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d Order Logic

Announcements

@ Homework 3 is posted and due on May 9

Lecture topics on the Website are finally in a stable state

@ Today: finish the discussion of SO
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Next week: recursion (datalog!), infinitary logics, pebble games.
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Second Order Logic
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Second Order Logic
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Quick Review

Definition

Second Order Logic, SO, extends FO with 2nd order variables, which
range over relations.

@ Add second order quantifiers: V.X,3Y
e Add atoms of the form X (u, v, w)
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Second Order Logic
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Examples

Connectivity:

VYU (3x3y(U(x) A=U(y)) = Fuav(E(u,v) A U(u) A=U(v)))

3-Colorability:

FRIBIGYx(R(x) v B(x) v G(x))
AYxVy(E(x,y) = =(R(x) AR(y)))
ANYxVy(E(x,y) = =(G(x) A G(y)))
ANYxVy(E(x,y) = =(B(x) A B(y)))
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Review: Fragments of SO

Existential SO: ESO or 3SO. Recall: captures NP

Monadic Second Order Logic, MSO

Existential Monadic SO, 3IMSO
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Review: MSO on Words

Fix an alphabet ¥, e.g. ¥ ={a,b,c}.
A word w € X* encoded as a structure over o = (<, P, Py, Pc).
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Second Order Logic
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Review: MSO on Words

Fix an alphabet ¥, e.g. ¥ ={a,b,c}.
A word w € X* encoded as a structure over o = (<, P, Py, Pc).

Example: aabaca represented by ([6],<, P, Py, Pc), P, ={1,2,4,6}, etc.
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Second Order Logic
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Review: MSO on Words

Fix an alphabet ¥, e.g. ¥ ={a,b,c}.
A word w € X* encoded as a structure over o = (<, P, Py, Pc).

Example: aabaca represented by ([6],<, P, Py, Pc), P, ={1,2,4,6}, etc.

Assume ¥ ={a,b}: 3IxP,(x) (alb)*.a.(alb)*
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Second Order Logic
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Review: MSO on Words

Fix an alphabet ¥, e.g. ¥ ={a,b,c}.
A word w € X* encoded as a structure over o = (<, P, Py, Pc).

Example: aabaca represented by ([6],<, P, Py, Pc), P, ={1,2,4,6}, etc.

Assume ¥ ={a,b}: 3IxP,(x) (alb)*.a.(alb)*
VxVy((x <y APy(y)) = Pi(x)) ab*
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Review: MSO on Words

Fix an alphabet ¥, e.g. ¥ ={a,b,c}.
A word w € X* encoded as a structure over o = (<, P, Py, Pc).

Example: aabaca represented by ([6],<, P, Py, Pc), P, ={1,2,4,6}, etc.
Assume ¥ ={a,b}: 3IxP,(x) (alb)*.a.(alb)*
VxVy((x <y APy(y)) = Pi(x)) a*b”

VxVy(x <y AP,(x) A Py(y) = 3z(x<zArz<yAPp(2)))
b*.(a.b")*(ale)
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Review: MSO on Words

Fix an alphabet ¥, e.g. ¥ ={a,b,c}.
A word w € X* encoded as a structure over o = (<, P, Py, Pc).

Example: aabaca represented by ([6],<, Pa, Pp, Pc), P, ={1,2,4,6}, etc.
Assume ¥ ={a,b}: 3IxP,(x) (alb)*.a.(alb)*
VxVy((x <y APy(y)) = Pi(x)) a*b*
VxVy(x <y AP,(x) A Py(y) = 3z(x<zArz<yAPp(2)))
b*.(a.b*)*(ale)
VxP,(x) A 3X(X(min) A =X (max)A
VYuVv(succ(u,v) = (X(u) A=X(v)) Vv (=X(u) A X(v))))
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Review: Buchi's Theorem

Theorem
MSO on strings captures regular languages J

Proof
Part 1: Automaton with n states = MSO sentence ¢ = 357---35,(-+*)

Part 2: Sub-formulas of ¢ to automaton over extended vocabulary.
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Second Order Logic
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Discussion

@ 3SO captures NP; 4SO + VSO iff NP + coNP
@ MSO over words: linear time; expression complexity: non-elementary!

Over words: IMSO = MSO = YMSO

@ Courcelle’s theorem: MSO over structures of bounded treewidth is in
linear time.

IMSO = YMSO (today)

! Tower of exponentials of unbounded height.
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FO on Words
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FO on Words
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FO on Words

FO cannot express (a.a)* WHY??

Will prove that FO captures precisely the star-free languages
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FO on Words
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Star-Free Languages

Fix an alphabet >. Regular expressions are:

E:=g|e|acX |EUE|EE|C(E)|E*

where C(E) means “complement”.
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Star-Free Languages

Fix an alphabet >. Regular expressions are:

E:=g|e|acX |EUE|EE|C(E)|E*

where C(E) means “complement”.

E is called star-free if it is equivalent to an expression without *.
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Star-Free Languages

Fix an alphabet >. Regular expressions are:

E:=g|e|acX |EUE|EE|C(E)|E*

where C(E) means “complement”.

E is called star-free if it is equivalent to an expression without *.
Y ={a, b}, which of the expressions below are star-free?

e X*
e b*
e (a.b)”

o (a.a)*
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Star-Free Languages

Fix an alphabet >. Regular expressions are:

E:=g|e|acX |EUE|EE|C(E)|E*

where C(E) means “complement”.

E is called star-free if it is equivalent to an expression without *.
Y ={a, b}, which of the expressions below are star-free?

>+ C(2)
b*

(a.b)*

(a.a)”
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Star-Free Languages

Fix an alphabet >. Regular expressions are:

E:=g|e|acX |EUE|EE|C(E)|E*

where C(E) means “complement”.

E is called star-free if it is equivalent to an expression without *.
Y ={a, b}, which of the expressions below are star-free?

o X" C(2)
e b* C(X*.a.X")
e (a.b)”
o (a.a)*
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Star-Free Languages

Fix an alphabet >. Regular expressions are:

E:=g|e|acX |EUE|EE|C(E)|E*

where C(E) means “complement”.

E is called star-free if it is equivalent to an expression without *.
Y ={a, b}, which of the expressions below are star-free?

o X" C(2)
e b* C(X*.a.X")
e (a.b)* C(X*.a.aX*uXr*.b.b.X*ubX*uX*.a)
o (a.a)*
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Star-Free Languages

Fix an alphabet >. Regular expressions are:

E:=g|e|acX |EUE|EE|C(E)|E*

where C(E) means “complement”.

E is called star-free if it is equivalent to an expression without *.
Y ={a, b}, which of the expressions below are star-free?

o X" C(2)
e b* C(X*.a.X")
e (a.b)* C(X*.a.aX*uX*.b.b.X*ubX*ul*.a)
e (a.a)” NOT star free! Let's prove it.
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FO on Words

Theorem

FO over strings captures precisely the star-free regular languages. J

Consequence: (a.a)” is not star-free.

Otherwise: express it in FO, use it for EVEN of (L,, <), contradiction.
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Proof Part 1: Star Free Regular Exprssions to FO

First, convert E to an FO formula ¢g(x,y) stating
“the substring w[x:y) isin L(E)"
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Proof Part 1: Star Free Regular Exprssions to FO
First, convert E to an FO formula ¢g(x,y) stating
“the substring w[x:y) isin L(E)"
© & becomes FALSE
@ ¢ becomes x =y

@ a becomes P,(x) A succ(x,y)
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Proof Part 1: Star Free Regular Exprssions to FO
First, convert E to an FO formula ¢g(x,y) stating
“the substring w[x:y) isin L(E)"

& becomes FALSE

@ ¢ becomes x =y

a becomes P,(x) A succ(x,y)

E1 U E; becomes ¢k, (x,y) V ¢E, (X, y)

E1.E; becomes 3z(pg, (x,2) A g (2,y)).
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Proof Part 1: Star Free Regular Exprssions to FO
First, convert E to an FO formula ¢g(x,y) stating
“the substring w[x:y) isin L(E)"

@ O becomes FALSE

€ becomes x = y

a becomes P,(x) A succ(x,y)

E1 U E; becomes ¢k, (x,y) V ¢E, (X, y)

E1.E; becomes 3z(pg, (x,2) A g (2,y)).

C(E) becomes —pe(x,y)
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Proof Part 1: Star Free Regular Exprssions to FO
First, convert E to an FO formula ¢g(x,y) stating
“the substring w[x:y) isin L(E)"

@ O becomes FALSE

€ becomes x = y

a becomes P,(x) A succ(x,y)

E1 U E; becomes ¢g, (x,y) V ¢E,(x,y)
o E;.E; becomes 3z(wg, (x,2) ApE,(2,y)).
@ C(E) becomes —pe(x,y)

Finally, complete the translation with:

Ix3y(isMin(x) AisMax(y) A E(x,y))

Finite Model Theory Lecture 10 Spring 2025
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Proof: Part 2

For each sentence ¢, construct regular expression E, s.t. w & ¢ iff
we L(E,)
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FO on Words
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Proof: Part 2

For each sentence ¢, construct regular expression E, s.t. w & ¢ iff
we L(E,)

We showed to translate an MSO formula ¢ to an automaton over an
extended alphabet

Can we use the same proof but instead of automaton construct a regular
expression?
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FO on Words
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Proof: Part 2

For each sentence ¢, construct regular expression E, s.t. w & ¢ iff
we L(E,)

We showed to translate an MSO formula ¢ to an automaton over an
extended alphabet

Can we use the same proof but instead of automaton construct a regular
expression?

Let's take a closer look at that proof and see what exactly fails.
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Review: MSO to Automata
Y ={a,b,c} @ =3IxPy(x) AVy(x <y — Pp(y)) Meaning???
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Review: MSO to Automata
Y ={a,b,c} @ =3xP,(x) AVy(x <y = Pp(y)) (alb|c)*.a.b*
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Review: MSO to Automata

Y ={a,b,c} @ =3xP,(x) AVy(x <y = Pp(y)) (alblc)*.a.b*
3x (Pa(x) A =3y (x <y A =Pu(y)))

Finite Model Theory Lecture 10 Spring 2025 16 /34



Review: MSO to Automata
Y ={a, b, c} @ =3IxPy(x) AVy(x <y — Pp(y)) (alblc)*.a.b*
Ix (Pa(x) A =3y(x <y A=Pp(y)))

dEf{aa b, b*,c,c*} T - {a,a%,2¥,3a7,...}

Extended alphabets:
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Review: MSO to Automata

Y ={a,b,c} @ =3xP,(x) AVy(x <y = Pp(y)) (alb|c)*.a.b*
Ix (Pa(x) A=y (x <y A=Py(y)))
At least one a: ¥ .55
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Review: MSO to Automata
Y ={a,b,c} @ =3IxPy(x) AVy(x <y — Pp(y)) (alblc)*.a.b*
Ix (Pa(x) A =3y(x <y A=Pp(y)))

At least one a*: ¥ .a5.% . . .
x followed y: ¥ .(a%|a™|b*|---).X .(&¥]|a¥]-). X

Finite Model Theory Lecture 10 Spring 2025 16 /34
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Review: MSO to Automata
Y ={a,b,c} @ =3IxPy(x) AVy(x <y — Pp(y)) (alblc)*.a.b*
Ix (Pa(x) A =3y (x <y A=Pb(y)))
At least one 2%: ¥ .a*.% — . .
x followed y: X .(a%|a¥|b¥|--).X .(a¥]a¥|-).X
At least one y that is # b: f*.(ay|axy| . |ch)E*
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Review: MSO to Automata
Y ={a,b,c} @ =3IxPy(x) AVy(x <y — Pp(y)) (alblc)*.a.b*
Ix (Pa(x) A =3y (x <y A=Pb(y)))
At least one 2%: ¥ .a*.% — . .
x followed y: X .(a%|a¥|b¥|--).X .(a¥]a¥|-).X
At least one y that is # b: f*.(ay|axy| . |ch)E*
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Review: MSO to Automata

Y ={a, b, c} @ =3IxPy(x) AVy(x <y — Pp(y)) (alblc)*.a.b*

Ix (Pa(x) A =3y (x <y A=Py(y)))
At least one a*: ¥ .a5.% . . .
x followed y: ¥ .(a%|a|b¥|---). X .(a¥]|a¥]--).L

At least one y thatis # b: ¥ .(a¥[a¥]... |CXV)E

Intersect, enforce unique y:

,
@ ’
Cx

The unique y,
but not with b

Finite Model Theory Lecture 10 Spring 2025
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Review: MSO to Automata

Y ={a, b, c} @ =3IxPy(x) AVy(x <y — Pp(y)) (alblc)*.a.b*
Ix (Pa(x) A =3y (x <y A=Py(y)))
At least one a*: ¥ .a5.% . .

X foIIowed y: T (a¥|a¥|bX|--). X (Y| ]--). X

At least one y thatis # b: © .(a¥]|a¥]... |ch)E

Intersect, enforce unique y: Remove labels y E_}f

[} :
X
-@ o A a,a*
7 2 o3
cX Cx' U 6c
The unique y, One symbol with x
but not with b

Some x followed by alc: 3 . (a*|b*|c¥).% . (a]a*|c|c¥).5
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Review: MSO to Automata

Y ={a, b, c} @ =3IxPy(x) AVy(x <y — Pp(y)) (alblc)*.a.b*
Ix (Pa(x) A =3y (x <y A=Py(y)))
At least one a*: ¥ .a5.% . .

X foIIowed y: T (a¥|a¥|bX|--). X (Y| ]--). X

At least one y thatis # b: © .(a¥]|a¥]... |ch)E

Intersect, enforce unique y: Remove labels y: f L5

o N :

X
@ > c ax
ol 2 el 3
cx c"' \& /) cc
The unique y, One symbol with x
but not with b
Some x followed by alc: 3 . (a*|b*|c¥).% . (a]a*|c|c¥).5

Negate: after every x is b*.
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Review: MSO to Automata

Y ={a, b, c} @ =3IxPy(x) AVy(x <y — Pp(y)) (alblc)*.a.b*
Ix (Pa(x) A =3y (x <y A=Py(y)))
At least one a: ¥ .55 . .

X foIIowed y: T (a¥|a¥|bX|--). X (Y| ]--). X

At least one y thatis # b: © .(a¥]|a¥]... |ch)E

Intersect, enforce unique y: Remove labels y: f L5

[} :
X
-@ o /Q a,a*
7 2 o3
cX Cx' U 6c
The unique y, One symbol with x
but not with b

Some x followed by alc: 3 . (a*|b*|c¥).% . (a]a*|c|c¥).5

Negate: after every x is b*. Intersect P,(x).

Finite Model Theory Lecture 10

Drop x.
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Important Takeaway

Fix two alphabets and a function f: ¥ — ¥.

If Ais an automaton, then:
we L(f(A)) iff Ju(ue L(A) A f(u)=w)|ie. L(f(A))=7(L(A))
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Important Takeaway

Fix two alphabets and a function f: ¥ — ¥.

If Ais an automaton, then:

w e L(f(A)) iff Ju(u e L(A) Af(u) =w)

ie. L(f(A)) = f(L(A))

Y ={a, b}
r={c}
f(a)=f(b)=c.
Spring 2025
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Important Takeaway

Fix two alphabets and a function f: ¥ — ¥.

If Ais an automaton, then:

w e L(f(A)) iff Ju(u e L(A) Af(u) =w)

Y ={a, b}
x = {c}
f(a)=f(b)=c.
Finite Model Theory Lecture 10

ie. L(f(A)) = f(L(A))
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Important Takeaway

Fix two alphabets and a function f: ¥ — ¥.

If Ais an automaton, then:

w e L(f(A)) iff Ju(u e L(A) Af(u) =w)

Y ={a, b}
x = {c}
f(a)=f(b)=c.
Finite Model Theory Lecture 10

ie. L(f(A)) = f(L(A))
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Important Takeaway

Fix two alphabets and a function f: ¥ — ¥.

If Ais an automaton, then:
we L(f(A)) iff Ju(ue L(A) A f(u)=w)|ie. L(f(A))=7(L(A))

Y ={a,b}
r={c}
f(a)=f(b)=c.

This fails for regular expressions with complement: L(f(E)) # f(L(E))
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Important Takeaway

Fix two alphabets and a function f: ¥ — ¥.

If Ais an automaton, then:
we L(f(A)) iff Ju(ue L(A) A f(u)=w)|ie. L(f(A))=7(L(A))

Y ={a, b}

Y ={c}
f(a)=f(b)=c.

This fails for regular expressions with complement: L(f(E)) # f(L(E))

E = C((a|lb)*.a.a.(a|b)* u (a|b)*.b.b.(a|b)* U b.(a|b)* u (a|b)*.a)
L(E) = (a.a)"
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Important Takeaway

Fix two alphabets and a function f: ¥ — ¥.

If Ais an automaton, then:
we L(f(A)) iff Ju(ue L(A) A f(u)=w)|ie. L(f(A))=7(L(A))

Y ={a,b}
r={c}
f(a)=f(b)=c.

This fails for regular expressions with complement: L(f(E)) # f(L(E))

E = C((a|lb)*.a.a.(a|b)* u (a|b)*.b.b.(a|b)* U b.(a|b)* u (a|b)*.a)

L(E) = (a.a)"
f(E)=C(c*.c.c.c*uc*.c.c.c*uc.c*ucr.c)=¢

L(F(E)) = .
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Discussion

We need a inductive proof that uses only sentences, no formulas.

Will do induction on the quantifier depth k.

And we will use FO[k] types.

Finite Model Theory Lecture 10 Spring 2025 18 /34



FO on Words
000000000e0000

Review: FO[k] types

FO[k] is FO where we restrict formulas to quantifer rank < k.
We defined tpy ,, where m = number of free variables.

Today: we only need m = 0.

Definition
Let A be a structure. Its FO[k]-type is: tp,(A) = {p € FO[k] | AE ¢} J

Every FO[k]-type is a finite set of sentences: their A is a single sentence:

7 = tpy(A)

Finite Model Theory Lecture 10 Spring 2025 19 /34



FO on Words
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Review: EF-games on Linear Order

Let L, = ([m],<). Denote:?

L2 e L | x < a) L2 % e L | x> a)

2lsomorphic to linear orders: L ~ L, 1, L7 ~ L.
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Review: EF-games on Linear Order

Let L, = ([m],<). Denote:?

L2 e L | x < a) L2 % e L | x> a)

Lemma
If L2~ LiP and L2~k L3P, then Ly ~ Lp. J

2|somorphic to linear orders: L ~ L, 1, L7 ~ L.
Finite Model Theory Lecture 10 Spring 2025 20/34



EF Games on Words

o=(<,min, Py, P,,,...) o1 =0 U{c} (add a constant c)

Lemma

If w<P ~k u<9 and WZP ~ g qu then (W,P) ~k (U, q)

(ie. ¢” =p,c"= q)J

Finite Model Theory Lecture 10 Spring 2025 21/34



FO on Words IMSO =
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EF Games on Words

o=(<,min, Py, P,,,...) o1 =0 U{c} (add a constant c)

Lemma
If WP~ u=9 and w?P ~y u*9 then (w,p) ~x (u,q) (i.e. c¥ =p,c'= q)J

1 p
w=la|a|a|. . |alalal...]...|
1
u=‘al‘32‘32‘21‘...‘32“23‘81‘31‘32‘...“
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EF Games on Words

o=(<,min, Py, P,,,...) o1 =0 U{c} (add a constant c)

Lemma
If WP~ u=9 and w?P ~y u*9 then (w,p) ~x (u,q) (i.e. c¥ =p,c'= q)J

1 p
w=la|a|a|. . |alalal...]...|
1
u=‘al‘32‘32‘21‘...‘32“23‘81‘31‘32‘...“

Proof in class.

It is necessary to have min in the vocabulary. why?77?
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Proof: Part 2

For every sentence ¢ we construct a star-free regular expression E,.
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Proof: Part 2

For every sentence ¢ we construct a star-free regular expression E,.

Note: no free variables. Instead we prove by induction on k = gr(yp).

For each k we also do induction on the structure of ¢:

o If p=p1 Ve then E, = E, |E,,

o If o == then E, = C(E,,).

Finite Model Theory Lecture 10
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Proof: Part 2

For every sentence ¢ we construct a star-free regular expression E,.
qr(y) =0.
o If ¢ = Py(min)

o If o = (min < min)
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Proof: Part 2

For every sentence ¢ we construct a star-free regular expression E,.
qr(y) =0.
o If ¢ = Py(min) then E, = a

o If o = (min < min)

Finite Model Theory Lecture 10 Spring 2025 22/34



Proof: Part 2

For every sentence ¢ we construct a star-free regular expression E,.

qr(¢) = 0.
o If ¢ = P,(min) then E, = a
o If ¢ = (min < min) then E, = @

Finite Model Theory Lecture 10 Spring 2025 22/34



Proof: Part 2

For every sentence ¢ we construct a star-free regular expression E,.

gr(p) = k+1. Assume w.l.o.g. ¢ = Ixtp(x)

5 dgf{(tpk(u<q)atpk(u2q)) | ue Z*vq € N7 ukE @b(q),: J}
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Proof: Part 2

For every sentence ¢ we construct a star-free regular expression E,.

gr(p) = k+1. Assume w.l.o.g. ¢ = Ixtp(x)

S {(tpy (u9), tpy (™)) | u € £*, g € N, u F (q), = 0}
Claim: for every w € ¥*:
wE @ iff 3peN, (tp (W), tp(w?P)) € S
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Proof: Part 2

For every sentence ¢ we construct a star-free regular expression E,.

gr(p) = k+1. Assume w.l.o.g. ¢ = Ixtp(x)

S {(tpy (u9), tpy (™)) | u € £*, g € N, u F (q), = 0}
Claim: for every w € ¥*:
wE @ iff 3peN, (tp (W), tp(w?P)) € S

S={(o1,71),-..,(on,7a)} (finite); claim implies E, = E;,.E; |E5,.Er, |-
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Proof: Part 2

For every sentence ¢ we construct a star-free regular expression E,.

gr(p) = k+1. Assume w.l.o.g. ¢ = Ixtp(x)

S {(tpy (u9), tpy (™)) | u € £*, g € N, u F (q), = 0}
Claim: for every w € ¥*:
wE @ iff 3peN, (tp (W), tp(w?P)) € S

If wi o then 3g s.t. wiE(q) and (tpr(w<P),tp(w3P)) e S
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Proof: Part 2

For every sentence ¢ we construct a star-free regular expression E,.

gr(p) = k+1. Assume w.l.o.g. ¢ = Ixtp(x)

S dgf{(tpk(u<q)atpk(u2q)) | ue Z*’q € N7 ukE ¢(q)7= J}

Claim: for every w e ¥*:
wE @ iff 3peN, (tp (W), tp(w?P)) € S

If (tpe(w<P),tp(w3P)) €S then JueX* ge N, uk(q):

tpi (wP) = tp, (u=9) | and | tp, (W=P) = tp, (u=9)

This implies tp, (w) = tp,(u)
Then w = ¢(p), and therefore w E Ixip(x).

This completes the proof.
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Discussion

@ The language (a.a)* is not star-free

because it checks if a* has EVEN length; is not in FO

@ Satisfiability of for MSO on strings is decidable.

@ The data complexity for MSO on strings is in linear time
In general, the data complexity of MSQO is in NP; can be NP-conplete.

@ On strings: IMSO = YMSO = MSO
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IFMSO = VMSO
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IMSO = YMSO
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Problem Setting

3S0O # VSO is as difficult as NP # coNP.

Surprisingly, Fagin proved 3IMSO # YMSO.

We will prove this result next.
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Fagin's Theorem

Theorem

(1) CONNECTIVITY is expressible in ¥ MSO
(2) CONNECTIVITY is not expressible in IMSO

3IMSO = YMSO
00®00000000

Proof We have seen (1):

VU (3x3y(U(x) A=U(y)) - Fuav(E(u,v) AU(u) A=U(v)))

For (2), we will use games for 3IMSO.
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00080000000

Review: Hanf's Lemma

d-neighborhood of a € A:

N(a,d) e {beA|d(a,b)<d}uf{all constants in vocabulary}

Definition
The d-type of a is the isomorphism type of the substructure induced by
N(a, d), plus the constant a.

Definition
A, B are d-equivalent if, for each d-type, they have the same number of
elements of that type.
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d Order Logic

3IMSO = YMSO
0000®000000

Hanf's Lemma

Theorem
Let d >3 1—1. If A, B are d-equivalent, then A ~, B. J

The proof exhibits a winning strategy for the duplicator.

We will omit the proof.
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CONNECTIVITY Not Expressible in FO

Claim duplicator has winning strategy with k = 2 pebbles.

Ci CsUC,

Finite Model Theory Lecture 10 Spring 2025 29 /34



| Order Logic O 3IMSO = YMSO
00000 00000800000

CONNECTIVITY Not Expressible in FO

Claim duplicator has winning strategy with k = 2 pebbles.
Proof Use Hanf's lemma. k=2 and d=3K1-1=2

Ci CsUC,
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CONNECTIVITY Not Expressible in FO

Claim duplicator has winning strategy with k = 2 pebbles.
Proof Use Hanf's lemma. k=2 and d=3K1-1=2
In class: describe N(a,d)

Ci CsUC,
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CONNECTIVITY Not Expressible in FO

Claim duplicator has winning strategy with k = 2 pebbles.
Proof Use Hanf's lemma. k=2 and d =3x1-1=2
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CONNECTIVITY Not Expressible in FO

Claim duplicator has winning strategy with k = 2 pebbles.
Proof Use Hanf's lemma. k=2 and d =3x1-1=2
In class: describe N(a,d) Describe N(b,d)

N(b,2)
N(a,2)

Ci CsUC,
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CONNECTIVITY Not Expressible in FO

Claim duplicator has winning strategy with k = 2 pebbles.
Proof Use Hanf's lemma. k=2 and d=3K1-1=2

In class: describe N(a,d) Describe N(b,d)

Their types are e —e — X —e —e. There are 12 in each structure.

Therefore, duplicator wins with k =2 pebbles.

N(b,2)
b

N(a,2)

Cip CeUC,

Finite Model Theory
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CONNECTIVITY Not Expressible in FO

Claim duplicator has winning strategy with k = 2 pebbles.
Proof Use Hanf's lemma. k=2 and d =3x1-1=2
In class: describe N(a,d) Describe N(b,d)

Their types are e —e — X —e —e. There are 12 in each structure.
Therefore, duplicator wins with k =2 pebbles.

N(b,2)
N(a,2) )
a
At home: prove
that spoiler wins in
3 rounds
Ci CsUC
Finite Model Theory
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Second Order Logic 0 o 3IMSO = YMSO

From FO to MSO

The k-round Ehrenfeucht-Fraisse game is useful only for FO:

A=, Biff A~ B

Need to extend this to a game for 3IMSO.

(r, k)-Ajtai-Fagin game
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The (r, k)-Ajtai-Fagin Game

The (r, k)-Ajtai-Fagin game for 3IMSO and a problem P is the following:
@ Duplicator picks a structure A that satisfies P.
@ Spoiler picks r unary relations UlA, RN U,A on A.
@ Duplicator picks a structure B that does not satisfy P.
o Duplicator picks UZ,... UB in B.

@ Spoiler and Duplicator play an EF game with k pebbles on the
structures (A, Up,...,UM) and (B, UB,... UB).
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Games for IMSO

Lemma

If Duplicator wins the (r, k) game, then no 3MSO sentence with r 2-nd
order quantifiers and k 1-st order quantifiers can express P.
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Games for IMSO

Lemma

If Duplicator wins the (r, k) game, then no 3MSO sentence with r 2-nd
order quantifiers and k 1-st order quantifiers can express P.

Proof Assume that ‘ w=3Up---3U ‘ expresses P. Then spoiler wins:

@ Duplicator chooses A s.t. P(A) = TRUE. Then A= JU;---3U, ¢
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Games for IMSO

Lemma

If Duplicator wins the (r, k) game, then no 3MSO sentence with r 2-nd
order quantifiers and k 1-st order quantifiers can express P.

Proof Assume that ‘ w=3Up---3U ‘ expresses P. Then spoiler wins:

@ Duplicator chooses A s.t. P(A) = TRUE. Then A= JU;---3U, ¢

o Spoiler chooses Uf,...  UAs.t. | (AU, .., UM e
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Games for IMSO

Lemma

If Duplicator wins the (r, k) game, then no 3MSO sentence with r 2-nd
order quantifiers and k 1-st order quantifiers can express P.

Proof Assume that ‘ w=3Up---3U ‘ expresses P. Then spoiler wins:

@ Duplicator chooses A s.t. P(A) = TRUE. Then A= JU;---3U, ¢

o Spoiler chooses Uf,...  UAs.t. | (AU, .., UM e

e Duplicator must choose B s.t. P(B) = FALSE. Thus, B # ¢.
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Games for IMSO

Lemma

If Duplicator wins the (r, k) game, then no 3MSO sentence with r 2-nd
order quantifiers and k 1-st order quantifiers can express P.

Proof Assume that ‘ w=3Up---3U ‘ expresses P. Then spoiler wins:

@ Duplicator chooses A s.t. P(A) = TRUE. Then A JU;---3U, ¢

o Spoiler chooses Uf,...  UAs.t. | (AU, .., UM e

e Duplicator must choose B s.t. P(B) = FALSE. Thus, B # ¢.

@ Duplicator chooses UlB,...,Uf: (B, UlB,...,UF) # )

Finite Model Theory Lecture 10 Spring 2025 32/34



ond Order Logic O on Words 3IMSO = YMSO

00000000800

Games for IMSO

Lemma

If Duplicator wins the (r, k) game, then no 3MSO sentence with r 2-nd
order quantifiers and k 1-st order quantifiers can express P.

Proof Assume that ‘ w=3Up---3U ‘ expresses P. Then spoiler wins:

@ Duplicator chooses A s.t. P(A) = TRUE. Then A JU;---3U, ¢

o Spoiler chooses Uf,...  UAs.t. | (AU, .., UM e

Duplicator must choose B s.t. P(B) = FALSE. Thus, B i .

Duplicator chooses UlB, ey Uf: (B, UlB, L UBY R

o Then|(A, U}, ..., U,f‘) tx (B,UB.... UB) | Duplicator lost.
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Games for IMSO

Lemma

If Duplicator wins the (r, k) game, then no 3MSO sentence with r 2-nd
order quantifiers and k 1-st order quantifiers can express P.

Proof Assume that ‘ w=3Up---3U ‘ expresses P. Then spoiler wins:
@ Duplicator chooses A s.t. P(A) = TRUE. Then A JU;---3U, ¢

o Spoiler chooses Uf,...  UAs.t. | (AU, .., UM e

e Duplicator must choose B s.t. P(B) = FALSE. Thus, B # ¢.

@ Duplicator chooses UlB,...,Uf: (B, UlB,...,UF) # )

o Then|(A, U}, ..., U,f‘) tx (B,UB.... UB) | Duplicator lost.

Converse holds too, but we don't need it.
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Proof of Fagin's Theorem

CONNECTIVITY is not expressible in IMSO. J
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Proof of Fagin's Theorem

CONNECTIVITY is not expressible in IMSO.

Claim: for all r, k, duplicator wins the (r, k)-Ajtai-Fagin game.

Duplicator chooses C,; spoiler chooses Uy, ..., U,; thus 2" colors
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Duplicator chooses C,; spoiler chooses Uy, ..., U,; thus 2" colors
There are t < 27291 ¢ types why?
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One type occurs > n/t times;
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Proof of Fagin's Theorem

CONNECTIVITY is not expressible in IMSO.

Claim: for all r, k, duplicator wins the (r, k)-Ajtai-Fagin game.
Duplicator chooses C,; spoiler chooses Uy, ..., U,; thus 2" colors
There are t < 27291 ¢ types why?

If nis big: Ju, v, same type, d(u,v) >2d + 2.
One type occurs > n/t times;

u, v = first, middle: d(u,v) > n/(2t)

“Cut” C, at u,v, obtain two cycles C,,, Cp,

Hanf's Lemma: C, ~x (Cy, U Cp,),
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Discussion

e iMSO # VMSO

@ IS0 # VSO major open problem.

@ Games are wonderful: EF games can be extended to Ajtai-Fagin, to
MSO-games (which allows us to define MSO-types), to infinitary
logics.

Next week: recursion, infinitary logics, pebble games
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