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Announcement

HW4 (the last one!!) to be posted this week.

Topic for today: WL, Logics, connection to GNNs. Lecture based on
[Morris et al., 2023, Grohe, 2021, Morris et al., 2019, Grohe, 2020]

Next week: descriptive complexity.

This and the previous lecture are based on
[Morris et al., 2023, Grohe, 2021, Morris et al., 2019, Grohe, 2020]
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Review
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Review: Color Refinement

Iterative process that assigns a “color” to each node.

Initially all nodes have the same color:

cr0(v) def= ()

For t ≥ 0, assign colors based on the neighbors’s colors:1

crt+1(v) def= (crt(v),{{crt(w) ∣ w ∈ N(v)}})

The stable coloring is cr∞ def= crt where t is s.t. crt+1 = crt .

1
{{. . .}} is a bag, as in {{a, a,b, c, c, c}}.
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Color Refinement for Isomorphism Test

Input: G ,G ′

Take their disjoint union G ∪G ′ and compute its stable color cr∞.

If for any color, the two graphs a have different number of nodes of that
color, then they are not isomorphic.

Other, we need to run an expensive isomorphism test.
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Review: Color Refinement is Insufficient to Identify a Graph

G G’

All nodes have the same color, yet they are not isomorphic.

Color refinement fails to differentiate any two nodes in a regular graph.
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Review: k-WL

Initially, each vector v ∈ V (G)k is colored with atpk(v).

At step t + 1, the tuple v is colored with:

wlt+1k (v)
def= (wltk(v),M(v))

where M is:

M(v) def= {{(atpk+1(vw),wltk(v[w/v1]), . . . ,wltk(v[w/vk])) ∣ w ∈ V (G)}}

note that atpk+1(vw) considers all colors of wltk
(no need)
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Review: Color Refinement is the Same as 1-WL

Fact

Color refinement and 1-WL coincide: ∀t ≥ 0, crt(v) = wlt1(v).

crt+1(v) =
(crt(v),{{crt(w) ∣ w ∈ N(v)}})

wlt+11 (v)
def
= (wlt1(v),M(v)), where

M(v)
def
= {{(atp2(vw),wl

t
1(w)) ∣ w ∈ V (G)}}

M consists of three bags:

v = w : then M0(v) = {{(wl
t
1(v))}}

vw ∈ E(G): then M1(v) = {{wl
t
1(w) ∣ w ∈ N(v)}}

vw /∈ E(G): then M2(v) = {{wl
t
1(w) ∣ w /∈ N(v)}}

Color refinement counts the colors of the neighbors.

1-WL counts both neighbors and non-neighbors. Same thing!
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Discussion

Color refinement (or 1-WL) provides a canonical labeling of the nodes
of a random graph, with high probability. But fails completely on
regular graphs.

2-WL differentiates two random regular graph with high probability.
But fails completely on strongly regular graphs.

Cai, Führer, Immerman [Cai et al., 1992] described a sequence of
pairs of graphs Gk ,Hk such that, for all k :

▸ Gk ,Hk are not isomorphic,
▸ Gk ,Hk are not distinguished by k-WL,
▸ Gk ,Hk are distinguished by k + 1-WL.

They also described the strong connection to logics. Next.
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Counting Logic
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Finite Variable Logic

Recall: FOk is FO restricted to k variables x1, . . . , xk

The crux is that we can reuse variables, e.g. check if there exists a path of
length 100 in FO2.

FOk related to k-WL, but there is a catch:

With 1-WL we can distinguish two nodes that have 100 and 101
neighbors.

But in FO we need 101 variables.

Better: extend FO with counting quantifiers
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Finite Variable Counting Logic

The logic C extends FO with a counting quantifier:

∃≥nx(φ(x))

It means “there are at least n values x s.t. φ(x) is true”

The logic Ck is C restricted to k variables.
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Discussion

Example: ∃≥3x(¬∃≥2y(E(x , y)))
“There are at least 3 nodes with at most 1 neighbor”

C as expressive as FO, but Ck is more expressive than FOk :

Example: ∃≥3x(φ(x)) becomes
∃x1∃x2∃x3(x1 ≠ x2) ∧ (x1 ≠ x3) ∧ (x2 ≠ x3) ∧ φ(x1) ∧ φ(x2) ∧ φ(x3)

Notice that, if φ ∈ Ck , then so are ∃=n(φ) and ∃≤n(φ).
∃=n(φ) = ∃≥n(φ) ∧ ¬∃≥n+1(φ)
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Examples

Which of the following C2 sentences are true?

∀x(∃y(E(x , y) ∧ ∃x(¬E(y , x))))

TRUE

∀x(∃≥2y(E(x , y) ∧ ∃x(¬E(y , x))))

FALSE

∀x(∃y(E(x , y) ∧ ∃≥2x(¬E(y , x))))

TRUE

∀x(∃≥2y(E(x , y) ∧ ∃≥2x(¬E(y , x))))

FALSE

From [Cai et al., 1992]
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Connection Between WL and Counting Logic

Theorem ([Cai et al., 1992])

Two graphs are Ck+1-equivalent iff they cannot be distinguished by k-WL.

Color refinement cannot distinguish two graphs that are C2-equivalent.
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Example

G G’ They cannot be distinguished by C2.

But they can be distinguished by C3.
What φ distinguishes G ,G ′???

∃x∃y∃z(E(xy) ∧ E(yz) ∧ ¬E(xz))
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Discussion

As stated, the equivalence between k-WL and Ck+1 is only about
properties of graphs.

By looking closer at the details we can characterize their equivalence
in terms of what properties of nodes they express.

But first let’s talk about applications to ML.
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Graph Kernels and Graph Neural
Networks
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Graph Kernels

From [Grohe, 2020]
We are processing a large collection of graphs, denoted χ, and need to
compare the similarity/distance of two graphs in χ.

One possibility is to compute an embedding of each graph in Rd , then use
the similarity/distance in Rd .

Some machine learning algorithm do not need to ever compute the
embedding, but only compute similarity: this is motivation behind a kernel
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Graph Kernels

Fix a set of objects χ, e.g. the set of all graphs.

A kernel function is K ∶ χ × χ→ R that is:

Symmetric: K(x , y) = K(y , x)

Positive semidefinite: for any finite set x1, . . . , xn, the matrix
Mij = K(xi , xj) is positive semidefinite.

Recall, this means: zTMz ≥ 0 for all z ∈ Rn.

Canonical example: given an embedding f ∶ χ→ Rd , then the function

K(x , y) def= < f (x), f (y) > is a kernel function.

A form of converse also holds (replace Rd with a Hilbert space).
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Review: Colors as Tree Unfoldings
One can view the set of colors at round t as the set of all trees of depths t.
Example from [Grohe, 2020]:
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Weisfeiler-Leman Graph Kernels

Let Ct be the set of trees of depth t. Infinite!

For any “color” c ∈ Ct : wl(c,G) def= number of v ∈ V (G) colored with c

The t-round WL-kernel is:

K t
WL(G ,H) = ∑i=0,t ∑c∈Ct

wl(c,G) ⋅ wl(c ,H)

Although Ct is infinite, there are only finitely many non-zero terms.

A variant is: ∑i=0,t 1
2i ∑c∈Ct

wl(c,G) ⋅ wl(c ,H)
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Graph Neural Networks

From [Grohe, 2020]

Given a fixed graph, the goal is to compute a node embedding that maps
each node v to xv ∈ Rd such that the distance/similarity between two
nodes u, v is approximated by the distance/similarity between xu,xv .

GNNs are a method that uses deep learning techniques, while being
independent of the graph size, and isomorphism invariant.

We will discuss only a very simple form of GNN
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Graph Neural Networks

Each node v ∈ V (G) has a state xv ∈ Rd .

A GNN is defined by two matrices WAGG,WUP and a function σ.
The computation of the GNN is:

AGGREGATE: at+1
v ← ∑

w∈N(v)
WAGG ⋅ x t

w

UPDATE: x t+1
v ← σ (WUP ⋅ (

x t
v

at+1
v
))

Assume the initial configuration (x0
v)v∈V (G) is the same at all nodes.

We stop at some fixed iteration t.
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GNNs and Color Refinement

Theorem

If cr∞(u) = cr∞(v) then for any GNN parameters, x t
u = x t

v .

Thus, a GNN cannot distinguish more than color refinement.

Some converse statement is possible.
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GNNs as Classifiers

Add classification function, C ∶ Rd → {0,1}; GNN(G , v) def= C(x t
v).

The GNN distinguishes (G , v) and (G ′, v ′) if GNN(G , v) ≠ GNN(G ′, v ′).

Fact

If (G , v), (G ′, v ′) are C2 equivalent, they are indistinguishable by GNN.

The converse fails, e.g. φ(x) = ∃≥2y(y = y). A GNN cannot distinguish
between a graph with 1 node and a graph with 2 nodes and no edges.
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GNNs as Classifiers

The guarded fragment of Ck restricts all quantifiers to range over
neighbors:

∃≥ny(E(x , y) ∧ ψ)

Theorem

GNNs and the guarded fragment of C2 the same expressive power.
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Discussion

Connection between WL, GNN, and logics has been extensively
researched in the last few years.

GNNs gain more power by using a random initialization function,
instead of a constant function.

Many other variations of GNNs exists, and their connection to logics
has also been explored.
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A Detailed Look
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Overview

Recall: two graphs are Ck+1-equivalent iff they cannot be distinguished by
k-WL.

The quantifier depth of Ck+1 does not correspond 1-to-1 to the step of the
k-WL

Instead, the quantifier depth corresponds 1-to-1 to the step of a slight
variant, called the oblivious WL.
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Folklore v.s. Oblivious k-WL

What we discussed until now is called Folklore WL:

fwlt+1k (v)
def= (fwltk(v),M(v))

M(v) def= {{(atpk+1(vw),fwltk(v[w/v1]), . . . ,fwltk(v[w/vk])) ∣ w ∈ V (G)}}

The following variant is called Oblivious WL:

owlt+1k (v)
def= (owltk(v),M(v))

M(v) def= ({{owltk(v[w/v1]) ∣ w ∈ V (G)}}, . . . ,{{owltk(v[w/vk]) ∣ w ∈ V (G)}})

Note: owlk makes sense only for k ≥ 2:
For k = 1 it doesn’t check whether the edge v1w exists.
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Connection Between Folklore and Oblivious WL

Theorem

(1) If G ,G ′ are distinguished by fwltk then they are distinguished by owltk+1
(2) If G ,G ′ are distinguished by owltk+1 then they are distinguished by fwlt+1k

Intuitively: the stable coloring fwl∞k is the same as owl∞k+1.

The proof in [Grohe, 2021] establishes the following equivalence:

owltk+1(G ,v) = owltk+1(G ′,v ′)

atpk+1(G ,v) = atpk+1(G ′,v ′) and for all i = 1, k + 1:

fwltk(G , v1, . . . , vi−1, vi+1, . . . , vk+1) = fwltk(G ′, v ′1, . . . , v ′i−1, v ′i+1, . . . , v ′k+1)
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Connection Between WL and Counting Logic

Ck[q] = quantifier depth ≤ q. Fix vectors v ∈ V (G)k ,v ′ ∈ (V (G ′))k .

Theorem

owl
q
k(G ,v) = owl

q
k(G ′,v ′) ⇐⇒ (∀φ ∈ Ck[q] ∶ G ⊧ φ[v] iff G ′ ⊧ φ[v ′])
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Ck[q] = quantifier depth ≤ q. Fix vectors v ∈ V (G)k ,v ′ ∈ (V (G ′))k .

Theorem

owl
q
k(G ,v) = owl

q
k(G ′,v ′) ⇐⇒ (∀φ ∈ Ck[q] ∶ G ⊧ φ[v] iff G ′ ⊧ φ[v ′])

Proof Induction on q: When q = 0 both sides hold iff atpk(G ,v) = atpk(G ′,v ′).
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Connection Between WL and Counting Logic
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Theorem
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q
k(G ,v) = owl

q
k(G ′,v ′) ⇐⇒ (∀φ ∈ Ck[q] ∶ G ⊧ φ[v] iff G ′ ⊧ φ[v ′])

Assume it holds for q, we prove for q + 1.

The ⇒ direction. Let φ ∈ Ck[q + 1]; assume w.l.o.g. φ = ∃xiψ(x1, . . . , xk).

If G ⊧ φ[v] then ∃w ∈ V (G) such that G ⊧ ψ[v[vi/w]]

owl
q+1
k (v) = owl

q+1
k (v ′) implies ∃w ′ ∈ V (G ′),owlqk(v[w/vi ]) = owl

q
k(v ′[w ′/v ′i ])

By induction on q: G ′ ⊧ ψ[v ′[v ′i /w ′]] which implies G ′ ⊧ ∃xi(ψ[v ′])
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Connection Between WL and Counting Logic

Ck[q] = quantifier depth ≤ q. Fix vectors v ∈ V (G)k ,v ′ ∈ (V (G ′))k .

Theorem

owl
q
k(G ,v) = owl

q
k(G ′,v ′) ⇐⇒ (∀φ ∈ Ck[q] ∶ G ⊧ φ[v] iff G ′ ⊧ φ[v ′])

The ⇐ direction.

To prove owlq+1k (v) = owl
q+1
k (v ′) we need to check:

owl
q
k(v) = owl

q
k(v ′).

Holds by induction on q.

{{owlqk(v[w/vi ]) ∣ w ∈ V (G)}} = {{owl
q
k(v ′[w ′/v ′i ]) ∣ w ′ ∈ V (G ′)}}, i = 1, k.

Fix a color c on the left, and let nc be the number of its occurrences.

Let ψc(x1, . . . , xk) def= the q, k-type (in C) of tuples v[w/vi ] colored c.

Then G ⊧ (∃=nc xiψc(x1, . . . , xk))[v], thus G ′ ⊧ (∃=nc xiψc(x1, . . . , xk))[v ′].
The color c also occurs nc times on the right.
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Discussion

Color refinement was discovered multiple times in the past.

Weisfeiler and Leman introduced 2-WL.

Cai, Führer, Immerman established connection between k-WL, Ck ,
and certain EF-games. They also described the graphs Gk ,Hk .

There is a connection between GNNs, WL, Ck , however the
exact/rigorous statement requires a careful examination of the details.
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