoding to prove:

Fagins’s Theorem: ∃SO captures NP.

Immerman and Vardi’s Theorem: LFP(<) (“least fixpoint logic over
ordered structures”) captures PTIME

Church-Turing’s Undecidability Theorem: validity (in all models) is
undecidable.

Gödel’s Incompleteness Theorem: (N,+,∗) is not axiomatizable.

Finite Model Theory Lecture 15 Spring 2025 31 / 31


	Trakhtenbrot's Theorem
	Review: Turing Machines
	Proof of Trakhtenbrot's Theorem
	FO Reductions

