Finite Model Theory Lecture 9: Second Order Logic

Spring 2025

Definition

Definition

Second Order Logic, SO, extends FO with 2nd order variables, which range over relations.

Finite Model Theory Lecture 9 Spring 2025 3/35

Definition

Second Order Logic

Definition

Second Order Logic, SO, extends FO with *2nd order variables*, which range over relations.

- Connectors: ∧, ∨, ¬
- First order quantifiers: $\forall x, \exists y$
- Second order quantifiers: $\forall X, \exists Y$
- Atoms: R(x,y), X(u,v,w), Y(v).

Definition

Definition

Second Order Logic, SO, extends FO with *2nd order variables*, which range over relations.

- Connectors: ∧, ∨, ¬
- First order quantifiers: $\forall x, \exists y$
- Second order quantifiers: $\forall X, \exists Y$
- Atoms: R(x,y), X(u,v,w), Y(v).

Each set variable has an arity, e.g arity(X) = 3, arity(Y) = 1

We only discuss SO over finite models. Standard meaning: $\mathbf{A} \models \varphi$

Finite Model Theory Lecture 9 Spring 2025 3 / 35

Example: Connectivity

Check if a directed graph G = (V, E) is connected.

In FO: not possible.

Example: Connectivity

Check if a directed graph G = (V, E) is connected.

In FO: not possible.

In SO:

$$\forall U(\exists x \exists y (U(x) \land \neg U(y)) \rightarrow \exists u \exists v (E(u,v) \land U(u) \land \neg U(v)))$$

"For every U, if it and its complement are nonempty, then there exist an edge between U and its complement"

Finite Model Theory Lecture 9 Spring 2025 4 / 35

Check if an undirected graph G = (V, E) is 3-colorable.

Check if an undirected graph G = (V, E) is 3-colorable.

$$\exists R \exists B \exists G \forall x (R(x) \lor B(x) \lor G(x))$$

$$\land \forall x \forall y (E(x,y) \to \neg (R(x) \land R(y)))$$

$$\land \forall x \forall y (E(x,y) \to \neg (G(x) \land G(y)))$$

$$\land \forall x \forall y (E(x,y) \to \neg (B(x) \land B(y)))$$

Finite Model Theory Lecture 9 Spring 2025 5 / 35

Check if a directed graph G = (V, E) admits a Hamiltonean path.

Example: Hamiltonean

Check if a directed graph G = (V, E) admits a Hamiltonean path.

$$\exists < (\forall x \neg (x < x)) \land (\forall x \forall y (x < y \lor y < x \lor x = y)) (\forall x \forall y \forall z (x < y \land y < z \Rightarrow x < z)) \forall x \forall y (x < y \land \neg \exists z (x < z \land z < y) \Rightarrow E(x, y))$$

"There exists a total order on the nodes such that for any successive nodes x, y there exists an edge E(x, y)."

At home: modify to check for a Hamiltonean cycle.

Finite Model Theory Lecture 9 Spring 2025 6 / 35

An SO sentence can be rewritten such that all 2nd order quantifier precede the 1st order.

$$\exists x \quad \forall \dots \exists \dots \quad \varphi$$
1st and 2nd order

$$\exists X \underbrace{\forall \dots \exists \dots}_{\text{keep them}} (\exists x (X(x) \land \varphi))$$

Quantifier Order

An SO sentence can be rewritten such that all 2nd order quantifier precede the 1st order.

$$\exists x \quad \forall \dots \exists \dots \quad \varphi$$
1st and 2nd order

$$\forall x \quad \forall \dots \exists \dots \quad \varphi$$
1st and 2nd order

$$\exists X \underbrace{\forall \ldots \exists \ldots}_{\text{keep them}} (\exists x (X(x) \land \varphi))$$

$$\forall X \underbrace{\forall \dots \exists \dots}_{\text{keep them}} (\forall x (X(x) \to \varphi))$$

8/35

Existential SO

Existential SO allows only existential quantifiers of the 2nd order.

 $\exists X_1 \exists X_2 \cdots \exists X_k [FO \text{ formula}]$

Notation: ESO or ∃SO

∃SO and NP

The following is a landmark result proven by Fagin:

Theorem (Fagin)

∃SO captures the class NP

More precisely: a problem is in NP iff it can be expressed in ∃SO

Example: 3-colorability, Hamiltonean path

∃SO and NP

The following is a landmark result proven by Fagin:

Theorem (Fagin)

∃SO captures the class NP

More precisely: a problem is in NP iff it can be expressed in ∃SO

Example: 3-colorability, Hamiltonean path

Proof ideas:

 $\exists SO \subseteq NP$: to evaluate φ "guess" the sets X_1, X_2, \dots

 $NP \subseteq \exists SO$: given a non-deterministic PTIME Turing machine "guess" an execution trace: $\exists TRACE(...)$.

Finite Model Theory Lecture 9 Spring 2025 10 / 35

Monadic SO

Monadic Second Order Logic, MSO, restricts the 2nd order variables to be unary relations.

Examples: 3-colorability, connectivity:

$$\exists R \exists B \exists G \forall x (R(x) \lor B(x) \lor G(x))$$

$$\land \forall x \forall y (E(x,y) \to \neg (R(x) \land R(y)))$$

$$\land \forall x \forall y (E(x,y) \to \neg (G(x) \land G(y)))$$

$$\land \forall x \forall y (E(x,y) \to \neg (B(x) \land B(y)))$$

$$\forall U \forall x \forall y ((U(x) \land \neg U(y)) \rightarrow \exists u \exists v E(u, v) \land U(u) \land \neg U(v))$$

Finite Model Theory Lecture 9 Spring 2025 11/35

Existential MSO

Monadic Existential SO, ∃MSO, restricts the 2nd order quantifiers to be existential, and applied only to the unary relations.

Example: 3-colorability, non-connectivity.

Discussion

• 3SO captures NP; e.g. Hamiltonean path

• ∃MSO is sometimes called Monadic NP; e.g. 3-colorability.

∀SO captures coNP.

 $\exists SO \neq \forall SO$ is a major open problem

• Fagin proved $\exists MSO \neq \forall MSO$: Connectivity $\in \forall MSO$ but $\notin \exists MSO$

MSO on Strings

Representing Strings

Fix an alphabet Σ , e.g. $\Sigma = \{a, b, c\}$.

A word $w \in \Sigma^*$ can be encoded as a structure over the alphabet $\sigma = (\langle P_a, P_b, P_c \rangle)$.

Example: representing aabaca

_	
а	1
	2
	4
	6

$$P_b = \cdots$$

MSO on Strings

$$c = \cdots$$

15/35

Fix an alphabet Σ , e.g. $\Sigma = \{a, b, c\}$.

A word $w \in \Sigma^*$ can be encoded as a structure over the alphabet $\sigma = (\langle P_a, P_b, P_c \rangle).$

Example: representing aabaca

<		
	1	2
	1	3
	5	6

)	ucu	
а	1	l
	2	
	4	
	6	

$$P_b = \cdots$$

MSO on Strings 0000000000

$$c = \cdots$$

Recall that we can define:

$$\operatorname{succ}(x, y) = (x < y) \land \neg \exists z (x < z \land z < y)$$

$$isMin(x) = \forall y(x = y \lor x < y)$$

The elements: min. $\overline{\text{max}}$

16/35

Logic over Strings

A sentence φ defines a language $\{w \mid w \models \varphi\}$.

• What languages can be define in FO?

• What languages can be define in MSO?

Examples

$$\Sigma = \{a, b\}.$$

Which words w satisfy these sentences:

$$\exists x P_a(x)$$

$$\Sigma = \{a, b\}.$$

Which words w satisfy these sentences:

$$\exists x P_a(x)$$

 $(a|b)^*.a.(a|b)^*$

17/35

$$\Sigma = \{a, b\}.$$

Which words w satisfy these sentences:

$$\exists x P_a(x)$$

$$\forall x \forall y ((x < y \land P_a(y)) \Rightarrow P_a(x))$$

$$(a|b)^*.a.(a|b)^*$$

$$\Sigma = \{a, b\}.$$

Which words w satisfy these sentences:

$$\exists x P_a(x)$$

$$\forall x \forall y ((x < y \land P_a(y)) \Rightarrow P_a(x))$$

$$(a|b)^*.a.(a|b)^*$$

$$\Sigma = \{a, b\}.$$

$$\exists x P_a(x) \qquad (a|b)^*.a.(a|b)^*$$

MSO on Strings

$$\forall x \forall y ((x < y \land P_{a}(y)) \Rightarrow P_{a}(x))$$

a* b*

$$\forall x \forall y (x < y \land P_a(x) \land P_a(y) \Rightarrow \exists z (x < z \land z < y \land P_b(z)))$$

$$\Sigma = \{a, b\}.$$

$$\exists x P_{a}(x) \qquad (a|b)^{*}.a.(a|b)^{*}$$

MSO on Strings

$$\forall x \forall y ((x < y \land P_a(y)) \Rightarrow P_a(x))$$

$$a^*b^*$$

$$\forall x \forall y (x < y \land P_a(x) \land P_a(y) \Rightarrow \exists z (x < z \land z < y \land P_b(z))) \ b^*.(a.b^+)^*(a|\varepsilon)$$

$$\Sigma = \{a, b\}.$$

$$\exists x P_{a}(x) \qquad (a|b)^{*}.a.(a|b)^{*}$$

MSO on Strings

$$\forall x \forall y ((x < y \land P_a(y)) \Rightarrow P_a(x))$$

a* b*

$$\forall x \forall y (x < y \land P_a(x) \land P_a(y) \Rightarrow \exists z (x < z \land z < y \land P_b(z))) \ b^*.(a.b^+)^*(a|\varepsilon)$$

$$\forall x P_a(x) \wedge$$

$$\exists X(X(\overline{\min}) \land \neg X(\overline{\max}) \land$$

$$\forall u \forall v (\mathsf{succ}(u, v) \Rightarrow (X(u) \land \neg X(v)) \lor (\neg X(u) \land X(v))))$$

Finite Model Theory Lecture 9 Spring 2025 17 / 35

$$\Sigma = \{a, b\}.$$

$$\exists x P_a(x) \qquad (a|b)^*.a.(a|b)^*$$

MSO on Strings

$$\forall x \forall y ((x < y \land P_a(y)) \Rightarrow P_a(x))$$

a* b*

$$\forall x \forall y (x < y \land P_a(x) \land P_a(y) \Rightarrow \exists z (x < z \land z < y \land P_b(z))) \ b^*.(a.b^+)^*(a|\varepsilon)$$

$$\forall x P_a(x) \wedge$$

$$\exists X(X(\overline{\min}) \land \neg X(\overline{\max}) \land$$

$$\forall u \forall v (\mathsf{succ}(u, v) \Rightarrow (X(u) \land \neg X(v)) \lor (\neg X(u) \land X(v))))$$

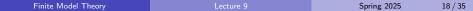
 $(a.a)^*$

Finite Model Theory Lecture 9 Spring 2025 17/35

Büchi's Theorem

Theorem

MSO on strings captures regular languages



Proof of Büchi's Theorem: Part 1

If L is a regular language, then there exists φ in MSO s.t. $L = \{w \mid w \models \varphi\}$.

Proof of Büchi's Theorem: Part 1

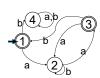
If L is a regular language, then there exists φ in MSO s.t. $L = \{w \mid w \models \varphi\}$.

Assume L given by a deterministic automaton.

$$\varphi = \exists S_1 \exists S_2 \exists S_3 \exists S_4(\psi)$$

where ψ asserts:

- $\forall x$ exactly one of $S_1(x), \dots, S_4(x)$ holds
- The minimum element x is in S_1 .
- The maximum element is in S_1 or S_3 .
- $\forall x, y (S_1(x) \land P_a(x) \land \text{succ}(x, y) \Rightarrow S_2(y))$
- etc



Proof of Büchi's Theorem: Part 2

For every MSO sentence φ , the set $\{w \mid w \models \varphi\}$ is a regular language.

Proof by induction on φ .

Difficulty: φ is a sentence, but its subexpressions are formulas.

Need to given an interpretation to formulas.

Finite Model Theory Lecture 9 Spring 2025 20 / 35

MSO on Strings

Fix
$$\Sigma = \{a, b\}$$
.

MSO on Strings

Proof of Büchi's Theorem: Part 2

Fix
$$\Sigma = \{a, b\}$$
.

To give meaning to $\varphi = P_a(x)$:

• Extend Σ to $\overline{\Sigma} = \{a, b, a^x, b^x\}$

21/35

MSO on Strings

Fix
$$\Sigma = \{a, b\}$$
.

To give meaning to $\varphi = P_a(x)$:

- Extend Σ to $\overline{\Sigma} = \{a, b, a^x, b^x\}$
- a^x means: "symbol a and position x"

MSO on Strings

Fix
$$\Sigma = \{a, b\}$$
.

To give meaning to $\varphi = P_a(x)$:

- Extend Σ to $\overline{\Sigma} = \{a, b, a^x, b^x\}$
- a^x means: "symbol a and position x"
- a means: "symbol a and position $\neq x$ "

MSO on Strings

Fix
$$\Sigma = \{a, b\}$$
.

To give meaning to $\varphi = P_a(x)$:

- Extend Σ to $\overline{\Sigma} = \{a, b, a^x, b^x\}$
- a^x means: "symbol a and position x"
- a means: "symbol a and position $\neq x$ "
- Meaning of φ is $\overline{\Sigma}^* . a^{\times} . \overline{\Sigma}^*$

Fix
$$\Sigma = \{a, b\}$$
.

To give meaning to $\varphi = P_a(x)$:

- Extend Σ to $\overline{\Sigma} = \{a, b, a^x, b^x\}$
- a^x means: "symbol a and position x"
- a means: "symbol a and position ≠ x"
- Meaning of φ is $\overline{\Sigma}^* . a^{\times} . \overline{\Sigma}^*$

To give meaning to $\varphi = P_a(x) \land x < y$:

$$\bullet \ \overline{\Sigma} = \{a, b, a^x, b^x, a^y, b^y, a^{xy}, b^{xy}\}$$

Fix
$$\Sigma = \{a, b\}$$
.

To give meaning to $\varphi = P_a(x)$:

- Extend Σ to $\overline{\Sigma} = \{a, b, a^x, b^x\}$
- a^x means: "symbol a and position x"
- a means: "symbol a and position $\neq x$ "
- Meaning of φ is $\overline{\Sigma}^* . a^{\times} . \overline{\Sigma}^*$

To give meaning to $\varphi = P_a(x) \land x < y$:

$$\bullet \ \overline{\Sigma} = \{a, b, a^x, b^x, a^y, b^y, a^{xy}, b^{xy}\}$$

denote
$$a^{x-} = (a^x | a^{xy})$$
:

• Meaning of
$$\varphi$$
 is $\left(\overline{\Sigma}^*.a^{x-}.\overline{\Sigma}^*\right) \cap \left(\overline{\Sigma}^*.(a^{x-}|b^{x-}).\overline{\Sigma}^*.(a^{y-}|b^{y-}).\overline{\Sigma}^*\right)$

Finite Model Theory Lecture 9 Spring 2025 21/35

MSO on Strings

$$V = \mathsf{Vars}(\varphi).$$
 Extend Σ to $\overline{\Sigma} = \Sigma \times 2^V.$

Convert MSO formula φ to an automaton A_{φ} . Sketch:

$$V = \mathsf{Vars}(\varphi).$$
 Extend Σ to $\overline{\Sigma} = \Sigma \times 2^V.$

Convert MSO formula φ to an automaton A_{φ} . Sketch:

- $P_a(x)$: automaton for $\overline{\Sigma}^*.a^{x-}.\overline{\Sigma}^*$ where a^{x-} means "any a-symbol that has at least annotation x" $a^{x-} = (a^x|a^{xy}|\cdots|a^{xX}|a^{xyX}\cdots)$
- x < y: similar to what we saw on previous slide.

$$V = \mathsf{Vars}(\varphi).$$
 Extend Σ to $\overline{\Sigma} = \Sigma \times 2^V.$

Convert MSO formula φ to an automaton A_{φ} . Sketch:

- $P_a(x)$: automaton for $\overline{\Sigma}^*.a^{x-}.\overline{\Sigma}^*$ where a^{x-} means "any a-symbol that has at least annotation x" $a^{x-} = (a^x | a^{xy} | \cdots | a^{xX} | a^{xyX} \cdots)$
- x < y: similar to what we saw on previous slide.
- X(x): $\overline{\Sigma}^* . (a^{x,X}|b^{x,X}|\cdots).\overline{\Sigma}^*$. In words: "some symbol has both annotations x and X."

ooooo ooooo

Proof of Büchi's Theorem: Part 2

$$V = \mathsf{Vars}(\varphi).$$
 Extend Σ to $\overline{\Sigma} = \Sigma \times 2^V.$

Convert MSO formula φ to an automaton A_{φ} . Sketch:

- $P_a(x)$: automaton for $\overline{\Sigma}^*.a^{x-}.\overline{\Sigma}^*$ where a^{x-} means "any a-symbol that has at least annotation x" $a^{x-} = (a^x|a^{xy}|\cdots|a^{xX}|a^{xyX}\cdots)$
- x < y: similar to what we saw on previous slide.
- X(x): $\overline{\Sigma}^*.(a^{x,X}|b^{x,X}|\cdots).\overline{\Sigma}^*.$ In words: "some symbol has both annotations x and X."
- $\neg \varphi$: automaton $A_{\neg \varphi}$ computes the complement of A_{φ} how??

$$V = \mathsf{Vars}(\varphi).$$
 Extend Σ to $\overline{\Sigma} = \Sigma \times 2^V.$

Convert MSO formula φ to an automaton A_{φ} . Sketch:

- $P_a(x)$: automaton for $\overline{\Sigma}^*.a^{x-}.\overline{\Sigma}^*$ where a^{x-} means "any a-symbol that has at least annotation x" $a^{x-} = (a^x|a^{xy}|\cdots|a^{xX}|a^{xyX}\cdots)$
- x < y: similar to what we saw on previous slide.
- X(x): $\overline{\Sigma}^*.(a^{x,X}|b^{x,X}|\cdots).\overline{\Sigma}^*.$ In words: "some symbol has both annotations x and X."
- $\neg \varphi$: automaton $A_{\neg \varphi}$ computes the complement of A_{φ} how??
- $\exists x \varphi$. Intersect A_{φ} with "x is unique", then drop the annotation x.

$$V = \mathsf{Vars}(\varphi).$$
 Extend Σ to $\overline{\Sigma} = \Sigma \times 2^V.$

Convert MSO formula φ to an automaton A_{φ} . Sketch:

- $P_a(x)$: automaton for $\overline{\Sigma}^*.a^{x-}.\overline{\Sigma}^*$ where a^{x-} means "any a-symbol that has at least annotation x" $a^{x-} = (a^x|a^{xy}|\cdots|a^{xX}|a^{xyX}\cdots)$
- x < y: similar to what we saw on previous slide.
- X(x): $\overline{\Sigma}^*.(a^{x,X}|b^{x,X}|\cdots).\overline{\Sigma}^*.$ In words: "some symbol has both annotations x and X."
- $\neg \varphi$: automaton $A_{\neg \varphi}$ computes the complement of A_{φ} how??
- $\exists x \varphi$. Intersect A_{φ} with "x is unique", then drop the annotation x.
- $\exists X \varphi$. Drop the annotation X from A_{φ}

Discussion

• MSO over strings captures regular languages.

• The data complexity of MSO over strings is linear time! Fixed φ : one can check $w \models \varphi$ in time O(|w|)

Contrast with SO = NP.

• Every MSO sentence over strings is equivalent to an ∃MSO sentence! Contrast: ∃SO = ∀SO iff NP = coNP.

Courcelle's Theorem

Fix a number $k \in \mathbb{N}$.

Theorem (Courcelle)

Every formula in $\varphi \in MSO$ can be evaluated in linear time over structures with tree-width < k.

This is an amazing result! Caveats:

- The data complexity is linear time, but the expression complexity is tower of exponentials
- Complexity of tree decomposition:
 - Finding the optimal tree decomposition is NP-complete.
 - ▶ But given k, checking if a structure has tree-width $\leq k$ is in time $O(n^k)$

FO cannot express $(a.a)^*$

WHY??

Will prove that FO captures precisely the star-free languages

Star-Free Languages

Fix an alphabet Σ . Regular expressions are:

$$E := \emptyset \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*$$

where C(E) means "complement".

Star-Free Languages

Fix an alphabet Σ . Regular expressions are:

$$E ::= \emptyset \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*$$

where C(E) means "complement".

E is called *star-free* if it is equivalent to an expression without *.

Fix an alphabet Σ . Regular expressions are:

$$E := \emptyset \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*$$

where C(E) means "complement".

E is called *star-free* if it is equivalent to an expression without *. $\Sigma = \{a, b\}$, which of the expressions below are star-free?

- Σ*
- b*
- (a.b)*
- (a.a)*

Fix an alphabet Σ . Regular expressions are:

$$E := \emptyset \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*$$

where C(E) means "complement".

E is called *star-free* if it is equivalent to an expression without \star . $\Sigma = \{a, b\}$, which of the expressions below are star-free?

Σ*

 $C(\emptyset)$

- b*
- (a.b)*
- (a.a)*

Star-Free Languages

Fix an alphabet Σ . Regular expressions are:

$$E ::= \emptyset \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*$$

where C(E) means "complement".

E is called *star-free* if it is equivalent to an expression without *.

 $\Sigma = \{a, b\}$, which of the expressions below are star-free?

- Σ* $C(\emptyset)$
- b* $C(\Sigma^*.a.\Sigma^*)$
- (a.b)*
- (a.a)*

Star-Free Languages

Fix an alphabet Σ . Regular expressions are:

$$E := \emptyset \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*$$

where C(E) means "complement".

E is called star-free if it is equivalent to an expression without *.

 $\Sigma = \{a, b\}$, which of the expressions below are star-free?

•
$$b^*$$
 $C(\Sigma^*.a.\Sigma^*)$

•
$$(a.b)^*$$
 $C(\Sigma^*.a.a.\Sigma^* \cup \Sigma^*.b.b.\Sigma^* \cup b.\Sigma^* \cup \Sigma^*.a)$

Finite Model Theory Spring 2025 27/35

Star-Free Languages

Fix an alphabet Σ . Regular expressions are:

$$E ::= \emptyset \mid \varepsilon \mid a \in \Sigma \mid E \cup E \mid E.E \mid C(E) \mid E^*$$

where C(E) means "complement".

 $\it E$ is called $\it star-free$ if it is equivalent to an expression without *.

 $\Sigma = \{a, b\}$, which of the expressions below are star-free?

$$ullet$$
 Σ^* $C(\varnothing)$

•
$$b^*$$
 $C(\Sigma^*.a.\Sigma^*)$

•
$$(a.b)^*$$
 $C(\Sigma^*.a.a.\Sigma^* \cup \Sigma^*.b.b.\Sigma^* \cup b.\Sigma^* \cup \Sigma^*.a)$

• $(a.a)^*$ NOT star free! Let's prove it.

Theorem

FO over strings captures precisely the star-free regular languages.

Regular expression E. We construct Φ s.t. $w \models \Phi$ iff $w \in L(E)$.

First, convert E to an FO formula $\varphi_E(x,y)$ stating "the substring w[x:y) is in L(E)"

- Ø becomes FALSE
- ε becomes x = y
- a becomes $P_a(x) \wedge \operatorname{succ}(x,y)$
- $E_1 \cup E_2$ becomes $\varphi_{E_1}(x,y) \vee \varphi_{E_2}(x,y)$
- $E_1.E_2$ becomes $\exists z (\varphi_{E_1}(x,z) \land \varphi_{E_2}(z,y))$.
- C(E) becomes $\neg \varphi_E(x, y)$

Finally, complete the translation with:

$$\exists x \exists y (\mathsf{isMin}(x) \land \mathsf{isMax}(y) \land E(x,y))$$

For each sentence φ , construct regular expression E_{φ} s.t. $w \models \varphi$ iff $w \in L(E_{\varphi})$

For each sentence φ , construct regular expression E_{φ} s.t. $w \models \varphi$ iff $w \in L(E_{\varphi})$

We showed to translate an MSO formula φ to an automaton over an extended alphabet $\overline{\Sigma}$

Can we adapt that prove to construct a regular expression instead?

For each sentence φ , construct regular expression E_{φ} s.t. $w \models \varphi$ iff $w \in L(E_{\omega})$

We showed to translate an MSO formula φ to an automaton over an extended alphabet $\overline{\Sigma}$

Can we adapt that prove to construct a regular expression instead?

Seems promising: in most of the proof we constructed automata for intersection, union, complement: do the same for regular expressions.

For each sentence φ , construct regular expression E_{φ} s.t. $w \models \varphi$ iff $w \in L(E_{\omega})$

We showed to translate an MSO formula φ to an automaton over an extended alphabet $\overline{\Sigma}$

Can we adapt that prove to construct a regular expression instead?

Seems promising: in most of the proof we constructed automata for intersection, union, complement: do the same for regular expressions.

The problem is how we handled ∃ Will show next.

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $f(L(A)) = L(f(A))$

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $f(L(A)) = L(f(A))$

$$\overline{\Sigma} = \{a, b\}
\Sigma = \{c\}
f(a) = f(b) = c.$$

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $f(L(A)) = L(f(A))$

$$\overline{\Sigma} = \{a, b\}$$

$$\Sigma = \{c\}$$

$$f(a) = f(b) = c.$$

Handling ∃ in the Proof of Büchi's Theorem

Fix two alphabets and a function $f: \overline{\Sigma} \to \Sigma$.

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $f(L(A)) = L(f(A))$

$$\overline{\Sigma} = \{a, b\}$$

$$\Sigma = \{c\}$$

$$f(a) = f(b) = c.$$

Handling ∃ in the Proof of Büchi's Theorem

Fix two alphabets and a function $f: \overline{\Sigma} \to \Sigma$.

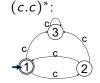
If A is an automaton, then:

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $f(L(A)) = L(f(A))$

$$\overline{\Sigma} = \{a, b\}$$

$$\Sigma = \{c\}$$

$$f(a) = f(b) = c.$$



This fails for regular expressions: $f(L(E)) \neq L(f(E))$

Handling ∃ in the Proof of Büchi's Theorem

Fix two alphabets and a function $f: \overline{\Sigma} \to \Sigma$.

If A is an automaton, then:

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $f(L(A)) = L(f(A))$

$$\overline{\Sigma} = \{a, b\}$$

$$\Sigma = \{c\}$$

$$f(a) = f(b) = c.$$

This fails for regular expressions: $f(L(E)) \neq L(f(E))$

$$E = C((a|b)^*.a.a.(a|b)^* \cup (a|b)^*.b.b.(a|b)^* \cup b.(a|b)^* \cup (a|b)^*.a)$$

$$L(E) = (a.a)^*$$

Finite Model Theory Spring 2025 31/35

If A is an automaton, then:

$$w \in L(f(A))$$
 iff $\exists u(u \in L(A) \land f(u) = w)$ i.e. $f(L(A)) = L(f(A))$

$$\overline{\Sigma} = \{a, b\}
\Sigma = \{c\}
f(a) = f(b) = c.$$

This fails for regular expressions: $f(L(E)) \neq L(f(E))$

$$E = C((a|b)^*.a.a.(a|b)^* \cup (a|b)^*.b.b.(a|b)^* \cup b.(a|b)^* \cup (a|b)^*.a)$$

$$L(E) = (a.a)^*$$

$$f(E) = C(c^*.c.c.c^* \cup c^*.c.c.c^* \cup c.c^* \cup c^*.c) = \varepsilon$$

$$L(f(E)) = \varepsilon$$
.

Discussion

We need a inductive proof that uses only sentences, no formulas.

Will do induction on the quantifier depth k.

And we will use FO[k] types.

Review: FO[k] types

FO[k] is FO where we restrict formulas to quantifer rank $\leq k$.

We defined $tp_{k,m}$ where m = number of free variables.

Today: we only need m = 0.

Definition

Let **A** be a structure. Its FO[k]-type is: $tp_k(\mathbf{A}) = \{ \varphi \in FO[k] \mid \mathbf{A} \models \varphi \}$

Every FO[k]-type is a finite set of sentences: their \wedge is a single sentence:

$$\tau = \mathsf{tp}_k(\mathbf{A})$$

For every sentence φ we construct a star-free regular expression E_{φ} .

For every sentence φ we construct a star-free regular expression E_{φ} .

Note: no free variables. Instead we prove by induction on $k = qr(\varphi)$.

For each k we also do induction on the structure of φ :

• If
$$\varphi = \varphi_1 \vee \varphi_2$$

• If
$$\varphi = \neg \varphi_1$$

then
$$E_{\varphi} = E_{\varphi_1} | E_{\varphi_2}$$

then
$$E_{\varphi} = C(E_{\varphi_1})$$
.

For every sentence φ we construct a star-free regular expression E_{φ} .

$$qr(\varphi) = 0.$$

There are no such sentences. But we do need some sentences with qr = 0for technical reasons (will be clear shortly).

So, add the constant min to the vocabulary.

• If
$$\varphi = P_a(\overline{\min})$$

then
$$E_{\varphi} = a$$

• If
$$\varphi = (\overline{\min} < \overline{\min})$$

then
$$E_{\varphi} = \emptyset$$
.

Finite Model Theory Spring 2025 34 / 35

Proof: Part 2

For every sentence φ we construct a star-free regular expression E_{φ} .

$$qr(\varphi) = k + 1$$
. Assume w.l.o.g. $\varphi = \exists x \psi(x)$
$$S \stackrel{\text{def}}{=} \{ (\sigma, \tau) \mid \exists u \in \Sigma^*, \exists q \in \mathbb{N}, u \models \psi(q), \mathsf{tp}_k(u^{< q}) = \sigma, \mathsf{tp}_k(u^{\geq q}) = \tau \}$$

Claim: for every $w \in \Sigma^*$:

$$w \vDash \varphi \text{ iff } \exists p \in \mathbb{N}, \exists (\sigma, \tau) \in S : \operatorname{tp}_k(w^{\leq p}) = \sigma, \operatorname{tp}_k(w^{> p}) = \tau$$

For every sentence φ we construct a star-free regular expression E_{φ} .

$$qr(\varphi) = k + 1$$
. Assume w.l.o.g. $\varphi = \exists x \psi(x)$
$$S \stackrel{\text{def}}{=} \{ (\sigma, \tau) \mid \exists u \in \Sigma^*, \exists q \in \mathbb{N}, u \models \psi(q), \mathsf{tp}_k(u^{< q}) = \sigma, \mathsf{tp}_k(u^{\geq q}) = \tau \}$$

Claim: for every $w \in \Sigma^*$:

$$w \vDash \varphi \text{ iff } \exists p \in \mathbb{N}, \exists (\sigma, \tau) \in S : \operatorname{tp}_k(w^{\leq p}) = \sigma, \operatorname{tp}_k(w^{> p}) = \tau$$

S is finite:
$$\{(\sigma_1, \tau_1), \dots, (\sigma_n, \tau_n)\}$$

The claim implies $E_{\omega} = E_{\sigma_1}.E_{\tau_1}|E_{\sigma_2}.E_{\tau_2}|\cdots$

For every sentence φ we construct a star-free regular expression E_{ω} .

$$qr(\varphi) = k + 1$$
. Assume w.l.o.g. $\varphi = \exists x \psi(x)$

$$S \stackrel{\mathsf{def}}{=} \{ (\sigma, \tau) \mid \exists u \in \Sigma^*, \exists q \in \mathbb{N}, u \models \psi(q), \mathsf{tp}_k(u^{< q}) = \sigma, \mathsf{tp}_k(u^{\geq q}) = \tau \}$$

Claim: for every $w \in \Sigma^*$:

$$w \models \varphi \text{ iff } \exists p \in \mathbb{N}, \exists (\sigma, \tau) \in S : \operatorname{tp}_k(w^{\leq p}) = \sigma, \operatorname{tp}_k(w^{>p}) = \tau$$

If $w \models \varphi$ then exists q s.t. $q \models \psi(q)$.

Take
$$\sigma = \operatorname{tp}_k(w^{\leq p})$$
, $\tau = \operatorname{tp}_k(w^{>p})$

By definition, $(\sigma, \tau) \in S$

For every sentence φ we construct a star-free regular expression E_{φ} .

$$qr(\varphi) = k + 1$$
. Assume w.l.o.g. $\varphi = \exists x \psi(x)$
$$S \stackrel{\text{def}}{=} \{ (\sigma, \tau) \mid \exists u \in \Sigma^*, \exists q \in \mathbb{N}, u \models \psi(q), \operatorname{tp}_k(u^{< q}) = \sigma, \operatorname{tp}_k(u^{\geq q}) = \tau \}$$

Claim: for every $w \in \Sigma^*$:

$$w \vDash \varphi \text{ iff } \exists p \in \mathbb{N}, \exists (\sigma, \tau) \in S : \operatorname{tp}_k(w^{\leq p}) = \sigma, \operatorname{tp}_k(w^{> p}) = \tau$$

Assume $\exists p \in \mathbb{N}, \mathsf{tp}_{k}(w^{\leq p}) = \sigma, \mathsf{tp}_{k}(w^{>p}) = \tau$

Since
$$(\sigma, \tau) \in S$$
, $\exists u \in \Sigma^*, q \in \mathbb{N}, u \models \psi(q)$:

$$\operatorname{tp}_k(u^{\leq q}) = \sigma, \operatorname{tp}_k(u^{>q}) = \tau$$

$$\boxed{\operatorname{tp}_k(w^{\leq p}) = \operatorname{tp}_k(u^{\leq q})}$$
 and $\boxed{\operatorname{tp}_k(w^{>p}) = \operatorname{tp}_k(u^{>q})}$

This implies $\operatorname{tp}_{k}(w) = \operatorname{tp}_{k}(u)$, hence $w \models \psi(p)$, thus $w \models \exists x \psi(x)$.

This completes the proof.

Discussion

- The language $(a.a)^*$ is not star-free because it checks if a^* has EVEN length; is not in FO
- Satisfiability of for MSO on strings is decidable.
- The data complexity for MSO on strings is in linear time
 In general, the data complexity of MSO is in NP; can be NP-conplete.
- On strings: $\exists MSO = \forall MSO = MSO$