Finite Model Theory Lecture 11: Fixpoints and Infinitary Logic

Spring 2025

Announcements

• HW2 graded, posted.

• HW1 posted too (apparently it wasn't posted)

• HW3 due on Friday

• This week: fixpoints, infinitary logics, pebble games

Fixpoints

Finite Model Theory

Lecture 11

Spring 2025

Tarski-Knaster

Recall: 2^U is the set of subsets of U.

 $F: 2^U \to 2^U$ is monotone if $A \subseteq B$ implies $F(A) \subseteq F(B)$.

Recall: 2^U is the set of subsets of U.

 $F: 2^U \to 2^U$ is monotone if $A \subseteq B$ implies $F(A) \subseteq F(B)$.

X is a fixpoint if F(X) = X.

X is a least fixpoint if it is a fixpoint and $X \subseteq X'$ for any other fixpoint X'.

Recall: 2^U is the set of subsets of U.

 $F: 2^U \to 2^U$ is monotone if $A \subseteq B$ implies $F(A) \subseteq F(B)$.

X is a fixpoint if F(X) = X.

X is a least fixpoint if it is a fixpoint and $X \subseteq X'$ for any other fixpoint X'.

Theorem (Tarski-Knaster)

Every monotone function F has a least fixpoint, denoted lfp(F).

We consider only the finite case, discussed next.

$L_{\infty\omega}$

The Kleene Sequence

Suppose U is finite, and $F: 2^U \rightarrow 2^U$ is monotone.

Definition

The Kleene Sequence is $X^0, X^1, \dots, X^n, \dots$, where $X^0 = \emptyset$ and $X^{i+1} = F(X^i)$

$L_{\infty\omega}$

The Kleene Sequence

Suppose U is finite, and $F: 2^U \rightarrow 2^U$ is monotone.

Definition

The Kleene Sequence is $X^0, X^1, \dots, X^n, \dots$, where $X^0 = \emptyset$ and $X^{i+1} = F(X^i)$

Fact

The Kleene sequence is increasing: $X^0 \subseteq X^1 \subseteq \cdots \subseteq X^n \subseteq \cdots$

$L_{\infty\omega}$

The Kleene Sequence

Suppose U is finite, and $F: 2^U \rightarrow 2^U$ is monotone.

Definition

The Kleene Sequence is $X^0, X^1, \dots, X^n, \dots$, where $X^0 = \emptyset$ and $X^{i+1} = F(X^i)$

Fact

The Kleene sequence is increasing: $X^0 \subseteq X^1 \subseteq \cdots \subseteq X^n \subseteq \cdots$

Proof by induction. $\emptyset = X^0 \subseteq X^1$

$L_{\infty\omega}$

The Kleene Sequence

Suppose U is finite, and $F: 2^U \rightarrow 2^U$ is monotone.

Definition

The Kleene Sequence is $X^0, X^1, \dots, X^n, \dots$, where $X^0 = \emptyset$ and $X^{i+1} = F(X^i)$

Fact

The Kleene sequence is increasing: $X^0 \subseteq X^1 \subseteq \cdots \subseteq X^n \subseteq \cdots$

Proof by induction. $\emptyset = X^0 \subseteq X^1$

If
$$X^{i-1} \subseteq X^i$$
, by *F*-monotonicity $X^i = F(X^{i-1}) \subseteq F(X^i) = X^{i+1}$

L_{∞ω} 000

The Kleene Sequence

Suppose U is finite, and $F: 2^U \rightarrow 2^U$ is monotone.

Definition

The Kleene Sequence is $X^0, X^1, \dots, X^n, \dots$, where $X^0 = \emptyset$ and $X^{i+1} = F(X^i)$

Fact

The Kleene sequence is increasing: $X^0 \subseteq X^1 \subseteq \cdots \subseteq X^n \subseteq \cdots$

Proof by induction. $\emptyset = X^0 \subseteq X^1$

If $X^{i-1} \subseteq X^i$, by *F*-monotonicity $X^i = F(X^{i-1}) \subseteq F(X^i) = X^{i+1}$

Since U is finite, $\exists n \ge 0$ such that $X^n = X^{n+1}$. Then $X^n = \mathsf{lfp}(F)$

Fixpoints 000	Datalog 0●00000000	Fixpoint Logic 000000	Ordinal Numbers	

A datalog rule has the form:

$$P(\boldsymbol{x}_0) = R_1(\boldsymbol{x}_1) \wedge \cdots \wedge R_m(\boldsymbol{x}_m)$$

Every $R_i(\mathbf{x}_i)$ is a relational atom.

Fixpoints 000	Datalog ○●○○○○○○○○	Fixpoint Logic 000000	Ordinal Numbers	

A datalog rule has the form:

$$P(\boldsymbol{x}_0) = R_1(\boldsymbol{x}_1) \wedge \cdots \wedge R_m(\boldsymbol{x}_m)$$

Every $R_i(\mathbf{x}_i)$ is a relational atom.

The conjunction $\wedge_i R_i(\mathbf{x}_i)$ is called the body

The atom $P(\mathbf{x}_0)$ is called the head.

Fixpoints 000	Datalog 0●00000000	Fixpoint Logic 000000	Ordinal Numbers	

A datalog rule has the form:

$$P(\mathbf{x}_0) = R_1(\mathbf{x}_1) \wedge \cdots \wedge R_m(\mathbf{x}_m)$$

Every $R_i(\mathbf{x}_i)$ is a relational atom.

The conjunction $\bigwedge_i R_i(\mathbf{x}_i)$ is called the body

The atom $P(\mathbf{x}_0)$ is called the head.

Safety condition: every variable in the head must occur in the body.

A datalog program is a set of datalog rules.

L_{∞ω} 000

Classic Datalog Example

Transitive closure:

$$T(x,y) = E(x,y).$$

$$T(x,y) = E(x,z) \wedge T(z,y).$$

L_{∞ω} 000

Classic Datalog Example

Transitive closure:

$$T(x,y) = E(x,y).$$

$$T(x,y) = E(x,z) \wedge T(z,y).$$

An equivalent, less commonly used notation:

$$T(x,y) = E(x,y) \lor \exists z (E(x,z) \land T(z,y))$$

Fixpoint Semantics of Datalog

Extensional Database Predicates, EDB: the input relations.

Intentional Database Predicates, IDB: the computed relations.

Fixpoint Semantics of Datalog

Extensional Database Predicates, EDB: the input relations.

Intentional Database Predicates, IDB: the computed relations.

Immediate Consequence Operator (ICO): new IDBs from current IDBs:

 $\boldsymbol{P}' = F(\boldsymbol{P})$

Fixpoint Semantics of Datalog

Extensional Database Predicates, EDB: the input relations.

Intentional Database Predicates, IDB: the computed relations.

Immediate Consequence Operator (ICO): new IDBs from current IDBs:

 $\boldsymbol{P}' = F(\boldsymbol{P})$

The semantics of a datalog program is lfp(F)

Use Kleene sequence:

$$\boldsymbol{P}^{0}(:=\varnothing) \subset \boldsymbol{P}^{1} \subset \boldsymbol{P}^{2} \subset \cdots \subset \boldsymbol{P}^{n} = \boldsymbol{P}^{n+1} = \mathsf{lfp}(F)$$

Ordinal Numbers

$$P(4).$$

$$P(y) = P(x) \wedge E(x, y).$$

$$P(4).$$

$$P(y) = P(x) \wedge E(x, y).$$

$$P(y) = (y = 4) \lor \exists x (P(x) \land E(x, y))$$

$$P(4).$$

$$P(y) = P(x) \wedge E(x, y).$$

$$P(y) = (y = 4) \lor \exists x (P(x) \land E(x, y))$$

$$P^0 = \emptyset$$

$$P(4).$$

$$P(y) = P(x) \wedge E(x, y).$$

$$P(y) = (y = 4) \lor \exists x (P(x) \land E(x, y))$$

$$P^0 = \emptyset$$

 $P^1 = \{4\}$

$$P(4).$$

$$P(y) = P(x) \wedge E(x, y).$$

$$P(y) = (y = 4) \lor \exists x (P(x) \land E(x, y))$$

$$P^{0} = \emptyset$$
$$P^{1} = \{4\}$$
$$P^{2} = \{4, 2\}$$

$$P(4).$$

$$P(y) = P(x) \wedge E(x, y).$$

$$P(y) = (y = 4) \lor \exists x (P(x) \land E(x, y))$$

$$P^{0} = \emptyset$$

 $P^{1} = \{4\}$
 $P^{2} = \{4, 2\}$
 $P^{3} = \{4, 2, 3\}$

Ordinal Numbers

Example: Reachability

$$P(4).$$

$$P(y) = P(x) \wedge E(x, y).$$

$$P(y) = (y = 4) \lor \exists x (P(x) \land E(x, y))$$

$$P^{0} = \emptyset$$

$$P^{1} = \{4\}$$

$$P^{2} = \{4, 2\}$$

$$P^{3} = \{4, 2, 3\}$$

$$P^{4} = \{4, 2, 3, 5\}$$

}

Ordinal Numbers

Example: Reachability

$$P(4).$$

$$P(y) = P(x) \wedge E(x, y).$$

$$P(y) = (y = 4) \lor \exists x (P(x) \land E(x, y))$$

$$P^{0} = \emptyset$$

$$P^{1} = \{4\}$$

$$P^{2} = \{4, 2\}$$

$$P^{3} = \{4, 2, 3\}$$

$$P^{4} = \{4, 2, 3, 5\}$$

$$P^{5} = \{4, 2, 3, 5\} = \mathsf{lfp}$$

Finite Model Theory

$L_{\infty\omega}$

Example: Path of Even Length

Is there a path of even length from a to b?

Example: Path of Even Length

Is there a path of even length from a to b?

$$P(x,y) = E(x,z) \land E(z,y)$$

$$P(x,y) = P(x,z) \land E(z,u) \land E(u,y)$$

Answer() = P(a,b)

Is there a path $a \rightarrow b$ of the same length as a path from $c \rightarrow d$?

Is there a path $a \rightarrow b$ of the same length as a path from $c \rightarrow d$?

Product graph $G \times G$:

- Nodes: $V \times V$
- Edges: $\{((x_1, x_2), (y_1, y_2)) | (x_1, y_1), (x_2, y_2) \in E\}$

Is there a path $a \rightarrow b$ of the same length as a path from $c \rightarrow d$?

Product graph $G \times G$:

- Nodes: $V \times V$
- Edges: $\{((x_1, x_2), (y_1, y_2)) | (x_1, y_1), (x_2, y_2) \in E\}$

Path $(a, c) \rightarrow^* (b, d)$ is a pair of paths $a \rightarrow^* b$, $c \rightarrow^* d$ of equal length.

Is there a path $a \rightarrow b$ of the same length as a path from $c \rightarrow d$?

Product graph $G \times G$:

- Nodes: $V \times V$
- Edges: $\{((x_1, x_2), (y_1, y_2)) | (x_1, y_1), (x_2, y_2) \in E\}$

Path $(a, c) \rightarrow^* (b, d)$ is a pair of paths $a \rightarrow^* b$, $c \rightarrow^* d$ of equal length.

$$P(x1, x2, y1, y2) = E(x1, y1) \land E(x2, y2)$$

$$P(x1, x2, y1, y2) = P(x1, x2, z1, z2) \land E(z1, y1) \land E(z2, y2))$$

Answer() = P(a, c, b, d)

Fixpoints	Datalog	Fixpoint Logic	Ordinal Numbers	
000	0000000●000	000000	000000	

Win-Move Game

T(x, y, z): x has children y, z;

L(x): x is a leaf.

L(x): x is a leaf.

Win-Move Game

T(x, y, z): x has children y, z;

- A pebble is placed on a starting node:
 - Player I moves to a child,
 - Player II moves to a child, etc
 - Player who cannot move loses.

L(x): x is a leaf.

T(x, y, z): x has children y, z;

- A pebble is placed on a starting node:
 - Player I moves to a child,
 - Player II moves to a child, etc
 - Player who cannot move loses.

L(x): x is a leaf.

T(x, y, z): x has children y, z;

- A pebble is placed on a starting node:
 - Player I moves to a child,
 - Player II moves to a child, etc
 - Player who cannot move loses.

T(x, y, z): x has children y, z;

y, z; L(x): x is a leaf.

- A pebble is placed on a starting node:
 - Player I moves to a child,
 - Player II moves to a child, etc
 - Player who cannot move loses.

T(x, y, z): x has children y, z; L(x): x is a leaf.

- A pebble is placed on a starting node:
 - Player I moves to a child,
 - Player II moves to a child, etc
 - Player who cannot move loses.

T(x, y, z): x has children y, z; L(x): x is a leaf.

- A pebble is placed on a starting node:
 - Player I moves to a child,
 - Player II moves to a child, etc.
 - Player who cannot move loses.

$$P2(x) = L(x)$$

T(x, y, z): x has children y, z; L(x): x is a leaf.

- A pebble is placed on a starting node:
 - Player I moves to a child,
 - Player II moves to a child, etc.
 - Player who cannot move loses.

$$P2(x) = L(x)
P1(x) = T(x, y, z) \land P2(y)
P1(x) = T(x, y, z) \land P2(z)$$

T(x, y, z): x has children y, z;

L(x): x is a leaf.

- A pebble is placed on a starting node:
 - Player I moves to a child,
 - Player II moves to a child, etc
 - Player who cannot move loses.

$$P2(x) = L(x)
P1(x) = T(x, y, z) \land P2(y)
P1(x) = T(x, y, z) \land P2(z)
P2(x) = T(x, y, z) \land P1(y) \land P1(z)$$

Semi-positive Datalog

The Immediate Consequence Operator must be monotone in IDBs

Semi-positive Datalog allows EDBs to be negated.

Semi-positive Datalog

The Immediate Consequence Operator must be monotone in IDBs

Semi-positive Datalog allows EDBs to be negated.

Example: transitive closure of the complement graph:

$$T(x,y) = V(x) \land V(y) \land \neg E(x,y).$$

$$T(x,y) = T(x,z) \land \neg E(z,y).$$

L_{∞4} 000

Stratified Datalog

Stratified Datalog is a program partitioned into strata, such that the rules in stratum *i* may use:

- Positive IDBs defined in stratum *i*,
- Positive or negated IDBs defined in strata < i.

Stratified Datalog

Stratified Datalog is a program partitioned into strata, such that the rules in stratum *i* may use:

- Positive IDBs defined in stratum *i*,
- Positive or negated IDBs defined in strata < i.

Example: the complement of the transitive closure:

$$T(x,y) = E(x,y).$$

$$T(x,y) = T(x,z) \land E(z,y).$$

Answer(x,y) = V(x) \land V(y) \land \neg T(x,y).

Discussion

- Datalog can express some cool queries. Try at home:
 - Same generation: if G = (V, E) is a tree, find pairs of nodes x, y in the same generation (same distance to the root)
 - Check if G is a totally balanced tree.
- But it cannot express some trivial queries:
 - ▶ Is |E| even?
 - Is $|A| \leq |B|$? (Homework)
- To prove inexpressibility results for datalog we will show that it is a subset of a much more powerful logic, $L^{\omega}_{\infty\omega}$, then describe a game for $L^{\omega}_{\infty\omega}$.
- First, we discuss Fixpoint Logic

Fixpoint Logic

Fixpoints 000	Datalog 0000000000	Fixpoint Logic 0●0000	Ordinal Numbers	
Definition				

Fixpoint Logic, LFP extends FO with a least fixpoint predicate:

 $\mathsf{lfp}_{P,\mathbf{x}}\varphi$

where *P* is a fresh relational symbol that occurs positively, and φ is a formula that uses *P* has free variables *x*.

Fixpoints 000	Datalog 0000000000	Fixpoint Logic 0●0000	Ordinal Numbers	
Definition				

Fixpoint Logic, LFP extends FO with a least fixpoint predicate:

 $\mathsf{lfp}_{P, \mathbf{x}} \varphi$

where *P* is a fresh relational symbol that occurs positively, and φ is a formula that uses *P* has free variables *x*.

Example: transitive closure T(u, v) becomes:

 $\mathsf{lfp}_{T,x,y}(E(x,y) \lor \exists z(E(x,z) \land T(z,y)))(u,v)$

Fixpoints 000	Datalog 0000000000	Fixpoint Logic ○●○○○○	Ordinal Numbers	
Definition				

Fixpoint Logic, LFP extends FO with a least fixpoint predicate:

$$\mathsf{lfp}_{P,\mathbf{x}}\varphi$$

where *P* is a fresh relational symbol that occurs positively, and φ is a formula that uses *P* has free variables *x*.

Example: transitive closure T(u, v) becomes:

$$\mathsf{lfp}_{T,x,y}(E(x,y) \lor \exists z(E(x,z) \land T(z,y)))(u,v)$$

We will continue to use the more friendly notation, example:

$$T(u,v)$$
 where $T(x,y) = E(x,y) \lor \exists z (E(x,z) \land T(z,y))$

Fixpoints 000	Datalog 0000000000	Fixpoint Logic	Ordinal Numbers	
Example				

What doses this formula compute?

$$S(x) = (\forall y (E(x,y) \to S(y)))$$

Fixpoints	Datalog	Fixpoint Logic	Ordinal Numbers	
000	0000000000	00●000	000000	
Example				

The Kleene sequence:

$$S^{0} = \emptyset$$
$$S^{1} =$$
$$S^{2} =$$
$$S^{3} =$$
$$S^{4} =$$

19/31

Fixpoints 000	Datalog 0000000000	Fixpoint Logic 00●000	Ordinal Numbers	
Example				

$$S^{0} = \emptyset$$

 $S^{1} = \{6, 7\}$
 $S^{2} =$
 $S^{3} =$
 $S^{4} =$

Fixpoints 000	Datalog 0000000000	Fixpoint Logic 00●000	Ordinal Numbers	
Example				

$$S^{0} = \emptyset$$

 $S^{1} = \{6, 7\}$
 $S^{2} = \{6, 7, 4\}$
 $S^{3} =$
 $S^{4} =$

Fixpoints 000	Datalog 0000000000	Fixpoint Logic 00●000	Ordinal Numbers	
Example				

$$S^{0} = \emptyset$$

$$S^{1} = \{6,7\}$$

$$S^{2} = \{6,7,4\}$$

$$S^{3} = \{6,7,4,2\}$$

$$S^{4} =$$

Fixpoints 000	Datalog 0000000000	Fixpoint Logic 00●000	Ordinal Numbers	
Example				

$$S^{0} = \emptyset$$

$$S^{1} = \{6, 7\}$$

$$S^{2} = \{6, 7, 4\}$$

$$S^{3} = \{6, 7, 4, 2\}$$

$$S^{4} = \{6, 7, 4, 2\} = S^{3} = Ifp$$

Fixpoints 000	Datalog 0000000000	Fixpoint Logic 00●000	Ordinal Numbers	
Example				

The Kleene sequence:

$$S^{0} = \emptyset$$

$$S^{1} = \{6, 7\}$$

$$S^{2} = \{6, 7, 4\}$$

$$S^{3} = \{6, 7, 4, 2\}$$

$$S^{4} = \{6, 7, 4, 2\} = S^{3} = Ifp$$

Nodes 1, 3, 5 never show up in S^n . WHY?

19/31

Fixpoints 000	Datalog 0000000000	Fixpoint Logic 00●000	Ordinal Numbers	
Example				

The Kleene sequence:

$$S^{0} = \emptyset$$

$$S^{1} = \{6,7\}$$

$$S^{2} = \{6,7,4\}$$

$$S^{3} = \{6,7,4,2\}$$

$$S^{4} = \{6,7,4,2\} = S^{3} = lfp$$

Nodes 1, 3, 5 never show up in S^n . WHY?

G is acyclic iff $\forall x S(x)$

19/31

Example: The Win-Move Game

G = (V, E) no more restriction to two children

$$P1(x) = \exists y (E(x,y) \land \forall z (E(y,z) \to P1(z)))$$

Example: The Win-Move Game

G = (V, E) no more restriction to two children

$$P1(x) = \exists y (E(x,y) \land \forall z (E(y,z) \to P1(z)))$$

Theorem (Kolaitis)

The win-move game is not expressible in stratified datalog.

Contrast with our previous solution on graphs with degree 2.

20/31

$$S(x) = (\forall y (E(x,y) \to S(y)))$$

The ICO: $F(S) = \{x \mid \forall y(E(x,y) \rightarrow S(y))\}$

 $S(x) = (\forall y (E(x, y) \to S(y)))$

The ICO: $F(S) = \{x \mid \forall y (E(x, y) \rightarrow S(y))\}$

 $S(x) = (\forall y (E(x,y) \to S(y)))$

The ICO: $F(S) = \{x \mid \forall y (E(x, y) \rightarrow S(y))\}$

$$S^0 = \emptyset$$
 $\varphi^0(x) = \text{FALSE}$

 $S(x) = (\forall y (E(x, y) \rightarrow S(y)))$

The ICO: $F(S) = \{x \mid \forall y (E(x, y) \rightarrow S(y))\}$

$$\begin{array}{ll} S^0 = \varnothing & \varphi^0(x) = \texttt{FALSE} \\ S^1 = F(S^0) & \varphi^1(x) = \forall y (E(x,y) \to \varphi^0(y)) \end{array}$$

 $S(x) = (\forall y (E(x, y) \to S(y)))$

The ICO: $F(S) = \{x \mid \forall y (E(x, y) \rightarrow S(y))\}$

$$\begin{array}{ll} S^0 = \varnothing & \varphi^0(x) = \text{FALSE} \\ S^1 = F(S^0) & \varphi^1(x) = \forall y (E(x,y) \to \varphi^0(y)) \\ S^2 = F(S^1) & \varphi^2(x) = \forall y (E(x,y) \to \varphi^1(y)) \end{array}$$

 $S(x) = (\forall y (E(x, y) \to S(y)))$

The ICO: $F(S) = \{x \mid \forall y (E(x, y) \rightarrow S(y))\}$

$$S^{0} = \emptyset \qquad \varphi^{0}(x) = \text{FALSE}$$

$$S^{1} = F(S^{0}) \qquad \varphi^{1}(x) = \forall y(E(x, y) \to \varphi^{0}(y))$$

$$S^{2} = F(S^{1}) \qquad \varphi^{2}(x) = \forall y(E(x, y) \to \varphi^{1}(y))$$

$$\cdots$$

$$S^{n+1} = F(S^{n}) \qquad \varphi^{n+1}(x) = \forall y(E(x, y) \to \varphi^{n}(y))$$

$$\cdots$$

 $S(x) = (\forall y (E(x, y) \rightarrow S(y)))$

The ICO: $F(S) = \{x \mid \forall y (E(x, y) \rightarrow S(y))\}$

$$S^{0} = \emptyset \qquad \varphi^{0}(x) = \text{FALSE}$$

$$S^{1} = F(S^{0}) \qquad \varphi^{1}(x) = \forall y(E(x, y) \to \varphi^{0}(y))$$

$$S^{2} = F(S^{1}) \qquad \varphi^{2}(x) = \forall y(E(x, y) \to \varphi^{1}(y))$$

$$\dots$$

$$S^{n+1} = F(S^{n}) \qquad \varphi^{n+1}(x) = \forall y(E(x, y) \to \varphi^{n}(y))$$

$$\dots$$

$$\mathsf{lfp}(S)(x) = \varphi^0(x) \lor \varphi^1(x) \lor \cdots \lor \varphi^n(x) \lor \cdots$$

Fixpoints 000	Datalog 0000000000	Fixpoint Logic 00000●	Ordinal Numbers	
Discussion				

- Datalog, semi-positive Datalog, stratified Datalog
- Least Fixpoint Logic (LFP)

22/31

Discussion

- Datalog, semi-positive Datalog, stratified Datalog
- Least Fixpoint Logic (LFP)
- LFP strictly more powerful than Datalog

Discussion

- Datalog, semi-positive Datalog, stratified Datalog
- Least Fixpoint Logic (LFP)
- LFP strictly more powerful than Datalog
- There are other more powerful (and more ugly) forms of fixpoints that we wont discuss
Discussion

- Datalog, semi-positive Datalog, stratified Datalog
- Least Fixpoint Logic (LFP)
- LFP strictly more powerful than Datalog
- There are other more powerful (and more ugly) forms of fixpoints that we wont discuss
- Infinitary logic, $L^{\omega}_{\infty\omega}$ allows us to write formulas like:

$$\varphi^0(x) \lor \varphi^1(x) \lor \cdots \lor \varphi^n(x) \lor \cdots$$

Discussion

- Datalog, semi-positive Datalog, stratified Datalog
- Least Fixpoint Logic (LFP)
- LFP strictly more powerful than Datalog
- There are other more powerful (and more ugly) forms of fixpoints that we wont discuss
- Infinitary logic, $L^{\omega}_{\infty\omega}$ allows us to write formulas like:

$$\varphi^0(x) \lor \varphi^1(x) \lor \cdots \lor \varphi^n(x) \lor \cdots$$

• What are ∞ and ω ? Will discuss next.

Ordinal Numbers

Review: Cardinal Numbers

A cardinal number is an equivalence class |A| under bijection.

 $\aleph_0 = |\mathbb{N}|$ is the smallest infinite cardinal number

 $\mathfrak{c} = |\mathbb{R}|$ is the cardinal of the continuum.

Weird arithmetic: $\aleph_0 + \mathfrak{c} = \mathfrak{c}, \ \aleph_0 \times \mathfrak{c} = \mathfrak{c}, \ \mathfrak{c} \times \mathfrak{c} = \mathfrak{c}, \ \ldots$

Much larger cardinal numbers exists: $\aleph_0 < 2^{\aleph_0} < 2^{2^{\aleph_0}} < 2^{2^{2^{\aleph_0}}} < \cdots$

Fixpoint Logi

 $L_{\infty\omega}$

Well Ordered Sets

A partial order is a pair (S, \leq) ,

where \leq is reflexive, antisymmetric, and transitive.

A partial order is a pair (S, \leq) , where \leq is reflexive, antisymmetric, and transitive.

Definition

 (S, \leq) is a well order if every subset $A \subseteq S$ has a minimal element.

A partial order is a pair (S, \leq) , where \leq is reflexive, antisymmetric, and transitive.

Definition

 (S, \leq) is a well order if every subset $A \subseteq S$ has a minimal element.

Fact

If \leq is a well order then it is also a total order.

A partial order is a pair (S, \leq) , where \leq is reflexive, antisymmetric, and transitive.

Definition

 (S, \leq) is a well order if every subset $A \subseteq S$ has a minimal element.

Fact

If \leq is a well order then it is also a total order.

Proof: given x, y, set $A = \{x, y\}$. min $(A) \in A$: either min(x, y) = x and $x \le y$, or min(x, y) = y and $y \le x$.

A partial order is a pair (S, \leq) , where \leq is reflexive, antisymmetric, and transitive.

Definition

 (S, \leq) is a well order if every subset $A \subseteq S$ has a minimal element.

Fact

If \leq is a well order then it is also a total order.

Proof: given x, y, set $A = \{x, y\}$. min $(A) \in A$: either min(x, y) = x and $x \le y$, or min(x, y) = y and $y \le x$.

Fact

 \leq is a well order iff its total and has no infinite descending chains:

 $x_0 > x_1 > x_2 > \dots$

Finite	Model	I heony
	IVIOUEI	I HEOLV

Ordinal Numbers

Definition

A cardinal number is an equivalence class (under bijection) of a set.

Definition

An ordinal number is an isomorphism class of a well ordered set.

Every finite number is an ordinal: $([n], \leq)$.

Every finite number is an ordinal: $([n], \leq)$.

 (\mathbb{N}, \leq) is a well ordered set. Its ordinal number is denoted ω :

 $\omega: 0 < 1 < 2 < 3 < \cdots$

Every finite number is an ordinal: $([n], \leq)$.

 (\mathbb{N}, \leq) is a well ordered set. Its ordinal number is denoted ω :

 $\omega: 0 < 1 < 2 < 3 < \cdots$ $\omega + 1: 0 < 1 < 2 < 3 < \cdots < 0^{1}$

Every finite number is an ordinal: $([n], \leq)$.

 (\mathbb{N}, \leq) is a well ordered set. Its ordinal number is denoted ω :

$$\begin{split} & \omega : 0 < 1 < 2 < 3 < \cdots \\ & \omega + 1 : 0 < 1 < 2 < 3 < \cdots < 0^1 \\ & \omega + 2 : 0 < 1 < 2 < 3 < \cdots < 0^1 < 1^1 \end{split}$$

Every finite number is an ordinal: $([n], \leq)$.

 (\mathbb{N}, \leq) is a well ordered set. Its ordinal number is denoted ω :

$$\begin{split} & \omega : 0 < 1 < 2 < 3 < \cdots \\ & \omega + 1 : 0 < 1 < 2 < 3 < \cdots < 0^1 \\ & \omega + 2 : 0 < 1 < 2 < 3 < \cdots < 0^1 < 1^1 \\ & \ddots \\ & \omega + \omega : 0 < 1 < 2 < 3 < \cdots < 0^1 < 1^1 < 2^1 < \cdots \end{split}$$

Every finite number is an ordinal: $([n], \leq)$.

 (\mathbb{N}, \leq) is a well ordered set. Its ordinal number is denoted ω :

$$\begin{split} & \omega: 0 < 1 < 2 < 3 < \cdots \\ & \omega + 1: 0 < 1 < 2 < 3 < \cdots < 0^1 \\ & \omega + 2: 0 < 1 < 2 < 3 < \cdots < 0^1 < 1^1 \\ & \cdots \\ & \omega + \omega: 0 < 1 < 2 < 3 < \cdots < 0^1 < 1^1 < 2^1 < \cdots \\ & \omega + \omega + \omega: \cdots \end{split}$$

. . .

Every finite number is an ordinal: $([n], \leq)$.

 (\mathbb{N}, \leq) is a well ordered set. Its ordinal number is denoted ω :

Every finite number is an ordinal: $([n], \leq)$.

 (\mathbb{N}, \leq) is a well ordered set. Its ordinal number is denoted ω :

$$\begin{split} & \omega : 0 < 1 < 2 < 3 < \cdots \\ & \omega + 1 : 0 < 1 < 2 < 3 < \cdots < 0^1 \\ & \omega + 2 : 0 < 1 < 2 < 3 < \cdots < 0^1 < 1^1 \\ & \cdots \\ & \omega + \omega : 0 < 1 < 2 < 3 < \cdots < 0^1 < 1^1 < 2^1 < \cdots \\ & \omega + \omega + \omega : \cdots \\ & \cdots \\ & \ddots \\ & \ddots \\ & \ddots \\ & \omega \times \omega : 0 < 1 < 2 < \cdots < 0^1 < 1^1 < \cdots < 0^2 < 1^2 < \cdots < \cdots \\ \end{split}$$

All these are countable ordinals, i.e. their cardinal number is \aleph_0

Infinitely Many Ordinals

Is (\mathbb{R}, \leq) well ordered?

$L_{\infty\omega}$

Infinitely Many Ordinals

Is (\mathbb{R}, \leq) well ordered?

NO! The set $\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ has no minimal element.

$L_{\infty\omega}$

Infinitely Many Ordinals

Is (\mathbb{R}, \leq) well ordered?

NO! The set $\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ has no minimal element.

Theorem

Every set can be well ordered.

L_{∞ω} 000

Infinitely Many Ordinals

Is (\mathbb{R}, \leq) well ordered?

NO! The set $\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ has no minimal element.

Theorem Every set can be well ordered.

Every ordinal number has a unique cardinal number.

A cardinal number can have many ordinal numbers.

Fixpoints 000	Datalog 0000000000	Fixpoint Logic 000000	Ordinal Numbers	L _{∞0}

 $L_{\infty\omega}$

Fixpoints	Datalog	Fixpoint Logic	Ordinal Numbers	L _{∞ω}
000	0000000000	000000		000
$L^{\omega}_{\infty\omega}$				

• Let α, β be ordinals. The infinitary logic $L_{\alpha\beta}$ is:

• Atoms:
$$x_i = x_j, R(\cdots)$$

► Formulas: $\bigvee_{i \in I} \varphi_i$, and $(\underbrace{\ldots \exists x_j \ldots}_{j \in J}) \varphi$, and $\neg \varphi$, for $|I| < \alpha$, $|J| < \beta$.

Fixpoints	Datalog	Fixpoint Logic	Ordinal Numbers	L _∞ ω
000	0000000000	000000		0●0
$L^{\omega}_{\infty\omega}$				

- Let α, β be ordinals. The infinitary logic $L_{\alpha\beta}$ is:
 - Atoms: $x_i = x_j$, $R(\cdots)$
 - ► Formulas: $\bigvee_{i \in I} \varphi_i$, and $(\underbrace{\ldots \exists x_j \ldots}_{j \in J}) \varphi$, and $\neg \varphi$, for $|I| < \alpha$, $|J| < \beta$.
- $L_{\omega\omega} = FO$; finite disjunctions, finite quantifier sequence.

Fixpoints	Datalog	Fixpoint Logic	Ordinal Numbers	L _∞ ω
000	0000000000	000000	000000	000
$L^{\omega}_{\infty\omega}$				

- Let α, β be ordinals. The infinitary logic $L_{\alpha\beta}$ is:
 - Atoms: $x_i = x_j$, $R(\dots)$ • Formulas: $\bigvee_{i \in I} \varphi_i$, and $(\dots \exists x_j \dots) \varphi$, and $\neg \varphi$, for $|I| < \alpha$, $|J| < \beta$.
- $L_{\omega\omega} = FO$; finite disjunctions, finite quantifier sequence.
- $L_{\infty\omega}$ = infinite disjunction (no bound!), finite quantifier sequence.

Fixpoints	Datalog	Fixpoint Logic	Ordinal Numbers	L _{∞ ω}
000	0000000000	000000	000000	000
$L^{\omega}_{\infty\omega}$				

- Let α, β be ordinals. The infinitary logic $L_{\alpha\beta}$ is:
 - Atoms: $x_i = x_j$, $R(\dots)$ • Formulas: $\bigvee_{i \in I} \varphi_i$, and $(\dots \exists x_j \dots) \varphi$, and $\neg \varphi$, for $|I| < \alpha$, $|J| < \beta$.
- $L_{\omega\omega} = FO$; finite disjunctions, finite quantifier sequence.
- $L_{\infty\omega}$ = infinite disjunction (no bound!), finite quantifier sequence.
- $L_{\infty\omega}^k$ = the restriction to k variables.

Fixpoints	Datalog	Fixpoint Logic	Ordinal Numbers	$L_{\infty\omega}$
000	0000000000	000000	000000	
$L^\omega_{\infty\omega}$				

- Let α, β be ordinals. The infinitary logic $L_{\alpha\beta}$ is:
 - Atoms: $x_i = x_j$, $R(\dots)$ • Formulas: $\bigvee_{i \in J} \varphi_i$, and $(\dots \exists x_j \dots) \varphi$, and $\neg \varphi$, for $|I| < \alpha$, $|J| < \beta$.
- $L_{\omega\omega} = FO$; finite disjunctions, finite quantifier sequence.
- $L_{\infty\omega}$ = infinite disjunction (no bound!), finite quantifier sequence.
- $L_{\infty\omega}^k$ = the restriction to k variables.

•
$$L^{\omega}_{\infty\omega} = \bigcup_{k\geq 0} L^k_{\infty\omega}$$
.

What is $\bigcup_{k\geq 0} FO^k$?

Discussion

Next time:

- The logic LFP is a subset of $L^{\omega}_{\infty\omega}$.
- Pebble games, which generalize EF games, characterize expressibility in $L^{\omega}_{\infty\omega}.$
- As an example, will show that EVEN is not expressible in $L^{\omega}_{\infty\omega}$, hence neither in LFP or Datalog.

 $L_{\infty\omega}$