Finite Model Theory
Lecture 15: Logic and Turing Machines

Spring 2025

Finite Model Theory Lecture 15 Spring 2025 1/31

Announcement

@ HWH4 (the last one!!) is posted and due on May 30.

@ Topic for today and Wednesday: connection between logic and Turing
machines.

@ No lectures next week

Finite Model Theory Lecture 15 Spring 2025 2/31

Trakhtenbrot's Theorem
©000000

Trakhtenbrot's Theorem

Finite Model Theory Lecture 15 Spring 2025 3/31

Trakhtenbrot's Theorem Review: Turing Machines

[e] le]ele]e]e)

Trakhtenbrot's Theorem

Trakhtenbrot's Theorem

A sentence ¢ is finitely satisfiable if there exists a structure A such that:
A=

Theorem (Trakhtenbrot)

Suppose the vocabulary o has at least one relation with arity > 2. Then
the problem given ¢ check if it is finitely satisfiable is undecidable.

Thus, the set of sentences ¢ that are finitely satisfiable
is recursively enumerable, but not decidable.

Finite Model Theory Lecture 15 Spring 2025 4/31

Trakhtenbrot's Theorem
00®0000

Why Binary Relation

What happens if the vocabulary ¢ has only unary relations Uy, ..., Un?

Is finite satisfiability decidable?

Finite Model Theory Lecture 15 Spring 2025 5/31

Trakhtenbrot's Theorem Review: Turing Machines i Trakhtenbrot's Theorem

[e]e] lele]ele)

Why Binary Relation
What happens if the vocabulary ¢ has only unary relations Uy, ..., Upy?
Is finite satisfiability decidable?

YES: Satisfiability and finite satisfiability coincide, and are decidable. HW3

Structure A, s.t. AE ¢ Small structure B, A~3 B

Before we prove Trakhtenbrot's theorem, we discuss 3 consequences.

Finite Model Theory Lecture 15 Spring 2025 5/31

Trakhtenbrot's Theorem Review: Turing Machines
[e]e]e] lelele] [e]e]e]e}

Trakthenbrot's Theorem: Consequence 1

Let L be some logic; e.g. L < FO.

Definition
We say that L has the small model property if there exists a computable
function f : N — N s.t. the following holds:

Vi €L, ¢ has a model iff ¢ has a finite model of size < f(|¢]|)

'Or take k = |¢).

Finite Model Theory Lecture 15 Spring 2025 6/31

Trakhtenbrot's Theorem v: Turing Machines

[e]e]e] le]ele)

Trakthenbrot's Theorem: Consequence 1

Let L be some logic; e.g. L < FO.

Definition
We say that L has the small model property if there exists a computable
function f : N — N s.t. the following holds:

Vi €L, ¢ has a model iff ¢ has a finite model of size < f(|¢]|)

Example: if o is unary, then FO has the small model property, where
f(p) = (k+1)%", where k = number of variables® in ¢.

1 -
Or take k = |¢|.
Finite Model Theory Lecture 15 Spring 2025 6/31

Trakhtenbrot's Theorem Review: Turing Machines . f Trakhtenbrot's Theorem

[e]e]e]e] Jele)

Trakthenbrot's Theorem: Consequence 1

Corollary

If the vocabulary o has at least one relation with arity > 2, then FO does
not have the small model property. above.

Finite Model Theory Lecture 15 Spring 2025 7/31

Trakhtenbrot's Theorem X Turing Machines 2 akhtenbrot’s Theorem

[e]e]e]e] Jele)

Trakthenbrot's Theorem: Consequence 1

Corollary

If the vocabulary o has at least one relation with arity > 2, then FO does
not have the small model property. above.

Proof: Assume the contrary, that f : N — N exists such that ¢ has a
model iff ¢ has a finite model of size < f(]p]).

Then we can check finite satisfiability as follows. Given ¢, compute
n=f(|e]), and try out all structures of size < n:

@ If one of the structures is a model then answer YES.

@ Otherwise answer NO.

Finite Model Theory Lecture 15 Spring 2025 7/31

Trakhtenbrot's Theorem Review: Turing Machines . Trakhtenbrot's Theorem

[e]e]e]e]e] o)

Trakthenbrot's Theorem: Consequence 2

Denote ¢ =g, 9 if @, are equivalent on all finite structures:

Corollary
If the vocabulary o has at least one relation with arity > 2, then the
following problem is undecidable:

Given two sentences @,1), check whether © =g, Y

Finite Model Theory Lecture 15 Spring 2025 8/31

Trakhtenbrot's Theorem v: Turing Machines

[e]e]e]e]e] o)

Trakthenbrot's Theorem: Consequence 2

Denote ¢ =g, 9 if @, are equivalent on all finite structures:

Corollary
If the vocabulary o has at least one relation with arity > 2, then the
following problem is undecidable:

Given two sentences @,1), check whether © =g, Y

Proof

Reduce it to UNSAT. Assume we have an oracle for ¢ =g, 9.
Then we can check UNSAT by checking if ¢ =g, F.

Finite Model Theory Lecture 15 Spring 2025 8/31

Trakhtenbrot's Theorem

Review: Turing Machines
0000008 0000

Trakhtenbrot's Theorem: Consequence 3

We say that ¢ is finitely valid, =g, ¢, if it holds in every finite model A.
Corollary

The set of finitely valid sentences it not recursively enumerable.

Finite Model Theory Lecture 15

Spring 2025 9/31

Trakhtenbrot's Theorem Turing Machines

000000e

tenbrot’s Theorem

Trakhtenbrot's Theorem: Consequence 3
We say that ¢ is finitely valid, =g, ¢, if it holds in every finite model A.

Corollary

The set of finitely valid sentences it not recursively enumerable. J

Proof ¢ is finitely satisfiable iff ¢ is not finitely valid.

Assume finitely valid sentences are r.e.
Then we could check if ¢ is finitely satisfiable by enumerating in parallel:
@ All finite structures A, checking if A=

o All finitely valid sentences, checking if ~¢ shows up.

Finite Model Theory Lecture 15 Spring 2025 9/31

Trakhtenbrot's Theorem
0000000

Turing Machines

Trakhtenbrot's Theorem: Consequence 3

We say that ¢ is finitely valid, =g, ¢, if it holds in every finite model A.

Corollary

The set of finitely valid sentences it not recursively enumerable. J

Proof ¢ is finitely satisfiable iff ¢ is not finitely valid.

Assume finitely valid sentences are r.e.
Then we could check if ¢ is finitely satisfiable by enumerating in parallel:
o All finite structures A, checking if Ak ¢

o All finitely valid sentences, checking if ~¢ shows up.

Corollary (Finiteness not axiomatizable)
There is no r.e. set of axioms ¥ such that ¥ + ¢ iff Egp, . J

Finite Model Theory Lecture 15 Spring 2025 9/31

Review: Turing Machines
@000

Review: Turing Machines

Finite Model Theory Lecture 15 Spring 2025 10/31

Trakhtenbrot's Theorem Review: Turing Machines X Trakhtenbrot's Theorem

[e] Jele]

Review: Turing Machines Basics

M = (Q7Z7A7 qo, QF) where:

o Q=1{q0,q1,...,qm} are the states;
qo is the initial state;

QF € Q are the final states. el e e e
@ X is the tape alphabet; we take state: g Head
Y ={0,1}

o AcQxXxXx{Left,Right} x Q
are the transitions.

Finite Model Theory Lecture 15 Spring 2025 11/31

Trakhtenbrot's Theorem Review: Turing Machines

[e]e] le]

Review: Turing Machines Basics

A configuration is a triple ¢ = (w, h, q) where:
@ wCXY”is a tape content.
@ heN is the head position.

@ ge @ is a state.

The usual notation of a configuration is: ,
where uv = w and |u| = h.

Finite Model Theory Lecture 15 Spring 2025 12 /31

Trakhtenbrot's Theorem

Review: Turing Machines

[e]e]e])

Review: Turing Machine Basics

A configuration c yields a configuration ¢’ if one of the following two
conditions hold:

@ c=uqav, ¢’ =ubq'v, and (q,a, b,Right,q’) € A, or
@ c=uaqv, ¢’ =uq'bv, and (g, a, b, Left,q") € A.

Finite Model Theory Lecture 15 Spring 2025 13 /31

enbrot’s Theorem Review: Turing Machines

’ro Trakhtenbrot's Theorem
0oo0e 00 o

Review: Turing Machine Basics

A configuration c yields a configuration ¢’ if one of the following two
conditions hold:

@ c=uqav, ¢’ =ubq'v, and (q,a, b,Right,q’) € A, or
@ c=uaqv, ¢’ =uq'bv, and (g, a, b, Left,q") € A.

An computation history is a sequence C = ¢, ¢y, ..., CcT wWhere:

@ ¢ is the initial configuration: ¢; = qo.
@ ci_1 yields ¢;, for i=2, T.

Finite Model Theory Lecture 15

Spring 2025 13 /31

e t's Theorem Review: Turing Machines ’ro Trakhtenbrot’s Theorem

[e]e]e])

Review: Turing Machine Basics

A configuration c yields a configuration ¢’ if one of the following two
conditions hold:

@ c=uqav, ¢’ =ubq'v, and (q,a, b,Right,q’) € A, or
@ c=uaqv, ¢’ =uq'bv, and (g, a, b, Left,q") € A.

An computation history is a sequence C = ¢, ¢y, ..., CcT wWhere:

@ ¢ is the initial configuration: ¢; = qo.

@ ci_1 yields ¢;, for i=2, T.

A computation history is accepting if it ends in a final configuration:
cT = uqv, with g € QF.

Finite Model Theory Lecture 15 Spring 2025 13 /31

v: Turing Machines Proof of Trakhtenbrot's Theorem

®000000000000

Proof of Trakhtenbrot's Theorem

Finite Model Theory Lecture 15 Spring 2025 14 /31

Proof of Trakhtenbrot's Theorem
0®00000000000

Trakhtenbrot's Theorem Review: Turing Machines

Proof of Trakhtenbrot's Theorem

“Given ¢ check if it is finitely satisfiable” is undecidable. J

By reduction from the Halting Problem:

@ Given a Turing Machine M, does M halt on the empty input?

The proof consist of the following: given M we will construct a sentence
wm s.t. M halts iff g, is finitely satisfiable.

Finite Model Theory Lecture 15 Spring 2025 15/31

Proof of Trakhtenbrot's Theorem
00®0000000000

Proof Plan

M halts iff

|EIC, C is an accepting computation of M.

Finite Model Theory Lecture 15 Spring 2025 16 /31

Proof of Trakhtenbrot's Theorem
00®0000000000

Proof Plan

M halts iff

‘ 3C, C is an accepting computation of M.

@ is finitely satisfiable iff

JA such that Ak .

Finite Model Theory Lecture 15 Spring 2025 16 /31

e t's Theorem Review: Turing Machines Proof of Trakhtenbrot's Theorem
0000 000000000000

Proof Plan

M halts iff

‘ 3C, C is an accepting computation of M.

@ is finitely satisfiable iff

JA such that Ak .

This suggests the proof plan:
@ Computation history C = structure A.

@ C is an accepting computation iff A is a model of .

Finite Model Theory Lecture 15 Spring 2025 16 /31

t's Theorem Turing Machines Proof of Trakhtenbrot's Theorem

O00®000000000

Proof Details

Fix a Turing Machine M.

@ Describe a binary vocabulary oy and sentence ¢p; whose models
correspond precisely to accepting computations of M.

@ Later: describe an FO encoding of oy and ¢y, into the language of
graphs o = (E).

Finite Model Theory Lecture 15 Spring 2025 17 /31

Proof of Trakhtenbrot's Theorem
0000®00000000

Proof Details

Fix M = (Q,{0,1}, A, g0, QF).
Define: oy = (<a TO('?')v Tl(’a ')7 H('a ')7 (SQ('))qGQ)

Finite Model Theory Lecture 15 Spring 2025 18/31

Proof of Trakhtenbrot's Theorem
0000®00000000

Proof Details

Fix M = (Q,{0,1}, A, qo, QF).
Define: oy = (<a TO('?')’ Tl(’a ')7 H('a ')7 (SQ('))qGQ)

Intended meaning:

@ < is a total order

Finite Model Theory Lecture 15

Spring 2025 18/31

Review: Turing Machines

Proof of Trakhtenbrot's Theorem
0000®00000000

Proof Details

Fix M = (Q,{0,1}, A, qo, QF).
Define: oy = (<a TO('?')’ Tl('a ')7 H('a ')7 (SQ('))qGQ)

Intended meaning:

@ < is a total order

e To(t,p), T1(t,p): the tape content at time t position p is 0 or 1.

Finite Model Theory Lecture 15

Spring 2025

18/31

Review: Turing Machines

Proof of Trakhtenbrot's Theorem
0000®00000000

Proof Details

Fix M = (Q,{0,1}, A, qo, QF).
Define: oy = (<a TO('?')’ Tl('a ')7 H('a ')7 (SQ('))qGQ)

Intended meaning:

@ < is a total order

e To(t,p), T1(t,p): the tape content at time t position p is 0 or 1.

e H(t,p): the head at time t is on position p.

Finite Model Theory Lecture 15

Spring 2025

18/31

Trakhtenbrot's Theorem Review: Turing Machines

Proof of Trakhtenbrot's Theorem

0O000@00000000

Proof Details

Fix M =(Q,{0,1}, A, g0, QF).
Define: opn = (<, To(:,-), Ta(+), H(,+), (S¢(+)) qeq)

Intended meaning:

@ < is a total order
e To(t,p), T1(t,p): the tape content at time t position p is 0 or 1.
e H(t,p): the head at time t is on position p.

@ S,(t): the Turning Machine is is stated g at time t.

Finite Model Theory Lecture 15 Spring 2025 18 /31

v: Turing Machines Proof of Trakhtenbrot's Theorem

0O0000@0000000

Proof Details

M = (Q; {07 1}7Aa qo, QF)
om = (< To(), Ta(), H(S), (5q(4))ge@)

The sentence ¢y asserts the following:

@ General consistency: < is a total order, every tape has exactly one
symbol, the head is on exactly one position, etc.

Finite Model Theory Lecture 15 Spring 2025 19 /31

enbrot’s Theorem v: Turing Machines Proof of Trakhtenbrot's Theorem

0O0000@0000000

Proof Details

M = (Q; {07 1}7A7 qo, QF)
om = (< To(), Ta(), H(S), (5q(4))ge@)

The sentence ¢y asserts the following:

@ General consistency: < is a total order, every tape has exactly one
symbol, the head is on exactly one position, etc.

@ At time t = min, the TM is in the initial configuration.

@ At time t = max, the TM is in an accepting configuration.

Finite Model Theory Lecture 15 Spring 2025 19/31

brot’s Theorem R Turing Machines Proof of Trakhtenbrot's Theorem

0O0000@0000000

Proof Details

M = (Q; {07 1}7A7 qo, QF)
om = (< To(), Ta(), H(S), (5q(4))ge@)

The sentence ¢y asserts the following:

@ General consistency: < is a total order, every tape has exactly one
symbol, the head is on exactly one position, etc.

@ At time t = min, the TM is in the initial configuration.
@ At time t = max, the TM is in an accepting configuration.
@ The configuration at time t yields that at time t+1

Finite Model Theory Lecture 15 Spring 2025 19/31

enbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot's Theorem

0O00000@e000000

Proof Details: General Consistency

M = (Q; {07 1}7Aa qo, QF)
om = (< To(), Ta(), H(S), (5q(4))ge@)

@ < is a total order.

@ Exactly one tape symbol:
Vt,Vp(To(t,p) v Ta(t,p)) A =(To(t,p) A Ta(t,p))

@ Exactly one head position at each time: ...
@ Exactly one state at each time: ...

Finite Model Theory Lecture 15 Spring 2025 20/31

Turing Machines Proof of Trakhtenbrot's Theorem

0000000800000

Proof Details: Initial Configuration

M = (Q; {07 1}7Aa qo, QF)
om = (< To(), Ta(), H(S), (5q(4))ge@)

At time t = min, the TM is in the initial configuration:

VpTo(min, p) A H(min, min) A Sq;(min)

Note that we can name min by Ix-3y(y < x); similarly max.

Finite Model Theory Lecture 15 Spring 2025 21/31

Proof of Trakhtenbrot's Theorem
00000000®0000

Proof Details: Final Configuration

M = (Q7 {07 1}7Aa qo, QF)
om = (< To(), Ta(), H(S), (5q(4))ge@)

At time t = max, the TM is in the final configuration:

V' Sq(max)

qeQF

Finite Model Theory Lecture 15 Spring 2025 22/31

enbrot’s Theorem Review: Turing Machines Proof of Trakhtenbrot's Theorem

0000000008000

Proof Details: All Transitions are Correct

M = (Q7 {07 1}7Aa qo, QF)
om = (< To(), Ta(), H(S), (5q(4))ge@)

Each transition from t to t + 1 corresponds to one valid § € A:

Vt(t <max - \/ CHECK;(t))
e

Finite Model Theory Lecture 15 Spring 2025 23/31

Review: Turing Machines Proof of Trakhtenbrot's Theorem

0000000000800

Proof Details: All Transitions are Correct (Detail)

M = (Q; {07 1}7A7 qo, QF)
om = (<a TO('?'): Tl('a ')7 H('a ')7 (SQ('))CIGQ)

Example transition: 0 = (gs, 1,0, Left, g3)
(“If in state g5 and the tape is 1, then write 0, move Left, enter g3")

CHECK;(t) =Sg5(t) Check we are in gs
AVs(=H(t,s) = (To(t,s) < To(t+1,s))) Leave non-head
symbols unchaged

AVs(H(t,s) — Ti(t,s) A To(t+1,5s)) the head was 1

set it to 0
AH(t+1,5-1) move to the left
ANSq (t+1) enter g3

Finite Model Theory Lecture 15 Spring 2025 24 /31

Proof Details: Finalizing the Proof

Claim: ¢, is satisfiable iff M terminates.

Finite Model Theory Lecture 15 Spring 2025 25/31

v: Turing Machines Proof of Trakhtenbrot's Theorem FO Reduc

0000000000080

Proof Details: Finalizing the Proof

Claim: ¢y, is satisfiable iff M terminates. Proof:

o If M terminates, then there exists an accepting computation history
C=c,c,...,ct. From C, we construct a structure A as follows:

Finite Model Theory Lecture 15 Spring 2025 25/31

enbrot’s Theorem v: Turing Machines Proof of Trakhtenbrot's Theorem

0000000000080

Proof Details: Finalizing the Proof

Claim: ¢y, is satisfiable iff M terminates. Proof:

o If M terminates, then there exists an accepting computation history
C=c,c,...,cr. From C, we construct a structure A as follows:
» The domain is [T], and < is the standard order.
» The relations To, Ty, H, S4 are defined according to C.

Then AE .

Finite Model Theory Lecture 15 Spring 2025 25/31

enbrot’s Theorem v: Turing Machines Proof of Trakhtenbrot's Theorem

0000000000080

Proof Details: Finalizing the Proof

Claim: ¢y, is satisfiable iff M terminates. Proof:

o If M terminates, then there exists an accepting computation history
C=c,c,...,ct. From C, we construct a structure A as follows:

» The domain is [T], and < is the standard order.
» The relations To, Ty, H, S4 are defined according to C.

Then AE .

o If AE pp, then construct an accepting computation ¢y, ..., cT:

Finite Model Theory Lecture 15 Spring 2025 25/31

brot’s Theorem R Turing Machines Proof of Trakhtenbrot's Theorem

0000000000080

Proof Details: Finalizing the Proof

Claim: ¢y, is satisfiable iff M terminates. Proof:

o If M terminates, then there exists an accepting computation history
C=c,c,...,ct. From C, we construct a structure A as follows:

» The domain is [T], and < is the standard order.
» The relations To, Ty, H, S4 are defined according to C.

Then AE .

o If AE pp, then construct an accepting computation ¢y, ..., cT:

» Set T %" |Dom(A)|.
» Configuration ¢; defined based on To(i,-), T1(i,-), H(i,-), (S4(i))q-

Finite Model Theory Lecture 15 Spring 2025 25/31

brot's Theorem R Turing Machines Proof of Trakhtenbrot's Theorem

0000000000080

Proof Details: Finalizing the Proof

Claim: ¢y, is satisfiable iff M terminates. Proof:

o If M terminates, then there exists an accepting computation history
C=c,c,...,ct. From C, we construct a structure A as follows:

» The domain is [T], and < is the standard order.
» The relations To, Ty, H, S4 are defined according to C.

Then AE .

o If AE pp, then construct an accepting computation ¢y, ..., cT:

» Set T %" |Dom(A)|.
» Configuration ¢; defined based on To(i,-), T1(i,-), H(i,-), (S4(i))q-

Since A E pyy it follows that C is an accepting computation for M.

Finite Model Theory Lecture 15 Spring 2025 25/31

Proof of Trakhtenbrot's Theorem
0000000000000

Discussion

@ A structure s.t. AE @y is precisely an accepting computation C of
the Turing Machine M.

@ how large is |[Dom(A)|?

Finite Model Theory Lecture 15 Spring 2025 26 /31

t's Theorem R w: Turing Machines Proof of Trakhtenbrot's Theorem

000000000000 e

Discussion

@ A structure s.t. AE @y is precisely an accepting computation C of
the Turing Machine M.

@ how large is |[Dom(A)|? The number of time steps needed by M to
terminate.

Finite Model Theory Lecture 15 Spring 2025 26 /31

t's Theorem R w: Turing Machines Proof of Trakhtenbrot's Theorem

000000000000 e

Discussion

@ A structure s.t. AE @y is precisely an accepting computation C of
the Turing Machine M.

@ how large is |[Dom(A)|? The number of time steps needed by M to
terminate.

o Is A unique?

Finite Model Theory Lecture 15 Spring 2025 26 /31

Turing Machines Proof of Trakhtenbrot's Theorem

000000000000 e

Discussion
@ A structure s.t. AE @y is precisely an accepting computation C of
the Turing Machine M.

@ how large is |[Dom(A)|? The number of time steps needed by M to
terminate.

@ Is A unique? Not necessarily. But it is unique when M is
deterministic.

Finite Model Theory Lecture 15 Spring 2025 26 /31

t's Theorem Turing Machines Proof of Trakhtenbrot's Theorem

000000000000 e

Discussion

@ A structure s.t. AE @y is precisely an accepting computation C of
the Turing Machine M.

@ how large is |[Dom(A)|? The number of time steps needed by M to
terminate.

@ Is A unique? Not necessarily. But it is unique when M is
deterministic.

@ Is succ enough, or do we need <?

Finite Model Theory Lecture 15 Spring 2025 26 /31

Trakhtenbrot's Theorem Turing Machines Proof of Trakhtenbrot's Theorem

000000000000 e

Discussion

@ A structure s.t. AE @y is precisely an accepting computation C of
the Turing Machine M.

@ how large is |[Dom(A)|? The number of time steps needed by M to
terminate.

@ Is A unique? Not necessarily. But it is unique when M is
deterministic.

@ Is succ enough, or do we need <? Weneed—<becatse-sueceisnot
finitely-axiomatizable: succ is enough. (Needs axioms to say that

indegree and outdegree of each element is 1, except for two elements
that have indegree 0 and outdegree 0 respectively.)

Finite Model Theory Lecture 15 Spring 2025 26 /31

akhtenbrot's Theorem v: Turing Machines Proof of Trakhtenbrot's Theorem

000000000000 e

Discussion

@ A structure s.t. AE @y is precisely an accepting computation C of
the Turing Machine M.

@ how large is |[Dom(A)|? The number of time steps needed by M to
terminate.

@ Is A unique? Not necessarily. But it is unique when M is
deterministic.

@ Is succ enough, or do we need <? Weneed—<becatse-sueceisnot
finitely-axiomatizable: succ is enough. (Needs axioms to say that

indegree and outdegree of each element is 1, except for two elements
that have indegree 0 and outdegree 0 respectively.)

@ We still need to reduce the vocabulary oy, to a vocabulary with a
single binary relation E. We do this next

Finite Model Theory Lecture 15 Spring 2025 26 /31

FO Reductions
©0000

FO Reductions

Finite Model Theory Lecture 15 Spring 2025 27/31

FO Reductions
0@000

FO Reduction

Let 0 ={S1,...,Sm},7={T1,..., Tn} be two relational vocabularies.

Finite Model Theory Lecture 15 Spring 2025 28 /31

FO Reductions
0@000

FO Reduction

Let 0 ={S1,...,Sm},7={T1,..., Tn} be two relational vocabularies.

A query from o to 7 is a function Q : STRUCT[o] - STRUCT|[7].

Finite Model Theory Lecture 15 Spring 2025 28 /31

orot's Theorem Review: Turing Machines

FO Reduction

0O@000

Let 0 ={S1,...,Sm},7={T1,..., Tn} be two relational vocabularies.
A query from o to 7 is a function Q : STRUCT[o] - STRUCT|[7].
A Boolean query, or a problem, is a function P: STRUCT[os] — {0,1}.

Finite Model Theory Lecture 15 Spring 2025

ot's Theorem FO Reductions

28 /31

Review: Turing Machines f of Trakhtenbrot's Theorem FO Reductions
9 © 000000 0@000

FO Reduction

Let 0 ={S1,...,Sm},7={T1,..., Tn} be two relational vocabularies.
A query from o to 7 is a function Q : STRUCT[o] - STRUCT|[7].
A Boolean query, or a problem, is a function P: STRUCT[os] — {0,1}.

A First Order Query Q consists of n formulas, Q = (q1, .. ,q,,) where each
gj has arity(T;) free variables; it defines the mapping Q(A) "B where:

def .
B<='A same domain

vji: TE<(b| Ak q(b)}

Finite Model Theory Lecture 15 Spring 2025 28 /31

Tra nbrot's Theorem Review: Turing Machines ’ro e FO Reductions
0000 00 00 00000

FO Reduction

Let 0 ={S1,...,Sm},7={T1,..., Tn} be two relational vocabularies.
A query from o to 7 is a function Q : STRUCT[o] - STRUCT|[7].
A Boolean query, or a problem, is a function P: STRUCT[os] — {0,1}.

A First Order Query Q consists of n formulas, Q = (q1,...,qn), where each
qj has arity(T;) free variables; it defines the mapping Q(A) %" B where:

def .
B<='A same domain

vji: TE<(b| Ak q(b)}

Q maps problems on STRUCT[7] to problems on STRUCT([¢]
(“in reverse”): P PoQ, i.e. P(A) def P(Q(A)).

Finite Model Theory Lecture 15 Spring 2025 28 /31

akhtenbrot's Theorem Review: Turing Machines

Review Pro rakhtenbrot’s Theorem FO Reductions

[e]e] le]e}

FO Reduction

Query STRUCT[o] - STRUCT(7]
(Problems on STRUCT([7]) - (Problems on STRUCT[c])

Definition

A First Order Reduction is an FO query Q from o to 7.

It “reduces” a problem P’ on 7 from the problem P e pr g Q on 0.

Obviously, P is at least as hard as P.

Finite Model Theory Lecture 15 Spring 2025 29/31

Review: Turing Machines

f Trakhtenbrot's Theorem FO Reductions
00000000 000e0

Every Structure is FO-Reducible to a Graph

o ={E} a graph.

T = any vocabulary. For simplicity, assume 7= {R(-,-),S(-,-)}.
Question: Given a 7-structure A = (R*,S*), encode it as a graph G s.t.
you can decode it: R” = @1(G), S* = Q»(G)

Finite Model Theory Lecture 15

Spring 2025 30/31

Turing Machines ot's Theorem

FO Reductions
00000

Every Structure is FO-Reducible to a Graph

o ={E} a graph.

T = any vocabulary. For simplicity, assume 7= {R(-,-),S(-,-)}.
Question: Given a 7-structure A = (R*,S*), encode it as a graph G s.t.
you can decode it: RA = Q1(G), $* = Q(G)

(a) R S
ab alc
alc clc

®) gl

Spring 2025 30/31

enbrot’s Theorem Review: Turing Machines

enbrot’s Theorem FO Reductions
000 00000

Every Structure is FO-Reducible to a Graph

o ={E} a graph.

T = any vocabulary. For simplicity, assume 7= {R(-,-),S(-,-)}.
Question: Given a 7-structure A = (R*,S*), encode it as a graph G s.t.
you can decode it: RA = Q1(G), $* = Q(G)

(a) R S
alb ac
ac c|C
@ c|a
Use small gadgets for R and S
©

Spring 2025 30/31

enbrot’s Theorem Review: Turing Machines

enbrot’s Theorem FO Reductions
000 00000

Every Structure is FO-Reducible to a Graph

o ={E} a graph.

T = any vocabulary. For simplicity, assume 7= {R(-,-),S(-,-)}.
Question: Given a 7-structure A = (R*,S*), encode it as a graph G s.t.
you can decode it: RA = Q1(G), $* = Q(G)

(a) R S
alb alc
alc clc

@ cla

Use small gadgets for R and S

o R ek

Finite Model Theory Lecture 15 Spring 2025 30/31

rot’s Theorem Turing Machines

ot's Theorem FO Reductions
00000

Every Structure is FO-Reducible to a Graph

o ={E} a graph.

T = any vocabulary. For simplicity, assume 7= {R(-,-),S(-,-)}.
Question: Given a 7-structure A = (R*,S*), encode it as a graph G s.t.
you can decode it: RA = Q1(G), $* = Q(G)

o oo
o
o
o

Use small gadgets for R and S

9 908

Finite Model Theory Lecture 15 Spring 2025 30/31

rot’s Theorem Turing Machines

ot's Theorem FO Reductions
00000

Every Structure is FO-Reducible to a Graph

o ={E} a graph.

T = any vocabulary. For simplicity, assume 7= {R(-,-),S(-,-)}.
Question: Given a 7-structure A = (R*,S*), encode it as a graph G s.t.
you can decode it: RA = Q1(G), $* = Q(G)

o oo
o
o
o

Use small gadgets for R and S

9 908

Finite Model Theory Lecture 15 Spring 2025 30/31

rot's Theorem Review: Turing Machines

enbrot’s Theorem FO Reductions
000 00000

Every Structure is FO-Reducible to a Graph

o ={E} a graph.

T = any vocabulary. For simplicity, assume 7= {R(-,-),S(-,-)}.
Question: Given a 7-structure A = (R*,S*), encode it as a graph G s.t.
you can decode it: RA = Q1(G), $* = Q(G)

o oo
o
o
o

Use small gadgets for R and S

9 908

The query (1) first checks that G is a correct encoding how?, then (2)
decodes R and S how?

Finite Model Theory Lecture 15 Spring 2025 30/31

t's Theorem Turing Mac Proof of Trakhtenbrot's Theorem FO Reductions

[e]e]ele] }

Discussion

Main take away: we can encode an accepting computation of a Turing
Machine as a structure, and verify its correctness using a sentence.

Next lecture we use small variants of this encoding to prove:
@ Fagins's Theorem: 3SO captures NP.

e Immerman and Vardi's Theorem: LFP(<) (“least fixpoint logic over
ordered structures”) captures PTIME

@ Church-Turing's Undecidability Theorem: validity (in all models) is
undecidable.

@ Godel's Incompleteness Theorem: (N, +, %) is not axiomatizable.

Finite Model Theory Lecture 15 Spring 2025 31/31

	Trakhtenbrot's Theorem
	Review: Turing Machines
	Proof of Trakhtenbrot's Theorem
	FO Reductions

