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Announcement

HW3 was due on Friday.

HW4 (the last one!!) to be posted this week.

Topics this week: Color Refinement, k-Weisfeiler-Leman, FOk , C k ,
applications to GNN and graph kernels.

Next week: descriptive complexity.
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Overview

Color refinement and the Weisfeiler-Leman algorithm are used as test
for graph isomorphism

They have strong connections to logic, more precisely to C k , where
C k is FOk extended with “counting quantifiers”

More recently: strong connection to Graph Neural Networks (GNN)
and graph kernels

Today: color refinement and WL

Next lecture: connection to C k and brief discussion of GNN and
graph kernels

This and the following lecture are based on
[Morris et al., 2023, Grohe, 2021, Morris et al., 2019, Grohe, 2020]
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Graphs and their Isomorphisms

We consider undirected graphs G = (V ,E) without self-loops:

(uv) ∈ E implies (vu) ∈ E and u ≠ v

N(v) = the set of neighbors of v

Homomorphism h ∶ G → G ′: a function f ∶ V (G)→ V (G ′) s.t.
(uv) ∈ E(G) implies (h(u)h(v)) ∈ E(G ′).

Isomorphism: a bijection h such that both h,h−1 are homomorphisms.

G ,G ′ are isomorphic, G ≈ G ′, if there exists an isomorphism G → G ′.

The problem given G ,G ′, check if G ≈ G ′ is in NP.
It is believe to be neither in PTIME, nor NP-complete.
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Example

From
https://en.wikipedia.org/wiki/Graph_isomorphism_problem
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Color Refinement or 1-WL
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Color Refinement

Iterative process that assigns a “color” to each node.

Initially all nodes have the same color:

cr0(v)
def
= ()

For t ≥ 0, assign colors based on the neighbors’s colors:1

crt+1(v)
def
= (crt(v),{{crt(w) ∣ w ∈ N(v)}})

The stable coloring is cr∞
def
= crt where t is s.t. crt+1 = crt .

1
{{. . .}} is a bag, as in {{a, a,b, c, c, c}}.
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Example from [Grohe, 2020]
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Discussion

The actual “color” doesn’t matter: all that matter is whether two
nodes have the same color or different colors:

v ≡t w if crt(v) = crt(w)

Observe that ≡0 = V (G) ×V (G) and ≡t ⊇ ≡t+1.

≡∞ is the greatest fixpoint of the refinement procedure:

≡0 ⊃ ≡1 ⊃ ≡2 ⊃ ⋯ ⊃ ≡t = ≡t+1

Better: stable refinement can be computed in time O((m + n) log n),
where m = ∣E(G)∣, n = ∣V (G)∣.
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Viewing Colors as Tree Unfoldings
One can view the set of colors at round t as the set of all trees of depths t.
Example from [Grohe, 2020]:
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Color Refinement for Isomorphism Test

Input: G ,G ′

Take their disjoint union G ∪G ′ and compute its stable color cr∞.

If for any color, the two graphs a have different number of nodes of that
color, then they are not isomorphic.

Other, we need to run an expensive isomorphism test.
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Graph Coloring is Insufficient

G G’

All nodes have the same color, yet they are not isomorphic.
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Canonical Labeling of a Graph

A canonical labeling is a graph G is a labeling of its nodes with numbers
1,2, . . . ,n s.t. G ≈ G ′ iff their canonical labelings are identical.

A canonical labeling gives us immediately an isomorphism test: simply
check that the one-one mapping 1↦ 1, 2↦ 2, etc is an isomorphism.

If the stable coloring assigns distinct colors to each node, then it is a
canonical labeling.

Theorem

[Babai et al., 1980] In a random graph (where pr(uv) = 1/2 for all u, v),
all colors cr2(v) are distinct, with probability ≥ 1 − 7

√
1/n.

Finite Model Theory Lecture 13 Spring 2025 14 / 21



Overview Color Refinement Weisfeiler-Leman

Canonical Labeling of a Graph

A canonical labeling is a graph G is a labeling of its nodes with numbers
1,2, . . . ,n s.t. G ≈ G ′ iff their canonical labelings are identical.

A canonical labeling gives us immediately an isomorphism test: simply
check that the one-one mapping 1↦ 1, 2↦ 2, etc is an isomorphism.

If the stable coloring assigns distinct colors to each node, then it is a
canonical labeling.

Theorem

[Babai et al., 1980] In a random graph (where pr(uv) = 1/2 for all u, v),
all colors cr2(v) are distinct, with probability ≥ 1 − 7

√
1/n.

Finite Model Theory Lecture 13 Spring 2025 14 / 21



Overview Color Refinement Weisfeiler-Leman

Canonical Labeling of a Graph

A canonical labeling is a graph G is a labeling of its nodes with numbers
1,2, . . . ,n s.t. G ≈ G ′ iff their canonical labelings are identical.

A canonical labeling gives us immediately an isomorphism test: simply
check that the one-one mapping 1↦ 1, 2↦ 2, etc is an isomorphism.

If the stable coloring assigns distinct colors to each node, then it is a
canonical labeling.

Theorem

[Babai et al., 1980] In a random graph (where pr(uv) = 1/2 for all u, v),
all colors cr2(v) are distinct, with probability ≥ 1 − 7

√
1/n.

Finite Model Theory Lecture 13 Spring 2025 14 / 21



Overview Color Refinement Weisfeiler-Leman

Canonical Labeling of a Graph

A canonical labeling is a graph G is a labeling of its nodes with numbers
1,2, . . . ,n s.t. G ≈ G ′ iff their canonical labelings are identical.

A canonical labeling gives us immediately an isomorphism test: simply
check that the one-one mapping 1↦ 1, 2↦ 2, etc is an isomorphism.

If the stable coloring assigns distinct colors to each node, then it is a
canonical labeling.

Theorem

[Babai et al., 1980] In a random graph (where pr(uv) = 1/2 for all u, v),
all colors cr2(v) are distinct, with probability ≥ 1 − 7

√
1/n.

Finite Model Theory Lecture 13 Spring 2025 14 / 21



Overview Color Refinement Weisfeiler-Leman

Discussion

For almost all graphs, the stable color uniquely identifies the graph up
to isomorphism.

Even more: only two iterations of stable coloring suffice!

However, stable coloring fails to differentiate any two regular2 graphs
with the same degree: e.g. C6 v.s. C3 ∪ C3.

The Weisfeiler-Leman procedure refines stable coloring to identify
more graphs.

2Meaning: any two nodes have the same degree.
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Weisfeiler-Leman
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Initially Colored Graph

For the Weisfeiler-Leman algorithm it will be convenient to considered
labeled graphs:

G = (V ,E ,P1, . . . ,Pm)

where P1, . . . ,Pm form a partition on V .

The atomic type, atpk(v), of a k-tuples v ∈ V (G)k is the isomorphism
type of the subgraph induced by v .

atpk(v) = atpk(u) iff the mapping (v1, . . . , vk)↦ (u1, . . . ,uk) is a partial
isomomorphism.
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k-Dimensional Weisfeiler-Leman

k-WL colors k-tuples of nodes of the graph.

Initially, each vector v ∈ V (G)k is colored with atpk(v).

At step t + 1, the tuple v is colored with:

wlt+1k (v)
def
= (wltk(v),M(v))

where M is:

M(v) def= {{(atpk+1(vw),wl
t
k(v[w/v1]), . . . ,wl

t
k(v[w/vk])) ∣ w ∈ V (G)}}

note that atpk+1(vw) considers all colors of wl
t
k .

Finite Model Theory Lecture 13 Spring 2025 18 / 21



Overview Color Refinement Weisfeiler-Leman

k-Dimensional Weisfeiler-Leman

k-WL colors k-tuples of nodes of the graph.

Initially, each vector v ∈ V (G)k is colored with atpk(v).

At step t + 1, the tuple v is colored with:

wlt+1k (v)
def
= (wltk(v),M(v))

where M is:

M(v) def= {{(atpk+1(vw),wl
t
k(v[w/v1]), . . . ,wl

t
k(v[w/vk])) ∣ w ∈ V (G)}}

note that atpk+1(vw) considers all colors of wl
t
k .

Finite Model Theory Lecture 13 Spring 2025 18 / 21



Overview Color Refinement Weisfeiler-Leman

k-Dimensional Weisfeiler-Leman

k-WL colors k-tuples of nodes of the graph.

Initially, each vector v ∈ V (G)k is colored with atpk(v).

At step t + 1, the tuple v is colored with:

wlt+1k (v)
def
= (wltk(v),M(v))

where M is:

M(v) def= {{(atpk+1(vw),wl
t
k(v[w/v1]), . . . ,wl

t
k(v[w/vk])) ∣ w ∈ V (G)}}

note that atpk+1(vw) considers all colors of wl
t
k .

Finite Model Theory Lecture 13 Spring 2025 18 / 21



Overview Color Refinement Weisfeiler-Leman

Example

Consider k = 2.

t = 0 there are three colors:
Same node: wl02(aa) = ⋯ = wl

0
2(ff )

Edges: wl02(ab) = ⋯ = wl
0
2(fa)

Non-edges: wl02(ac) = wl
0
2(ad) = ⋯ = wl

0
2(fb)

t = 1 distinguishes between ac and ad :
wl12(ad) = (wl

0
2(ad),M(ad))

M(ad) = {{(atp3(adv),wl
0
2(vd),wl

0
2(av)) ∣ v ∈ V (G)}}

wl12(ac) = (wl
0
2(ac),M(ac))

M(ac) = {{(atp3(acw),wl
0
2(wc),wl02(aw)) ∣ w ∈ V (G)}}

When w = b then atp3(acb) ≠ atp3(adv), for all v .

a

b

c

d

e

f
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When w = b then atp3(acb) ≠ atp3(adv), for all v .
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b
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d

e

f
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Color Refinement same as 1-WL

Fact

Color refinement and 1-WL coincide: ∀t ≥ 0, crt(v) = wlt1(v).

crt+1(v) =
(crt(v),{{crt(w) ∣ w ∈ N(v)}})

wlt+11 (v)
def
= (wlt1(v),M(v)), where

M(v)
def
= {{(atp2(vw),wl

t
1(w)) ∣ w ∈ V (G)}}

M consists of three bags:

v = w : then M0(v) = {{(wl
t
1(v))}}

vw ∈ E(G): then M1(v) = {{wl
t
1(w) ∣ w ∈ N(v)}}

vw /∈ E(G): then M2(v) = {{wl
t
1(w) ∣ w /∈ N(v)}}

Color refinement counts the colors of the neighbors.

1-WL counts both neighbors and non-neighbors. Same thing!
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Discussion

k-WL identifies a graph G if it is isomorphic to any other graph with
the same k-colors histogram.

The WL-dimension of G is the smallest k that identifies it. Notice:
k ≤ ∣V (G)∣.

1-WL identifies a random graph with high probability. But fails on
any regular graph3

2-WL identifies a random regular graph with high probability. But
fails on any strongly regular graph4

For any k, there exists two graphs Gk ,Hk that are not isomorphic but
are indistinguishable by k-WL [Cai et al., 1992].

Lots of classes of graphs have low WL-dimension,
see [Morris et al., 2023].

3G is regular if all nodes have the same degree.
4https://en.wikipedia.org/wiki/Strongly_regular_graph
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