Finite Model Theory
Lecture 14: Weisfeiler-Leman and Logic

Spring 2025

Finite Model Theory Lecture 14 Spring 2025 1/34

Announcement

e HW4 (the last one!l) to be posted this week.

@ Topic for today: WL, Logics, connection to GNNs. Lecture based on
[Morris et al., 2023, Grohe, 2021, Morris et al., 2019, Grohe, 2020]

o Next week: descriptive complexity.

This and the previous lecture are based on
[Morris et al., 2023, Grohe, 2021, Morris et al., 2019, Grohe, 2020]

Finite Model Theory Lecture 14 Spring 2025 2/34

Review
0000000

Review

Finite Model Theory Lecture 14 Spring 2025 3/34

Review

[e] le]ele]e]e)

Review: Color Refinement
Iterative process that assigns a “color” to each node.

@ Initially all nodes have the same color:

er®(v) = ()

@ For t >0, assign colors based on the neighbors’s colors:!

ertL(v) € (crt(v), fert(w) | we N(v)})

. . def .
@ The stable coloring is cr™ = crf where t is s.t. cri*! = crt.

4.} isabag, asin {a,a,b,c,c,c}.

Finite Model Theory Lecture 14 Spring 2025 4/34

Review Counting

[e]e] lele]ele)

Color Refinement for Isomorphism Test

Input: G, G’

Take their disjoint union G U G’ and compute its stable color cr®.

If for any color, the two graphs a have different number of nodes of that
color, then they are not isomorphic.

Other, we need to run an expensive isomorphism test.

Finite Model Theory Lecture 14 Spring 2025 5/34

Review

[e]e]e] le]ele)

Review: Color Refinement is Insufficient to ldentify a Graph

G G’

All nodes have the same color, yet they are not isomorphic.

Color refinement fails to differentiate any two nodes in a regular graph.

Finite Model Theory Lecture 14 Spring 2025 6/34

Review

[e]e]e]e] Jele)

Review: k-WL

Initially, each vector v € V(G)* is colored with atp, (v).

At step t + 1, the tuple v is colored with:

W1E (v) = (w1 (v), M(v))

where M is:

M(v) € {(atpy.y (vw), w1k (vIw/wi]), ... w1k (vIw/vi])) | w e V(G)}

note that atp,,;(vw) considers all colors of wl]
+ k
(no need)

Finite Model Theory Lecture 14 Spring 2025 7/34

Review
00000e0

Review: Color Refinement is the Same as 1-WL

Fact
Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J

Spring 2025 8/34

Review: Color Refinement is the Same as 1-WL

Fact
Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J

cr(v) =

(cx’(v), fer'(w) [w e N(v)})

Finite Model Theory Lecture 14 Spring 2025 8/34

Review

[e]e]e]e]e] o)

Review: Color Refinement is the Same as 1-WL

Fact

Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v).

Crt+1(v) —
(cr'(v), fer'(w) |we N(v)}) Wl (v) < (wif(v), M(v)), where
M(v) € {(atp,(vw),wli(w)) |we V(G)}

Spring 2025

8/34

Review Counting Logic

[e]e]e]e]e] o)

Review: Color Refinement is the Same as 1-WL

Fact
Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J
cr'(v) = 1, N def
(cr(v), {cr'(w) [we N(v)}) wli(v) S (wli(v), M(v)), where
M(v) & {(atp,(vw),wli(w)) | w e V(G)}
M consists of three bags:
v =w: then Mo(v) = {(w1i(v))}
vw € E(G): then Mi(v) = {wli(w) | we N(v)}
vw ¢ E(G): then Ma(v) = {wli(w) | w ¢ N(v)}

Spring 2025 8/34

Review

[e]e]e]e]e] o)

Review: Color Refinement is the Same as 1-WL

Fact

Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v).

‘(:Zrt((v‘g? {Ecrt(w) lweN(WV)}) wii'(v) © (wil(v), M(v)), where
M(v) < {(atpy(vw), wli(w)) | w € V(G)}
M consists of three bags:
v =w: then Mo(v) = {(w1i(v))}
vw € E(G): then Mi(v) = {wli(w) | we N(v)}
vw ¢ E(G): then Ma(v) = {wli(w) | w ¢ N(v)}

Color refinement counts the colors of the neighbors.

1-WL counts both neighbors and non-neighbors. Same thing!

Finite Model Theory Lecture 14 Spring 2025

8/34

Review

000000e

Discussion

@ Color refinement (or 1-WL) provides a canonical labeling of the nodes
of a random graph, with high probability. But fails completely on
regular graphs.

o 2-WL differentiates two random regular graph with high probability.
But fails completely on strongly regular graphs.

e Cai, Fiithrer, Immerman [Cai et al., 1992] described a sequence of
pairs of graphs G, Hy such that, for all k:
» G, Hi are not isomorphic,
» G, Hi are not distinguished by k-WL,
» Gy, Hi are distinguished by k + 1-WL.

@ They also described the strong connection to logics. Next.

Finite Model Theory Lecture 14 Spring 2025 9/34

Counting Logic
©0000000

Counting Logic

Finite Model Theory Lecture 14 Spring 2025 10/34

Counting Logic

0O@000000

Finite Variable Logic
Recall: FOX is FO restricted to k variables xi, ..., xx

The crux is that we can reuse variables, e.g. check if there exists a path of
length 100 in FO2.

Finite Model Theory Lecture 14 Spring 2025 11/34

Counting Logic

0O@000000

Finite Variable Logic

Recall: FOX is FO restricted to k variables xi, ..., xx

The crux is that we can reuse variables, e.g. check if there exists a path of
length 100 in FO2.

FOX related to k-WL, but there is a catch:

@ With 1-WL we can distinguish two nodes that have 100 and 101
neighbors.

@ But in FO we need 101 variables.

Finite Model Theory Lecture 14 Spring 2025 11/34

Counting Logic

0O@000000

Finite Variable Logic

Recall: FOX is FO restricted to k variables xi, ..., xx

The crux is that we can reuse variables, e.g. check if there exists a path of
length 100 in FO2.

FOX related to k-WL, but there is a catch:

@ With 1-WL we can distinguish two nodes that have 100 and 101
neighbors.

@ But in FO we need 101 variables.

Better: extend FO with counting quantifiers

Finite Model Theory Lecture 14 Spring 2025 11/34

Counting Logic

[e]e] lele]elele)

Finite Variable Counting Logic

The logic C extends FO with a counting quantifier:

F"x(¢(x))

It means “there are at least n values x s.t. ¢(x) is true”

The logic C¥ is C restricted to k variables.

Finite Model Theory Lecture 14 Spring 2025 12 /34

Counting Logic
00000000

Discussion

Example: 3%3x(-~3*2y(E(x,y)))
“There are at least 3 nodes with at most 1 neighbor”

Finite Model Theory Lecture 14 Spring 2025 13/34

Counting Logic

[e]e]e] Je]elele)

Discussion

Example: 3%3x(-~3*2y(E(x,y)))
“There are at least 3 nodes with at most 1 neighbor”

C as expressive as FO, but Ck is more expressive than FOk:

Example: 3*3x(¢(x)) becomes
Ix1IxoIxz(x1 = x2) A (x1 £ x3) A (32 £ x3) A p(x1) Ap(x) A p(x3)

Finite Model Theory Lecture 14 Spring 2025 13 /34

Counting Logic

[e]e]e] Je]elele)

Discussion

Example: 3%3x(-~3*2y(E(x,y)))
“There are at least 3 nodes with at most 1 neighbor”

C as expressive as FO, but Ck is more expressive than FOk:

Example: 3*3x(¢(x)) becomes
Ix1IxoIxz(x1 = x2) A (x1 £ x3) A (32 £ x3) A p(x1) Ap(x) A p(x3)

Notice that, if ¢ € C¥, then so are 3="(y) and 35" ().
37(p) = () A - (p)

Finite Model Theory Lecture 14 Spring 2025 13 /34

Counting Logic

[e]e]e]e] Jelele)

Examples

Which of the following C? sentences are true?

Vx(3y(E(x,y) A 3Ix(=E(y,x))))

¥x(3*2y(E(x,y) A 3x(=E(y,x))))

Yx(Iy (E(xy) A T2x(=E(y,x))))) "

Fig. 1. An Undirected Graph

From [Cai et al., 1992]
¥x(32y(E(x,y) A 372x(=E(y, x))))

Finite Model Theory Lecture 14 Spring 2025 14 /34

Counting Logic

[e]e]e]e] Jelele)

Examples

Which of the following C? sentences are true?

Vx(3y(E(x,y) A 3Ix(=E(y,x))))
TRUE
Vx(32y(E(x,y) A 3x(=E(y,x))))

Yx(Iy (E(xy) A T2x(=E(y,x))))) "

Fig. 1. An Undirected Graph

From [Cai et al., 1992]
¥x(32y(E(x,y) A 372x(=E(y, x))))

Finite Model Theory Lecture 14 Spring 2025 14 /34

Counting Logic

[e]e]e]e] Jelele)

Examples

Which of the following C? sentences are true?

Vx(3y(E(x,y) A 3Ix(=E(y,x))))

TRUE i
1
¥x(3*2y(E(x,y) A 3x(=E(y,x))))
FALSE
4 0

Vx(Iy(E(x,y) A 372x(=E(y,x))))

Fig. 1. An Undirected Graph

From [Cai et al., 1992]
¥x(32y(E(x,y) A 372x(=E(y, x))))

Finite Model Theory Lecture 14 Spring 2025 14 /34

Counting Logic

[e]e]e]e] Jelele)

Examples

Which of the following C? sentences are true?

Vx(3y(E(x,y) A 3Ix(=E(y,x))))

TRUE s
1
Vx(3*2y(E(x,y) A 3x(=E(y,x))))
FALSE
- 4 0
‘v’X(Eiy(E(X,y) A 3= X(_'E(-y’x)))) Fig. 1. An Undirected Graph
TRUE

From [Cai et al., 1992]
¥x(32y(E(x,y) A 372x(=E(y, x))))

Finite Model Theory Lecture 14 Spring 2025 14 /34

Counting Logic

[e]e]e]e] Jelele)

Examples

Which of the following C? sentences are true?

Vx(3y(E(x,y) A 3Ix(=E(y,x))))
TRUE

Vx(32y(E(x,y) A 3x(=E(y,x))))
FALSE

Vx(3y(E(x,y) A 3*x(=E(y,x))))
TRUE

Vx(32y(E(x,y) A 3#x(=E(y,x))))
FALSE

4 0

Fig. 1. An Undirected Graph

From [Cai et al., 1992]

Finite Model Theory Lecture 14 Spring 2025 14 /34

Counting Logic

[e]e]e]e]e] lele)

Connection Between WL and Counting Logic

Theorem ([Cai et al., 1992])

Two graphs are C**1-equivalent iff they cannot be distinguished by k-WL.

J

Color refinement cannot distinguish two graphs that are C2-equivalent.

Finite Model Theory Lecture 14

Spring 2025 15 /34

Counting Logic
00000000

Example

They cannot be distinguished by C?.

G G
A But they can be distinguished by C3.
What ¢ distinguishes G, G'???

Finite Model Theory Lecture 14 Spring 2025 16 /34

Counting Logic
00000000

Example

They cannot be distinguished by C?.

G G
A But they can be distinguished by C3.
What ¢ distinguishes G, G'???

Ix3y3Fz(E(xy) A E(yz) A =E(x2))

Finite Model Theory Lecture 14 Spring 2025 16 /34

Counting Logic Graph K

0000000e

Discussion

o As stated, the equivalence between k-WL and C**! is only about
properties of graphs.

o By looking closer at the details we can characterize their equivalence
in terms of what properties of nodes they express.

@ But first let's talk about applications to ML.

Finite Model Theory Lecture 14 Spring 2025 17 /34

Graph Kernels, GNNs

@0000000000

Graph Kernels and Graph Neural
Networks

Finite Model Theory Spring 2025 18 /34

Counting Logic Graph Kernels, GNNs

0@000000000

Graph Kernels

From [Grohe, 2020]
We are processing a large collection of graphs, denoted , and need to
compare the similarity/distance of two graphs in .

One possibility is to compute an embedding of each graph in RY, then use
the similarity/distance in RY.

Some machine learning algorithm do not need to ever compute the
embedding, but only compute similarity: this is motivation behind a kernel

Finite Model Theory Lecture 14 Spring 2025 19 /34

Counting Logic ra ernels, s
(I g Graph K Is, GNN
O 00800000000

Graph Kernels

Fix a set of objects , e.g. the set of all graphs.

A kernel function is K : x x x = R that is:
e Symmetric: K(x,y) = K(y,x)

@ Positive semidefinite: for any finite set xi,...,x,, the matrix

M;j; = K(xi, x;j) is positive semidefinite.
Recall, this means: z7 Mz >0 for all z € R".

Finite Model Theory Lecture 14 Spring 2025 20/34

Graph Kernels, GNNs

00@00000000

Graph Kernels

Fix a set of objects , e.g. the set of all graphs.

A kernel function is K : x x x = R that is:
e Symmetric: K(x,y) = K(y,x)

@ Positive semidefinite: for any finite set xi,...,x,, the matrix

M;j; = K(xi, x;j) is positive semidefinite.
Recall, this means: z7 Mz >0 for all z € R".

Canonical example: given an embedding f : y — RY, then the function

K(x,y) defe f(x),f(y) > is a kernel function.

A form of converse also holds (replace R with a Hilbert space).

Finite Model Theory Lecture 14 Spring 2025 20/34

Counting Logic Graph Kernels, GNNs

000®0000000

Review: Colors as Tree Unfoldings

One can view the set of colors at round t as the set of all trees of depths t.
Example from [Grohe, 2020]:

¢ L
s [AN
o

./_\. Co I o/.\o ./I\.
’ AW/ PAVA

Figure 5: Viewing colours of WL as trees

Finite Model Theory Lecture 14 Spring 2025 21/34

Graph Kernels, GNNs
0000e000000

Weisfeiler-Leman Graph Kernels
Let C; be the set of trees of depth t. Infinite!

For any “color” c € G;: wl(c, G) % humber of v V(G) colored with ¢

Finite Model Theory Lecture 14 Spring 2025 22/34

Graph Kernels, GNNs

[e]e]ele] Ielelelele]e)

Weisfeiler-Leman Graph Kernels
Let C; be the set of trees of depth t. Infinite!

For any “color” c € G;: wl(c, G) % humber of v V(G) colored with ¢

The t-round WL-kernel is:

K&VL(G7 H) = Zi:O,t ZCECt Wl(C, G) : Wl(C, H)

Finite Model Theory Lecture 14 Spring 2025 22/34

Graph Kernels, GNNs

[e]e]ele] Ielelelele]e)

Weisfeiler-Leman Graph Kernels
Let C; be the set of trees of depth t. Infinite!

For any “color” c € G;: wl(c, G) % humber of v V(G) colored with ¢
The t-round WL-kernel is:

K (G H) = Xico.t Xeec, wl(c, G) -wl(c, H)
Although C; is infinite, there are only finitely many non-zero terms.

A variant is: Zi:O,t % YceC, wl(c, G) ‘Wl(C7 H)

Finite Model Theory Lecture 14 Spring 2025 22/34

Counting Logic Graph Kernels, GNNs

[e]e]ele]e] lelelele]e)

Graph Neural Networks

From [Grohe, 2020]

Given a fixed graph, the goal is to compute a node embedding that maps
each node v to x, € RY such that the distance/similarity between two
nodes u, v is approximated by the distance/similarity between x,, x,, .

Finite Model Theory Lecture 14 Spring 2025 23/34

Counting Logic Graph Kernels, GNNs

[e]e]ele]e] lelelele]e)

Graph Neural Networks

From [Grohe, 2020]

Given a fixed graph, the goal is to compute a node embedding that maps
each node v to x, € RY such that the distance/similarity between two
nodes u, v is approximated by the distance/similarity between x,, x,, .

GNNs are a method that uses deep learning techniques, while being
independent of the graph size, and isomorphism invariant.

We will discuss only a very simple form of GNN

Finite Model Theory Lecture 14 Spring 2025 23 /34

Graph Kernels, GNNs

000000e0000

Graph Neural Networks

Each node v € V(G) has a state x, € RY.

A GNN is defined by two matrices Wagg, Wyp and a function o.
The computation of the GNN is:

AGGREGATE: al'' < Y Wage-x,,
weN(v)
t

UPDATE: xil« U(WUP : (a’ﬁxl))

v

Assume the initial configuration (XB)VGV(G) is the same at all nodes.

We stop at some fixed iteration t.

Finite Model Theory Lecture 14 Spring 2025 24 /34

Graph Kernels, GNNs

0000000e000

GNNs and Color Refinement

Theorem

If cr*°(u) = cr*°(v) then for any GNN parameters, x!, = xt J

V"

Thus, a GNN cannot distinguish more than color refinement.

Some converse statement is possible.

Finite Model Theory Lecture 14 Spring 2025 25/34

Cc gic Graph Kernels, GNNs
o] OC 00000000800

GNNs as Classifiers

Add classification function, C : R? - {0,1}; GNN(G,v) wf

C(xy)-

The GNN distinguishes (G, v) and (G',v") if GNN(G,v) # GNN(G',v").

Finite Model Theory Lecture 14 Spring 2025 26 /34

(; gic Graph Kernels, GNNs

GNNs as Classifiers
Add classification function, C:R? - {0,1}; GNN(G,v) def C(xY).

The GNN distinguishes (G, v) and (G',v") if GNN(G,v) # GNN(G',v").

Fact
If (G,v), (G',V') are C? equivalent, they are indistinguishable by GNN. J

The converse fails, e.g. ©(x) = 3*2y(y = y). A GNN cannot distinguish
between a graph with 1 node and a graph with 2 nodes and no edges.

Finite Model Theory Lecture 14 Spring 2025 26/34

Counting Logic Graph Kernels, GNNs

GNNs as Classifiers

00000000080

The guarded fragment of C¥ restricts all quantifiers to range over
neighbors:

"y (E(x,y) A1)

Theorem

GNNSs and the guarded fragment of C2 the same expressive power.

Finite Model Theory Lecture 14 Spring 2025

27 /34

(;qum,m Graph Kernels, GNNs

0000000000

Discussion

@ Connection between WL, GNN, and logics has been extensively
researched in the last few years.

@ GNNs gain more power by using a random initialization function,
instead of a constant function.

@ Many other variations of GNNs exists, and their connection to logics
has also been explored.

Finite Model Theory Lecture 14 Spring 2025 28/34

Details
©00000

A Detailed Look

Finite Model Theory Lecture 14 Spring 2025 29/34

Counting Logic Grap! sNNs Details

O@0000

Overview

Recall: two graphs are Ck*1-equivalent iff they cannot be distinguished by
k-WL.

The quantifier depth of C**! does not correspond 1-to-1 to the step of the
k-WL

Instead, the quantifier depth corresponds 1-to-1 to the step of a slight
variant, called the oblivious WL.

Finite Model Theory Lecture 14 Spring 2025 30/34

Details
00®000

Folklore v.s. Oblivious k-WL

What we discussed until now is called Folklore WL:

fulf(v) < (£ulf(v), M(v))
M(v) € {(atpy,, (vw), tull (v[w/w]),. ... swlk(v[w/vi])) | w e V(G)}

Finite Model Theory Lecture 14 Spring 2025 31/34

Details
00®000

Folklore v.s. Oblivious k-WL

What we discussed until now is called Folklore WL:

fulf(v) < (£ulf(v), M(v))
M(v) € {(atpy,, (vw), tull (v[w/w]),. ... swlk(v[w/vi])) | w e V(G)}

The following variant is called Oblivious WL:

owlf(v) = (owlf(v), M(v))

M(v) = (fowif(vw/vi]) [we V(G)},..., fowlf(v[w/v]) | we V(G)})

Finite Model Theory Lecture 14 Spring 2025 31/34

Folklore v.s. Oblivious k-WL

What we discussed until now is called Folklore WL:

Details

[e]e] lele]e]

fulf(v) < (£ulf(v), M(v))
M(v) € {(atpy,, (vw), tull (v[w/w]),. ... swlk(v[w/vi])) | w e V(G)}

The following variant is called Oblivious WL:

owlf(v) £ (0wl (v), M(v))

M(v) = (fowif(vw/vi]) [we V(G)},..., fowlf(v[w/v]) | we V(G)})

Note: owly, makes sense only for k > 2:
For k =1 it doesn't check whether the edge vy w exists.

Finite Model Theory Lecture 14 Spring 2025

31/34

Details
00000

Connection Between Folklore and Oblivious WL

Theorem

(1) If G, G’ are distinguished by fwl} then they are distinguished by owl}
(2) If G, G’ are distinguished by owl! ., then they are distinguished by fwli™

Intuitively: the stable coloring fwl}> is the same as owl}?;.

Finite Model Theory Lecture 14 Spring 2025 32/34

Details
00000

Connection Between Folklore and Oblivious WL

Theorem

(1) If G, G’ are distinguished by fwlk then they are distinguished by owl} ,,
(2) If G, G’ are distinguished by owl! ., then they are distinguished by fwli™

Intuitively: the stable coloring fwl} is the same as owl}?;

The proof in [Grohe, 2021] establishes the following equivalence:
e owl; ;(G,v)=owl} (G, V')

@ atp,,1(G,v) =atp,,1(G’,v') and for all i =1,k +1:

t / !
Wl (G, va, oo Viet, Visds - oo Vis1) = TWLL(G/ vy, oo Vi Vg, o Vi)

Finite Model Theory Lecture 14 Spring 2025 32/34

Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

Finite Model Theory Lecture 14 Spring 2025 33/34

Details
000000

Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

Proof Induction on g: When g = 0 both sides hold iff atp, (G, v) = atp,(G', v').

Finite Model Theory Lecture 14 Spring 2025 33/34

Details
000000

Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem
owl{(G,v) = owl(G',v') = (VpeCq]:GEp[v]iffG'Ep[v]) J

Assume it holds for g, we prove for g + 1.

Finite Model Theory Lecture 14

Spring 2025 33/34

Details
000000

Connection Between WL and Counting Logic

C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

Assume it holds for g, we prove for g + 1.

The = direction. Let ¢ € CX[g+1]; assume w.l.0.g. ¢ = Ixith(x1, ..., xk).

Finite Model Theory Lecture 14 Spring 2025 33/34

Details
000000

Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

Assume it holds for g, we prove for g + 1.

The = direction. Let ¢ € CX[g+1]; assume w.l.0.g. ¢ = Ixith(x1, ..., xk).

If G = ¢[v] then Iw € V(G) such that G = ulvv/w]]]

Spring 2025 33/34

Details

[e]e]e]e] Io]

Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem
owl{(G,v) = owl(G',v') = (VpeCq]:GEp[v]iffG'Ep[v]) J

Assume it holds for g, we prove for g + 1.

The = direction. Let ¢ € CX[g+1]; assume w.l.0.g. ¢ = Ixith(x1, ..., xk).

If G = ¢[v] then 3w € V(G) such that |G =ylv[vi/w]]|

owl?™ (v) = owl?™ (v') implies 3w’ € V(G'), 0wl (v[w/v;]) = owl?(v'[w'/v/])

Finite Model Theory Lecture 14 Spring 2025 33/34

Details

[e]e]e]e] Io]

Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem
owl{(G,v) = owl(G',v') = (VpeCq]:GEp[v]iffG'Ep[v]) J

Assume it holds for g, we prove for g + 1.

The = direction. Let ¢ € CX[g+1]; assume w.l.0.g. ¢ = Ixith(x1, ..., xk).

If G = ¢[v] then 3w € V(G) such that |G =ylv[vi/w]]|

owl?™ (v) = owl?™ (v') implies 3w’ € V(G'), 0wl (v[w/v;]) = owl?(v'[w'/v/])

By induction on g: ‘ G' =y[v'[v//w']] ‘ which implies G’ = 3x;(¢[v'])

Finite Model Theory Lecture 14 Spring 2025 33/34

Details
000000

Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The < direction.

Finite Model Theory Lecture 14

Spring 2025 33/34

Details
000000

Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The <= direction. To prove owl{™ (v) = owl{™ (v') we need to check:

@ owl}(v) =owl](v’).

o {owl!(v[w/vi]) |we V(G)} = {owld(v/[w'/v!]) | w' e V(G')}, i=1,k.

Finite Model Theory Lecture 14

Spring 2025 33/34

Details
000000

Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The <= direction. To prove owl{™ (v) = owl{™ (v') we need to check:

@ owl}(v) =owl](v’). Holds by induction on g.

o {owl!(v[w/vi]) |we V(G)} = {owld(v/[w'/v!]) | w' e V(G')}, i=1,k.

Finite Model Theory Lecture 14

Spring 2025 33/34

Details
000000

Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The <= direction. To prove owl{™ (v) = owl{™ (v') we need to check:
@ owl}(v) =owl](v’). Holds by induction on g.
o {owlf(viw/vi]) [weV(G)} = {owli(v'[w'/vi]) [w e V(G)}, i=1,k.

Fix a color ¢ on the left, and let n. be the number of its occurrences.

Finite Model Theory Lecture 14

Spring 2025 33/34

Details
000000

Connection Between WL and Counting Logic
C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.
Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The <= direction. To prove owl{™ (v) = owl{™ (v') we need to check:
@ owl}(v) =owl](v’). Holds by induction on g.
o {owlf(viw/vi]) [weV(G)} = {owli(v'[w'/vi]) [w e V(G)}, i=1,k.

Fix a color ¢ on the left, and let n. be the number of its occurrences.

Let (X1, .., Xk) % the g, k-type (in C) of tuples v[w/v;] colored c.

Finite Model Theory Lecture 14

Spring 2025 33/34

Details
000000

Connection Between WL and Counting Logic

C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The <= direction. To prove owl{™ (v) = owl{™ (v') we need to check:
@ owl}(v) =owl](v’). Holds by induction on g.
o {fowli(viw/vi])|we V(G)} = fowl](v'[w'/V/])|w' e V(G)}, i=1k
Fix a color ¢ on the left, and let n. be the number of its occurrences.
Let (X1, .., Xk) % the g, k-type (in C) of tuples v[w/v;] colored c.
Then G = (37" X0 (x1, ..., xk))[v], thus G" E (T x;0pc(x1, ..., xk))[V']-

Finite Model Theory Lecture 14 Spring 2025 33/34

Details
000000

Connection Between WL and Counting Logic

C*[q] = quantifier depth < q. Fix vectors v € V(G)¥, v/ € (V(G"))k.

Theorem

owl](G,v) = owl](G',v') «— (V<p € Ck[q] :GE[v] iffG'E <p[v’]) J

The <= direction. To prove owl{™ (v) = owl{™ (v') we need to check:
@ owl}(v) =owl](v’). Holds by induction on g.
o fowli(v[w/vi]) [we V(G)} = {owli(v'[w'/v]]) [w' e V(G")}}, i=1k
Fix a color ¢ on the left, and let n. be the number of its occurrences.
Let (X1, .., Xk) % the g, k-type (in C) of tuples v[w/v;] colored c.
Then G = (37" X0 (x1, ..., xk))[v], thus G" E (T x;0pc(x1, ..., xk))[V']-

The color ¢ also occurs n. times on the right.

Finite Model Theory Lecture 14 Spring 2025 33/34

Details

[e]e]e]e]e]]

Discussion

@ Color refinement was discovered multiple times in the past.

@ Weisfeiler and Leman introduced 2-WL.

e Cai, Fiihrer, Immerman established connection between k-WL, C¥,
and certain EF-games. They also described the graphs Gy, Hy.

@ There is a connection between GNNs, WL, Ck, however the
exact/rigorous statement requires a careful examination of the details.

Finite Model Theory Lecture 14 Spring 2025 34 /34

T 7 A P N

Cai, J., Fiirer, M., and Immerman, N. (1992).

An optimal lower bound on the number of variables for graph identification.
Comb., 12(4):389-410

Grohe, M. (2020).

word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data.

In Suciu, D., Tao, Y., and Wei, Z., editors, Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAIl Symposium on
Principles of Database Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, pages 1-16. ACM

Grohe, M. (2021).
The logic of graph neural networks.

In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, lItaly, June 29 - July 2, 2021,
pages 1-17. IEEE.

Morris, C., Lipman, Y., Maron, H., Rieck, B., Kriege, N. M., Grohe, M., Fey, M., and Borgwardt, K. M. (2023).

Weisfeiler and leman go machine learning: The story so far.
J. Mach. Learn. Res., 24:333:1-333:59.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. (2019).

Weisfeiler and leman go neural: Higher-order graph neural networks.

In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAl 2019, The Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 4602—-4609. AAAI Press.

Finite Model The: Lecture 14 Spring 2025 34 /34

	Review
	Counting Logic
	Graph Kernels, GNNs
	Details

