Finite Model Theory Lecture 10: Second Order Logic

Spring 2025

Announcements

• Homework 3 is posted and due on May 9

• Lecture topics on the Website are finally in a stable state

Today: finish the discussion of SO

• Next week: recursion (datalog!), infinitary logics, pebble games.

Second Order Logic

Quick Review

Definition

Second Order Logic, SO, extends FO with *2nd order variables*, which range over relations.

- Add second order quantifiers: $\forall X, \exists Y$
- Add atoms of the form X(u, v, w)

Examples

Connectivity:

$$\forall U(\exists x \exists y (U(x) \land \neg U(y)) \rightarrow \exists u \exists v (E(u,v) \land U(u) \land \neg U(v)))$$

3-Colorability:

$$\exists R \exists B \exists G \forall x (R(x) \lor B(x) \lor G(x))$$

$$\land \forall x \forall y (E(x,y) \to \neg (R(x) \land R(y)))$$

$$\land \forall x \forall y (E(x,y) \to \neg (G(x) \land G(y)))$$

$$\land \forall x \forall y (E(x,y) \to \neg (B(x) \land B(y)))$$

Review: Fragments of SO

Existential SO: ESO or 3SO. Recall: captures NP

Monadic Second Order Logic, MSO

Existential Monadic SO, ∃MSO

Fix an alphabet Σ , e.g. $\Sigma = \{a, b, c\}$.

A word $w \in \Sigma^*$ encoded as a structure over $\sigma = (\langle P_a, P_b, P_c \rangle)$.

Fix an alphabet Σ , e.g. $\Sigma = \{a, b, c\}$.

A word $w \in \Sigma^*$ encoded as a structure over $\sigma = (\langle P_a, P_b, P_c \rangle)$.

Example: aabaca represented by ([6], <, P_a , P_b , P_c), $P_a = \{1, 2, 4, 6\}$, etc.

Finite Model Theory Lecture 10 Spring 2025 7/34

Fix an alphabet Σ , e.g. $\Sigma = \{a, b, c\}$.

A word $w \in \Sigma^*$ encoded as a structure over $\sigma = (\langle P_a, P_b, P_c \rangle)$.

Example: aabaca represented by ([6], <, P_a , P_b , P_c), P_a = {1, 2, 4, 6}, etc.

Assume
$$\Sigma = \{a, b\}$$
: $\exists x P_a(x)$ $(a|b)^* \cdot a \cdot (a|b)^*$

7/34

Review: MSO on Words

Fix an alphabet Σ , e.g. $\Sigma = \{a, b, c\}$.

A word $w \in \Sigma^*$ encoded as a structure over $\sigma = (\langle P_a, P_b, P_c \rangle)$.

Example: aabaca represented by ([6], <, P_a , P_b , P_c), $P_a = \{1, 2, 4, 6\}$, etc.

Assume
$$\Sigma = \{a, b\}$$
: $\exists x P_a(x)$ $(a|b)^* \cdot a \cdot (a|b)^*$

$$\forall x \forall y ((x < y \land P_a(y)) \Rightarrow P_a(x))$$
 a^*b^*

Finite Model Theory Lecture 10 Spring 2025

Fix an alphabet Σ , e.g. $\Sigma = \{a, b, c\}$.

A word $w \in \Sigma^*$ encoded as a structure over $\sigma = (\langle P_a, P_b, P_c \rangle)$.

Example: aabaca represented by ([6], <, P_a , P_b , P_c), $P_a = \{1, 2, 4, 6\}$, etc.

Assume
$$\Sigma = \{a, b\}$$
: $\exists x P_a(x)$ $(a|b)^* \cdot a \cdot (a|b)^*$

$$\forall x \forall y ((x < y \land P_a(y)) \Rightarrow P_a(x))$$

$$a^* b^*$$

$$\forall x \forall y (x < y \land P_a(x) \land P_a(y) \Rightarrow \exists z (x < z \land z < y \land P_b(z)))$$

$$b^*.(a.b^+)^*(a|\varepsilon)$$

Finite Model Theory Lecture 10 Spring 2025 7/34

Fix an alphabet Σ , e.g. $\Sigma = \{a, b, c\}$.

A word $w \in \Sigma^*$ encoded as a structure over $\sigma = (\langle P_a, P_b, P_c \rangle)$.

Example: aabaca represented by ([6], <, P_a , P_b , P_c), $P_a = \{1, 2, 4, 6\}$, etc.

Assume
$$\Sigma = \{a, b\}$$
: $\exists x P_a(x)$ $(a|b)^* .a.(a|b)^*$

$$\forall x \forall y ((x < y \land P_a(y)) \Rightarrow P_a(x))$$

$$a^*b^*$$

$$\forall x \forall y (x < y \land P_a(x) \land P_a(y) \Rightarrow \exists z (x < z \land z < y \land P_b(z))) b^*.(a.b^+)^*(a|\varepsilon)$$

$$\forall x P_{a}(x) \land \exists X (X(\overline{\min}) \land \neg X(\overline{\max}) \land$$

$$\forall u \forall v (\text{succ}(u, v) \Rightarrow (X(u) \land \neg X(v)) \lor (\neg X(u) \land X(v))))$$
(a.a)*

Finite Model Theory Lecture 10 Spring 2025 7/34

Review: Büchi's Theorem

Theorem

MSO on strings captures regular languages

Proof

Part 1: Automaton with *n* states \Rightarrow MSO sentence $\varphi = \exists S_1 \cdots \exists S_n (\cdots)$

Part 2: Sub-formulas of φ to automaton over extended vocabulary.

Discussion

∃SO captures NP;

- MSO over words: linear time; expression complexity: non-elementary¹
- Over words: ∃MSO = MSO = ∀MSO
- Courcelle's theorem: MSO over structures of bounded treewidth is in linear time.
- ∃MSO ≠ ∀MSO (today)

Finite Model Theory Lecture 10 Spring 2025 9 / 34

¹Tower of exponentials of unbounded height.

FO on Words

FO on Words

FO cannot express $(a.a)^*$

WHY??

11/34

Will prove that FO captures precisely the star-free languages

Fix an alphabet Σ . Regular expressions are:

$$E := \emptyset \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*$$

where C(E) means "complement".

Fix an alphabet Σ . Regular expressions are:

$$\boxed{E ::= \varnothing \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*}$$

where C(E) means "complement".

E is called *star-free* if it is equivalent to an expression without *.

Fix an alphabet Σ . Regular expressions are:

$$E ::= \emptyset \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*$$

where C(E) means "complement".

E is called *star-free* if it is equivalent to an expression without *.

 $\Sigma = \{a, b\}$, which of the expressions below are star-free?

- Σ*
- b*
- (a.b)*
- (a.a)*

Fix an alphabet Σ . Regular expressions are:

$$E := \emptyset \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*$$

where C(E) means "complement".

E is called star-free if it is equivalent to an expression without *.

 $\Sigma = \{a, b\}$, which of the expressions below are star-free?

$$\bullet$$
 Σ^* $C(\varnothing)$

- b*
- (a.b)*
- (a.a)*

Fix an alphabet Σ . Regular expressions are:

$$E := \emptyset \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*$$

where C(E) means "complement".

E is called star-free if it is equivalent to an expression without *.

 $\Sigma = \{a, b\}$, which of the expressions below are star-free?

$$ullet$$
 Σ^* $C(\varnothing)$

•
$$b^*$$
 $C(\Sigma^*.a.\Sigma^*)$

- (a.b)*
- (a.a)*

Fix an alphabet Σ . Regular expressions are:

$$E := \emptyset \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*$$

where C(E) means "complement".

E is called star-free if it is equivalent to an expression without *.

 $\Sigma = \{a, b\}$, which of the expressions below are star-free?

$$ullet$$
 Σ^* $C(\varnothing)$

•
$$b^*$$
 $C(\Sigma^*.a.\Sigma^*)$

•
$$(a.b)^*$$
 $C(\Sigma^*.a.a.\Sigma^* \cup \Sigma^*.b.b.\Sigma^* \cup b.\Sigma^* \cup \Sigma^*.a)$

• (a.a)*

Fix an alphabet Σ . Regular expressions are:

$$E := \emptyset \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*$$

where C(E) means "complement".

E is called *star-free* if it is equivalent to an expression without *.

 $\Sigma = \{a, b\}$, which of the expressions below are star-free?

$$ullet$$
 Σ^* $C(\varnothing)$

•
$$b^*$$
 $C(\Sigma^*.a.\Sigma^*)$

•
$$(a.b)^*$$
 $C(\Sigma^*.a.a.\Sigma^* \cup \Sigma^*.b.b.\Sigma^* \cup b.\Sigma^* \cup \Sigma^*.a)$

• $(a.a)^*$ NOT star free! Let's prove it.

FO on Words

Theorem

FO over strings captures precisely the star-free regular languages.

Consequence: $(a.a)^*$ is not star-free.

Otherwise: express it in FO, use it for EVEN of $(L_n, <)$, contradiction.

First, convert E to an FO formula $\varphi_E(x,y)$ stating "the substring w[x:y) is in L(E)"

First, convert E to an FO formula $\varphi_E(x,y)$ stating "the substring w[x:y] is in L(E)"

- Ø becomes FALSE
- ε becomes x = y
- a becomes $P_a(x) \wedge \operatorname{succ}(x,y)$

First, convert E to an FO formula $\varphi_E(x,y)$ stating "the substring w[x:y] is in L(E)"

- Ø becomes FALSE
- ε becomes x = y
- a becomes $P_a(x) \wedge \operatorname{succ}(x,y)$
- $E_1 \cup E_2$ becomes $\varphi_{E_1}(x,y) \vee \varphi_{E_2}(x,y)$
- $E_1.E_2$ becomes $\exists z (\varphi_{E_1}(x,z) \land \varphi_{E_2}(z,y))$.

First, convert E to an FO formula $\varphi_E(x,y)$ stating "the substring w[x:y] is in L(E)"

- Ø becomes FALSE
- ε becomes x = y
- a becomes $P_a(x) \wedge \operatorname{succ}(x,y)$
- $E_1 \cup E_2$ becomes $\varphi_{E_1}(x,y) \vee \varphi_{E_2}(x,y)$
- $E_1.E_2$ becomes $\exists z (\varphi_{E_1}(x,z) \land \varphi_{E_2}(z,y))$.
- C(E) becomes $\neg \varphi_E(x, y)$

First, convert E to an FO formula $\varphi_E(x,y)$ stating "the substring w[x:y] is in L(E)"

- Ø becomes FALSE
- ε becomes x = y
- a becomes $P_a(x) \wedge \operatorname{succ}(x,y)$
- $E_1 \cup E_2$ becomes $\varphi_{E_1}(x,y) \vee \varphi_{E_2}(x,y)$
- $E_1.E_2$ becomes $\exists z (\varphi_{E_1}(x,z) \land \varphi_{E_2}(z,y))$.
- C(E) becomes $\neg \varphi_E(x, y)$

Finally, complete the translation with:

$$\exists x \exists y (\mathsf{isMin}(x) \land \mathsf{isMax}(y) \land E(x,y))$$

Proof: Part 2

For each sentence φ , construct regular expression E_{φ} s.t. $w \models \varphi$ iff $w \in L(E_{\varphi})$

Proof: Part 2

For each sentence φ , construct regular expression E_{φ} s.t. $w \models \varphi$ iff $w \in L(E_{\varphi})$

We showed to translate an MSO formula φ to an automaton over an extended alphabet $\overline{\Sigma}$

Can we use the same proof but instead of automaton construct a regular expression?

Proof: Part 2

For each sentence φ , construct regular expression E_{φ} s.t. $w \models \varphi$ iff $w \in L(E_{\varphi})$

We showed to translate an MSO formula φ to an automaton over an extended alphabet $\overline{\Sigma}$

Can we use the same proof but instead of automaton construct a regular expression?

Let's take a closer look at that proof and see what exactly fails.

$$\Sigma = \{a, b, c\}$$

$$\varphi = \exists x P_{a}(x) \land \forall y (x < y \rightarrow P_{b}(y))$$

Meaning???

$$\Sigma = \{a, b, c\}$$

$$\varphi = \exists x P_{a}(x) \land \forall y (x < y \rightarrow P_{b}(y))$$

$$(a|b|c)^*.a.b^*$$

$$\Sigma = \{a, b, c\}$$

$$\varphi = \exists x P_a(x) \land \forall y (x < y \to P_b(y))$$
$$\exists x (P_a(x) \land \neg \exists y (x < y \land \neg P_b(y)))$$

$$(a|b|c)^*.a.b^*$$

$$\Sigma = \{a, b, c\} \qquad \varphi = \exists x P_a(x) \land \forall y (x < y \to P_b(y))$$

$$\exists x (P_a(x) \land \neg \exists y (x < y \land \neg P_b(y)))$$

$$(a|b|c)^*.a.b^*$$

Extended alphabets: $\overline{\Sigma} \stackrel{\text{def}}{=} \{a, a^x, b, b^x, c, c^x\}$ $\overline{\overline{\Sigma}} = \{a, a^x, a^y, a^{xy}, \ldots\}$

$$\Sigma = \{a, b, c\} \qquad \varphi = \exists x P_a(x) \land \forall y (x < y \to P_b(y))$$

$$\exists x (P_a(x) \land \neg \exists y (x < y \land \neg P_b(y)))$$

$$(a|b|c)^* .a.b^*$$

At least one a^x : $\overline{\Sigma}^*.a^x.\overline{\Sigma}^*$

$$\Sigma = \{a, b, c\} \qquad \varphi = \exists x P_a(x) \land \forall y (x < y \to P_b(y)) \qquad (a|b|c)^*.a.b^*$$

$$\exists x \left(P_a(x) \land \neg \exists y (x < y \land \neg P_b(y)) \right)$$
 At least one a^x : $\overline{\Sigma}^*.a^x.\overline{\Sigma}^*$
$$x \text{ followed } y$$
: $\overline{\overline{\Sigma}}^*.(a^x|a^{xy}|b^x|\cdots).\overline{\overline{\Sigma}}^*.(a^y|a^{xy}|\cdots).\overline{\overline{\Sigma}}^*$

$$\Sigma = \{a, b, c\} \qquad \varphi = \exists x P_a(x) \land \forall y (x < y \to P_b(y)) \qquad (a|b|c)^*.a.b^*$$

$$\exists x (P_a(x) \land \neg \exists y (x < y \land \neg P_b(y)))$$
At least one a^x : $\overline{\Sigma}^*.a^x.\overline{\Sigma}^*$

$$x \text{ followed } y$$
: $\overline{\overline{\Sigma}}^*.(a^x|a^{xy}|b^x|\cdots).\overline{\overline{\Sigma}}^*.(a^y|a^{xy}|\cdots).\overline{\overline{\Sigma}}^*$
At least one y that is $\neq b$: $\overline{\overline{\Sigma}}^*.(a^y|a^{xy}|\cdots|c^{xy}).\overline{\overline{\Sigma}}^*$

$$\begin{split} \Sigma &= \{a,b,c\} & \varphi &= \exists x P_a(x) \land \forall y (x < y \to P_b(y)) \\ &\exists x \left(P_a(x) \land \neg \exists y (x < y \land \neg P_b(y))\right) \\ \text{At least one } a^x \colon \overline{\Sigma}^*.a^x.\overline{\Sigma}^* \\ & x \text{ followed } y \colon \overline{\overline{\Sigma}}^*.(a^x|a^{xy}|b^x|\cdots).\overline{\overline{\Sigma}}^*.(a^y|a^{xy}|\cdots).\overline{\overline{\Sigma}}^* \\ & \text{At least one } y \text{ that is } \neq b \colon \overline{\overline{\Sigma}}^*.(a^y|a^{xy}|\ldots|c^{xy}).\overline{\overline{\Sigma}}^* \end{split}$$

$$\begin{split} \Sigma &= \{a,b,c\} & \varphi &= \exists x P_a(x) \land \forall y (x < y \to P_b(y)) \\ &\exists x \left(P_a(x) \land \neg \exists y (x < y \land \neg P_b(y))\right) \end{split} \\ \text{At least one } a^x \colon \overline{\Sigma}^*.a^x.\overline{\Sigma}^* \\ & x \text{ followed } y \colon \overline{\overline{\Sigma}}^*.(a^x|a^{xy}|b^x|\cdots).\overline{\overline{\Sigma}}^*.(a^y|a^{xy}|\cdots).\overline{\overline{\Sigma}}^* \\ & \text{At least one } y \text{ that is } \neq b \colon \overline{\overline{\Sigma}}^*.(a^y|a^{xy}|\ldots|c^{xy}).\overline{\overline{\Sigma}}^* \end{split}$$

Intersect, enforce unique y:

$$\Sigma = \{a, b, c\} \qquad \varphi = \exists x P_a(x) \land \forall y (x < y \to P_b(y))$$

$$\exists x (P_a(x) \land \neg \exists y (x < y \land \neg P_b(y)))$$
At least one a^x : $\overline{\Sigma}^* . a^x . \overline{\Sigma}^*$

x followed y: $\overline{\overline{\Sigma}}^*.(a^x|a^{xy}|b^x|\cdots).\overline{\overline{\Sigma}}^*.(a^y|a^{xy}|\cdots).\overline{\overline{\Sigma}}^*$ At least one y that is $\neq b$: $\overline{\overline{\Sigma}}^*.(a^y|a^{xy}|\cdots).\overline{\overline{\Sigma}}^*$

Intersect, enforce unique y:

Remove labels $y: \overline{\overline{\Sigma}} \to \overline{\Sigma}$

Some x followed by a|c: $\overline{\Sigma}^*$. $(a^x|b^x|c^x)$. $\overline{\Sigma}^*$. $(a|a^x|c|c^x)$. $\overline{\Sigma}^*$

$$\Sigma = \{a, b, c\} \qquad \varphi = \exists x P_a(x) \land \forall y (x < y \to P_b(y)) \qquad (a|b|c)^*.a.b^*$$

$$\exists x (P_a(x) \land \neg \exists y (x < y \land \neg P_b(y)))$$
At least one a^x : $\overline{\Sigma}^*.a^x.\overline{\Sigma}^*$

$$x \text{ followed } y$$
: $\overline{\overline{\Sigma}}^*.(a^x|a^{xy}|b^x|\cdots).\overline{\overline{\Sigma}}^*.(a^y|a^{xy}|\cdots).\overline{\overline{\Sigma}}^*$

At least one y that is $\neq b$: $\overline{\overline{\Sigma}}^*.(a^y|a^{xy}|...|c^{xy}).\overline{\overline{\Sigma}}^*$

Intersect, enforce unique *y*:

Remove labels $y \colon \overline{\overline{\Sigma}} \to \overline{\Sigma}$

Some x followed by a|c: $\overline{\Sigma}^*$. $(a^x|b^x|c^x)$. $\overline{\Sigma}^*$. $(a|a^x|c|c^x)$. $\overline{\Sigma}^*$

Negate: after every x is b^* .

Finite Model Theory Lecture 10 Spring 2025 16 / 34

$$\Sigma = \{a, b, c\} \qquad \varphi = \exists x P_a(x) \land \forall y (x < y \to P_b(y)) \qquad (a|b|c)^*.a.b^*$$

$$\exists x (P_a(x) \land \neg \exists y (x < y \land \neg P_b(y)))$$
At least one a^x : $\overline{\Sigma}^*.a^x.\overline{\Sigma}^*$

$$x \text{ followed } y$$
: $\overline{\overline{\Sigma}}^*.(a^x|a^{xy}|b^x|\cdots).\overline{\overline{\Sigma}}^*.(a^y|a^{xy}|\cdots).\overline{\overline{\Sigma}}^*$

At least one y that is $\neq b$: $\overline{\overline{\Sigma}}^*$. $(a^y|a^{xy}|...|c^{xy})$. $\overline{\overline{\Sigma}}^*$

Intersect, enforce unique y:

Remove labels $y \colon \overline{\overline{\Sigma}} \to \overline{\Sigma}$

Some x followed by a|c: $\overline{\Sigma}^*$. $(a^x|b^x|c^x)$. $\overline{\Sigma}^*$. $(a|a^x|c|c^x)$. $\overline{\Sigma}^*$

Negate: after every x is b^* .

Intersect $P_a(x)$.

Drop x.

Finite Model Theory Lecture 10 Spring 2025 16 / 34

Fix two alphabets and a function $f: \overline{\Sigma} \to \Sigma$.

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $L(f(A)) = f(L(A))$

Fix two alphabets and a function $f: \overline{\Sigma} \to \Sigma$.

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $L(f(A)) = f(L(A))$

$$\overline{\Sigma} = \{a, b\}$$

$$\Sigma = \{c\}$$

$$f(a) = f(b) = c.$$

Fix two alphabets and a function $f: \overline{\Sigma} \to \Sigma$.

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $L(f(A)) = f(L(A))$

$$\overline{\Sigma} = \{a, b\}$$

$$\Sigma = \{c\}$$

$$f(a) = f(b) = c.$$

Fix two alphabets and a function $f: \overline{\Sigma} \to \Sigma$.

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $L(f(A)) = f(L(A))$

$$\overline{\Sigma} = \{a, b\}$$

$$\Sigma = \{c\}$$

$$f(a) = f(b) = c.$$

Fix two alphabets and a function $f: \overline{\Sigma} \to \Sigma$.

If A is an automaton, then:

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $L(f(A)) = f(L(A))$

$$\overline{\Sigma} = \{a, b\}$$

$$\Sigma = \{c\}$$

$$f(a) = f(b) = c.$$

This fails for regular expressions with complement: $L(f(E)) \neq f(L(E))$

Fix two alphabets and a function $f: \overline{\Sigma} \to \Sigma$.

If A is an automaton, then:

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $L(f(A)) = f(L(A))$

$$\overline{\Sigma} = \{a, b\}$$

$$\Sigma = \{c\}$$

$$f(a) = f(b) = c.$$

This fails for regular expressions with complement: $L(f(E)) \neq f(L(E))$

$$E = C((a|b)^*.a.a.(a|b)^* \cup (a|b)^*.b.b.(a|b)^* \cup b.(a|b)^* \cup (a|b)^*.a)$$

$$L(E) = (a.a)^*$$

Fix two alphabets and a function $f: \overline{\Sigma} \to \Sigma$.

If A is an automaton, then:

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $L(f(A)) = f(L(A))$

$$\overline{\Sigma} = \{a, b\}$$

$$\Sigma = \{c\}$$

$$f(a) = f(b) = c.$$

This fails for regular expressions with complement: $L(f(E)) \neq f(L(E))$

$$E = C((a|b)^*.a.a.(a|b)^* \cup (a|b)^*.b.b.(a|b)^* \cup b.(a|b)^* \cup (a|b)^*.a)$$

$$L(E) = (a.a)^*$$

$$f(E) = C(c^*.c.c.c^* \cup c^*.c.c.c^* \cup c.c^* \cup c^*.c) = \varepsilon$$

$$L(f(E)) = \varepsilon$$
.

Discussion

We need a inductive proof that uses only sentences, no formulas.

Will do induction on the quantifier depth k.

And we will use FO[k] types.

Review: FO[k] types

FO[k] is FO where we restrict formulas to quantifer rank $\leq k$.

We defined $tp_{k,m}$ where m = number of free variables.

Today: we only need m = 0.

Definition

Let \boldsymbol{A} be a structure. Its FO[k]-type is: $\operatorname{tp}_k(\boldsymbol{A}) = \{ \varphi \in \operatorname{FO}[k] \mid \boldsymbol{A} \vDash \varphi \}$

Every FO[k]-type is a finite set of sentences: their \wedge is a single sentence:

$$\tau = \mathsf{tp}_k(\mathbf{A})$$

Finite Model Theory Lecture 10 Spring 2025 19 / 34

Review: EF-games on Linear Order

Let
$$L_m = (\lceil m \rceil, <)$$
. Denote:²

$$L_m^{< a} \stackrel{\text{def}}{=} \{ x \in L_m \mid x < a \}$$

$$L_m^{>a} \stackrel{\mathsf{def}}{=} \{ x \in L_m \mid x > a \}$$

Finite Model Theory Lecture 10 Spring 2025 20 / 34

²Isomorphic to linear orders: $\mathbf{L}_{m}^{< a} \simeq \mathbf{L}_{a-1}$, $\mathbf{L}_{m}^{> a} \simeq \mathbf{L}_{m-a}$.

Review: EF-games on Linear Order

Let
$$L_m = (\lceil m \rceil, <)$$
. Denote:²

$$L_m^{< a} \stackrel{\text{def}}{=} \{ x \in L_m \mid x < a \}$$

$$L_m^{>a} \stackrel{\text{def}}{=} \{ x \in L_m \mid x > a \}$$

Lemma

If
$$L_m^{< a} \sim_k L_n^{< b}$$
 and $L_m^{> a} \sim_k L_n^{> b}$, then $L_m \sim_k L_n$.

²Isomorphic to linear orders:
$$\boldsymbol{L}_{m}^{< a} \simeq \boldsymbol{L}_{a-1}$$
, $\boldsymbol{L}_{m}^{> a} \simeq \boldsymbol{L}_{m-a}$.

Finite Model Theory Lecture 10 Spring 2025 20 / 34

EF Games on Words

$$\sigma = (\langle \overline{\min}, P_{a_1}, P_{a_2}, \ldots)$$

$$\sigma_1 = \sigma \cup \{c\}$$
 (add a constant c)

Lemma

If
$$w^{< p} \sim_k u^{< q}$$
 and $w^{\ge p} \sim_k u^{\ge q}$ then $(w, p) \sim_k (u, q)$ (i.e. $c^w = p, c^u = q$)

EF Games on Words

$$\sigma = (<, \overline{\min}, P_{a_1}, P_{a_2}, \ldots)$$

$$\sigma_1 = \sigma \cup \{c\}$$
 (add a constant c)

Lemma

If
$$w^{< p} \sim_k u^{< q}$$
 and $w^{\geq p} \sim_k u^{\geq q}$ then $(w, p) \sim_k (u, q)$ (i.e. $c^w = p, c^u = q$)

Finite Model Theory Lecture 10 Spring 2025 21/34

EF Games on Words

$$\sigma = (<, \overline{\min}, P_{a_1}, P_{a_2}, \ldots)$$

$$\sigma_1 = \sigma \cup \{c\}$$
 (add a constant c)

Lemma

If
$$w^{< p} \sim_k u^{< q}$$
 and $w^{\geq p} \sim_k u^{\geq q}$ then $(w, p) \sim_k (u, q)$ (i.e. $c^w = p, c^u = q$)

$$u = \begin{bmatrix} a_1 & a_2 & a_2 & a_1 & \dots & a_2 & a_3 & a_1 & a_1 & a_2 & \dots \end{bmatrix}$$

Proof in class.

It is necessary to have min in the vocabulary. why???

For every sentence φ we construct a star-free regular expression E_{φ} .

For every sentence φ we construct a star-free regular expression E_{φ} .

Note: no free variables. Instead we prove by induction on $k = qr(\varphi)$.

For each k we also do induction on the structure of φ :

• If
$$\varphi = \varphi_1 \vee \varphi_2$$

• If
$$\varphi = \neg \varphi_1$$

then
$$E_{\varphi} = E_{\varphi_1} | E_{\varphi_2}$$

then
$$E_{\varphi} = C(E_{\varphi_1})$$
.

22 / 34

22 / 34

Proof: Part 2

For every sentence φ we construct a star-free regular expression E_{φ} .

$$qr(\varphi) = 0.$$

- If $\varphi = P_a(\overline{\min})$
- If $\varphi = (\overline{\min} < \overline{\min})$

For every sentence φ we construct a star-free regular expression E_{φ} .

$$qr(\varphi) = 0.$$

• If
$$\varphi = P_a(\overline{\min})$$

then
$$E_{\varphi} = a$$

22 / 34

• If
$$\varphi = (\overline{\min} < \overline{\min})$$

For every sentence φ we construct a star-free regular expression E_{φ} .

$$qr(\varphi) = 0.$$

• If
$$\varphi = P_a(\overline{\min})$$

• If
$$\varphi = (\overline{\min} < \overline{\min})$$

then
$$E_{\varphi} = a$$

then
$$E_{\varphi} = \emptyset$$

22 / 34

For every sentence φ we construct a star-free regular expression E_{φ} .

$$qr(\varphi) = k + 1$$
. Assume w.l.o.g. $\varphi = \exists x \psi(x)$
$$S \stackrel{\text{def}}{=} \{ (\mathsf{tp}_k(u^{< q}), \mathsf{tp}_k(u^{\geq q})) \mid u \in \Sigma^*, q \in \mathbb{N}, u \vDash \psi(q), = \sigma \}$$

For every sentence φ we construct a star-free regular expression E_{φ} .

$$qr(\varphi) = k + 1$$
. Assume w.l.o.g. $\varphi = \exists x \psi(x)$
$$S \stackrel{\mathsf{def}}{=} \{ (\mathsf{tp}_k(u^{< q}), \mathsf{tp}_k(u^{\geq q})) \mid u \in \Sigma^*, q \in \mathbb{N}, u \models \psi(q), = \sigma \}$$

Claim: for every $w \in \Sigma^*$:

$$w \vDash \varphi \text{ iff } \exists p \in \mathbb{N}, (\mathsf{tp}_k(w^{< p}), \mathsf{tp}_k(w^{\geq p})) \in S$$

For every sentence φ we construct a star-free regular expression E_{φ} .

$$qr(\varphi) = k + 1$$
. Assume w.l.o.g. $\varphi = \exists x \psi(x)$
$$S \stackrel{\text{def}}{=} \{ (\mathsf{tp}_k(u^{< q}), \mathsf{tp}_k(u^{\geq q})) \mid u \in \Sigma^*, q \in \mathbb{N}, u \vDash \psi(q), = \sigma \}$$

Claim: for every $w \in \Sigma^*$:

$$w \vDash \varphi \text{ iff } \exists p \in \mathbb{N}, (\mathsf{tp}_k(w^{< p}), \mathsf{tp}_k(w^{\geq p})) \in S$$

$$S = \{(\sigma_1, \tau_1), \dots, (\sigma_n, \tau_n)\} \text{ (finite)}; \quad \text{claim implies } E_\varphi = E_{\sigma_1}.E_{\tau_1}|E_{\sigma_2}.E_{\tau_2}|\cdots$$

For every sentence φ we construct a star-free regular expression E_{φ} .

$$qr(\varphi) = k + 1$$
. Assume w.l.o.g. $\varphi = \exists x \psi(x)$
$$S \stackrel{\text{def}}{=} \{ (\mathsf{tp}_k(u^{< q}), \mathsf{tp}_k(u^{\geq q})) \mid u \in \Sigma^*, q \in \mathbb{N}, u \vDash \psi(q), = \sigma \}$$

Claim: for every $w \in \Sigma^*$:

$$w \vDash \varphi \text{ iff } \exists p \in \mathbb{N}, (\mathsf{tp}_k(w^{< p}), \mathsf{tp}_k(w^{\geq p})) \in S$$

If $w \models \varphi$ then $\exists q$ s.t. $w \models \psi(q)$ and $(\mathsf{tp}_k(w^{\leq p}), \mathsf{tp}_k(w^{\geq p})) \in S$

For every sentence φ we construct a star-free regular expression E_{φ} .

$$qr(\varphi) = k + 1$$
. Assume w.l.o.g. $\varphi = \exists x \psi(x)$
$$S \stackrel{\text{def}}{=} \{ (\mathsf{tp}_k(u^{< q}), \mathsf{tp}_k(u^{\geq q})) \mid u \in \Sigma^*, q \in \mathbb{N}, u \vDash \psi(q), = \sigma \}$$

Claim: for every $w \in \Sigma^*$:

$$w \vDash \varphi \text{ iff } \exists p \in \mathbb{N}, (\mathsf{tp}_k(w^{< p}), \mathsf{tp}_k(w^{\geq p})) \in S$$

If $(\mathsf{tp}_k(w^{< p}), \mathsf{tp}_k(w^{\geq p})) \in S$ then $\exists u \in \Sigma^*, q \in \mathbb{N}, u \models \psi(q)$:

$$\boxed{\operatorname{tp}_k(w^{< p}) = \operatorname{tp}_k(u^{< q})}$$
 and $\boxed{\operatorname{tp}_k(w^{\geq p}) = \operatorname{tp}_k(u^{\geq q})}$

This implies $tp_k(w) = tp_k(u)$

Then $w \models \psi(p)$, and therefore $w \models \exists x \psi(x)$.

This completes the proof.

Discussion

- The language $(a.a)^*$ is not star-free because it checks if a^* has EVEN length; is not in FO
- Satisfiability of for MSO on strings is decidable.
- The data complexity for MSO on strings is in linear time
 In general, the data complexity of MSO is in NP; can be NP-conplete.
- On strings: $\exists MSO = \forall MSO = MSO$

Problem Setting

 $\exists SO \neq \forall SO \text{ is as difficult as } NP \neq coNP.$

Surprisingly, Fagin proved $\exists MSO \neq \forall MSO$.

We will prove this result next.

Fagin's Theorem

Theorem

- (1) CONNECTIVITY is expressible in ∀MSO
- (2) CONNECTIVITY is not expressible in ∃MSO

Proof We have seen (1):

$$\forall U(\exists x \exists y (U(x) \land \neg U(y)) \rightarrow \exists u \exists v (E(u,v) \land U(u) \land \neg U(v)))$$

For (2), we will use games for $\exists MSO$.

Finite Model Theory Lecture 10 Spring 2025 26 / 34

Review: Hanf's Lemma

d-neighborhood of $a \in A$:

$$N(a,d) \stackrel{\text{def}}{=} \{b \in A \mid d(a,b) \leq d\} \cup \{\text{all constants in vocabulary}\}$$

Definition

The d-type of a is the isomorphism type of the substructure induced by N(a,d), plus the constant a.

Definition

 $\boldsymbol{A}, \boldsymbol{B}$ are d-equivalent if, for each d-type, they have the same number of elements of that type.

Hanf's Lemma

Theorem

Let $d \ge 3^{k-1} - 1$. If **A**, **B** are d-equivalent, then **A** \sim_k **B**.

The proof exhibits a winning strategy for the duplicator.

We will omit the proof.

Claim duplicator has winning strategy with k = 2 pebbles.

Claim duplicator has winning strategy with k = 2 pebbles.

Proof Use Hanf's lemma. k = 2 and $d = 3^{k-1} - 1 = 2$

Claim duplicator has winning strategy with k = 2 pebbles.

Proof Use Hanf's lemma. k = 2 and $d = 3^{k-1} - 1 = 2$

Claim duplicator has winning strategy with k = 2 pebbles.

Proof Use Hanf's lemma. k = 2 and $d = 3^{k-1} - 1 = 2$

In class: describe N(a, d)

Claim duplicator has winning strategy with k = 2 pebbles.

Proof Use Hanf's lemma. k = 2 and $d = 3^{k-1} - 1 = 2$

In class: describe N(a, d)

Claim duplicator has winning strategy with k = 2 pebbles.

Proof Use Hanf's lemma. k = 2 and $d = 3^{k-1} - 1 = 2$

In class: describe N(a, d)

Claim duplicator has winning strategy with k = 2 pebbles.

Proof Use Hanf's lemma. k = 2 and $d = 3^{k-1} - 1 = 2$

In class: describe N(a, d) Describe N(b, d)

Claim duplicator has winning strategy with k = 2 pebbles.

Proof Use Hanf's lemma. k = 2 and $d = 3^{k-1} - 1 = 2$

In class: describe N(a, d) Describe N(b, d)

Claim duplicator has winning strategy with k = 2 pebbles.

Proof Use Hanf's lemma. k = 2 and $d = 3^{k-1} - 1 = 2$

In class: describe N(a, d) Describe N(b, d)

Their types are $\bullet - \bullet - X - \bullet - \bullet$. There are 12 in each structure.

Therefore, duplicator wins with k = 2 pebbles.

Claim duplicator has winning strategy with k = 2 pebbles.

Proof Use Hanf's lemma. k = 2 and $d = 3^{k-1} - 1 = 2$

In class: describe N(a, d) Describe N(b, d)

Their types are $\bullet - \bullet - X - \bullet - \bullet$. There are 12 in each structure.

Therefore, duplicator wins with k = 2 pebbles.

At home: prove that spoiler wins in 3 rounds

From FO to MSO

The k-round Ehrenfeucht-Fraisse game is useful only for FO:

$$\mathbf{A} \equiv_k \mathbf{B} \text{ iff } \mathbf{A} \sim_k \mathbf{B}$$

Need to extend this to a game for $\exists MSO$.

$$(r, k)$$
-Ajtai-Fagin game

The (r, k)-Ajtai-Fagin Game

The (r, k)-Ajtai-Fagin game for \exists MSO and a problem P is the following:

- Duplicator picks a structure **A** that satisfies P.
- Spoiler picks r unary relations U_1^A, \ldots, U_r^A on A.
- Duplicator picks a structure **B** that does not satisfy P.
- Duplicator picks U_1^B, \ldots, U_r^B in **B**.
- Spoiler and Duplicator play an EF game with k pebbles on the structures $(\mathbf{A}, U_1^A, \dots, U_r^A)$ and $(\mathbf{B}, U_1^B, \dots, U_r^B)$.

Lemma

If Duplicator wins the (r, k) game, then no $\exists MSO$ sentence with r 2-nd order quantifiers and k 1-st order quantifiers can express P.

Lemma

If Duplicator wins the (r, k) game, then no $\exists MSO$ sentence with r 2-nd order quantifiers and k 1-st order quantifiers can express P.

Proof Assume that $\varphi = \exists U_1 \cdots \exists U_r \psi$ expresses P. Then spoiler wins:

• Duplicator chooses **A** s.t. $P(\mathbf{A}) = \text{TRUE}$. Then $\mathbf{A} \models \exists U_1 \cdots \exists U_r \psi$

Lemma

If Duplicator wins the (r, k) game, then no $\exists MSO$ sentence with r 2-nd order quantifiers and k 1-st order quantifiers can express P.

Proof Assume that $\varphi = \exists U_1 \cdots \exists U_r \psi$ expresses P. Then spoiler wins:

- Duplicator chooses **A** s.t. $P(\mathbf{A}) = \text{TRUE}$. Then $\mathbf{A} \models \exists U_1 \cdots \exists U_r \psi$
- Spoiler chooses U_1^A, \ldots, U_r^A s.t. $(A, U_1^A, \ldots, U_r^A) \models \psi$

Lemma

If Duplicator wins the (r, k) game, then no $\exists MSO$ sentence with r 2-nd order quantifiers and k 1-st order quantifiers can express P.

Proof Assume that $\varphi = \exists U_1 \cdots \exists U_r \psi$ expresses P. Then spoiler wins:

- Duplicator chooses **A** s.t. $P(\mathbf{A}) = \text{TRUE}$. Then $\mathbf{A} \models \exists U_1 \cdots \exists U_r \psi$
- Spoiler chooses U_1^A, \ldots, U_r^A s.t. $(A, U_1^A, \ldots, U_r^A) \models \psi$
- Duplicator must choose **B** s.t. P(B) = FALSE. Thus, $B \notin \varphi$.

Lemma

If Duplicator wins the (r, k) game, then no $\exists MSO$ sentence with r 2-nd order quantifiers and k 1-st order quantifiers can express P.

Proof Assume that $\varphi = \exists U_1 \cdots \exists U_r \psi$ expresses P. Then spoiler wins:

- Duplicator chooses **A** s.t. $P(\mathbf{A}) = \text{TRUE}$. Then $\mathbf{A} \models \exists U_1 \cdots \exists U_r \psi$
- Spoiler chooses U_1^A, \ldots, U_r^A s.t. $(A, U_1^A, \ldots, U_r^A) \models \psi$
- Duplicator must choose **B** s.t. $P(\mathbf{B}) = \text{FALSE}$. Thus, $\mathbf{B} \notin \varphi$.
- Duplicator chooses U_1^B, \dots, U_k^B : $(\boldsymbol{B}, U_1^B, \dots, U_r^B) \not = \psi$

Lemma

If Duplicator wins the (r, k) game, then no $\exists MSO$ sentence with r 2-nd order quantifiers and k 1-st order quantifiers can express P.

Proof Assume that $\varphi = \exists U_1 \cdots \exists U_r \psi$ expresses P. Then spoiler wins:

- Duplicator chooses **A** s.t. $P(\mathbf{A}) = \text{TRUE}$. Then $\mathbf{A} \models \exists U_1 \cdots \exists U_r \psi$
- Spoiler chooses U_1^A, \ldots, U_r^A s.t. $(A, U_1^A, \ldots, U_r^A) \models \psi$
- Duplicator must choose **B** s.t. $P(\mathbf{B}) = \text{FALSE}$. Thus, $\mathbf{B} \notin \varphi$.
- Duplicator chooses U_1^B, \dots, U_k^B : $(\boldsymbol{B}, U_1^B, \dots, U_r^B) \neq \psi$
- Then $(A, U_1^A, \dots, U_k^A) \not\uparrow_k (B, U_1^B, \dots, U_r^B)$. Duplicator lost.

Lemma

If Duplicator wins the (r, k) game, then no $\exists MSO$ sentence with r 2-nd order quantifiers and k 1-st order quantifiers can express P.

Proof Assume that $\varphi = \exists U_1 \cdots \exists U_r \psi$ expresses P. Then spoiler wins:

- Duplicator chooses **A** s.t. $P(\mathbf{A}) = \text{TRUE}$. Then $\mathbf{A} \models \exists U_1 \cdots \exists U_r \psi$
- Spoiler chooses U_1^A, \ldots, U_r^A s.t. $(A, U_1^A, \ldots, U_r^A) \models \psi$
- Duplicator must choose **B** s.t. $P(\mathbf{B}) = \text{FALSE}$. Thus, $\mathbf{B} \notin \varphi$.
- Duplicator chooses U_1^B, \dots, U_k^B : $(\boldsymbol{B}, U_1^B, \dots, U_r^B) \neq \psi$
- Then $(\mathbf{A}, U_1^A, \dots, U_k^A) \not\vdash_k (\mathbf{B}, U_1^B, \dots, U_r^B)$. Duplicator lost.

Converse holds too, but we don't need it.

CONNECTIVITY is not expressible in $\exists MSO$.

CONNECTIVITY is not expressible in 3MSO.

Claim: for all r, k, duplicator wins the (r, k)-Ajtai-Fagin game.

Duplicator chooses C_n ; spoiler chooses U_1, \ldots, U_r ; thus 2^r colors

CONNECTIVITY is not expressible in 3MSO.

Claim: for all r, k, duplicator wins the (r, k)-Ajtai-Fagin game.

Duplicator chooses C_n ; spoiler chooses U_1, \ldots, U_r ; thus 2^r colors

There are $t \le 2^{r(2d+1)}$ d-types why?

CONNECTIVITY is not expressible in 3MSO.

Claim: for all r, k, duplicator wins the (r, k)-Ajtai-Fagin game.

Duplicator chooses C_n ; spoiler chooses U_1, \ldots, U_r ; thus 2^r colors

There are $t \le 2^{r(2d+1)}$ d-types why?

If *n* is big: $\exists u, v$, same type, $d(u, v) \ge 2d + 2$.

CONNECTIVITY is not expressible in 3MSO.

Claim: for all r, k, duplicator wins the (r, k)-Ajtai-Fagin game.

Duplicator chooses C_n ; spoiler chooses U_1, \ldots, U_r ; thus 2^r colors

There are $t \le 2^{r(2d+1)} d$ -types why?

If n is big: $\exists u, v$, same type, $d(u, v) \ge 2d + 2$. One type occurs $\ge n/t$ times;

 $u, v = \text{first, middle: } d(u, v) \ge n/(2t)$

CONNECTIVITY is not expressible in 3MSO.

Claim: for all r, k, duplicator wins the (r, k)-Ajtai-Fagin game.

Duplicator chooses C_n ; spoiler chooses U_1, \ldots, U_r ; thus 2^r colors

There are $t \le 2^{r(2d+1)}$ d-types why?

If *n* is big: $\exists u, v$, same type, $d(u, v) \ge 2d + 2$. One type occurs $\ge n/t$ times;

u, v =first, middle: $d(u, v) \ge n/(2t)$

"Cut" C_n at u,v, obtain two cycles C_{n_1}, C_{n_2}

CONNECTIVITY is not expressible in 3MSO.

Claim: for all r, k, duplicator wins the (r, k)-Ajtai-Fagin game.

Duplicator chooses C_n ; spoiler chooses U_1, \ldots, U_r ; thus 2^r colors

There are $t \le 2^{r(2d+1)}$ d-types why?

If *n* is big: $\exists u, v$, same type, $d(u, v) \ge 2d + 2$.

One type occurs $\geq n/t$ times;

 $u, v = \text{first, middle: } d(u, v) \ge n/(2t)$

"Cut" C_n at u,v, obtain two cycles C_{n_1}, C_{n_2}

Hanf's Lemma: $C_n \sim_k (C_{n_1} \cup C_{n_2})$,

Discussion

■ BMSO ≠ ∀MSO

• ∃SO ≠ ∀SO major open problem.

 Games are wonderful: EF games can be extended to Ajtai-Fagin, to MSO-games (which allows us to define MSO-types), to infinitary logics.

Next week: recursion, infinitary logics, pebble games