Finite Model Theory
Lecture 11: Fixpoints and Infinitary Logic
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Fixpoints

Announcements

HW2 graded, posted.

@ HW1 posted too (apparently it wasn't posted)

o HW3 due on Friday

@ This week: fixpoints, infinitary logics, pebble games
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Tarski-Knaster

Recall: 2Y is the set of subsets of U.

F :2Y = 2Y is monotone if A< B implies F(A) ¢ F(B).
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Ordinal Numbers

Fixpoints at Fixpoint Logic
000 0000

Tarski-Knaster

Recall: 2Y is the set of subsets of U.

F : 2V - 2V is monotone if A c B implies F(A) c F(B).
X is a fixpoint if F(X) = X.

X is a least fixpoint if it is a fixpoint and X € X’ for any other fixpoint X".
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Fixpoints

Tarski-Knaster

Recall: 2Y is the set of subsets of U.

F : 2V - 2V is monotone if A c B implies F(A) c F(B).
X is a fixpoint if F(X) = X.

X is a least fixpoint if it is a fixpoint and X € X’ for any other fixpoint X".

Theorem (Tarski-Knaster) J

Every monotone function F has a least fixpoint, denoted Ifp(F).

We consider only the finite case, discussed next.
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The Kleene Sequence

Suppose U is finite, and F :2Y - 2Y is monotone.

Definition
The Kleene Sequence is X%, X1, .-, X", ..., where X° = @ and X'*1 = F(X' )J
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The Kleene Sequence
Suppose U is finite, and F :2Y - 2Y is monotone.
Definition

The Kleene Sequence is X%, X1, .-, X", ..., where X° = @ and X'*1 = F(X' )

Fact

The Kleene sequence is increasing: X° c Xt c...c X" c
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The Kleene Sequence

Suppose U is finite, and F :2Y - 2Y is monotone.

Definition

The Kleene Sequence is X%, X1, .-, X", .., where X? = @ and X'*1 = F(X')

Fact

The Kleene sequence is increasing: X° c Xt c...c X" c

Proof by induction.
z=X0cx?!
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Fixpoints

The Kleene Sequence

Suppose U is finite, and F :2Y - 2Y is monotone.

Definition
The Kleene Sequence is X%, X1, .-, X", ..., where X° = @ and X'*1 = F(X' )

Fact

The Kleene sequence is increasing: X° c Xt c...c X" c

Proof by induction.
z=X0cx?!

If X't ¢ X', by F-monotonicity X' = F(X'™!) ¢ F(X') = X"+
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The Kleene Sequence

Suppose U is finite, and F :2Y - 2Y is monotone.

Definition

The Kleene Sequence is X%, X1, .-, X", .., where X? = @ and X'*1 = F(X')

Fact

The Kleene sequence is increasing: X° c Xt c...c X" c

Proof by induction.
z=X0cx?!

If X~ c X', by F-monotonicity X' = F(X'™1) c F(X') = X'*!

Since U is finite, 3n >0 such that X" = X™!. Then | X" = Ifp(F)
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Datalog
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Datalog

A datalog rule has the form:
P(x0) = Ri(x1) A+ A Rin(xm)

Every Ri(x;) is a relational atom.
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Fixpoints Datalog
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Datalog
A datalog rule has the form:
P(x0) = Ri(x1) A+ A Rpn(xm)
Every R;(x;) is a relational atom.
The conjunction A; R;(x;) is called the body

The atom P(xq) is called the head.
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Fixpoints Datalog Fixpoint Logic
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Datalog
A datalog rule has the form:
P(x0) = Ri(x1) A+ A Rpn(xm)
Every R;(x;) is a relational atom.
The conjunction A; R;(x;) is called the body
The atom P(xq) is called the head.
Safety condition: every variable in the head must occur in the body.

A datalog program is a set of datalog rules.
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Classic Datalog Example

Transitive closure:

T(x,y)=E(x,y).
T(x,y)=E(x,z) A T(z,y).
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Datalog
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Classic Datalog Example

Transitive closure:

T(x,y)=E(x,y).
T(x,y)=E(x,z) A T(z,y).

An equivalent, less commonly used notation:

T(x,y) =E(x,y)v3z(E(x,z) A T(z,y))
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Fixpoint Semantics of Datalog

Extensional Database Predicates, EDB: the input relations.

Intentional Database Predicates, IDB: the computed relations.
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Fixpoints Datalog
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Fixpoint Semantics of Datalog
Extensional Database Predicates, EDB: the input relations.
Intentional Database Predicates, IDB: the computed relations.

Immediate Consequence Operator (ICO): new IDBs from current IDBs:

P’ = F(P)

Spring 2025
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Fixpoints Datalog Fixpoint Logic
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Ordinal Numbers

Fixpoint Semantics of Datalog

Extensional Database Predicates, EDB: the input relations.

Intentional Database Predicates, IDB: the computed relations.

Immediate Consequence Operator (ICO): new IDBs from current IDBs:
P =F(P)

The semantics of a datalog program is Ifp(F)

Use Kleene sequence:  P°(:=@)c Pl c P2c...c P" = P™! = Ifp(F)
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Example: Reachability

P(4).

P(y) = P(x) A E(x.y). 1) %
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Example: Reachability

P(4).

P(y) = P(x) A E(x.y). 1) %
(4)

3
5)

P(y)=(y =4)v3x(P(x) nE(x,y))
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Example: Reachability

P(4).

P(y) = P(x) A E(x.y). 1) %
(4)

P(y)=(y =4)v3x(P(x) nE(x,y))

P° =g
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Datalog
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Example: Reachability

P(4).

P(y) = P(x) A E(x,y). 1) % 3)

P(y)=(y =4)v3x(P(x) nE(x,y))

P° =g
Pl ={4)

Finite Model Theory Lecture 11 Spring 2025 10/31



Datalog
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Example: Reachability

P(4).

P(y) = P(x) A E(x,y). 1) % 3)

P(y) =(y =4) v3x(P(x) A E(x,y))
P° =g

Pl ={4}
P? ={4,2}
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Example: Reachability

P(4).

P(y) = P(x) A E(x,y). 1) % 3)

P(y)=(y =4)v3x(P(x) nE(x,y))

P° =g

Pt ={4}

P? ={4,2}
P3 ={4,2,3}
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Example: Reachability

P(4).

P(y) = P(x) A E(x,y). 1) % 3)

P(y)=(y =4)v3x(P(x) nE(x,y))

P° =g

Pt ={4}

P? ={4,2}

P3 ={4,2,3}
P*={4,2,3,5}
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Example: Reachability

P(4).

P(y) = P(x) A E(x,y). 1) % 3)

P(y)=(y =4)v3x(P(x) nE(x,y))

P° =g

Pt ={4}

P? ={4,2}

P3 ={4,2,3}
P*={4,2 3,5}

P°> ={4,2,3,5} = Ifp

Finite Model Theory Lecture 11 Spring 2025 10/31



Datalog
00000@00000

Example: Path of Even Length

Is there a path of even length from a to b?
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Example: Path of Even Length

Is there a path of even length from a to b?

P(x,y) = E(x,2) NE(z,y)
P(x,y) = P(x,2) NE(z,u) N E(u,y)
Answer() = P(a, b)
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Example: Paths of Equal Length

Is there a path a — b of the same length as a path from ¢ — d?
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Example: Paths of Equal Length

Is there a path a — b of the same length as a path from ¢ — d?

Product graph G x G:
o Nodes: V xV

o Edges: {((XlaXQ)v(}/la}/Q)) ‘ (X17y1)7(x2>y2) € E}
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Fixpoints Datalog Fixpoint Logic Ordinal Numbers
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Example: Paths of Equal Length

Is there a path a — b of the same length as a path from ¢ — d?

Product graph G x G:
o Nodes: V xV

o Edges: {((X15X2)7(}/17}/2)) ‘ (X17y1)7(x2>y2) € E}

Path (a,c) =* (b,d) is a pair of paths a =* b, ¢ »* d of equal length.
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Fixpoint Logic
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Example: Paths of Equal Length

Is there a path a — b of the same length as a path from ¢ — d?

Product graph G x G:
o Nodes: V xV

o Edges: {((Xlax2)7(}/17}/2)) ‘ (X17y1)7(x2>y2) € E}

Path (a,c) =* (b,d) is a pair of paths a =* b, ¢ »* d of equal length.

P(x1,x2,y1,y2) = E(x1,yl) A E(x2,y2)
P(x1,x2,y1,y2) = P(x1,x2,z1,z2) A E(z1,y1) A E(22,y2))
Answer() = P(a,c,b,d)
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Win-Move Game

T(x,y,z): x has children y, z; L(x): x is a leaf.
(a)
-0
s
OO,
(9} Fae
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Win-Move Game

T(x,y,z): x has children y, z; L(x): x is a leaf.

A pebble is placed on a starting node:

o Player | moves to a child,

@ Player Il moves to a child, etc

Player |

@ Player who cannot move loses. Player I
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Win-Move Game

T(x,y,z): x has children y, z; L(x): x is a leaf.

A pebble is placed on a starting node:

o Player | moves to a child,

@ Player Il moves to a child, etc

Player |

@ Player who cannot move loses. Player I

Compute all nodes x where Player | has a winning strategy
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Win-Move Game

T(x,y,z): x has children y, z; L(x): x is a leaf.

A pebble is placed on a starting node:

o Player | moves to a child,

@ Player Il moves to a child, etc

Player |

@ Player who cannot move loses. Player I

Compute all nodes x where Player | has a winning strategy
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Win-Move Game

T(x,y,z): x has children y, z; L(x): x is a leaf.

A pebble is placed on a starting node:

;1o

(a)
O
S
a Player |

Player Il

o Player | moves to a child,

@ Player Il moves to a child, etc

@ Player who cannot move loses.

Compute all nodes x where Player | has a winning strategy
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Win-Move Game

T(x,y,z): x has children y, z; L(x): x is a leaf.

A pebble is placed on a starting node:

S o)

(a)
O
e
a Player |

Player Il

o Player | moves to a child,

@ Player Il moves to a child, etc

@ Player who cannot move loses.

Compute all nodes x where Player | has a winning strategy
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Win-Move Game

T(x,y,z): x has children y, z; L(x): x is a leaf.

A pebble is placed on a starting node:

b)

_
‘.' )
a Player |

Player Il

o Player | moves to a child,

@ Player Il moves to a child, etc

@ Player who cannot move loses.

Compute all nodes x where Player | has a winning strategy

P2(x) = L(x)
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Fixpoints Datalog
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Win-Move Game

T(x,y,z): x has children y, z; L(x): x is a leaf.

A pebble is placed on a starting node:

o Player | moves to a child,

@ Player Il moves to a child, etc

Player |

@ Player who cannot move loses. Player I

Compute all nodes x where Player | has a winning strategy

P2(x) = L(x)
P1(x) = T(x,y,z) A P2(y)
P1(x)=T(x,y,z) A P2(z)
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Win-Move Game

T(x,y,z): x has children y, z; L(x): x is a leaf.

A pebble is placed on a starting node:

o Player | moves to a child,

(a)
(c)

Player Il

@ Player Il moves to a child, etc

-
le)
@ Player who cannot move loses. el

Compute all nodes x where Player | has a winning strategy

P2(x) = L(x)

P1(x) = T(xy.2) A P2(y)
P1(x)=T(x,y,z) A P2(z)

P2(x) = T(x,y,z) A P1(y) A P1(z)
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Semi-positive Datalog

The Immediate Consequence Operator must be monotone in IDBs

Semi-positive Datalog allows EDBs to be negated.
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Semi-positive Datalog

The Immediate Consequence Operator must be monotone in IDBs

Semi-positive Datalog allows EDBs to be negated.

Example: transitive closure of the complement graph:

Ordinal Numbers

T(x,y) =V(x)AV(y) A=E(x,y).
T(x,y)=T(x,z) A=E(z,y).

Finite Model Theory Lecture 11

Spring 2025
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Stratified Datalog

Stratified Datalog is a program partitioned into strata,
such that the rules in stratum / may use:

@ Positive IDBs defined in stratum 1,

@ Positive or negated IDBs defined in strata < /.

Finite Model Theory Lecture 11
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Stratified Datalog

Stratified Datalog is a program partitioned into strata,
such that the rules in stratum / may use:

@ Positive IDBs defined in stratum 1,

@ Positive or negated IDBs defined in strata < /.

Example: the complement of the transitive closure:

T(xy)=E(xy).
T(x,y)=T(x,2) ANE(z,y).
Answer(x,y) = V(x) A V(y) A=T(x,y).

Finite Model Theory Lecture 11
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Discussion

@ Datalog can express some cool queries. Try at home:

» Same generation: if G = (V,E) is a tree, find pairs of nodes x, y in the
same generation (same distance to the root)
» Check if G is a totally balanced tree.

@ But it cannot express some trivial queries:

» Is |E| even?
» Is |Al < |B| ? (Homework)

@ To prove inexpressibility results for datalog we will show that it is a
subset of a much more powerful logic, L% , then describe a game for

oow'!
w
LOOUJ "

o First, we discuss Fixpoint Logic
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Fixpoint Logic
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Fixpoint Logic Ordinal Numbers
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Definition

Fixpoint Logic, LFP extends FO with a least fixpoint predicate:

Ifpp x
where P is a fresh relational symbol that occurs positively, and ¢ is a
formula that uses P has free variables x.

Finite Model Theory Lecture 11 Spring 2025
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Fixpoint Logic
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Definition

Fixpoint Logic, LFP extends FO with a least fixpoint predicate:

H:pP,xSO
where P is a fresh relational symbol that occurs positively, and ¢ is a
formula that uses P has free variables x.

Example: transitive closure T (u,v) becomes:

lpr,X,y(E(Xay) v HZ(E(X7Z) A T(Zay)))(u7 V)
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Fixpoint Logic
000000

Definition

Fixpoint Logic, LFP extends FO with a least fixpoint predicate:

H:pP,xSO
where P is a fresh relational symbol that occurs positively, and ¢ is a
formula that uses P has free variables x.

Example: transitive closure T (u,v) becomes:

lpr,X,y(E(Xay) v HZ(E(X7Z) A T(Zay)))(u7 V)

We will continue to use the more friendly notation, example:

T(u,v) where T(x,y)=E(x,y)Vv3Iz(E(x,z) A T(z,y))
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Example

What doses this formula compute?

1S(x) = (Vy(E(x,y) > S(y)))
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Fixpoint Logic
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Example

What doses this formula compute?

1S(x) = (Vy(E(x,y) > S(y)))

The Kleene sequence:

0=y
st-
S?=
S =
s§h=
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Fixpoint Logic
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Example

What doses this formula compute?

1S(x) = (Vy(E(x,y) > S(y)))

The Kleene sequence:

0=y
Sst={6,7}
%=

s =

s§h=
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Fixpoint Logic
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Example

What doses this formula compute?

1S(x) = (Vy(E(x,y) > S(y)))

The Kleene sequence:

0=y
Sst={6,7}
5% ={6,7,4}
s =

s§h=
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Fixpoint Logic
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Example

What doses this formula compute?

1S(x) = (Vy(E(x,y) > S(y)))

The Kleene sequence:

0=y
Sst={6,7}

5% ={6,7,4}
53 ={6,7,4,2}
s§h=
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Fixpoints Da ” Fixpoint Logic

[e]e] le]ele]

Example

What doses this formula compute?
1S(x) = (Yy(E(x,y) > S(y)))

The Kleene sequence:

0=y

Sst={6,7}

5% ={6,7,4}

53 ={6,7,4,2}

5% ={6,7,4,2} = 3 =Ifp
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Example

What doses this formula compute?
1S(x) = (Yy(E(x,y) > S(y)))

The Kleene sequence:

%=

Sst={6,7} Nodes 1,3,5 never show
§2 _{6,7,4) up in S". WHY?
53={6,7,4,2}

$*={6,7,4,2} = S>=Ifp
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Fixpoints Da ” Fixpoint Logic

[e]e] le]ele]

Example

What doses this formula compute?
1S(x) = (Yy(E(x,y) > S(y)))

The Kleene sequence:

%=

Sst={6,7} Nodes 1,3,5 never show
§2 _{6,7,4) up in S". WHY?
§%={6,7,4,2} G is acyclic iff VxS5(x)

$*={6,7,4,2} = S>=Ifp

Finite Model Theory Lecture 11 Spring 2025 19/31



Fixpoint Logic
000000

Example: The Win-Move Game

G=(V,E) no more restriction to two children

Pl(x) =3y(E(x,y)AVz(E(y,z) - P1(z)))
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Fixpoints

Example: The Win-Move Game

G=(V,E) no more restriction to two children

Pl(x) =3y(E(x,y)AVz(E(y,z) - P1(z)))

Theorem (Kolaitis)

The win-move game is not expressible in stratified datalog.

Contrast with our previous solution on graphs with degree 2.

Finite Model Theory Lecture 11 Spring 2025
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Unfolding the Recursion
5(x) = (Vy(E(x,y) > 5(y)))

The ICO: F(S) = {x|Vy(E(x,y) > S(¥))}
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Unfolding the Recursion
5(x) = (Vy(E(x,y) > 5(y)))

The ICO: F(S) = {x|Vy(E(x,y) > S(¥))}

Elements of the Kleene sequence are computed by unfolded formulas:
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Fixpoint Logic
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Unfolding the Recursion
5(x) = (Vy(E(x,y) = 5(v)))

The ICO: F(S) = {x|Vy(E(x,y) > S(¥))}

Elements of the Kleene sequence are computed by unfolded formulas:

SP=g ¢%(x) = FALSE

Finite Model Theory Lecture 11
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Unfolding the Recursion
5(x) = (Vy(E(x,y) = 5(v)))

The ICO: F(S) = {x|Vy(E(x,y) > S(¥))}

Elements of the Kleene sequence are computed by unfolded formulas:

0= ¢%(x) = FALSE
S'=F(S%)  ¢'(x) = Vy(E(xy) = &°(¥))

Finite Model Theory Lecture 11

Spring 2025 21/31



Fixpoints Fixpoint Logic
000 000000

Ordinal Numbers

Unfolding the Recursion
5(x) = (Vy(E(x,y) = 5(v)))

The ICO: F(S) = {x|Vy(E(x,y) > S(¥))}

Elements of the Kleene sequence are computed by unfolded formulas:

0= ¢%(x) = FALSE
S1=F(S% (%) =Yy (E(x,y) = ¥°(¥))
S2=F(SY)  ©?(x) =Vy(E(x.y) = ¢ (y))

Finite Model Theory Lecture 11
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Ordinal Numbers

Unfolding the Recursion
5(x) = (Vy(E(x,y) = 5(v)))

The ICO: F(S) = {x|Vy(E(x,y) > S(¥))}

Elements of the Kleene sequence are computed by unfolded formulas:

0= ¢%(x) = FALSE
S1=F(S% (%) =Yy (E(x,y) = ¥°(¥))
S2=F(SY)  ©?(x) =Vy(E(x.y) = ¢ (y))

5n+1 _ F(Sn) ;0'".+1(X) _ Vy(E(x,y) N (,On(}/))
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Fixpoint Logic

Unfolding the Recursion
5(x) = (Vy(E(x,y) > 5(y)))

The ICO: F(S) = {x|Vy(E(x,y) > S(¥))}

Elements of the Kleene sequence are computed by unfolded formulas:

0= ¢%(x) = FALSE
S1=F(S% (%) =Yy (E(x,y) = ¥°(¥))
S2=F(SY)  ©?(x) =Vy(E(x.y) = ¢ (y))

5n+1 _ F(Sn) ;0'".+1(X) _ Vy(E(x,y) N (,On(}/))

Ifp(S)(x) = %(x) vl (x) v v " (x) v -
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Discussion

@ Datalog, semi-positive Datalog, stratified Datalog

@ Least Fixpoint Logic (LFP)
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Discussion

@ Datalog, semi-positive Datalog, stratified Datalog
@ Least Fixpoint Logic (LFP)
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Discussion
@ Datalog, semi-positive Datalog, stratified Datalog
@ Least Fixpoint Logic (LFP)
@ LFP strictly more powerful than Datalog

@ There are other more powerful (and more ugly) forms of fixpoints
that we wont discuss
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Discussion

@ Datalog, semi-positive Datalog, stratified Datalog
@ Least Fixpoint Logic (LFP)
@ LFP strictly more powerful than Datalog

@ There are other more powerful (and more ugly) forms of fixpoints
that we wont discuss

o Infinitary logic, L%, allows us to write formulas like:

PP(x) vt (x) Ve v (x) Vo
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[e]e]e]e]e] ]

Discussion

@ Datalog, semi-positive Datalog, stratified Datalog

Least Fixpoint Logic (LFP)

LFP strictly more powerful than Datalog

@ There are other more powerful (and more ugly) forms of fixpoints
that we wont discuss

Infinitary logic, LY., allows us to write formulas like:
PV ) Vv (x) v

What are oo and w? Will discuss next.
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Ordinal Numbers
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0O@0000

Review: Cardinal Numbers

A cardinal number is an equivalence class |A| under bijection.
Ro = |N| is the smallest infinite cardinal number

¢ = |R| is the cardinal of the continuum.

Weird arithmetic: Rg+c=¢, Rgxc=¢ ¢xc=¢, ...

. . ® 280
Much larger cardinal numbers exists: Rg < 280 <2270 <22~ <.
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Well Ordered Sets

A partial order is a pair (S, <),
where < is reflexive, antisymmetric, and transitive.
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Well Ordered Sets

A partial order is a pair (S, <),
where < is reflexive, antisymmetric, and transitive.

00@000

Definition

(5,<) is a well order if every subset A € S has a minimal element.
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Well Ordered Sets

A partial order is a pair (S, <),
where < is reflexive, antisymmetric, and transitive.

00@000

Definition

(5,<) is a well order if every subset A € S has a minimal element.

Fact
If < is a well order then it is also a total order.
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Well Ordered Sets

A partial order is a pair (S, <),
where < is reflexive, antisymmetric, and transitive.

Definition J

(5,<) is a well order if every subset A € S has a minimal element.

If < is a well order then it is also a total order.

Fact J

Proof: given x,y, set A={x,y}.
min(A) € A: either min(x,y) =x and x <y, or min(x,y) =y and y < x.
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Well Ordered Sets

A partial order is a pair (S, <),
where < is reflexive, antisymmetric, and transitive.

Definition J

(5,<) is a well order if every subset A € S has a minimal element.

Fact
If < is a well order then it is also a total order. J

Proof: given x,y, set A={x,y}.
min(A) € A: either min(x,y) =x and x <y, or min(x,y) =y and y < x.

Fact

< is a well order iff its total and has no infinite descending chains:
X0>X1>Xo> ...
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Ordinal Numbers

Definition J

A cardinal number is an equivalence class (under bijection) of a set.

An ordinal number is an isomorphism class of a well ordered set.

Definition J
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Examples

Every finite number is an ordinal: ([n],<).
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Examples

Every finite number is an ordinal: ([n],<).
(N, <) is a well ordered set. Its ordinal number is denoted w:

w:0<1<2<3<:-

W+1:0<1<2<3<-<0!
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Examples

Every finite number is an ordinal: ([n],<).
(N, <) is a well ordered set. Its ordinal number is denoted w:

w:0<1<2<3<---
W+1:0<1<2<3<-<0!

W+2:0<1<2<3<-<c0l <1t
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Examples

Every finite number is an ordinal: ([n],<).
(N, <) is a well ordered set. Its ordinal number is denoted w:

w:0<1<2<3<---
W+1:0<1<2<3<-<0!

wW+2:0<1<2<3<-<0l<1?

W+w:0<1<2<3<<0 <1t <2t <.
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Examples

Every finite number is an ordinal: ([n],<).
(N, <) is a well ordered set. Its ordinal number is denoted w:

w:0<1<2<3<---
W+1:0<1<2<3<-<0!

wW+2:0<1<2<3<-<0l<1?

W+w:0<1<2<3<-<0t<1t<c2t <.

wtwtw:...
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Examples

Every finite number is an ordinal: ([n],<).
(N, <) is a well ordered set. Its ordinal number is denoted w:

w:0<1<2<3<---
W+1:0<1<2<3<-<0!

wW+2:0<1<2<3<-<0l<1?

W+w:0<1<2<3<-<0t<1t<c2t <.

wtwtw:...

Wwxw:i0<l<2<wc0lcllcic0?<1?2<iicnnn
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Examples

Every finite number is an ordinal: ([n],<).
(N, <) is a well ordered set. Its ordinal number is denoted w:

w:0<1<2<3<---
W+1:0<1<2<3<-<0!

wW+2:0<1<2<3<-<0l<1?

W+w:0<1<2<3<-<0t<1t<c2t <.

wtwtw:...

Wwxw:0<1<2<<c0l << c0?<1?<ii <o

All these are countable ordinals, i.e. their cardinal number is Rg
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Infinitely Many Ordinals

Is (R, <) well ordered?
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Infinitely Many Ordinals

Is (R, <) well ordered?

NO! The set {%, %, %,...} has no minimal element.
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Theorem
Every set can be well ordered.
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Ordinal Numbers
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Infinitely Many Ordinals
Is (R, <) well ordered?

NO! The set {%, %, %,...} has no minimal element.

Theorem

Every set can be well ordered.

Every ordinal number has a unique cardinal number.

A cardinal number can have many ordinal numbers.
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@ Let o, 8 be ordinals. The infinitary logic L,z is:
» Atoms: x; = xj, R(---)
» Formulas: V¢ i, and (... 3x;...)p, and - for |/| < a, |J] < B.

[ —
jed
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@ Let o, 8 be ordinals. The infinitary logic L,z is:
» Atoms: x; = xj, R(---)
» Formulas: V¢ i, and (... 3x;...)p, and - for |/| < a, |J] < B.

[ —
jed

o L, = FO; finite disjunctions, finite quantifier sequence.
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@ Let o, 8 be ordinals. The infinitary logic L,z is:
» Atoms: x; = xj, R(---)
» Formulas: V¢ i, and (... 3x;...)p, and - for |/| < a, |J] < B.

[ —
jed

o L, = FO; finite disjunctions, finite quantifier sequence.

@ L., = infinite disjunction (no bound!), finite quantifier sequence.
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@ Let o, 8 be ordinals. The infinitary logic L,z is:
» Atoms: x; = xj, R(---)
» Formulas: V¢ i, and (... 3x;...)p, and - for |/| < a, |J] < B.

[ —
jed

o L, = FO; finite disjunctions, finite quantifier sequence.

@ L., = infinite disjunction (no bound!), finite quantifier sequence.
o Lk = the restriction to k variables.
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@ Let o, 8 be ordinals. The infinitary logic L,z is:
» Atoms: x; = xj, R(---)
» Formulas: V¢ i, and (... 3x;...)p, and - for |/| < a, |J] < B.

[ —
jed

o L, = FO; finite disjunctions, finite quantifier sequence.

@ L., = infinite disjunction (no bound!), finite quantifier sequence.

o Lk = the restriction to k variables.

o L% =Usolk . What is Uysg FOX?
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Discussion
Next time:
@ The logic LFP is a subset of LY, ..

@ Pebble games, which generalize EF games, characterize expressibility
in LY.

@ As an example, will show that EVEN is not expressible in LY, ,, hence
neither in LFP or Datalog.
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