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Lecture 14: Weisfeiler-Leman and Logic
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Announcement

e HW4 (the last one!l) to be posted this week.

@ Topic for today: WL, Logics, connection to GNNs. Lecture based on
[Morris et al., 2023, Grohe, 2021, Morris et al., 2019, Grohe, 2020]

o Next week: descriptive complexity.

This and the previous lecture are based on
[Morris et al., 2023, Grohe, 2021, Morris et al., 2019, Grohe, 2020]
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Review
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Review: Color Refinement
Iterative process that assigns a “color” to each node.

@ Initially all nodes have the same color:

er®(v) = ()

@ For t >0, assign colors based on the neighbors’s colors:!

ertL(v) € (crt(v), fert(w) | we N(v)})

. . def .
@ The stable coloring is cr™ = crf where t is s.t. cri*! = crt.

4.} isabag, asin {a,a,b,c,c,c}.
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Review Counting

[e]e] lele]ele)

Color Refinement for Isomorphism Test

Input: G, G’

Take their disjoint union G U G’ and compute its stable color cr®.

If for any color, the two graphs a have different number of nodes of that
color, then they are not isomorphic.

Other, we need to run an expensive isomorphism test.
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Review: Color Refinement is Insufficient to ldentify a Graph

G G’

All nodes have the same color, yet they are not isomorphic.

Color refinement fails to differentiate any two nodes in a regular graph.
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Review: k-WL

Initially, each vector v € V(G)* is colored with atp, (v).

At step t + 1, the tuple v is colored with:

W1E (v) = (w1 (v), M(v))

where M is:

M(v) € {(atpy.y (vw), w1k (vIw/wi]), ... w1k (vIw/vi])) | w e V(G)}

note that atp,,;(vw) considers all colors of wl]
+ k
(no need)
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Review: Color Refinement is the Same as 1-WL

Fact
Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J
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Review: Color Refinement is the Same as 1-WL

Fact
Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J

cr(v) =

(cx’(v), fer'(w) [w e N(v)})
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Review: Color Refinement is the Same as 1-WL

Fact

Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v).

Crt+1(v) —
(cr'(v), fer'(w) |we N(v)}) Wl (v) < (wif(v), M(v)), where
M(v) € {(atp,(vw),wli(w)) |we V(G)}

Spring 2025
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Review Counting Logic
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Review: Color Refinement is the Same as 1-WL

Fact
Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J
cr'(v) = 1, N def
(cr(v), {cr'(w) [we N(v)})  wli(v) S (wli(v), M(v)), where
M(v) & {(atp,(vw),wli(w)) | w e V(G)}
M consists of three bags:
v =w: then Mo(v) = {(w1i(v))}
vw € E(G): then Mi(v) = {wli(w) | we N(v)}
vw ¢ E(G): then Ma(v) = {wli(w) | w ¢ N(v)}
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Review
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Review: Color Refinement is the Same as 1-WL

Fact

Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v).

‘(:Zrt((v‘g? {Ecrt(w) lweN(WV)})  wii'(v) © (wil(v), M(v)), where
M(v) < {(atpy(vw), wli(w)) | w € V(G)}
M consists of three bags:
v =w: then Mo(v) = {(w1i(v))}
vw € E(G): then Mi(v) = {wli(w) | we N(v)}
vw ¢ E(G): then Ma(v) = {wli(w) | w ¢ N(v)}

Color refinement counts the colors of the neighbors.

1-WL counts both neighbors and non-neighbors. Same thing!
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Discussion

@ Color refinement (or 1-WL) provides a canonical labeling of the nodes
of a random graph, with high probability. But fails completely on
regular graphs.

o 2-WL differentiates two random regular graph with high probability.
But fails completely on strongly regular graphs.

e Cai, Fiithrer, Immerman [Cai et al., 1992] described a sequence of
pairs of graphs G, Hy such that, for all k:
» G, Hi are not isomorphic,
» G, Hi are not distinguished by k-WL,
» Gy, Hi are distinguished by k + 1-WL.

@ They also described the strong connection to logics. Next.
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Counting Logic
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Counting Logic
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Finite Variable Logic
Recall: FOX is FO restricted to k variables xi, ..., xx

The crux is that we can reuse variables, e.g. check if there exists a path of
length 100 in FO2.
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Counting Logic

0O@000000

Finite Variable Logic

Recall: FOX is FO restricted to k variables xi, ..., xx

The crux is that we can reuse variables, e.g. check if there exists a path of
length 100 in FO2.

FOX related to k-WL, but there is a catch:

@ With 1-WL we can distinguish two nodes that have 100 and 101
neighbors.

@ But in FO we need 101 variables.
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Counting Logic
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Finite Variable Logic

Recall: FOX is FO restricted to k variables xi, ..., xx

The crux is that we can reuse variables, e.g. check if there exists a path of
length 100 in FO2.

FOX related to k-WL, but there is a catch:

@ With 1-WL we can distinguish two nodes that have 100 and 101
neighbors.

@ But in FO we need 101 variables.

Better: extend FO with counting quantifiers
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Counting Logic
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Finite Variable Counting Logic

The logic C extends FO with a counting quantifier:

F"x(¢(x))

It means “there are at least n values x s.t. ¢(x) is true”

The logic C¥ is C restricted to k variables.
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Counting Logic
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Discussion

Example: 3%3x(-~3*2y(E(x,y)))
“There are at least 3 nodes with at most 1 neighbor”
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Counting Logic
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Discussion

Example: 3%3x(-~3*2y(E(x,y)))
“There are at least 3 nodes with at most 1 neighbor”

C as expressive as FO, but Ck is more expressive than FOk:

Example: 3*3x(¢(x)) becomes
Ix1IxoIxz(x1 = x2) A (x1 £ x3) A (32 £ x3) A p(x1) Ap(x) A p(x3)
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Counting Logic
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Discussion

Example: 3%3x(-~3*2y(E(x,y)))
“There are at least 3 nodes with at most 1 neighbor”

C as expressive as FO, but Ck is more expressive than FOk:

Example: 3*3x(¢(x)) becomes
Ix1IxoIxz(x1 = x2) A (x1 £ x3) A (32 £ x3) A p(x1) Ap(x) A p(x3)

Notice that, if ¢ € C¥, then so are 3="(y) and 35" ().
37(p) = () A - (p)
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Counting Logic
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Examples

Which of the following C? sentences are true?

Vx(3y(E(x,y) A 3Ix(=E(y,x))))

¥x(3*2y(E(x,y) A 3x(=E(y,x))))

Yx(Iy (E(xy) A T2x(=E(y,x)))) ) "

Fig. 1. An Undirected Graph

From [Cai et al., 1992]
¥x(32y(E(x,y) A 372x(=E(y, x))))
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Counting Logic
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Examples

Which of the following C? sentences are true?

Vx(3y(E(x,y) A 3Ix(=E(y,x))))
TRUE
Vx(32y(E(x,y) A 3x(=E(y,x))))

Yx(Iy (E(xy) A T2x(=E(y,x)))) ) "

Fig. 1. An Undirected Graph

From [Cai et al., 1992]
¥x(32y(E(x,y) A 372x(=E(y, x))))
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Counting Logic
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Examples

Which of the following C? sentences are true?

Vx(3y(E(x,y) A 3Ix(=E(y,x))))

TRUE i
1
¥x(3*2y(E(x,y) A 3x(=E(y,x))))
FALSE
4 0

Vx(Iy(E(x,y) A 372x(=E(y,x))))

Fig. 1. An Undirected Graph

From [Cai et al., 1992]
¥x(32y(E(x,y) A 372x(=E(y, x))))
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Counting Logic
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Examples

Which of the following C? sentences are true?

Vx(3y(E(x,y) A 3Ix(=E(y,x))))

TRUE s
1
Vx(3*2y(E(x,y) A 3x(=E(y,x))))
FALSE
- 4 0
‘v’X(Eiy(E(X,y) A 3= X(_'E(-y’x)))) Fig. 1. An Undirected Graph
TRUE

From [Cai et al., 1992]
¥x(32y(E(x,y) A 372x(=E(y, x))))
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Counting Logic
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Examples

Which of the following C? sentences are true?

Vx(3y(E(x,y) A 3Ix(=E(y,x))))
TRUE

Vx(32y(E(x,y) A 3x(=E(y,x))))
FALSE

Vx(3y(E(x,y) A 3*x(=E(y,x))))
TRUE

Vx(32y(E(x,y) A 3#x(=E(y,x))))
FALSE

4 0

Fig. 1. An Undirected Graph

From [Cai et al., 1992]
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Counting Logic
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Connection Between WL and Counting Logic

Theorem ([Cai et al., 1992])

Two graphs are C**1-equivalent iff they cannot be distinguished by k-WL.

J

Color refinement cannot distinguish two graphs that are C2-equivalent.

Finite Model Theory Lecture 14

Spring 2025 15 /34



Counting Logic
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Example

They cannot be distinguished by C?.

G G
A But they can be distinguished by C3.
What ¢ distinguishes G, G'???
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Counting Logic
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Example

They cannot be distinguished by C?.

G G
A But they can be distinguished by C3.
What ¢ distinguishes G, G'???

Ix3y3Fz(E(xy) A E(yz) A =E(x2))
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Counting Logic Graph K
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Discussion

o As stated, the equivalence between k-WL and C**! is only about
properties of graphs.

o By looking closer at the details we can characterize their equivalence
in terms of what properties of nodes they express.

@ But first let's talk about applications to ML.
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Graph Kernels, GNNs
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Graph Kernels and Graph Neural
Networks
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Counting Logic Graph Kernels, GNNs
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Graph Kernels

From [Grohe, 2020]
We are processing a large collection of graphs, denoted , and need to
compare the similarity/distance of two graphs in .

One possibility is to compute an embedding of each graph in RY, then use
the similarity/distance in RY.

Some machine learning algorithm do not need to ever compute the
embedding, but only compute similarity: this is motivation behind a kernel
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Counting Logic ra ernels, s
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Graph Kernels

Fix a set of objects , e.g. the set of all graphs.

A kernel function is K : x x x = R that is:
e Symmetric: K(x,y) = K(y,x)

@ Positive semidefinite: for any finite set xi,...,x,, the matrix

M;j; = K(xi, x;j) is positive semidefinite.
Recall, this means: z7 Mz >0 for all z € R".
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Graph Kernels, GNNs
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Graph Kernels

Fix a set of objects , e.g. the set of all graphs.

A kernel function is K : x x x = R that is:
e Symmetric: K(x,y) = K(y,x)

@ Positive semidefinite: for any finite set xi,...,x,, the matrix

M;j; = K(xi, x;j) is positive semidefinite.
Recall, this means: z7 Mz >0 for all z € R".

Canonical example: given an embedding f : y — RY, then the function

K(x,y) defe f(x),f(y) > is a kernel function.

A form of converse also holds (replace R with a Hilbert space).
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Counting Logic Graph Kernels, GNNs
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Review: Colors as Tree Unfoldings

One can view the set of colors at round t as the set of all trees of depths t.
Example from [Grohe, 2020]:

¢ L
s [ AN
o

./_\. Co I o/.\o ./I\.
’ AW/ PAVA

Figure 5: Viewing colours of WL as trees
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Graph Kernels, GNNs
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Weisfeiler-Leman Graph Kernels
Let C; be the set of trees of depth t. Infinite!

For any “color” c € G;: wl(c, G) % humber of v V(G) colored with ¢
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Graph Kernels, GNNs
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Weisfeiler-Leman Graph Kernels
Let C; be the set of trees of depth t. Infinite!

For any “color” c € G;: wl(c, G) % humber of v V(G) colored with ¢

The t-round WL-kernel is:

K&VL(G7 H) = Zi:O,t ZCECt Wl(C, G) : Wl(C, H)
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Graph Kernels, GNNs
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Weisfeiler-Leman Graph Kernels
Let C; be the set of trees of depth t. Infinite!

For any “color” c € G;: wl(c, G) % humber of v V(G) colored with ¢
The t-round WL-kernel is:

K (G H) = Xico.t Xeec, wl(c, G) -wl(c, H)
Although C; is infinite, there are only finitely many non-zero terms.

A variant is: Zi:O,t % YceC, wl(c, G) ‘Wl(C7 H)
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Counting Logic Graph Kernels, GNNs
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Graph Neural Networks

From [Grohe, 2020]

Given a fixed graph, the goal is to compute a node embedding that maps
each node v to x, € RY such that the distance/similarity between two
nodes u, v is approximated by the distance/similarity between x,, x,, .
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Counting Logic Graph Kernels, GNNs
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Graph Neural Networks

From [Grohe, 2020]

Given a fixed graph, the goal is to compute a node embedding that maps
each node v to x, € RY such that the distance/similarity between two
nodes u, v is approximated by the distance/similarity between x,, x,, .

GNNs are a method that uses deep learning techniques, while being
independent of the graph size, and isomorphism invariant.

We will discuss only a very simple form of GNN
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Graph Kernels, GNNs
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Graph Neural Networks

Each node v € V(G) has a state x, € RY.

A GNN is defined by two matrices Wagg, Wyp and a function o.
The computation of the GNN is:

AGGREGATE: al'' < Y Wage-x,,
weN(v)
t

UPDATE:  xil« U(WUP : (a’ﬁxl))

v

Assume the initial configuration (XB)VGV(G) is the same at all nodes.

We stop at some fixed iteration t.
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Graph Kernels, GNNs
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GNNs and Color Refinement

Theorem

If cr*°(u) = cr*°(v) then for any GNN parameters, x!, = xt J

V"

Thus, a GNN cannot distinguish more than color refinement.

Some converse statement is possible.
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Cc gic Graph Kernels, GNNs
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GNNs as Classifiers

Add classification function, C : R? - {0,1};  GNN(G,v) wf

C(xy)-

The GNN distinguishes (G, v) and (G',v") if GNN(G,v) # GNN(G',v").
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(; gic Graph Kernels, GNNs

GNNs as Classifiers
Add classification function, C:R? - {0,1};  GNN(G,v) def C(xY).

The GNN distinguishes (G, v) and (G',v") if GNN(G,v) # GNN(G',v").

Fact
If (G,v), (G',V') are C? equivalent, they are indistinguishable by GNN. J

The converse fails, e.g. ©(x) = 3*2y(y = y). A GNN cannot distinguish
between a graph with 1 node and a graph with 2 nodes and no edges.
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Counting Logic Graph Kernels, GNNs

GNNs as Classifiers

00000000080

The guarded fragment of C¥ restricts all quantifiers to range over
neighbors:

"y (E(x,y) A1)

Theorem

GNNSs and the guarded fragment of C2 the same expressive power.
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Discussion

@ Connection between WL, GNN, and logics has been extensively
researched in the last few years.

@ GNNs gain more power by using a random initialization function,
instead of a constant function.

@ Many other variations of GNNs exists, and their connection to logics
has also been explored.
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A Detailed Look
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Counting Logic Grap! sNNs Details
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Overview

Recall: two graphs are Ck*1-equivalent iff they cannot be distinguished by
k-WL.

The quantifier depth of C**! does not correspond 1-to-1 to the step of the
k-WL

Instead, the quantifier depth corresponds 1-to-1 to the step of a slight
variant, called the oblivious WL.
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Folklore v.s. Oblivious k-WL

What we discussed until now is called Folklore WL:

fulf(v) < (£ulf(v), M(v))
M(v) € {(atpy,, (vw), tull (v[w/w]),. ... swlk(v[w/vi])) | w e V(G)}
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Details
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Folklore v.s. Oblivious k-WL

What we discussed until now is called Folklore WL:

fulf(v) < (£ulf(v), M(v))
M(v) € {(atpy,, (vw), tull (v[w/w]),. ... swlk(v[w/vi])) | w e V(G)}

The following variant is called Oblivious WL:

owlf(v) = (owlf(v), M(v))

M(v) = (fowif(vw/vi]) [we V(G)},..., fowlf(v[w/v]) | we V(G)})
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Folklore v.s. Oblivious k-WL

What we discussed until now is called Folklore WL:

Details

[e]e] lele]e]

fulf(v) < (£ulf(v), M(v))
M(v) € {(atpy,, (vw), tull (v[w/w]),. ... swlk(v[w/vi])) | w e V(G)}

The following variant is called Oblivious WL:

owlf(v) £ (0wl (v), M(v))

M(v) = (fowif(vw/vi]) [we V(G)},..., fowlf(v[w/v]) | we V(G)})

Note: owly, makes sense only for k > 2:
For k =1 it doesn't check whether the edge vy w exists.
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Connection Between Folklore and Oblivious WL

Theorem

(1) If G, G’ are distinguished by fwl} then they are distinguished by owl}
(2) If G, G’ are distinguished by owl! ., then they are distinguished by fwli™

Intuitively: the stable coloring fwl}> is the same as owl}?;.
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Connection Between Folklore and Oblivious WL

Theorem

(1) If G, G’ are distinguished by fwlk then they are distinguished by owl} ,,
(2) If G, G’ are distinguished by owl! ., then they are distinguished by fwli™

Intuitively: the stable coloring fwl} is the same as owl}?;

The proof in [Grohe, 2021] establishes the following equivalence:
e owl; ;(G,v)=owl} (G, V')

@ atp,,1(G,v) =atp,,1(G’,v') and for all i =1,k +1:

t / !
Wl (G, va, oo Viet, Visds - oo Vis1) = TWLL(G/ vy, oo Vi Vg, o Vi)
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Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J
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Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

Proof Induction on g: When g = 0 both sides hold iff atp, (G, v) = atp,(G', v').
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Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem
owl{(G,v) = owl(G',v') = (VpeCq]:GEp[v]iffG'Ep[v]) J

Assume it holds for g, we prove for g + 1.

Finite Model Theory Lecture 14
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Connection Between WL and Counting Logic

C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

Assume it holds for g, we prove for g + 1.

The = direction. Let ¢ € CX[g+1]; assume w.l.0.g. ¢ = Ixith(x1, ..., xk).
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Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

Assume it holds for g, we prove for g + 1.

The = direction. Let ¢ € CX[g+1]; assume w.l.0.g. ¢ = Ixith(x1, ..., xk).

If G = ¢[v] then Iw € V(G) such that G = ulvv/w]]]
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Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem
owl{(G,v) = owl(G',v') = (VpeCq]:GEp[v]iffG'Ep[v]) J

Assume it holds for g, we prove for g + 1.

The = direction. Let ¢ € CX[g+1]; assume w.l.0.g. ¢ = Ixith(x1, ..., xk).

If G = ¢[v] then 3w € V(G) such that |G =ylv[vi/w]]|

owl?™ (v) = owl?™ (v') implies 3w’ € V(G'), 0wl (v[w/v;]) = owl?(v'[w'/v/])
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Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem
owl{(G,v) = owl(G',v') = (VpeCq]:GEp[v]iffG'Ep[v]) J

Assume it holds for g, we prove for g + 1.

The = direction. Let ¢ € CX[g+1]; assume w.l.0.g. ¢ = Ixith(x1, ..., xk).

If G = ¢[v] then 3w € V(G) such that |G =ylv[vi/w]]|

owl?™ (v) = owl?™ (v') implies 3w’ € V(G'), 0wl (v[w/v;]) = owl?(v'[w'/v/])

By induction on g: ‘ G' =y[v'[v//w']] ‘ which implies G’ = 3x;(¢[v'])
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Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The < direction.
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Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The <= direction. To prove owl{™ (v) = owl{™ (v') we need to check:

@ owl}(v) =owl](v’).

o {owl!(v[w/vi]) |we V(G)} = {owld(v/[w'/v!]) | w' e V(G')}, i=1,k.
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Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The <= direction. To prove owl{™ (v) = owl{™ (v') we need to check:

@ owl}(v) =owl](v’). Holds by induction on g.

o {owl!(v[w/vi]) |we V(G)} = {owld(v/[w'/v!]) | w' e V(G')}, i=1,k.
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Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The <= direction. To prove owl{™ (v) = owl{™ (v') we need to check:
@ owl}(v) =owl](v’). Holds by induction on g.
o {owlf(viw/vi]) [weV(G)} = {owli(v'[w'/vi]) [w e V(G)}, i=1,k.

Fix a color ¢ on the left, and let n. be the number of its occurrences.
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Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The <= direction. To prove owl{™ (v) = owl{™ (v') we need to check:
@ owl}(v) =owl](v’). Holds by induction on g.
o {owlf(viw/vi]) [weV(G)} = {owli(v'[w'/vi]) [w e V(G)}, i=1,k.

Fix a color ¢ on the left, and let n. be the number of its occurrences.

Let (X1, .., Xk) % the g, k-type (in C) of tuples v[w/v;] colored c.
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Connection Between WL and Counting Logic

C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The <= direction. To prove owl{™ (v) = owl{™ (v') we need to check:
@ owl}(v) =owl](v’). Holds by induction on g.
o {fowli(viw/vi])|we V(G)} = fowl](v'[w'/V/])|w' e V(G)}, i=1k
Fix a color ¢ on the left, and let n. be the number of its occurrences.
Let (X1, .., Xk) % the g, k-type (in C) of tuples v[w/v;] colored c.
Then G = (37" X0 (x1, ..., xk))[v], thus G" E (T x;0pc(x1, ..., xk))[V']-
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Connection Between WL and Counting Logic

C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The <= direction. To prove owl{™ (v) = owl{™ (v') we need to check:
@ owl}(v) =owl](v’). Holds by induction on g.
o fowli(v[w/vi]) [we V(G)} = {owli(v'[w'/v]]) [w' e V(G")}}, i=1k
Fix a color ¢ on the left, and let n. be the number of its occurrences.
Let (X1, .., Xk) % the g, k-type (in C) of tuples v[w/v;] colored c.
Then G = (37" X0 (x1, ..., xk))[v], thus G" E (T x;0pc(x1, ..., xk))[V']-

The color ¢ also occurs n. times on the right.
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Discussion

@ Color refinement was discovered multiple times in the past.

@ Weisfeiler and Leman introduced 2-WL.

e Cai, Fiihrer, Immerman established connection between k-WL, C¥,
and certain EF-games. They also described the graphs Gy, Hy.

@ There is a connection between GNNs, WL, Ck, however the
exact/rigorous statement requires a careful examination of the details.
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