Finite Model Theory Lecture 15: Logic and Turing Machines

Spring 2025

1/31

Announcement

• HW4 (the last one!!) is posted and due on May 30.

• Topic for today and Wednesday: connection between logic and Turing machines.

• No lectures next week

Trakhtenbrot's Theorem

Trakhtenbrot's Theorem

A sentence φ is finitely satisfiable if there exists a structure \pmb{A} such that: $\pmb{A}\vDash\varphi$

Theorem (Trakhtenbrot)

Suppose the vocabulary σ has at least one relation with arity ≥ 2 . Then the problem given φ check if it is finitely satisfiable is undecidable.

Thus, the set of sentences φ that are finitely satisfiable is recursively enumerable, but not decidable.

Why Binary Relation

What happens if the vocabulary σ has only unary relations U_1, \ldots, U_m ?

Is finite satisfiability decidable?

Why Binary Relation

What happens if the vocabulary σ has only unary relations U_1, \ldots, U_m ?

Is finite satisfiability decidable?

YES: Satisfiability and finite satisfiability coincide, and are decidable. HW3

Before we prove Trakhtenbrot's theorem, we discuss 3 consequences.

Let L be some logic; e.g. $L \subseteq FO$.

Definition

We say that *L* has the small model property if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ s.t. the following holds:

 $\forall \varphi \in L, \varphi$ has a model iff φ has a finite model of size $\leq f(|\varphi|)$

¹Or take $k = |\varphi|$.

Let *L* be some logic; e.g. $L \subseteq FO$.

Definition

We say that *L* has the small model property if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ s.t. the following holds:

 $\forall \varphi \in L, \varphi$ has a model iff φ has a finite model of size $\leq f(|\varphi|)$

Example: if σ is unary, then FO has the small model property, where $f(\varphi) = (k+1)^{2^n}$, where k =number of variables¹ in φ .

¹Or take $k = |\varphi|$.

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2 , then FO does not have the small model property. above.

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2 , then FO does not have the small model property. above.

Proof: Assume the contrary, that $f : \mathbb{N} \to \mathbb{N}$ exists such that φ has a model iff φ has a finite model of size $\leq f(|\varphi|)$.

Then we can check finite satisfiability as follows. Given φ , compute $n = f(|\varphi|)$, and try out all structures of size $\leq n$:

- If one of the structures is a model then answer YES.
- Otherwise answer NO.

Denote $\varphi \equiv_{\mathsf{fin}} \psi$ if φ, ψ are equivalent on all finite structures:

Corollary

If the vocabulary σ has at least one relation with arity \geq 2, then the following problem is undecidable:

Given two sentences φ, ψ , check whether $\varphi \equiv_{fin} \psi$

8/31

Denote $\varphi \equiv_{\mathsf{fin}} \psi$ if φ, ψ are equivalent on all finite structures:

Corollary

If the vocabulary σ has at least one relation with arity \geq 2, then the following problem is undecidable:

Given two sentences φ, ψ , check whether $\varphi \equiv_{fin} \psi$

Proof

Reduce it to UNSAT. Assume we have an oracle for $\varphi \equiv_{fin} \psi$. Then we can check UNSAT by checking if $\varphi \equiv_{fin} F$.

We say that φ is finitely valid, $\vDash_{fin} \varphi$, if it holds in every finite model **A**.

Corollary

The set of finitely valid sentences it not recursively enumerable.

9/31

We say that φ is finitely valid, $\vDash_{fin} \varphi$, if it holds in every finite model **A**.

Corollary

The set of finitely valid sentences it not recursively enumerable.

Proof φ is finitely satisfiable iff $\neg \varphi$ is not finitely valid.

Assume finitely valid sentences are r.e.

Then we could check if φ is finitely satisfiable by enumerating in parallel:

- All finite structures **A**, checking if $\mathbf{A} \models \varphi$
- All finitely valid sentences, checking if $\neg\varphi$ shows up.

We say that φ is finitely valid, $\vDash_{fin} \varphi$, if it holds in every finite model **A**.

Corollary

The set of finitely valid sentences it not recursively enumerable.

Proof φ is finitely satisfiable iff $\neg \varphi$ is not finitely valid.

Assume finitely valid sentences are r.e.

Then we could check if φ is finitely satisfiable by enumerating in parallel:

- All finite structures **A**, checking if $\mathbf{A} \models \varphi$
- All finitely valid sentences, checking if $\neg \varphi$ shows up.

Corollary (Finiteness not axiomatizable)

There is no r.e. set of axioms Σ such that $\Sigma \vdash \varphi$ iff $\vDash_{fin} \varphi$.

Review: Turing Machines

Review: Turing Machines Basics

 $M = (Q, \Sigma, \Delta, q_0, Q_F)$ where:

- $Q = \{q_0, q_1, \dots, q_m\}$ are the states; q_0 is the initial state; $Q_F \subseteq Q$ are the final states.
- Σ is the tape alphabet; we take $\Sigma = \{0,1\}$
- $\Delta \subseteq Q \times \Sigma \times \Sigma \times \{\text{Left}, \text{Right}\} \times Q$ are the transitions.

11/31

Review: Turing Machines Basics

A configuration is a triple c = (w, h, q) where:

- $w \subseteq \Sigma^*$ is a tape content.
- $h \in \mathbb{N}$ is the head position.
- q ∈ Q is a state.

The usual notation of a configuration is: uqv, where uv = w and |u| = h.

Review: Turing Machine Basics

A configuration c yields a configuration c' if one of the following two conditions hold:

- c = uqav, c' = ubq'v, and $(q, a, b, Right, q') \in \Delta$, or
- c = uaqv, c' = uq'bv, and $(q, a, b, \text{Left}, q') \in \Delta$.

Review: Turing Machine Basics

A configuration c yields a configuration c' if one of the following two conditions hold:

- c = uqav, c' = ubq'v, and $(q, a, b, Right, q') \in \Delta$, or
- c = uaqv, c' = uq'bv, and $(q, a, b, \text{Left}, q') \in \Delta$.

An computation history is a sequence $\boldsymbol{C} = c_1, c_2, \dots, c_T$ where:

- c_1 is the initial configuration: $c_1 = q_0$.
- c_{i-1} yields c_i , for i = 2, T.

Review: Turing Machine Basics

A configuration c yields a configuration c' if one of the following two conditions hold:

- c = uqav, c' = ubq'v, and $(q, a, b, \text{Right}, q') \in \Delta$, or
- c = uaqv, c' = uq'bv, and $(q, a, b, \text{Left}, q') \in \Delta$.

An computation history is a sequence $\boldsymbol{C} = c_1, c_2, \dots, c_T$ where:

- c_1 is the initial configuration: $c_1 = q_0$.
- c_{i-1} yields c_i , for i = 2, T.

A computation history is accepting if it ends in a final configuration: $c_T = uqv$, with $q \in Q_F$.

Proof of Trakhtenbrot's Theorem

Proof of Trakhtenbrot's Theorem

"Given φ check if it is finitely satisfiable" is undecidable.

By reduction from the Halting Problem:

• Given a Turing Machine *M*, does *M* halt on the empty input?

The proof consist of the following: given M we will construct a sentence φ_M s.t. M halts iff φ_M is finitely satisfiable.

Proof Plan

M halts iff

$\exists C, C \text{ is an accepting computation of } M.$

16/31

Proof Plan

M halts iff

$\exists C, C \text{ is an accepting computation of } M.$

 φ is finitely satisfiable iff

 $\exists \mathbf{A} \text{ such that } \mathbf{A} \vDash \varphi.$

Proof Plan

M halts iff

 $\exists C, C \text{ is an accepting computation of } M.$

 φ is finitely satisfiable iff

 $\exists \mathbf{A} \text{ such that } \mathbf{A} \vDash \varphi.$

This suggests the proof plan:

- Computation history **C** = structure **A**.
- C is an accepting computation iff A is a model of φ.

Fix a Turing Machine M.

- Describe a binary vocabulary σ_M and sentence φ_M whose models correspond precisely to accepting computations of M.
- Later: describe an FO encoding of σ_M and φ_M into the language of graphs σ = (E).

Fix $M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$. Define: $\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$

18/31

Fix $M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$. Define: $\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$

Intended meaning:

• < is a total order</pre>

Fix $M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$. Define: $\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$

Intended meaning:

• < is a total order

• $T_0(t,p), T_1(t,p)$: the tape content at time t position p is 0 or 1.

Fix $M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$. Define: $\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$

Intended meaning:

- < is a total order</pre>
- $T_0(t,p), T_1(t,p)$: the tape content at time t position p is 0 or 1.
- H(t, p): the head at time t is on position p.

Fix $M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$. Define: $\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$

Intended meaning:

- < is a total order</pre>
- $T_0(t,p), T_1(t,p)$: the tape content at time t position p is 0 or 1.
- H(t, p): the head at time t is on position p.
- $S_q(t)$: the Turning Machine is stated q at time t.

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

The sentence φ_M asserts the following:

• General consistency: < is a total order, every tape has exactly one symbol, the head is on exactly one position, etc.

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

The sentence φ_M asserts the following:

- General consistency: < is a total order, every tape has exactly one symbol, the head is on exactly one position, etc.
- At time *t* = min, the TM is in the initial configuration.
- At time *t* = max, the TM is in an accepting configuration.

19/31

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

The sentence φ_M asserts the following:

- General consistency: < is a total order, every tape has exactly one symbol, the head is on exactly one position, etc.
- At time *t* = min, the TM is in the initial configuration.
- At time *t* = max, the TM is in an accepting configuration.
- The configuration at time t yields that at time t + 1

Proof Details: General Consistency

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

- < is a total order.</p>
- Exactly one tape symbol: $\forall t, \forall p(T_0(t,p) \lor T_1(t,p)) \land \neg(T_0(t,p) \land T_1(t,p))$
- Exactly one head position at each time: ...
- Exactly one state at each time: ...
Proof Details: Initial Configuration

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

At time $t = \min$, the TM is in the initial configuration:

 $\forall pT_0(\min, p) \land H(\min, \min) \land S_{q_0}(\min)$

Note that we can name min by $\exists x \neg \exists y (y < x)$; similarly max.

Proof Details: Final Configuration

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

At time $t = \max$, the TM is in the final configuration:

$$\bigvee_{q \in Q_F} S_q(\max)$$

Proof Details: All Transitions are Correct

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

Each transition from t to t + 1 corresponds to one valid $\delta \in \Delta$:

$$\forall t(t < \max \rightarrow \bigvee_{\delta \in \Delta} \mathsf{CHECK}_{\delta}(t))$$

Finite Model Theory

Spring 2025

24 / 31

Proof Details: All Transitions are Correct (Detail)

$$\begin{split} &M = (Q, \{0, 1\}, \Delta, q_0, Q_F) \\ &\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q}) \end{split}$$

Example transition: $\delta = (q_5, 1, 0, \text{Left}, q_3)$ ("If in state q_5 and the tape is 1, then write 0, move Left, enter q_3 ")

Claim: φ_M is satisfiable iff M terminates.

Claim: φ_M is satisfiable iff *M* terminates. **Proof**:

• If *M* terminates, then there exists an accepting computation history $C = c_1, c_2, ..., c_T$. From *C*, we construct a structure *A* as follows:

Claim: φ_M is satisfiable iff *M* terminates. **Proof**:

- If *M* terminates, then there exists an accepting computation history $C = c_1, c_2, ..., c_T$. From *C*, we construct a structure *A* as follows:
 - The domain is [*T*], and < is the standard order.
 - The relations T_0, T_1, H, S_q are defined according to **C**.

Then $\mathbf{A} \models \varphi_{\mathbf{M}}$.

Claim: φ_M is satisfiable iff *M* terminates. **Proof**:

- If *M* terminates, then there exists an accepting computation history $C = c_1, c_2, \ldots, c_T$. From *C*, we construct a structure *A* as follows:
 - The domain is [*T*], and < is the standard order.
 - The relations T_0, T_1, H, S_q are defined according to **C**.

Then $\mathbf{A} \models \varphi_{\mathbf{M}}$.

• If $\mathbf{A} \models \varphi_M$, then construct an accepting computation c_1, \ldots, c_T :

Claim: φ_M is satisfiable iff *M* terminates. **Proof**:

- If *M* terminates, then there exists an accepting computation history $C = c_1, c_2, \ldots, c_T$. From *C*, we construct a structure *A* as follows:
 - The domain is [*T*], and < is the standard order.
 - The relations T_0, T_1, H, S_q are defined according to **C**.

Then $\mathbf{A} \models \varphi_{\mathbf{M}}$.

- If $\mathbf{A} \models \varphi_{\mathbf{M}}$, then construct an accepting computation $c_1, \ldots, c_{\mathbf{T}}$:
 - Set $T \stackrel{\text{def}}{=} |\text{Dom}(\mathbf{A})|$.
 - Configuration c_i defined based on $T_0(i, \cdot), T_1(i, \cdot), H(i, \cdot), (S_q(i))_q$.

Claim: φ_M is satisfiable iff *M* terminates. **Proof**:

- If *M* terminates, then there exists an accepting computation history $C = c_1, c_2, \ldots, c_T$. From *C*, we construct a structure *A* as follows:
 - The domain is [*T*], and < is the standard order.
 - The relations T_0, T_1, H, S_q are defined according to **C**.

Then $\mathbf{A} \models \varphi_{\mathbf{M}}$.

- If $\mathbf{A} \models \varphi_{\mathbf{M}}$, then construct an accepting computation $c_1, \ldots, c_{\mathbf{T}}$:
 - Set $T \stackrel{\text{def}}{=} |\text{Dom}(\mathbf{A})|$.
 - Configuration c_i defined based on $T_0(i, \cdot), T_1(i, \cdot), H(i, \cdot), (S_q(i))_q$.

Since $\mathbf{A} \models \varphi_M$ it follows that \mathbf{C} is an accepting computation for M.

- A structure s.t. *A* ⊨ φ_M is precisely an accepting computation *C* of the Turing Machine *M*.
- how large is |Dom(A)|?

- A structure s.t. $A \models \varphi_M$ is precisely an accepting computation C of the Turing Machine M.
- how large is |Dom(A)|? The number of time steps needed by M to terminate.

- A structure s.t. $A \models \varphi_M$ is precisely an accepting computation C of the Turing Machine M.
- how large is |Dom(A)|? The number of time steps needed by M to terminate.
- Is **A** unique?

- A structure s.t. $A \models \varphi_M$ is precisely an accepting computation C of the Turing Machine M.
- how large is |Dom(A)|? The number of time steps needed by M to terminate.
- Is **A** unique? Not necessarily. But it is unique when *M* is deterministic.

- A structure s.t. $A \models \varphi_M$ is precisely an accepting computation C of the Turing Machine M.
- how large is |Dom(A)|? The number of time steps needed by M to terminate.
- Is **A** unique? Not necessarily. But it is unique when *M* is deterministic.
- Is succ enough, or do we need <?

- A structure s.t. $\mathbf{A} \models \varphi_M$ is precisely an accepting computation \mathbf{C} of the Turing Machine M.
- how large is |Dom(A)|? The number of time steps needed by M to terminate.
- Is **A** unique? Not necessarily. But it is unique when *M* is deterministic.
- Is succ enough, or do we need <? We need < because succ is not finitely axiomatizable. succ is enough. (Needs axioms to say that indegree and outdegree of each element is 1, except for two elements that have indegree 0 and outdegree 0 respectively.)

26/31

- A structure s.t. $\mathbf{A} \models \varphi_M$ is precisely an accepting computation \mathbf{C} of the Turing Machine M.
- how large is |Dom(A)|? The number of time steps needed by M to terminate.
- Is **A** unique? Not necessarily. But it is unique when *M* is deterministic.
- Is succ enough, or do we need <? We need < because succ is not finitely axiomatizable. succ is enough. (Needs axioms to say that indegree and outdegree of each element is 1, except for two elements that have indegree 0 and outdegree 0 respectively.)
- We still need to reduce the vocabulary σ_M to a vocabulary with a single binary relation *E*. We do this next

Let $\sigma = \{S_1, \dots, S_m\}, \tau = \{T_1, \dots, T_n\}$ be two relational vocabularies.

Let $\sigma = \{S_1, \dots, S_m\}, \tau = \{T_1, \dots, T_n\}$ be two relational vocabularies.

A query from σ to τ is a function $Q: STRUCT[\sigma] \rightarrow STRUCT[\tau]$.

Let $\sigma = \{S_1, \ldots, S_m\}, \tau = \{T_1, \ldots, T_n\}$ be two relational vocabularies.

A query from σ to τ is a function $Q: STRUCT[\sigma] \rightarrow STRUCT[\tau]$.

A Boolean query, or a problem, is a function P: STRUCT[σ] \rightarrow {0,1}.

Let $\sigma = \{S_1, \ldots, S_m\}, \tau = \{T_1, \ldots, T_n\}$ be two relational vocabularies.

A query from σ to τ is a function $Q: STRUCT[\sigma] \rightarrow STRUCT[\tau]$.

A Boolean query, or a problem, is a function P: STRUCT[σ] \rightarrow {0,1}.

A First Order Query Q consists of n formulas, $Q = (q_1, ..., q_n)$, where each q_j has arity (T_j) free variables; it defines the mapping $Q(\mathbf{A}) \stackrel{\text{def}}{=} \mathbf{B}$ where:

$$B \stackrel{\text{def}}{=} A \qquad \text{same domain}$$
$$\forall j: \quad T_j^B \stackrel{\text{def}}{=} \{ \boldsymbol{b} \mid \boldsymbol{A} \vDash q_j(\boldsymbol{b}) \}$$

Let $\sigma = \{S_1, \ldots, S_m\}, \tau = \{T_1, \ldots, T_n\}$ be two relational vocabularies.

A query from σ to τ is a function Q: STRUCT $[\sigma] \rightarrow$ STRUCT $[\tau]$.

A Boolean query, or a problem, is a function P: STRUCT[σ] \rightarrow {0,1}.

A First Order Query Q consists of n formulas, $Q = (q_1, ..., q_n)$, where each q_j has arity (T_j) free variables; it defines the mapping $Q(\mathbf{A}) \stackrel{\text{def}}{=} \mathbf{B}$ where:

$$B \stackrel{\text{def}}{=} A \qquad \text{same domain}$$
$$\forall j: \quad T_j^B \stackrel{\text{def}}{=} \{ \boldsymbol{b} \mid \boldsymbol{A} \vDash q_j(\boldsymbol{b}) \}$$

Q maps problems on STRUCT[τ] to problems on STRUCT[σ] ("in reverse"): $P \mapsto P \circ Q$, i.e. $\hat{P}(\mathbf{A}) \stackrel{\text{def}}{=} P(Q(\mathbf{A}))$.

28/31

Query STRUCT[σ] \rightarrow STRUCT[τ] (Problems on STRUCT[τ]) \rightarrow (Problems on STRUCT[σ])

Definition

A First Order Reduction is an FO query Q from σ to τ .

It "reduces" a problem P' on τ from the problem $P \stackrel{\text{def}}{=} P' \circ Q$ on σ .

Obviously, P' is at least as hard as P.

 $\sigma = \{E\}$ a graph.

 τ = any vocabulary. For simplicity, assume $\tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}$.

Question: Given a τ -structure $\mathbf{A} = (R^A, S^A)$, encode it as a graph G s.t. you can decode it: $R^A = Q_1(\mathbf{G})$, $S^A = Q_2(\mathbf{G})$

 $\sigma = \{E\}$ a graph.

 τ = any vocabulary. For simplicity, assume $\tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}$.

Question: Given a τ -structure $\mathbf{A} = (R^A, S^A)$, encode it as a graph G s.t. you can decode it: $R^A = Q_1(\mathbf{G})$, $S^A = Q_2(\mathbf{G})$

 $\sigma = \{E\}$ a graph. $\tau =$ any vocabulary. For simplicity, assume $\tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}$. Question: Given a τ -structure $\mathbf{A} = (R^A, S^A)$, encode it as a graph G s.t.

you can decode it: $R^A = Q_1(\boldsymbol{G}), S^A = Q_2(\boldsymbol{G})$

Use small gadgets for R and S

 $\sigma = \{E\}$ a graph. $\tau = any \text{ vocabulary. For simplicity, assume } \tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}.$ Question: Given a τ -structure $\mathbf{A} = (R^A, S^A)$, encode it as a graph G s.t. you can decode it: $R^A = Q_1(\mathbf{G}), S^A = Q_2(\mathbf{G})$

30 / 31

 $\sigma = \{E\}$ a graph. $\tau = any \text{ vocabulary. For simplicity, assume } \tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}.$ Question: Given a τ -structure $\boldsymbol{A} = (R^A, S^A)$, encode it as a graph G s.t. you can decode it: $R^A = Q_1(\boldsymbol{G}), S^A = Q_2(\boldsymbol{G})$

30 / 31

 $\sigma = \{E\}$ a graph. $\tau = any \text{ vocabulary. For simplicity, assume } \tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}.$ Question: Given a τ -structure $\mathbf{A} = (R^A, S^A)$, encode it as a graph G s.t. you can decode it: $R^A = Q_1(\mathbf{G}), S^A = Q_2(\mathbf{G})$

 $\sigma = \{E\}$ a graph. $\tau = any \text{ vocabulary. For simplicity, assume } \tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}.$ Question: Given a τ -structure $\boldsymbol{A} = (R^A, S^A)$, encode it as a graph G s.t. you can decode it: $R^A = Q_1(\boldsymbol{G}), S^A = Q_2(\boldsymbol{G})$

The query (1) first checks that G is a correct encoding how?, then (2) decodes R and S how?

Finite Model Theory

Main take away: we can encode an accepting computation of a Turing Machine as a structure, and verify its correctness using a sentence.

Next lecture we use small variants of this encoding to prove:

- Fagins's Theorem: ∃SO captures NP.
- Immerman and Vardi's Theorem: LFP(<) ("least fixpoint logic over ordered structures") captures PTIME
- Church-Turing's Undecidability Theorem: validity (in all models) is undecidable.
- Gödel's Incompleteness Theorem: $(\mathbb{N}, +, *)$ is not axiomatizable.