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Announcement

HW?3 was due on Friday.

@ HW4 (the last one!!) to be posted this week.

Topics this week: Color Refinement, k-Weisfeiler-Leman, FOX, Ck,
applications to GNN and graph kernels.

Next week: descriptive complexity.
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Overview

@ Color refinement and the Weisfeiler-Leman algorithm are used as test
for graph isomorphism

@ They have strong connections to logic, more precisely to C¥, where
Ck is FOX extended with “counting quantifiers”

@ More recently: strong connection to Graph Neural Networks (GNN)
and graph kernels

@ Today: color refinement and WL

@ Next lecture: connection to C* and brief discussion of GNN and
graph kernels

This and the following lecture are based on
[Morris et al., 2023, Grohe, 2021, Morris et al., 2019, Grohe, 2020]
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Graphs and their Isomorphisms

We consider undirected graphs G = (V/, E) without self-loops:

(uv) € E implies (vu) € E and u # v
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Graphs and their Isomorphisms

We consider undirected graphs G = (V/, E) without self-loops:

(uv) € E implies (vu) € E and u # v

N(v) = the set of neighbors of v

Finite Model Theory Lecture 13

Spring 2025 5/21



Overview

Cc e iler-Leman
[e]e] e} o] ) ole ole}

Graphs and their Isomorphisms

We consider undirected graphs G = (V/, E) without self-loops:

(uv) € E implies (vu) € E and u # v

N(v) = the set of neighbors of v

Homomorphism h: G - G': a function f: V(G) - V(G’) s.t.
(uv) € E(G) implies (h(u)h(v)) € E(G").

Isomorphism: a bijection h such that both h, i~ are homomorphisms.

Finite Model Theory Lecture 13 Spring 2025 5/21



Overview
[e]e] e}

Color Refinement Weisfe

ilr-Leman
Graphs and their Isomorphisms
We consider undirected graphs G = (V/, E) without self-loops:
(uv) € E implies (vu) € E and u # v
N(v) = the set of neighbors of v

Homomorphism h: G - G': a function f: V(G) - V(G’) s.t.
(uv) € E(G) implies (h(u)h(v)) € E(G").

Isomorphism: a bijection h such that both h, h™* are homomorphisms.

G, G’ are isomorphic, G ~ G', if there exists an isomorphism G — G'.
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Graphs and their Isomorphisms

We consider undirected graphs G = (V/, E) without self-loops:
(uv) € E implies (vu) € E and u # v
N(v) = the set of neighbors of v

Homomorphism h: G - G': a function f: V(G) - V(G’) s.t.
(uv) € E(G) implies (h(u)h(v)) € E(G").

Isomorphism: a bijection h such that both h, h™* are homomorphisms.
G, G’ are isomorphic, G ~ G', if there exists an isomorphism G — G'.

The problem given G, G’, check if G~ G’ is in NP.
It is believe to be neither in PTIME, nor NP-complete.
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Example

From

https://en.wikipedia.org/wiki/Graph_isomorphism_problem

Finite Model Theory Lecture 13 Spring 2025 6/21


https://en.wikipedia.org/wiki/Graph_isomorphism_problem

Color Refinement
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Color Refinement or 1-WL
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Color Refinement

Iterative process that assigns a “color” to each node.

4.} isabag, asin {a,a,b,c,c,c}.
R Y
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Color Refinement
Iterative process that assigns a “color” to each node.

@ Initially all nodes have the same color:

er®(v) = ()

4.} isabag, asin {a,a,b,c,c,c}.
R Y
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Color Refinement
Iterative process that assigns a “color” to each node.

@ Initially all nodes have the same color:

er®(v) = ()

@ For t >0, assign colors based on the neighbors’s colors:!

ertL(v) € (crt(v), fert(w) | we N(v)})

4.} isabag, asin {a,a,b,c,c,c}.
R Y
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Color Refinement
Iterative process that assigns a “color” to each node.

@ Initially all nodes have the same color:

er®(v) = ()

@ For t >0, assign colors based on the neighbors’s colors:!

ertL(v) € (crt(v), fert(w) | we N(v)})

. . def .
@ The stable coloring is cr™ = crf where t is s.t. cri*! = crt.

4.} isabag, asin {a,a,b,c,c,c}.
R Y



Color Refinement
[e]e] lelelelele]e)

Example from [Grohe, 2020]

SN

(a) initial graph (b) colouring after round 1

SRS

(c) colouring after round 2 (d) stable colouring after round 3

Figure 3: A run of 1-WL
Spring 2025 9/21



Color Refinement
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Discussion

@ The actual “color” doesn't matter: all that matter is whether two
nodes have the same color or different colors:

vtw| if |crf(v) =crf(w)
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Discussion

@ The actual “color” doesn't matter: all that matter is whether two
nodes have the same color or different colors:

vtw| if |crf(v) =crf(w)

@ Observe that =% = V(G) x V(G) and =t 2 =t*1,
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Color Refinement feiler-Leman

[e]e]e] le]elele]e]

Discussion

@ The actual “color” doesn't matter: all that matter is whether two
nodes have the same color or different colors:

vtw| if |crf(v) =crf(w)

@ Observe that =% = V(G) x V(G) and =t 2 =t*1,

— 00

@ =% is the greatest fixpoint of the refinement procedure:

0 1 2

0515225 .. 5=t_ztt
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Color Refinement
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Discussion

@ The actual “color” doesn't matter: all that matter is whether two
nodes have the same color or different colors:

vtw| if |crf(v) =crf(w)

@ Observe that =% = V(G) x V(G) and =t 2 =t*1,

@ =% is the greatest fixpoint of the refinement procedure:

0

EDE]' 2

5=25 ... 5=t =zt

o Better: stable refinement can be computed in time O((m + n)log n),
where m = |E(G)|, n=|V(G)|.
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Viewing Colors as Tree Unfoldings

One can view the set of colors at round t as the set of all trees of depths t.
Example from [Grohe, 2020]:

¢ L
s LAV
o

./_\. Co I o/.\o ./I\.
’ AAVI\S RV

Figure 5: Viewing colours of WL as trees
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Color Refinement for Isomorphism Test

Input: G, G’

Take their disjoint union G U G’ and compute its stable color cr®.

If for any color, the two graphs a have different number of nodes of that
color, then they are not isomorphic.

Other, we need to run an expensive isomorphism test.
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Color Refinement
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Graph Coloring is Insufficient

G G’

All nodes have the same color, yet they are not isomorphic.
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Overvie Color Refinement
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Canonical Labeling of a Graph

A canonical labeling is a graph G is a labeling of its nodes with numbers
1,2,...,ns.t. G~ G’ iff their canonical labelings are identical.
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Canonical Labeling of a Graph

A canonical labeling is a graph G is a labeling of its nodes with numbers
1,2,...,ns.t. G~ G’ iff their canonical labelings are identical.

A canonical labeling gives us immediately an isomorphism test: simply
check that the one-one mapping 1~ 1, 2+ 2, etc is an isomorphism.

Finite Model Theory Lecture 13 Spring 2025 14 /21



Color Refinement

[e]e]e]ele]ele] Jo]

Canonical Labeling of a Graph

A canonical labeling is a graph G is a labeling of its nodes with numbers
1,2,...,ns.t. G~ G’ iff their canonical labelings are identical.

A canonical labeling gives us immediately an isomorphism test: simply
check that the one-one mapping 1~ 1, 2+ 2, etc is an isomorphism.

If the stable coloring assigns distinct colors to each node, then it is a
canonical labeling.
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Canonical Labeling of a Graph

A canonical labeling is a graph G is a labeling of its nodes with numbers
1,2,...,ns.t. G~ G’ iff their canonical labelings are identical.

A canonical labeling gives us immediately an isomorphism test: simply
check that the one-one mapping 1~ 1, 2+ 2, etc is an isomorphism.

If the stable coloring assigns distinct colors to each node, then it is a
canonical labeling.

Theorem

[Babai et al., 1980] In a random graph (where pr(uv) =1/2 for all u,v),
all colors cr?(v) are distinct, with probability > 1 Y/1/n.
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Discussion

@ For almost all graphs, the stable color uniquely identifies the graph up
to isomorphism.

@ Even more: only two iterations of stable coloring suffice!

@ However, stable coloring fails to differentiate any two regular? graphs
with the same degree: e.g. Cg v.s. C3U Gs.

@ The Weisfeiler-Leman procedure refines stable coloring to identify
more graphs.

?Meaning: any two nodes have the same degree.
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Weisfeiler-Leman
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Overvie Color Refinement Weisfeiler-Leman
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Initially Colored Graph

For the Weisfeiler-Leman algorithm it will be convenient to considered
labeled graphs:

G:(V7E7P17"'7Pm)

where P, ..., Py, form a partition on V.
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Weisfeiler-Leman
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Initially Colored Graph

For the Weisfeiler-Leman algorithm it will be convenient to considered
labeled graphs:

G:(V7E7P17"'7Pm)
where P, ..., Py, form a partition on V.

The atomic type, atp,(v), of a k-tuples v € V(G)¥ is the isomorphism
type of the subgraph induced by v.

atp,(v) = atp,(u) iff the mapping (vi,...,vk) = (u1,...,ux) is a partial
isomomorphism.
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k-Dimensional Weisfeiler-Leman

k-WL colors k-tuples of nodes of the graph.
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Weisfeiler-Leman
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k-Dimensional Weisfeiler-Leman

k-WL colors k-tuples of nodes of the graph.

Initially, each vector v € V(G) is colored with atp, (v).
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Weisfeiler-Leman
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k-Dimensional Weisfeiler-Leman
k-WL colors k-tuples of nodes of the graph.
Initially, each vector v € V(G) is colored with atp, (v).

At step t + 1, the tuple v is colored with:

W1EL(v) = (w1 (v), M(v))

where M is:

def
M(v) = {{(atpya (vw), w1 (viw/wv]), ..., wl (v[w/v])) [we V(G)}}
note that atp,,;(vw) considers all colors of wl}.
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Example

Consider k = 2.
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Example

Consider k = 2.

t = 0 there are three colors:

Same node: wld(aa) = - = w13(fF)
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Example

Consider k = 2.

t = 0 there are three colors:

Same node: wld(aa) = - = w13(fF)
Edges: wld(ab) = - = wld(fa)
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Weisfeiler-Leman
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Example

Consider k = 2.

t = 0 there are three colors:

Same node: wld(aa) = - = w13(fF)
Edges: wld(ab) = - = wld(fa)
Non-edges:  wl3(ac) = wld(ad) = - = wl3(#b)
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Example

Consider k = 2.

t = 0 there are three colors:

Same node: wld(aa) = - = w13(fF)
Edges: wld(ab) = - = wld(fa)
Non-edges:  wl3(ac) = wld(ad) = - = wl3(#b)
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Color Refinement

Example

Consider k = 2.

t = 0 there are three colors:

Same node: wld(aa) = - = w13(fF)
Edges: wld(ab) = - = wld(fa)
Non-edges:  wl3(ac) = wld(ad) = - = wl3(#b)

t = 1 distinguishes between ac and ad:
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Weisfeiler-Leman
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Example

Consider k = 2.

t = 0 there are three colors:

Same node: wld(aa) = - = w13(fF)
Edges: wld(ab) = - = wld(fa)
Non-edges:  wl3(ac) = wld(ad) = - = wl3(#b)

t = 1 distinguishes between ac and ad:
wli(ad) = (w13(ad), M(ad))
M(ad) = {{(atp3(adv),wlg(vd),wlg(av)) |veV(G)}
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Example

Consider k = 2.

t = 0 there are three colors:

Same node: wld(aa) = - = w13(fF)
Edges: wld(ab) = - = wld(fa)
Non-edges:  wl3(ac) = wld(ad) = - = wl3(#b)

t = 1 distinguishes between ac and ad:
wli(ad) = (w13(ad), M(ad))
M(ad) = {{(atp3(adv),wlg(vd),wlg(av)) |veV(G)}

M(ac) = {{(atp3(acw),wlg(wc),wlg(aw)) |weV(G)}

wl3(ac) = (w13(ac), M(ac)) v
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Example

Consider k = 2.

t = 0 there are three colors:

Same node: wld(aa) = - = w13(fF)
Edges: wld(ab) = - = wld(fa)
Non-edges:  wl3(ac) = wld(ad) = - = wl3(#b)

t = 1 distinguishes between ac and ad:
wli(ad) = (w13(ad), M(ad))
M(ad) = {{(atp3(adv),wlg(vd),wlg(av)) |veV(G)}

wl3(ac) = (w13(ac), M(ac))
M(ac) = {(atps(acw), w1 (wc),wld(aw)) | we V(G)}
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Example

Consider k = 2.

t = 0 there are three colors:

Same node: wld(aa) = - = w13(fF)
Edges: wld(ab) = - = wld(fa)
Non-edges:  wl3(ac) = wld(ad) = - = wl3(#b)

t = 1 distinguishes between ac and ad:
wli(ad) = (w13(ad), M(ad))
M(ad) = {{(atp3(adv),wlg(vd),wlg(av)) |veV(G)}

wl3(ac) = (w13(ac), M(ac))
M(ac) = {(atps(acw), w1 (wc),wld(aw)) | we V(G)}

When w = b then atp;(acb) # atp,(adv), for all v.
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Example

Consider k = 2.

t = 0 there are three colors:

Same node: wld(aa) = - = w13(fF)
Edges: wld(ab) = - = wld(fa)
Non-edges:  wl3(ac) = wld(ad) = - = wl3(#b)

t = 1 distinguishes between ac and ad:
wli(ad) = (w13(ad), M(ad))
M(ad) = {{(atp3(adv),wlg(vd),wlg(av)) |veV(G)}

wl3(ac) = (w13(ac), M(ac))
M(ac) = {(atps(acw), w1 (wc),wld(aw)) | we V(G)}

When w = b then atp;(acb) # atp,(adv), for all v.
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Color Refinement same as 1-WL

Fact
Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J
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Color Refinement same as 1-WL

Fact
Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J

cr(v) =

(cx’(v), fer'(w) [w e N(v)})
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Color Refinement Weisfeiler-Leman
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Color Refinement same as 1-WL

Fact

Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J
cr(v) =

(ex'(v). fler' (W) [w e N(v)))  wai™ (V) = (W18(V), M(v)),  where

M(v) € {(atp,(vw),wli(w)) |we V(G)}
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Color Refinement same as 1-WL

Fact

Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J
cr(v) =

(ex'(v). fler' (W) [w e N(v)))  wai™ (V) = (W18(V), M(v)),  where

M(v) € {(atp,(vw),wli(w)) |we V(G)}

M consists of three bags:
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Color Refinement same as 1-WL

Fact

Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J
cr(v) =

(ex'(v). fler' (W) [w e N(v)))  wai™ (V) = (W18(V), M(v)),  where

M(v) € {(atp,(vw),wli(w)) |we V(G)}
M consists of three bags:

v =w: then Mo(v) = {(w1i(v))}
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Color Refinement same as 1-WL

Fact

Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J
cr(v) =

(ex'(v). fler' (W) [w e N(v)))  wai™ (V) = (W18(V), M(v)),  where

M(v) = {(atp, (vw), w1i(w)) | w e V(G)}

M consists of three bags:

v =w: then Mo(v) = {(w1i(v))}

vw € E(G): then Mi(v) = {wli(w) | we N(v)}
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Color Refinement same as 1-WL

Fact

Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J
cr(v) =
(ex'(v). fler' (W) [w e N(v)))  wai™ (V) = (W18(V), M(v)),  where

M(v) = {(atp,(vw), uli(w)) | we V(G)}

M consists of three bags:

v=w: then Mo(v) = {(w2{(v))}

vw € E(G): then Mi(v) = {wli(w) | we N(v)}
vw ¢ E(G): then Ma(v) = {wli(w) [ w ¢ N(v)}
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Color Refinement same as 1-WL

Fact

Color refinement and 1-WL coincide: ¥t >0, crt(v) = wii(v). J
cr(v) =

(ex'(v). fler' (W) [w e N(v)))  wai™ (V) = (W18(V), M(v)),  where

M(v) = {(atp,(vw), uli(w)) | we V(G)}

M consists of three bags:

v=w: then Mo(v) = {(w2{(v))}

vw € E(G): then Mi(v) = {wli(w) | we N(v)}
vw ¢ E(G): then Ma(v) = {wli(w) [ w ¢ N(v)}

Color refinement counts the colors of the neighbors.

1-WL counts both neighbors and non-neighbors. Same thing!
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Discussion

@ k-WL identifies a graph G if it is isomorphic to any other graph with
the same k-colors histogram.

@ The WL-dimension of G is the smallest k that identifies it. Notice:
k<|V(G)|.

o 1-WL identifies a random graph with high probability. But fails on
any regular graph3

@ 2-WL identifies a random regular graph with high probability. But
fails on any strongly regular graph®

@ For any k, there exists two graphs Gy, Hy that are not isomorphic but
are indistinguishable by k-WL [Cai et al., 1992].

@ Lots of classes of graphs have low WL-dimension,
see [Morris et al., 2023].

3G is regular if all nodes have the same degree.
*https://en.wikipedia.org/wiki/Strongly_regular_graph
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