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Announcements

HW2 graded, posted.

HW1 posted too (apparently it wasn’t posted)

HW3 due on Friday

This week: fixpoints, infinitary logics, pebble games
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Tarski-Knaster

Recall: 2U is the set of subsets of U.

F ∶ 2U → 2U is monotone if A ⊆ B implies F (A) ⊆ F (B).

X is a fixpoint if F (X ) = X .

X is a least fixpoint if it is a fixpoint and X ⊆ X ′ for any other fixpoint X ′.

Theorem (Tarski-Knaster)

Every monotone function F has a least fixpoint, denoted lfp(F ).

We consider only the finite case, discussed next.
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The Kleene Sequence

Suppose U is finite, and F ∶ 2U → 2U is monotone.

Definition

The Kleene Sequence is X 0,X 1,⋯,X n,⋯, where X 0 = ∅ and X i+1 = F (X i)

Fact

The Kleene sequence is increasing: X 0 ⊆ X 1 ⊆ ⋯ ⊆ X n ⊆ ⋯

Proof by induction.
∅ = X 0 ⊆ X 1

If X i−1 ⊆ X i , by F -monotonicity X i = F (X i−1) ⊆ F (X i) = X i+1

Since U is finite, ∃n ≥ 0 such that X n = X n+1. Then X n = lfp(F )
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Datalog
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Datalog

A datalog rule has the form:

P(x0) = R1(x1) ∧⋯ ∧ Rm(xm)

Every Ri(x i) is a relational atom.

The conjunction ⋀i Ri(x i) is called the body

The atom P(x0) is called the head.

Safety condition: every variable in the head must occur in the body.

A datalog program is a set of datalog rules.
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Classic Datalog Example

Transitive closure:
T (x , y) = E(x , y).
T (x , y) = E(x , z) ∧T (z , y).

An equivalent, less commonly used notation:

T (x , y) =E(x , y) ∨ ∃z(E(x , z) ∧T (z , y))
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Fixpoint Semantics of Datalog

Extensional Database Predicates, EDB: the input relations.

Intentional Database Predicates, IDB: the computed relations.

Immediate Consequence Operator (ICO): new IDBs from current IDBs:

P ′ = F (P)

The semantics of a datalog program is lfp(F )

Use Kleene sequence: P0(∶= ∅) ⊂ P1 ⊂ P2 ⊂ ⋯ ⊂ Pn = Pn+1 = lfp(F )
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Example: Reachability

P(4).
P(y) = P(x) ∧ E(x , y).

P(y) = (y = 4) ∨ ∃x(P(x) ∧ E(x , y))

1 2 3

4 5

P0 =∅
P1 ={4}
P2 ={4,2}
P3 ={4,2,3}
P4 ={4,2,3,5}
P5 ={4,2,3,5} = lfp
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Example: Path of Even Length

Is there a path of even length from a to b?

P(x , y) = E(x , z) ∧ E(z , y)
P(x , y) = P(x , z) ∧ E(z ,u) ∧ E(u, y)
Answer() = P(a,b)
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Example: Paths of Equal Length

Is there a path a → b of the same length as a path from c → d?

Product graph G ×G :

Nodes: V ×V

Edges: {((x1, x2), (y1, y2)) ∣ (x1, y1), (x2, y2) ∈ E}

Path (a, c)→∗ (b,d) is a pair of paths a →∗ b, c →∗ d of equal length.

P(x1, x2, y1, y2) = E(x1, y1) ∧ E(x2, y2)
P(x1, x2, y1, y2) = P(x1, x2, z1, z2) ∧ E(z1, y1) ∧ E(z2, y2))
Answer() = P(a, c,b,d)
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Win-Move Game

T (x , y , z): x has children y , z ; L(x): x is a leaf.

A pebble is placed on a starting node:

Player I moves to a child,

Player II moves to a child, etc

Player who cannot move loses.

a
b

c

def

g
Player I
Player II

Compute all nodes x where Player I has a winning strategy

P2(x) = L(x)

P1(x) = T (x , y , z) ∧ P2(y)
P1(x) = T (x , y , z) ∧ P2(z)
P2(x) = T (x , y , z) ∧ P1(y) ∧ P1(z)
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Semi-positive Datalog

The Immediate Consequence Operator must be monotone in IDBs

Semi-positive Datalog allows EDBs to be negated.

Example: transitive closure of the complement graph:

T (x , y) = V (x) ∧V (y) ∧ ¬E(x , y).
T (x , y) = T (x , z) ∧ ¬E(z , y).
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Stratified Datalog

Stratified Datalog is a program partitioned into strata,
such that the rules in stratum i may use:

Positive IDBs defined in stratum i ,

Positive or negated IDBs defined in strata < i .

Example: the complement of the transitive closure:

T (x , y) = E(x , y).
T (x , y) = T (x , z) ∧ E(z , y).
Answer(x , y) = V (x) ∧V (y) ∧ ¬T (x , y).
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Positive IDBs defined in stratum i ,

Positive or negated IDBs defined in strata < i .

Example: the complement of the transitive closure:

T (x , y) = E(x , y).
T (x , y) = T (x , z) ∧ E(z , y).
Answer(x , y) = V (x) ∧V (y) ∧ ¬T (x , y).
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Discussion

Datalog can express some cool queries. Try at home:
▸ Same generation: if G = (V ,E) is a tree, find pairs of nodes x , y in the
same generation (same distance to the root)

▸ Check if G is a totally balanced tree.

But it cannot express some trivial queries:
▸ Is ∣E ∣ even?
▸ Is ∣A∣ ≤ ∣B ∣ ? (Homework)

To prove inexpressibility results for datalog we will show that it is a
subset of a much more powerful logic, Lω

∞ω, then describe a game for
Lω
∞ω.

First, we discuss Fixpoint Logic
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Fixpoint Logic
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Definition

Fixpoint Logic, LFP extends FO with a least fixpoint predicate:
lfpP,xφ

where P is a fresh relational symbol that occurs positively, and φ is a
formula that uses P has free variables x .

Example: transitive closure T (u, v) becomes:

lfpT ,x ,y(E(x , y) ∨ ∃z(E(x , z) ∧T (z , y)))(u, v)

We will continue to use the more friendly notation, example:

T (u, v) where T (x , y) = E(x , y) ∨ ∃z(E(x , z) ∧T (z , y))
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Example

What doses this formula compute?

S(x) = (∀y(E(x , y)→ S(y)))
6 7

5
4

2 3
1

The Kleene sequence:

S0 =∅
S1 =

{6,7}

S2 =

{6,7,4}

S3 =

{6,7,4,2}

S4 =

{6,7,4,2} = S3 = lfp

Nodes 1,3,5 never show
up in Sn. WHY?

G is acyclic iff ∀xS(x)
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Example: The Win-Move Game

G = (V ,E) no more restriction to two children

P1(x) = ∃y(E(x , y)∧∀z(E(y , z)→ P1(z)))

Theorem (Kolaitis)

The win-move game is not expressible in stratified datalog.

Contrast with our previous solution on graphs with degree 2.

Finite Model Theory Lecture 11 Spring 2025 20 / 31



Fixpoints Datalog Fixpoint Logic Ordinal Numbers L∞ω

Example: The Win-Move Game

G = (V ,E) no more restriction to two children

P1(x) = ∃y(E(x , y)∧∀z(E(y , z)→ P1(z)))

Theorem (Kolaitis)

The win-move game is not expressible in stratified datalog.

Contrast with our previous solution on graphs with degree 2.

Finite Model Theory Lecture 11 Spring 2025 20 / 31



Fixpoints Datalog Fixpoint Logic Ordinal Numbers L∞ω

Unfolding the Recursion

S(x) = (∀y(E(x , y)→ S(y)))

The ICO: F (S) = {x ∣ ∀y(E(x , y)→ S(y))}

Elements of the Kleene sequence are computed by unfolded formulas:

S0 = ∅ φ0(x) = FALSE
S1 = F (S0) φ1(x) = ∀y(E(x , y)→ φ0(y))
S2 = F (S1) φ2(x) = ∀y(E(x , y)→ φ1(y))

. . .
Sn+1 = F (Sn) φn+1(x) = ∀y(E(x , y)→ φn(y))

. . .

lfp(S)(x) = φ0(x) ∨ φ1(x) ∨⋯ ∨ φn(x) ∨⋯
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Discussion

Datalog, semi-positive Datalog, stratified Datalog

Least Fixpoint Logic (LFP)

LFP strictly more powerful than Datalog

There are other more powerful (and more ugly) forms of fixpoints
that we wont discuss

Infinitary logic, Lω
∞ω allows us to write formulas like:

φ0(x) ∨ φ1(x) ∨⋯ ∨ φn(x) ∨⋯

What are ∞ and ω? Will discuss next.
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Ordinal Numbers
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Review: Cardinal Numbers

A cardinal number is an equivalence class ∣A∣ under bijection.

ℵ0 = ∣N∣ is the smallest infinite cardinal number

c = ∣R∣ is the cardinal of the continuum.

Weird arithmetic: ℵ0 + c = c, ℵ0 × c = c, c × c = c, . . .

Much larger cardinal numbers exists: ℵ0 < 2ℵ0 < 22
ℵ0 < 222

ℵ0 < ⋯
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Well Ordered Sets
A partial order is a pair (S ,≤),
where ≤ is reflexive, antisymmetric, and transitive.

Definition

(S ,≤) is a well order if every subset A ⊆ S has a minimal element.

Fact

If ≤ is a well order then it is also a total order.

Proof: given x , y , set A = {x , y}.
min(A) ∈ A: either min(x , y) = x and x ≤ y , or min(x , y) = y and y ≤ x .

Fact

≤ is a well order iff its total and has no infinite descending chains:
x0 > x1 > x2 > . . .
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Ordinal Numbers

Definition

A cardinal number is an equivalence class (under bijection) of a set.

Definition

An ordinal number is an isomorphism class of a well ordered set.
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Examples
Every finite number is an ordinal: ([n],≤).

(N,≤) is a well ordered set. Its ordinal number is denoted ω:

ω ∶ 0 < 1 < 2 < 3 < ⋯
ω + 1 ∶ 0 < 1 < 2 < 3 < ⋯< 01

ω + 2 ∶ 0 < 1 < 2 < 3 < ⋯< 01 < 11

. . .

ω + ω ∶ 0 < 1 < 2 < 3 < ⋯< 01 < 11 < 21 < ⋯
ω + ω + ω ∶ . . .
. . .

ω × ω ∶ 0 < 1 < 2 < ⋯< 01 < 11 < ⋯ < 02 < 12 < ⋯ < ⋯

All these are countable ordinals, i.e. their cardinal number is ℵ0
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Infinitely Many Ordinals

Is (R,≤) well ordered?

NO! The set {12 ,
1
3 ,

1
4 , . . .} has no minimal element.

Theorem

Every set can be well ordered.

Every ordinal number has a unique cardinal number.

A cardinal number can have many ordinal numbers.
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L∞ω
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Lω∞ω

Let α,β be ordinals. The infinitary logic Lαβ is:
▸ Atoms: xi = xj , R(⋯)
▸ Formulas: ⋁i∈I φi , and (. . .∃xj . . .

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
j∈J

)φ, and ¬φ,for ∣I ∣ < α, ∣J ∣ < β.

Lωω = FO; finite disjunctions, finite quantifier sequence.

L∞ω = infinite disjunction (no bound!), finite quantifier sequence.

Lk
∞ω = the restriction to k variables.

Lω
∞ω = ⋃k≥0 L

k
∞ω. What is ⋃k≥0 FO

k?
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Discussion

Next time:

The logic LFP is a subset of Lω
∞ω.

Pebble games, which generalize EF games, characterize expressibility
in Lω

∞ω.

As an example, will show that EVEN is not expressible in Lω
∞ω, hence

neither in LFP or Datalog.
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