		Restricted Variables	Infinitary Logic and Pebble Games	Examples 000000	Proof 00000000	Stratified Datalog and LFP
--	--	----------------------	-----------------------------------	--------------------	-------------------	----------------------------

Finite Model Theory Lecture 12: Fixpoints and Infinitary Logic

Spring 2025

Announcements

• Homework 3 due on Friday.

• Today: finish games

• Next week: Weifeiler-Lehman, GNNs, C^k .

ogic and Pebble Gar

Examples Pro

Stratified Datalog and L

Review: Unfolding the Recursion in LFP

 $S(x) = (\forall y (E(x, y) \to S(y)))$

The ICO: $F(S) = \{x \mid \forall y(E(x,y) \rightarrow S(y))\}$

nes Examples 000000

Review: Unfolding the Recursion in LFP

 $S(x) = (\forall y(E(x,y) \to S(y)))$

The ICO: $F(S) = \{x \mid \forall y (E(x, y) \rightarrow S(y))\}$

Review: Unfolding the Recursion in LFP

 $S(x) = (\forall y(E(x,y) \to S(y)))$

The ICO: $F(S) = \{x \mid \forall y (E(x, y) \rightarrow S(y))\}$

$$S^{0} = \emptyset \qquad \varphi^{0}(x) = \text{FALSE}$$

$$S^{1} = F(S^{0}) \qquad \varphi^{1}(x) = \forall y(E(x, y) \to \varphi^{0}(y))$$

Review: Unfolding the Recursion in LFP

 $S(x) = (\forall y(E(x,y) \rightarrow S(y)))$

The ICO: $F(S) = \{x \mid \forall y(E(x,y) \rightarrow S(y))\}$

$$\begin{array}{ll} S^0 = \varnothing & \varphi^0(x) = \texttt{FALSE} \\ S^1 = F(S^0) & \varphi^1(x) = \forall y(E(x,y) \to \varphi^0(y)) \\ S^2 = F(S^1) & \varphi^2(x) = \forall y(E(x,y) \to \varphi^1(y)) \end{array}$$

Review: Unfolding the Recursion in LFP

 $S(x) = (\forall y(E(x,y) \rightarrow S(y)))$

The ICO: $F(S) = \{x \mid \forall y(E(x,y) \rightarrow S(y))\}$

$$S^{0} = \emptyset \qquad \varphi^{0}(x) = \text{FALSE}$$

$$S^{1} = F(S^{0}) \qquad \varphi^{1}(x) = \forall y(E(x,y) \to \varphi^{0}(y))$$

$$S^{2} = F(S^{1}) \qquad \varphi^{2}(x) = \forall y(E(x,y) \to \varphi^{1}(y))$$

$$\dots$$

$$S^{n+1} = F(S^{n}) \qquad \varphi^{n+1}(x) = \forall y(E(x,y) \to \varphi^{n}(y))$$

$$\dots$$

Restricted Variables	Infinitary Logic and Pebble Games		
00000			

Restricted Variables: FO^k

4 / 36

FO^k

Definition FO^k is FO restricted to k variables x_1, x_2, \ldots, x_k .

Don't confuse with FO[k], which restricts the quantifier depth.

"Does the graph have a path of length 2?"

```
\exists x \exists y \exists z (E(x,y) \land E(y,z)) \in \mathsf{FO}^3
```


Examples

"Does the graph have a path of length 2?"

$$\exists x \exists y \exists z (E(x,y) \land E(y,z)) \in FO^{3}$$
$$\exists x \exists y (E(x,y) \land \underbrace{\exists x E(y,x)}_{\text{reuse } x}) \in FO^{2}$$

Examples

"Does the graph have a path of length 2?"

$$\exists x \exists y \exists z (E(x,y) \land E(y,z)) \in \mathsf{FO}^{3}$$
$$\exists x \exists y (E(x,y) \land \underbrace{\exists x E(y,z)}_{\text{reuse } x}) \in \mathsf{FO}^{2}$$

"Does the graph have a path of length 10?"

reuse x

Proposition

Let $\operatorname{lfp}_{S,\mathbf{x}}(\varphi)$ be a least fixpoint predicate, assume $\varphi \in FO^k$. The unfolding φ^n is in FO^k , for every $n \ge 0$.

Proposition

Let $\operatorname{lfp}_{S,x}(\varphi)$ be a least fixpoint predicate, assume $\varphi \in FO^k$. The unfolding φ^n is in FO^k , for every $n \ge 0$.

Proof by Example: $S(x) = (\forall y(E(x,y) \rightarrow S(y)))$

Proposition

Let $\operatorname{lfp}_{S,x}(\varphi)$ be a least fixpoint predicate, assume $\varphi \in FO^k$. The unfolding φ^n is in FO^k , for every $n \ge 0$.

Proof by Example: $S(x) = (\forall y(E(x,y) \rightarrow S(y)))$

$$\varphi^1(x) = \forall y(E(x,y) \rightarrow \text{FALSE})$$

Proposition

Let $\operatorname{lfp}_{S,x}(\varphi)$ be a least fixpoint predicate, assume $\varphi \in FO^k$. The unfolding φ^n is in FO^k , for every $n \ge 0$.

Proof by Example: $S(x) = (\forall y(E(x, y) \rightarrow S(y)))$

$$\begin{split} \varphi^{1}(x) &= \forall y (E(x, y) \to \text{FALSE}) \\ \varphi^{2}(x) &= \forall y (E(x, y) \to \varphi^{1}(y)) \\ &= \forall y (E(x, y) \to \exists x (x = y \land \varphi^{1}(x))) \\ &= \forall y (E(x, y) \to \exists x (x = y \land \forall y (E(x, y) \to \text{FALSE}))) \end{split}$$

Proposition

Let $\operatorname{lfp}_{S,x}(\varphi)$ be a least fixpoint predicate, assume $\varphi \in FO^k$. The unfolding φ^n is in FO^k , for every $n \ge 0$.

Proof by Example: $S(x) = (\forall y(E(x,y) \rightarrow S(y)))$

$$\varphi^{1}(x) = \forall y(E(x,y) \to \text{FALSE})$$

$$\varphi^{2}(x) = \forall y(E(x,y) \to \varphi^{1}(y))$$

$$= \forall y(E(x,y) \to \exists x(x = y \land \varphi^{1}(x)))$$

$$= \forall y(E(x,y) \to \exists x(x = y \land \forall y(E(x,y) \to \text{FALSE})))$$

$$\varphi^{3}(x) = \forall y(E(x,y) \to \varphi^{2}(y))$$

$$= \forall y(E(x,y) \to \exists x(x = y \land \varphi^{2}(x)))$$

$$= \dots$$

Discussion

• For good programming, we should avoid reusing variables.

• FO^k asks us the opposite: reuse variables when possible.

• Obvious fact: $FO = \bigcup_{k \ge 0} FO^k$.

0 00000 000000 000000 0000000 0000000 0000		Restricted Variables	Infinitary Logic and Pebble Games ●00000	Examples 000000	Proof 00000000	Stratified Datalog and LF
--	--	----------------------	---	--------------------	-------------------	---------------------------

Infinitary Logic and Pebble Games

	Restricted Variables	Infinitary Logic and Pebble Games	Examples 000000	Proof 00000000	Stratified Datalog and LFP
$L^{\omega}_{\infty\omega}$					

- Let α, β be ordinals. The infinitary logic $L_{\alpha\beta}$ is:
 - Atoms: $x_i = x_j$, $R(\cdots)$
 - Formulas: $\bigvee_{i \in \alpha} \varphi_i$, $(\ldots \exists x_j \ldots) \varphi$, and $\neg \varphi$.
 - No need for \land , \forall because we use \neg .

10/36

	Restricted Variables	Infinitary Logic and Pebble Games	Examples 000000	Proof 00000000	Stratified Datalog and LFP 00000000
$L^{\omega}_{\infty\omega}$					

- Let α,β be ordinals. The infinitary logic ${\cal L}_{\alpha\beta}$ is:
 - Atoms: $x_i = x_j, R(\cdots)$
 - Formulas: $\bigvee_{i \in \alpha} \varphi_i$, $(\ldots \exists x_j \ldots) \varphi$, and $\neg \varphi$.
 - No need for \land , \forall because we use \neg .
- $L_{\omega\omega} = FO$; finite \lor , finite \exists .

10/36

	Restricted Variables	Infinitary Logic and Pebble Games	Examples 000000	Proof 00000000	Stratified Datalog and LFP
$L^{\omega}_{\infty\omega}$					

- Let α,β be ordinals. The infinitary logic ${\cal L}_{\alpha\beta}$ is:
 - Atoms: $x_i = x_j, R(\dots)$
 - Formulas: $\bigvee_{i \in \alpha} \varphi_i$, $(\underbrace{\ldots \exists x_j \ldots}_{i \in \beta}) \varphi$, and $\neg \varphi$.
 - No need for \land , \forall because we use \neg .
- $L_{\omega\omega} = FO$; finite \lor , finite \exists .
- $L_{\infty\omega}$ = infinite disjunction (no bound!), finite quantifier sequence.

	Restricted Variables	Infinitary Logic and Pebble Games	Examples 000000	Proof 00000000	Stratified Datalog and LFP
$L^{\omega}_{\infty\omega}$					

- Let α, β be ordinals. The infinitary logic $L_{\alpha\beta}$ is:
 - Atoms: $x_i = x_j, R(\dots)$
 - Formulas: $\bigvee_{i \in \alpha} \varphi_i$, $(\ldots \exists x_j \ldots) \varphi$, and $\neg \varphi$.
 - No need for \land , \forall because we use \neg .
- $L_{\omega\omega} = FO$; finite \lor , finite \exists .
- $L_{\infty\omega}$ = infinite disjunction (no bound!), finite quantifier sequence.
- $L_{\infty\omega}^k$ = the restriction to k variables.

	Restricted Variables	Infinitary Logic and Pebble Games	Examples 000000	Proof 00000000	Stratified Datalog and LFP 00000000
$L^{\omega}_{\infty\omega}$					

- Let α, β be ordinals. The infinitary logic $L_{\alpha\beta}$ is:
 - Atoms: $x_i = x_j, R(\dots)$
 - Formulas: $\bigvee_{i \in \alpha} \varphi_i$, $(\ldots \exists x_j \ldots) \varphi$, and $\neg \varphi$.
 - No need for \land , \forall because we use \neg .
- $L_{\omega\omega} = FO$; finite \lor , finite \exists .
- $L_{\infty\omega}$ = infinite disjunction (no bound!), finite quantifier sequence.
- $L_{\infty\omega}^k$ = the restriction to k variables.

•
$$L_{\infty\omega}^{\omega} = \bigcup_{k \ge 0} L_{\infty\omega}^{k}$$
. Notice: $L_{\infty\omega}^{\omega} \nsubseteq L_{\infty\omega}$

Theorem

Every query Φ in LFP can be expressed in $L^{\omega}_{\infty\omega}$

Theorem

Every query Φ in LFP can be expressed in $L^{\omega}_{\infty\omega}$

Proof: More precisely, we will prove that, for every $\Phi \in LFP$, $\Phi \in L_{\infty\omega}^k$ where $k = |Vars(\Phi)|$.

Theorem

Every query Φ in LFP can be expressed in $L^{\omega}_{\infty\omega}$

Proof: More precisely, we will prove that, for every $\Phi \in LFP$, $\Phi \in L_{\infty\omega}^k$ where $k = |Vars(\Phi)|$.

Induction on the structure of Φ .

Theorem

Every query Φ in LFP can be expressed in $L^{\omega}_{\infty\omega}$

Proof: More precisely, we will prove that, for every $\Phi \in LFP$, $\Phi \in L_{\infty\omega}^k$ where $k = |Vars(\Phi)|$.

Induction on the structure of Φ .

If $\Phi = \Phi_1 \lor \Phi_2$, by induction $\Phi_1 \in L^k_{\infty\omega}$, $\Phi_2 \in L^k_{\infty\omega}$, thus $\Phi_1 \lor \Phi_2 \in L^k_{\infty\omega}$.

Theorem

Every query Φ in LFP can be expressed in $L^{\omega}_{\infty\omega}$

Proof: More precisely, we will prove that, for every $\Phi \in LFP$, $\Phi \in L_{\infty\omega}^k$ where $k = |Vars(\Phi)|$.

Induction on the structure of Φ .

If $\Phi = \Phi_1 \lor \Phi_2$, by induction $\Phi_1 \in L^k_{\infty\omega}$, $\Phi_2 \in L^k_{\infty\omega}$, thus $\Phi_1 \lor \Phi_2 \in L^k_{\infty\omega}$.

The only interesting case is a fixpoint expression: $\Phi = \mathsf{lfp}_{S,x}(\varphi)$.

Theorem

Every query Φ in LFP can be expressed in $L^{\omega}_{\infty\omega}$

Proof: More precisely, we will prove that, for every $\Phi \in LFP$, $\Phi \in L_{\infty\omega}^k$ where $k = |Vars(\Phi)|$.

Induction on the structure of Φ .

If $\Phi = \Phi_1 \lor \Phi_2$, by induction $\Phi_1 \in L^k_{\infty\omega}$, $\Phi_2 \in L^k_{\infty\omega}$, thus $\Phi_1 \lor \Phi_2 \in L^k_{\infty\omega}$.

The only interesting case is a fixpoint expression: $\Phi = \mathsf{lfp}_{S,x}(\varphi)$.

Then
$$\Phi = \varphi^0 \vee \varphi^1 \vee \cdots \vee \varphi^n \vee \cdots$$
; each $\varphi^n \in L^k_{\infty\omega}$, thus $\Phi_1 \vee \Phi_2 \in L^k_{\infty\omega}$.

There are two structures $\boldsymbol{A}, \boldsymbol{B}$ and 2k pebbles, labeled $1, 1, 2, 2, \dots, k, k$.

Initially both spoiler and duplicator have k pebbles in their hand.

12/36

There are two structures $\boldsymbol{A}, \boldsymbol{B}$ and 2k pebbles, labeled $1, 1, 2, 2, \dots, k, k$.

Initially both spoiler and duplicator have k pebbles in their hand.

Spoiler can do one of the following:

Place pebble *i* from his hand on *A* (or *B*);
 Duplicator must reply by placing her pebble *i* on *B* (or *A*).

12/36

There are two structures $\boldsymbol{A}, \boldsymbol{B}$ and 2k pebbles, labeled $1, 1, 2, 2, \dots, k, k$.

Initially both spoiler and duplicator have k pebbles in their hand.

Spoiler can do one of the following:

- Place pebble *i* from his hand on *A* (or *B*);
 Duplicator must reply by placing her pebble *i* on *B* (or *A*).
- Remove pebble *i* from *A* (or *B*);
 Duplicator must reply by removing pebble *i* from *B* (or *A*).

There are two structures $\boldsymbol{A}, \boldsymbol{B}$ and 2k pebbles, labeled $1, 1, 2, 2, \dots, k, k$.

Initially both spoiler and duplicator have k pebbles in their hand.

Spoiler can do one of the following:

- Place pebble *i* from his hand on *A* (or *B*);
 Duplicator must reply by placing her pebble *i* on *B* (or *A*).
- Remove pebble *i* from *A* (or *B*);
 Duplicator must reply by removing pebble *i* from *B* (or *A*).

There are infinitely many rounds. Duplicator wins if at each round the set of pebbles on A and on B forms a partial isomorphism.

Examples 000000

The *k*-Pebble Games: Discussion

• An equivalent formulation is that the spoiler never removes, but instead "moves" a pebble from one position to another (possibly on the other structure).

• It suffices to check partial isomorphism only when all k pebbles are placed on the structures.

Examples 000000

Main Theorem of Pebble Games

- **()** $\mathbf{A} \approx_{\infty \omega}^{k} \mathbf{B}$ denotes: duplicator wins the *k*-pebble game.
- $\textbf{3} \ \textbf{A} \equiv_{\infty \omega}^{k} \textbf{B} \text{ denotes: } \textbf{A} \vDash \varphi \text{ iff } \textbf{B} \vDash \varphi, \text{ forall } \varphi \in L_{\infty \omega}^{k}$
- **3** $\mathbf{A} \equiv_{\mathsf{FO}}^k \mathbf{B}$ denotes: $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$, forall $\varphi \in FO^k$.

Theorem

1 and 2 are equivalent. When **A**, **B** are finite, then 1, 2, 3 are equivalent.

We will prove shortly, but first some examples.
Restricted Variables	Infinitary Logic and Pebble Games	Examples ●00000	Proof 00000000	Stratified Datalog and LFP 00000000

Examples

Total Order $L_n = ([n], <)$

Recall what we already know about L_n :

- We cannot express EVEN in FO
- We can express EVEN in Datalog

L

Recall what we already know about L_n :

- We cannot express EVEN in FO
- We can express EVEN in Datalog

Spoiler can win the 2-pebble game on L_m, L_n : $L_m \approx^2_{\infty} L_n$. In class

Recall what we already know about L_n :

- We cannot express EVEN in FO
- We can express EVEN in Datalog

Spoiler can win the 2-pebble game on L_m, L_n : $L_m \approx_{\infty}^2 L_n$. In class

Fact

There exists $\varphi \in FO^2$ s.t. $L_7 \models \varphi$, $L_6 \models \neg \varphi$. Give example φ !

Recall what we already know about L_n :

- We cannot express EVEN in FO
- We can express EVEN in Datalog

Spoiler can win the 2-pebble game on L_m, L_n : $L_m \approx_{\infty}^2 L_n$. In class

Fact

There exists
$$\varphi \in FO^2$$
 s.t. $L_7 \vDash \varphi$, $L_6 \vDash \neg \varphi$. Give example φ !

Theorem

Over an ordered structure $(A, <, R_1^A, R_2^A, ...)$ stratified datalog = PTIME.

We are interested in what we can express without and order.

Lunito	Mada	l boon
	IVIOUE	і іпеоіу

Connectivity

Duplicator wins the 2-pebble game on $\mathbf{A} = C_{2n}$ and $\mathbf{B} = (C_n \cup C_n)$.

Spoiler wins the 3-pebble game.

(In class)

Fact

There exists $\varphi \in FO^3$ s.t. $C_{2n} \models \varphi$, $(C_n \cup C_n) \models \neg \varphi$.

Describe a stratified datalog program that separates C_{2n} from $C_n \cup C_n$.

Finite	Model	Theory

17 / 36

EVEN Number of Nodes

 $\sigma = (E)$ vocabulary of graphs.

Two empty graphs: $G_m = ([m], \emptyset), G_n = ([n], \emptyset)$

If $m, n \ge k$, then duplicator wins the k-pebble game on G_m, G_n .

EVEN Number of Nodes

 $\sigma = (E)$ vocabulary of graphs.

Two empty graphs: $G_m = ([m], \emptyset), G_n = ([n], \emptyset)$

If $m, n \ge k$, then duplicator wins the k-pebble game on G_m, G_n .

Fact

"G has an even number of nodes" is not expressible in $L^{\omega}_{\infty\omega}$. Hence, it is not expressible in stratified datalog

18 / 36

EVEN Number of Edges

 $\sigma = (E)$ vocabulary of graphs. Recall: K_n = complete graph.

If $m, n \ge k$, then duplicator wins the k-pebble game on K_m, K_n Notice: K_m, K_n have m^2 , n^2 edges resepctively.

EVEN Number of Edges

 $\sigma = (E)$ vocabulary of graphs. Recall: K_n = complete graph.

If $m, n \ge k$, then duplicator wins the k-pebble game on K_m, K_n Notice: K_m, K_n have m^2 , n^2 edges resepctively.

Fact

"G has an even number of edges" is not expressible in $L^{\omega}_{\infty\omega}$. Hence, it is not expressible in stratified datalog.

19/36

Hamiltonean Cycle

 $\sigma = (E)$ vocabulary of graphs. Recall: $K_{m,n}$ = complete bipartite graph.

Fact

"G has a Hamiltonean Cycle" is not expressible in $L^{\omega}_{\infty\omega}$. Hence, it is not expressible in stratified datalog.

Proof: If $m, n \ge k$, then duplicator wins the *k*-pebble game on $K_{m,n}, K_{n,n}$.

 $K_{m,n}$ has a Hamiltonean cycle iff m = n.

Restricted Variables	Infinitary Logic and Pebble Games	Examples 000000	Proof ●0000000	Stratified Datalog and LFP 00000000

Proof of the Main Theorem

Main Theorem of Pebble Games

- **(**) $\mathbf{A} \approx_{\infty \omega}^{k} \mathbf{B}$ denotes: duplicator wins the *k*-pebble game.
- **2** $\mathbf{A} \equiv_{\infty \omega}^{k} \mathbf{B}$ denotes: $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$, forall $\varphi \in L_{\infty \omega}^{k}$
- **3** $\mathbf{A} \equiv_{\mathsf{FO}}^k \mathbf{B}$ denotes: $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$, forall $\varphi \in FO^k$.

Main Theorem of Pebble Games

- **()** $\mathbf{A} \approx_{\infty \omega}^{k} \mathbf{B}$ denotes: duplicator wins the *k*-pebble game.
- **2** $\mathbf{A} \equiv_{\infty \omega}^{k} \mathbf{B}$ denotes: $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$, forall $\varphi \in L_{\infty \omega}^{k}$
- **3** $\mathbf{A} \equiv_{\mathsf{FO}}^k \mathbf{B}$ denotes: $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$, forall $\varphi \in FO^k$.

Theorem

1 and 2 are equivalent. When A, B are finite, then all are equivalent.

Main Theorem of Pebble Games

4 $\approx_{\infty\omega}^{k}$ **B** denotes: duplicator wins the *k*-pebble game.

3
$$\mathbf{A} \equiv_{\infty \omega}^{k} \mathbf{B}$$
 denotes: $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$, forall $\varphi \in L_{\infty \omega}^{k}$

3
$$\mathbf{A} \equiv_{\mathsf{FO}}^k \mathbf{B}$$
 denotes: $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$, forall $\varphi \in FO^k$.

Theorem

1 and 2 are equivalent. When A, B are finite, then all are equivalent.

We will prove:

The proof is almost identical to the EF-games

es Examples

Proof Stratified Datalog and L

$\boldsymbol{A} \approx_{\infty\omega}^{k} \boldsymbol{B}$ implies $\boldsymbol{A} \equiv_{\infty\omega}^{k} \boldsymbol{B}$

Induction on k; k = 0: same as for EF.

Induction on k; k = 0: same as for EF.

Induction on k; k = 0: same as for EF.

- If $\varphi = \bigvee_{i \in I} \psi_i$ and $\mathbf{A} \models \varphi$ then exists $i \in I$ s.t. $\mathbf{A} \models \psi_i$. By induction on φ , $\mathbf{B} \models \psi_i$, hence $\mathbf{B} \models \varphi$.
- If $\varphi = \neg \psi$, then, by induction $\boldsymbol{B} \models \psi$ implies $\boldsymbol{A} \models \psi$. Thus, $\boldsymbol{A} \models \varphi$ implies $\boldsymbol{B} \models \varphi$.
- φ = ∃xψ. If A ⊨ φ, there is a ∈ A s.t. A ⊨ ψ(a).
 We ask duplicator "what do you answer to a?". She says b

Induction on k; k = 0: same as for EF.

- If $\varphi = \bigvee_{i \in I} \psi_i$ and $\mathbf{A} \models \varphi$ then exists $i \in I$ s.t. $\mathbf{A} \models \psi_i$. By induction on φ , $\mathbf{B} \models \psi_i$, hence $\mathbf{B} \models \varphi$.
- If $\varphi = \neg \psi$, then, by induction $\boldsymbol{B} \models \psi$ implies $\boldsymbol{A} \models \psi$. Thus, $\boldsymbol{A} \models \varphi$ implies $\boldsymbol{B} \models \varphi$.
- $\varphi = \exists x \psi$. If $\mathbf{A} \models \varphi$, there is $\mathbf{a} \in A$ s.t. $\mathbf{A} \models \psi(\mathbf{a})$. We ask duplicator "what do you answer to \mathbf{a} ?". She says \mathbf{b} Then $(\mathbf{A}, \mathbf{c}^{A}) \approx_{\infty \omega}^{k-1} (\mathbf{B}, \mathbf{c}^{B})$ (new constant \mathbf{c})

Induction on k; k = 0: same as for EF.

- If $\varphi = \bigvee_{i \in I} \psi_i$ and $\mathbf{A} \models \varphi$ then exists $i \in I$ s.t. $\mathbf{A} \models \psi_i$. By induction on φ , $\mathbf{B} \models \psi_i$, hence $\mathbf{B} \models \varphi$.
- If $\varphi = \neg \psi$, then, by induction $\boldsymbol{B} \models \psi$ implies $\boldsymbol{A} \models \psi$. Thus, $\boldsymbol{A} \models \varphi$ implies $\boldsymbol{B} \models \varphi$.
- $\varphi = \exists x \psi$. If $\mathbf{A} \models \varphi$, there is $\mathbf{a} \in A$ s.t. $\mathbf{A} \models \psi(\mathbf{a})$. We ask duplicator "what do you answer to \mathbf{a} ?". She says bThen $(\mathbf{A}, \mathbf{c}^{A}) \approx_{\infty \omega}^{k-1} (\mathbf{B}, \mathbf{c}^{B})$ (new constant c) $(\mathbf{A}, \mathbf{c}^{A}) \models \psi(c) (\in L_{\infty \omega}^{k-1})$ implies $(\mathbf{B}, \mathbf{c}^{B}) \models \psi(c)$ by induction on k.

Induction on k; k = 0: same as for EF.

- If $\varphi = \bigvee_{i \in I} \psi_i$ and $\mathbf{A} \models \varphi$ then exists $i \in I$ s.t. $\mathbf{A} \models \psi_i$. By induction on φ , $\mathbf{B} \models \psi_i$, hence $\mathbf{B} \models \varphi$.
- If $\varphi = \neg \psi$, then, by induction $\boldsymbol{B} \models \psi$ implies $\boldsymbol{A} \models \psi$. Thus, $\boldsymbol{A} \models \varphi$ implies $\boldsymbol{B} \models \varphi$.
- $\varphi = \exists x \psi$. If $\mathbf{A} \models \varphi$, there is $\mathbf{a} \in A$ s.t. $\mathbf{A} \models \psi(\mathbf{a})$. We ask duplicator "what do you answer to \mathbf{a} ?". She says bThen $(\mathbf{A}, \mathbf{c}^{A}) \approx_{\omega \omega}^{k-1} (\mathbf{B}, \mathbf{c}^{B})$ (new constant c) $(\mathbf{A}, \mathbf{c}^{A}) \models \psi(c) (\in L_{\infty \omega}^{k-1})$ implies $(\mathbf{B}, \mathbf{c}^{B}) \models \psi(c)$ by induction on k. Thus, $\mathbf{B} \models \psi(b)$ and $\mathbf{B} \models \exists x(\psi(x))$.

Induction on k; k = 0: same as for EF.

- If $\varphi = \bigvee_{i \in I} \psi_i$ and $\mathbf{A} \models \varphi$ then exists $i \in I$ s.t. $\mathbf{A} \models \psi_i$. By induction on φ , $\mathbf{B} \models \psi_i$, hence $\mathbf{B} \models \varphi$.
- If $\varphi = \neg \psi$, then, by induction $\boldsymbol{B} \models \psi$ implies $\boldsymbol{A} \models \psi$. Thus, $\boldsymbol{A} \models \varphi$ implies $\boldsymbol{B} \models \varphi$.
- $\varphi = \exists x \psi$. If $\mathbf{A} \models \varphi$, there is $\mathbf{a} \in A$ s.t. $\mathbf{A} \models \psi(\mathbf{a})$. We ask duplicator "what do you answer to \mathbf{a} ?". She says bThen $(\mathbf{A}, \mathbf{c}^{A}) \approx_{\omega \omega}^{k-1} (\mathbf{B}, \mathbf{c}^{B})$ (new constant c) $(\mathbf{A}, \mathbf{c}^{A}) \models \psi(c) (\in L_{\infty \omega}^{k-1})$ implies $(\mathbf{B}, \mathbf{c}^{B}) \models \psi(c)$ by induction on k. Thus, $\mathbf{B} \models \psi(b)$ and $\mathbf{B} \models \exists x(\psi(x))$.

$\mathbf{A} \equiv_{\infty \omega}^{k} \mathbf{B}$ implies $\mathbf{A} \equiv_{FO}^{k} \mathbf{B}$

Obvious: if A, B agree on all $L_{\infty\omega}^k$ sentences, then they also agree on all FO^k sentences, because FO^k $\subseteq L_{\infty\omega}^k$.

FO^k-Types

Fix k and m.

Definition

Fix **A** and $\mathbf{a} = (a_1, \ldots, a_m) \in A^m$. The $L_{\infty\omega}^k$ and the FO^k types are:

$$tp_{\infty\omega}^{k}(\boldsymbol{A},\boldsymbol{a}) = \{\varphi(x_{1},\ldots,x_{m}) \in L_{\infty\omega}^{k} \mid \boldsymbol{A} \vDash \varphi(a_{1},\ldots,a_{m})\}$$
$$tp_{FO}^{k}(\boldsymbol{A},\boldsymbol{a}) = \{\varphi(x_{1},\ldots,x_{m}) \in FO^{k} \mid \boldsymbol{A} \vDash \varphi(a_{1},\ldots,a_{m})\}$$

25 / 36

FO^k-Types

Fix k and m.

Definition

Fix **A** and $\mathbf{a} = (a_1, \ldots, a_m) \in A^m$. The $L_{\infty\omega}^k$ and the FO^k types are:

$$tp_{\infty\omega}^{k}(\boldsymbol{A},\boldsymbol{a}) = \{\varphi(x_{1},\ldots,x_{m}) \in L_{\infty\omega}^{k} \mid \boldsymbol{A} \vDash \varphi(a_{1},\ldots,a_{m})\}$$
$$tp_{FO}^{k}(\boldsymbol{A},\boldsymbol{a}) = \{\varphi(x_{1},\ldots,x_{m}) \in FO^{k} \mid \boldsymbol{A} \vDash \varphi(a_{1},\ldots,a_{m})\}$$

Recall FO[k] types tp_{k,m}($\boldsymbol{A}, \boldsymbol{a}$) = { $\varphi(x_1, \dots, x_m) \in FO[k] \mid \boldsymbol{A} \vDash \varphi(a_1, \dots, a_m)$ }

- Both tp^k-types are complete; same as FO[k]
- There are infinitely many tp^k -types of both kinds different from FO[k]

Claim

If $\mathbf{A} \equiv_{\infty\omega}^{k} \mathbf{B}$, duplicator has a strategy s.t. the pebbles are always in the set $\mathcal{I} \stackrel{\text{def}}{=} \{(\mathbf{a}, \mathbf{b}) \mid |\mathbf{a}| = |\mathbf{b}| \le k, \operatorname{tp}_{\infty\omega}^{k}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{\infty\omega}^{k}(\mathbf{B}, \mathbf{b})\}$

Claim

If $\mathbf{A} \equiv_{\infty \omega}^{k} \mathbf{B}$, duplicator has a strategy s.t. the pebbles are always in the set $\mathcal{I} \stackrel{\text{def}}{=} \{(\mathbf{a}, \mathbf{b}) \mid |\mathbf{a}| = |\mathbf{b}| \le k, \operatorname{tp}_{\infty \omega}^{k}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{\infty \omega}^{k}(\mathbf{B}, \mathbf{b})\}$

Initially: $((), ()) \in \mathcal{I}$ because $\mathbf{A} \equiv_{\infty \omega}^{k} \mathbf{B}$.

26 / 36

Claim

If $\mathbf{A} \equiv_{\infty\omega}^{k} \mathbf{B}$, duplicator has a strategy s.t. the pebbles are always in the set $\mathcal{I} \stackrel{\text{def}}{=} \{(\mathbf{a}, \mathbf{b}) \mid |\mathbf{a}| = |\mathbf{b}| \le k, \operatorname{tp}_{\infty\omega}^{k}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{\infty\omega}^{k}(\mathbf{B}, \mathbf{b})\}$

Claim

If $\mathbf{A} \equiv_{\infty \omega}^{k} \mathbf{B}$, duplicator has a strategy s.t. the pebbles are always in the set $\mathcal{I} \stackrel{\text{def}}{=} \{(\mathbf{a}, \mathbf{b}) \mid |\mathbf{a}| = |\mathbf{b}| \le k, \operatorname{tp}_{\infty \omega}^{k}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{\infty \omega}^{k}(\mathbf{B}, \mathbf{b})\}$

Duplicator removes pebble: $tp_{\infty\omega}^{k}(\boldsymbol{A}, (a_{1}, \dots, a_{m})) = tp_{\infty\omega}^{k}(\boldsymbol{B}, (b_{1}, \dots, b_{m})),$ implies $tp_{\infty\omega}^{k}(\boldsymbol{A}, (a_{1}, \dots, a_{m-1})) = tp_{\infty\omega}^{k}(\boldsymbol{B}, (b_{1}, \dots, b_{m-1}))$

Claim

If $\mathbf{A} \equiv_{\infty\omega}^{k} \mathbf{B}$, duplicator has a strategy s.t. the pebbles are always in the set $\mathcal{I} \stackrel{\text{def}}{=} \{(\mathbf{a}, \mathbf{b}) \mid |\mathbf{a}| = |\mathbf{b}| \le k, \operatorname{tp}_{\infty\omega}^{k}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{\infty\omega}^{k}(\mathbf{B}, \mathbf{b})\}$

Claim

If $\mathbf{A} \equiv_{\infty\omega}^{k} \mathbf{B}$, duplicator has a strategy s.t. the pebbles are always in the set $\mathcal{I} \stackrel{\text{def}}{=} \{(\mathbf{a}, \mathbf{b}) \mid |\mathbf{a}| = |\mathbf{b}| \le k, \operatorname{tp}_{\infty\omega}^{k}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{\infty\omega}^{k}(\mathbf{B}, \mathbf{b})\}$

Duplicator places a pebble: Assume $|\boldsymbol{a}| = |\boldsymbol{b}| < k$ $\operatorname{tp}_{\infty\omega}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \operatorname{tp}_{\infty\omega}^{k}(\boldsymbol{B}, \boldsymbol{b})$, and duplicator places on $\boldsymbol{a} \in A$.

Claim

If $\mathbf{A} \equiv_{\infty \omega}^{k} \mathbf{B}$, duplicator has a strategy s.t. the pebbles are always in the set $\mathcal{I} \stackrel{\text{def}}{=} \{(\mathbf{a}, \mathbf{b}) \mid |\mathbf{a}| = |\mathbf{b}| \le k, \operatorname{tp}_{\infty \omega}^{k}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{\infty \omega}^{k}(\mathbf{B}, \mathbf{b})\}$

Duplicator places a pebble: Assume $|\boldsymbol{a}| = |\boldsymbol{b}| < k$ $\operatorname{tp}_{\infty\omega}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \operatorname{tp}_{\infty\omega}^{k}(\boldsymbol{B}, \boldsymbol{b})$, and duplicator places on $\boldsymbol{a} \in A$. Claim: $\exists \boldsymbol{b} \in B$ s.t. $\operatorname{tp}_{\infty\omega}^{k}(\boldsymbol{A}, (\boldsymbol{a}, \boldsymbol{a})) = \operatorname{tp}_{\infty\omega}^{k}(\boldsymbol{B}, (\boldsymbol{b}, \boldsymbol{b}))$.

Claim

If $\mathbf{A} \equiv_{\infty\omega}^{k} \mathbf{B}$, duplicator has a strategy s.t. the pebbles are always in the set $\mathcal{I} \stackrel{\text{def}}{=} \{(\mathbf{a}, \mathbf{b}) \mid |\mathbf{a}| = |\mathbf{b}| \le k, \operatorname{tp}_{\infty\omega}^{k}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{\infty\omega}^{k}(\mathbf{B}, \mathbf{b})\}$

Duplicator places a pebble: Assume $|\boldsymbol{a}| = |\boldsymbol{b}| < k$ $\operatorname{tp}_{\infty\omega}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \operatorname{tp}_{\infty\omega}^{k}(\boldsymbol{B}, \boldsymbol{b})$, and duplicator places on $\boldsymbol{a} \in A$. Claim: $\exists \boldsymbol{b} \in B$ s.t. $\operatorname{tp}_{\infty\omega}^{k}(\boldsymbol{A}, (\boldsymbol{a}, \boldsymbol{a})) = \operatorname{tp}_{\infty\omega}^{k}(\boldsymbol{B}, (\boldsymbol{b}, \boldsymbol{b}))$. Otherwise:

$$\forall \boldsymbol{b} \in \boldsymbol{B}, \exists \varphi_{\boldsymbol{b}}(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{m-1}, \boldsymbol{y}) \in L_{\infty \omega}^{k} \text{ s.t. } \boldsymbol{A} \vDash \varphi_{\boldsymbol{b}}(\boldsymbol{a}, \boldsymbol{a}) \quad \boldsymbol{B} \not \models \varphi_{\boldsymbol{b}}(\boldsymbol{b}, \boldsymbol{b})$$

Claim

If $\mathbf{A} \equiv_{\infty\omega}^{k} \mathbf{B}$, duplicator has a strategy s.t. the pebbles are always in the set $\mathcal{I} \stackrel{\text{def}}{=} \{(\mathbf{a}, \mathbf{b}) \mid |\mathbf{a}| = |\mathbf{b}| \le k, \operatorname{tp}_{\infty\omega}^{k}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{\infty\omega}^{k}(\mathbf{B}, \mathbf{b})\}$

Duplicator places a pebble: Assume $|\mathbf{a}| = |\mathbf{b}| < k$ $\operatorname{tp}_{\infty\omega}^{k}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{\infty\omega}^{k}(\mathbf{B}, \mathbf{b})$, and duplicator places on $\mathbf{a} \in A$. Claim: $\exists \mathbf{b} \in B$ s.t. $\operatorname{tp}_{\infty\omega}^{k}(\mathbf{A}, (\mathbf{a}, \mathbf{a})) = \operatorname{tp}_{\infty\omega}^{k}(\mathbf{B}, (\mathbf{b}, \mathbf{b}))$. Otherwise:

$$\forall \boldsymbol{b} \in B, \exists \varphi_{\boldsymbol{b}}(x_1, \dots, x_{m-1}, y) \in L^k_{\infty \omega} \text{ s.t. } \boldsymbol{A} \vDash \varphi_{\boldsymbol{b}}(\boldsymbol{a}, \boldsymbol{a}) \quad \boldsymbol{B} \notin \varphi_{\boldsymbol{b}}(\boldsymbol{b}, \boldsymbol{b})$$

$$\psi \stackrel{\text{def}}{=} \exists y \bigwedge_{\boldsymbol{b}' \in B} \varphi_{\boldsymbol{b}'}(x_1, \dots, x_{m-1}, y) \text{ then } \boldsymbol{A} \vDash \psi(\boldsymbol{a}) \quad \boldsymbol{B} \notin \psi(\boldsymbol{b})$$

Claim

If $\mathbf{A} \equiv_{\infty\omega}^{k} \mathbf{B}$, duplicator has a strategy s.t. the pebbles are always in the set $\mathcal{I} \stackrel{\text{def}}{=} \{(\mathbf{a}, \mathbf{b}) \mid |\mathbf{a}| = |\mathbf{b}| \le k, \operatorname{tp}_{\infty\omega}^{k}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{\infty\omega}^{k}(\mathbf{B}, \mathbf{b})\}$

Duplicator places a pebble: Assume $|\boldsymbol{a}| = |\boldsymbol{b}| < k$ $tp_{\infty\omega}^{k}(\boldsymbol{A}, \boldsymbol{a}) = tp_{\infty\omega}^{k}(\boldsymbol{B}, \boldsymbol{b})$, and duplicator places on $\boldsymbol{a} \in A$. Claim: $\exists \boldsymbol{b} \in B$ s.t. $tp_{\infty\omega}^{k}(\boldsymbol{A}, (\boldsymbol{a}, \boldsymbol{a})) = tp_{\infty\omega}^{k}(\boldsymbol{B}, (\boldsymbol{b}, \boldsymbol{b}))$. Otherwise:

$$\forall \boldsymbol{b} \in B, \exists \varphi_{\boldsymbol{b}}(x_1, \dots, x_{m-1}, y) \in L^k_{\infty \omega} \text{ s.t. } \boldsymbol{A} \vDash \varphi_{\boldsymbol{b}}(\boldsymbol{a}, \boldsymbol{a}) \quad \boldsymbol{B} \notin \varphi_{\boldsymbol{b}}(\boldsymbol{b}, \boldsymbol{b})$$

$$\psi \stackrel{\text{def}}{=} \exists y \bigwedge_{\boldsymbol{b}' \in B} \varphi_{\boldsymbol{b}'}(x_1, \dots, x_{m-1}, y) \text{ then } \boldsymbol{A} \vDash \psi(\boldsymbol{a}) \quad \boldsymbol{B} \notin \psi(\boldsymbol{b})$$

 $\psi \in L^k_{\infty\omega}$ Contradicts $tp^k_{\infty\omega}(\boldsymbol{A}, \boldsymbol{a}) = tp^k_{\infty\omega}(\boldsymbol{B}, \boldsymbol{b}).$

amples Proof

$A \equiv_{FO}^{k} B$ and A, B Finite Implies $A \approx_{\infty \omega}^{k} B$

What changes:

$$\mathcal{I} \stackrel{\text{def}}{=} \{ (\boldsymbol{a}, \boldsymbol{b}) \mid |\boldsymbol{a}| = |\boldsymbol{b}| \le k, \operatorname{tp}_{\mathsf{FO}}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \operatorname{tp}_{\mathsf{FO}}^{k}(\boldsymbol{B}, \boldsymbol{b}) \}$$

The formula $\psi \stackrel{\text{def}}{=} \bigwedge_{b' \in B} \varphi_{b'}(x_1, \dots, x_{m-1}, y)$ is in FO^k, because every $\varphi_{b'}$ is in FO^k and the conjunction is finite, since *B* is finite.

27 / 36

Discussion

- If two finite structures can be distinguished by $L_{\infty\omega}^k$, then they can already be distinguished by FO^k .
- Duplicator's winning positions in the pebble game are captured by FO^k -types; these can be shown to be the same as $L^k_{\infty\omega}$ types.
- Each FO[k] type contains only finitely many formulas: hence their conjunction is a formula that fully characterizes the type.
- Every FO^k, or L^k_{∞ω} type contains infinitely many formulas. Still, it can be shown that each type is fully characterized by one formula in FO^k.

Restricted Variables	Infinitary Logic and Pebble Games	Examples 000000	Proof 00000000	Stratified Datalog and LFP •0000000

Stratified Datalog and LFP

Review: The Win-Move Game

G = (V, E) no more restriction to two children

Player I and Player II take turns, moving a pebble. Player who cannot move (is on a leaf) loses.

Winning positions for Player I:

$$P1(x) = \exists y (E(x,y) \land \forall z (E(y,z) \to P1(z)))$$

Review: The Win-Move Game

G = (V, E) no more restriction to two children

Player I and Player II take turns, moving a pebble. Player who cannot move (is on a leaf) loses.

Winning positions for Player I:

$$P1(x) = \exists y (E(x, y) \land \forall z (E(y, z) \to P1(z)))$$

Theorem (Kolaitis)

The win-move game is not expressible in stratified datalog.

Recall that this is expressible in datalog when the graph has degree 2 (or any bounded degree).

Identifying the Right Logic and Right Game

Each LFP formula is expressible in $L_{\infty\omega}^k$ for some k. k-Pebble games capture the expressive power of $L_{\infty\omega}^k$.

Need to find a restricted logic, and a restricted game, to capture stratified datalog programs.

Answer: observe that a stratified datalog program uses a fixed number of negation alternations.

In that case, the duplicator of the k-pebble game can only switch a fixed number of times between structures **A** and **B**.

Negation Depth

Define $L_{\infty\omega}^{k,\ell}$ to negation depth $\leq \ell$:

• Atoms: $x_i = x_j$, $R(\dots)$ are in $L^{k,0}_{\infty\omega}$, when the free variables are in $\{x_1, \dots, x_k\}$.

• If
$$\varphi_m \in L^{k,\ell}_{\infty\omega}$$
 for all *i*, then $\bigvee_m \varphi_m \in L^{k,\ell}_{\infty\omega}$

• If
$$\varphi \in L^{k,\ell}_{\infty\omega}$$
 then $\exists x_i \varphi \in L^{k,\ell}_{\infty\omega}$.

•
$$\neg \varphi$$
 is in $L^{k,\ell}_{\alpha\beta}$, when φ is in $L^{k,\ell-1}_{\alpha\beta}$.

Notice:
$$\bigcup_{\ell \ge 0} L_{\infty\omega}^{k,\ell} \not\subseteq L_{\infty\omega}^k$$
, but $\bigcup_{k \ge 0} FO^{k,\ell} = \Sigma_{\ell}$

Fact

If P is a stratified datalog program, then there exists a formula in $L_{\infty\omega}^{k,\ell}$ that is equivalent to P, for some k,ℓ that depend on P.

Fact

If P is a stratified datalog program, then there exists a formula in $L_{\infty\omega}^{k,\ell}$ that is equivalent to P, for some k,ℓ that depend on P.

Proof sketch $k \stackrel{\text{def}}{=}$ the number of variables in *P*, $\ell \stackrel{\text{def}}{=}$ number of strata

First stratum: $\varphi_1^0 \lor \varphi_1^1 \lor \varphi_1^2 \lor \dots \in L^{k,1}_{\infty \omega}$ EDBs might be negated.

Fact

If P is a stratified datalog program, then there exists a formula in $L^{k,\ell}_{\infty\omega}$ that is equivalent to P, for some k, ℓ that depend on P.

Proof sketch $k \stackrel{\text{def}}{=}$ the number of variables in *P*, $\ell \stackrel{\text{def}}{=}$ number of strata

First stratum: $\varphi_1^0 \lor \varphi_1^1 \lor \varphi_1^2 \lor \cdots \in L^{k,1}_{\infty \omega}$

EDBs might be negated.

Second stratum: $\varphi_2^0 \lor \varphi_2^1 \lor \varphi_2^2 \lor \cdots \in L_{\infty \omega}^{k,2}$

Fact

If P is a stratified datalog program, then there exists a formula in $L_{\infty\omega}^{k,\ell}$ that is equivalent to P, for some k,ℓ that depend on P.

Proof sketch $k \stackrel{\text{def}}{=}$ the number of variables in *P*, $\ell \stackrel{\text{def}}{=}$ number of strata

First stratum: $\varphi_1^0 \lor \varphi_1^1 \lor \varphi_1^2 \lor \cdots \in L_{\infty\omega}^{k,1}$ EDBs might be negated.

Second stratum: $\varphi_2^0 \lor \varphi_2^1 \lor \varphi_2^2 \lor \cdots \in L^{k,2}_{\infty \omega}$

Third stratum: $\ldots \in L^{k,3}_{\infty\omega}$, etc.

nes Examples 000000

Variation on the Pebble Game

The k, ℓ -pebble game: spoiler can switch between $\boldsymbol{A}, \boldsymbol{B}$ at most ℓ times.

Variation on the Pebble Game

The k, ℓ -pebble game: spoiler can switch between $\boldsymbol{A}, \boldsymbol{B}$ at most ℓ times.

 $\boldsymbol{A} \approx_{\infty \omega}^{k,\ell} \boldsymbol{B}$ denotes: duplicator wins.

$$\boldsymbol{A} \equiv_{\infty \omega}^{k,\ell} \boldsymbol{B} \text{ denotes: } \boldsymbol{A} \vDash \varphi \text{ iff } \boldsymbol{B} \vDash \varphi \text{ for all } \varphi \in L_{\infty \omega}^{k,\ell}.$$

Variation on the Pebble Game

The k, ℓ -pebble game: spoiler can switch between $\boldsymbol{A}, \boldsymbol{B}$ at most ℓ times.

 $\boldsymbol{A} \approx_{\infty\omega}^{k,\ell} \boldsymbol{B}$ denotes: duplicator wins.

$$\boldsymbol{A} \equiv_{\infty \omega}^{k,\ell} \boldsymbol{B} \text{ denotes: } \boldsymbol{A} \vDash \varphi \text{ iff } \boldsymbol{B} \vDash \varphi \text{ for all } \varphi \in L_{\infty \omega}^{k,\ell}.$$

Theorem

$$\mathbf{A} \approx_{\infty\omega}^{k,\ell} \mathbf{B} \text{ iff } \mathbf{A} \equiv_{\infty\omega}^{k,\ell} \mathbf{B}$$

Proof (sketch) For the direction \Rightarrow we only needed to switch **A** and **B** once for every negation.

Define the graphs $\boldsymbol{A}_{\ell}, \boldsymbol{B}_{\ell}, \ell \geq 0$. Black node wins.

Examples Pr 000000 00 Stratified Datalog and LFP

The WinMove Game on Two Graphs

Define the graphs $\boldsymbol{A}_{\ell}, \boldsymbol{B}_{\ell}, \ell \geq 0$. Black node wins.

Player I wins on $root(A_{\ell})$ Player II wins on $root(B_{\ell})$

Define the graphs $\boldsymbol{A}_{\ell}, \boldsymbol{B}_{\ell}, \ell \geq 0$. Black node wins.

Player I wins on $root(A_{\ell})$ Player II wins on $root(B_{\ell})$

Claim: If spoiler starts on A_{ℓ} , then duplicator wins the $k, \ell - 1$ game. If spoiler starts on B_{ℓ} , then duplicator wins the k, ℓ game.

Examples Pro

Stratified Datalog and LFP

The WinMove Game on Two Graphs

Define the graphs $\boldsymbol{A}_{\ell}, \boldsymbol{B}_{\ell}, \ell \geq 0$. Black node wins.

Player I wins on $root(A_{\ell})$ Player II wins on $root(B_{\ell})$

Claim: If spoiler starts on A_{ℓ} , then duplicator wins the $k, \ell - 1$ game. If spoiler starts on B_{ℓ} , then duplicator wins the k, ℓ game.

Proof Assume it holds for ℓ , we prove for $\ell + 1$.

Define the graphs $\boldsymbol{A}_{\ell}, \boldsymbol{B}_{\ell}, \ell \geq 0$. Black node wins.

Player I wins on $root(A_{\ell})$ Player II wins on $root(B_{\ell})$

Claim: If spoiler starts on A_{ℓ} , then duplicator wins the $k, \ell - 1$ game. If spoiler starts on B_{ℓ} , then duplicator wins the k, ℓ game.

Proof Assume it holds for ℓ , we prove for $\ell + 1$. If spoiler starts on $A_{\ell+1}$, pebbles in A_{ℓ} are wasted. Only pebbles in B_{ℓ} matter, and here duplicator uses k, ℓ -strategy.

Define the graphs $\boldsymbol{A}_{\ell}, \boldsymbol{B}_{\ell}, \ell \geq 0$. Black node wins.

Player I wins on $root(A_{\ell})$ Player II wins on $root(B_{\ell})$

Claim: If spoiler starts on A_{ℓ} , then duplicator wins the $k, \ell - 1$ game. If spoiler starts on B_{ℓ} , then duplicator wins the k, ℓ game.

Proof Assume it holds for ℓ , we prove for $\ell + 1$. If spoiler starts on $A_{\ell+1}$, pebbles in A_{ℓ} are wasted. Only pebbles in B_{ℓ} matter, and here duplicator uses k, ℓ -strategy. If spoiler starts on $B_{\ell+1}$, all pebbles are wasted, until he switches to $A_{\ell+1}$.

Discussion

- Games: a powerful and flexible concept that allows us to reason about what is and what is not expressible.
 - EF games for FO;
 - EMSO games to prove s, t-reachability not in MSO;
 - Pebble games to prove EVEN, Hamiltonean path, etc not expressible in datalog
 - Variation: restrict the duplicator's number of alternations to prove limitations of stratified datalog
- Next week: will discuss the Weisfeiler-Lehman refinement procedure, its application to GNNs, and its connection to logics with counting

36 / 36