Finite Model Theory Lecture 7: Ehrenfeucht-Fraisse Games

Spring 2025

Where Are We

- Classical model theory: concerned with satisfiability, implication.
- Finite model theory:
 - Satisfiability: undedicable (Trakhtenbrot); same for implication.
 - 0/1 laws: only makes sense on finite models
 - Model checking: only makes sense on finite models

Today: we start Expressiblity: what properties can we define?

Important techniques:

• Ehrenfeuched-Fraisse Games for FO

• Pebble Games for Infinitary logics (includes recursion)

The Expressibility Problem

Fix a property of structures, P. Is there a sentence φ that expresses P? $\mathbf{A} \models \varphi$ iff $P(\mathbf{A})$ is true

 φ may be in FO, or some extension.

Example properties: CONNECTIVITY, EVEN, TREE.

We may restrict the structure **A**. Example: restrict to linear orders.

Example: EVEN

Find a sentence φ s.t. $\mathbf{A} \vDash \varphi$ iff the size of $Dom(\mathbf{A})$ is even.

Example: EVEN

Find a sentence φ s.t. $\mathbf{A} \vDash \varphi$ iff the size of $Dom(\mathbf{A})$ is even.

Impossible! $\mu_n(\varphi) = 0$ when n = odd, $\mu_n(\varphi) = 1$ when n = even, violates 0/1-law.

Example: EVEN

Find a sentence φ s.t. $\mathbf{A} \vDash \varphi$ iff the size of $Dom(\mathbf{A})$ is even.

Impossible! $\mu_n(\varphi) = 0$ when n = odd, $\mu_n(\varphi) = 1$ when n = even, violates 0/1-law.

Now assume that the structure is a linear order (L, <).

The 0/1 law no longer helps.

Attempt to prove P is not expressible: Find $\boldsymbol{A}, \boldsymbol{B}$ s.t. $P(\boldsymbol{A}) = 1$, $P(\boldsymbol{B}) = 0$, and $\forall \varphi, \boldsymbol{A} \vDash \varphi$ iff $\boldsymbol{B} \vDash \varphi$.

Attempt to prove P is not expressible: Find $\boldsymbol{A}, \boldsymbol{B}$ s.t. $P(\boldsymbol{A}) = 1$, $P(\boldsymbol{B}) = 0$, and $\forall \varphi, \boldsymbol{A} \models \varphi$ iff $\boldsymbol{B} \models \varphi$.

Definition

A and **B** are elementary equivalent if for all $\varphi \in FO$, $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.

We write $\boldsymbol{A} \equiv \boldsymbol{B}$.

Attempt to prove P is not expressible: Find $\boldsymbol{A}, \boldsymbol{B}$ s.t. $P(\boldsymbol{A}) = 1$, $P(\boldsymbol{B}) = 0$, and $\forall \varphi, \boldsymbol{A} \models \varphi$ iff $\boldsymbol{B} \models \varphi$.

Definition

A and **B** are elementary equivalent if forall $\varphi \in FO$, $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.

We write $\boldsymbol{A} \equiv \boldsymbol{B}$.

Example: $\sigma = (0, \text{succ})$. Then $(\mathbb{N}, 0, \text{succ}) \equiv (\mathbb{N} \cup \mathbb{Z}, 0, \text{succ})$.

If $P(\mathbf{A}) = 1$, $P(\mathbf{B}) = 0$ and $\mathbf{A} \equiv \mathbf{B}$, then P is not expressible in FO.

Attempt to prove P is not expressible: Find $\boldsymbol{A}, \boldsymbol{B}$ s.t. $P(\boldsymbol{A}) = 1$, $P(\boldsymbol{B}) = 0$, and $\forall \varphi, \boldsymbol{A} \models \varphi$ iff $\boldsymbol{B} \models \varphi$.

Definition

A and **B** are elementary equivalent if forall $\varphi \in FO$, $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.

We write $\boldsymbol{A} \equiv \boldsymbol{B}$.

Example: $\sigma = (0, \text{succ})$. Then $(\mathbb{N}, 0, \text{succ}) \equiv (\mathbb{N} \cup \mathbb{Z}, 0, \text{succ})$.

If $P(\mathbf{A}) = 1$, $P(\mathbf{B}) = 0$ and $\mathbf{A} \equiv \mathbf{B}$, then P is not expressible in FO.

Unfortunately, \equiv does not help us over finite models: we explain next.

Isomorphism

Assume a relational vocabulary $\sigma = (R_1, ..., R_k, c_1, ..., c_m)$ $\mathbf{A} = (A, R_1^A, ..., R_k^A, c_1^A, ..., c_m^A), \mathbf{B} = (B, R_1^B, ..., R_k^B, c_1^B, ..., c_m^B).$

Isomorphism

Assume a relational vocabulary $\sigma = (R_1, \dots, R_k, c_1, \dots, c_m)$ $\boldsymbol{A} = (A, R_1^A, \dots, R_k^A, c_1^A, \dots, c_m^A), \boldsymbol{B} = (B, R_1^B, \dots, R_k^B, c_1^B, \dots, c_m^B).$

Definition

An isomorphism $f : \mathbf{A} \to \mathbf{B}$ is a bijection s.t f, f^{-1} are homomorphisms.

We write $\boldsymbol{A} \simeq \boldsymbol{B}$.

Isomorphism

Assume a relational vocabulary
$$\sigma = (R_1, ..., R_k, c_1, ..., c_m)$$

 $\mathbf{A} = (A, R_1^A, ..., R_k^A, c_1^A, ..., c_m^A), \ \mathbf{B} = (B, R_1^B, ..., R_k^B, c_1^B, ..., c_m^B).$

Definition

An *isomorphism* $f : \mathbf{A} \rightarrow \mathbf{B}$ is a bijection s.t f, f^{-1} are homomorphisms.

We write $\boldsymbol{A} \simeq \boldsymbol{B}$.

$$(a_1, \ldots, a_k) \in R_i^A$$
 iff $(f(a_1), \ldots, f(a_k)) \in R_i^B$, $i = 1, k$
 $f(c_j^A) = c_j^B$, $j = 1, m$.

Isomorphism

Assume a relational vocabulary
$$\sigma = (R_1, \dots, R_k, c_1, \dots, c_m)$$

 $\boldsymbol{A} = (A, R_1^A, \dots, R_k^A, c_1^A, \dots, c_m^A), \ \boldsymbol{B} = (B, R_1^B, \dots, R_k^B, c_1^B, \dots, c_m^B).$

Definition

An isomorphism $f : \mathbf{A} \to \mathbf{B}$ is a bijection s.t f, f^{-1} are homomorphisms.

We write $\boldsymbol{A} \simeq \boldsymbol{B}$.

$$(a_1, \ldots, a_k) \in R_i^A$$
 iff $(f(a_1), \ldots, f(a_k)) \in R_i^B$, $i = 1, k$
 $f(c_j^A) = c_j^B$, $j = 1, m$.

Fact

If $\mathbf{A} \simeq \mathbf{B}$ then $\mathbf{A} \equiv \mathbf{B}$.

We want $P(\mathbf{A}) = 1$, $P(\mathbf{B}) = 0$, (which implies $\mathbf{A} \notin \mathbf{B}$), and $\mathbf{A} \equiv \mathbf{B}$.

Elementary Equivalence for Finite Structures

Theorem

If A, B are finite and $A \equiv B$ then $A \simeq B$.

In words: if two finite structures satisfy the same FO sentences, then they are the same (up to isomorphism)

Elementary Equivalence for Finite Structures

Theorem

If A, B are finite and $A \equiv B$ then $A \simeq B$.

In words: if two finite structures satisfy the same FO sentences, then they are the same (up to isomorphism)

Proof. There exists a sentence $\varphi^{\mathbf{A}}$ that uniquely identifies \mathbf{A} .

 $A = \varphi^{A} = \exists x \exists y \exists z (x \neq y) \land (x \neq z) \land (y \neq z)$ $\uparrow \forall u(u = x) \lor (u = y) \lor (u = z)$ $\land \neg E(x, x) \land E(x, y) \land \neg E(x, z)$ $\land \neg E(y, x) \land \neg E(y, y) \land E(y, z)$ $\land \neg E(z, x) \land E(z, y) \land \neg E(z, z)$

 $\sigma = (R_1,\ldots,R_k,c_1,\ldots,c_m).$

$$\sigma = (R_1, \ldots, R_k, c_1, \ldots, c_m).$$

- **A** is a substructure of **B**, $A \subseteq B$ if:
 - $A \subseteq B$, where A = Dom(A), B = Dom(B)• $R_i^A \subseteq R_i^B$, i = 1, k. • $c_j^A = c_j^B$, j = 1, m.

$$\sigma = (R_1, \ldots, R_k, c_1, \ldots, c_m).$$

- **A** is a substructure of **B**, $A \subseteq B$ if:
 - A ⊆ B, where A = Dom(A), B = Dom(B)
 R_i^A ⊆ R_i^B, i = 1, k.
 c_i^A = c_i^B, j = 1, m.

It is an induced substructure,

$$\boldsymbol{A} = \boldsymbol{B}|_{A} \text{ if, in addition:}$$

$$\boldsymbol{R}_{i}^{B} \cap A^{\operatorname{arity}(R_{i})} \subseteq R_{i}^{A}, i = 1, k.$$

$$\sigma = (R_1, \ldots, R_k, c_1, \ldots, c_m).$$

- **A** is a substructure of **B**, $A \subseteq B$ if:
 - $A \subseteq B$, where A = Dom(A), B = Dom(B)• $R_i^A \subseteq R_i^B$, i = 1, k. • $c_j^A = c_j^B$, j = 1, m.

Which are induced subgraphs of **B**?

It is an induced substructure,

$$\boldsymbol{A} = \boldsymbol{B}|_{A} \text{ if, in addition:}$$

$$\boldsymbol{R}_{i}^{B} \cap A^{\operatorname{arity}(R_{i})} \subseteq R_{i}^{A}, i = 1, k.$$

$$\sigma = (R_1, \ldots, R_k, c_1, \ldots, c_m).$$

- **A** is a substructure of **B**, $A \subseteq B$ if:
 - $A \subseteq B$, where A = Dom(A), B = Dom(B)• $R_i^A \subseteq R_i^B$, i = 1, k. • $c_j^A = c_j^B$, j = 1, m.

Which are induced subgraphs of **B**?

$$\boldsymbol{A} = \boldsymbol{B}|_{A} \text{ if, in addition:}$$

$$\boldsymbol{R}_{i}^{B} \cap A^{\operatorname{arity}(R_{i})} \subseteq R_{i}^{A}, i = 1, k.$$

$$\sigma = (R_1, \ldots, R_k, c_1, \ldots, c_m).$$

- **A** is a substructure of **B**, $A \subseteq B$ if:
 - $A \subseteq B$, where A = Dom(A), B = Dom(B)• $R_i^A \subseteq R_i^B$, i = 1, k. • $c_j^A = c_j^B$, j = 1, m.

Which are induced subgraphs of **B**?

$$\boldsymbol{A} = \boldsymbol{B}|_{A} \text{ if, in addition:}$$

$$\boldsymbol{R}_{i}^{B} \cap A^{\operatorname{arity}(R_{i})} \subseteq R_{i}^{A}, i = 1, k.$$

induced

$$\sigma = (R_1, \ldots, R_k, c_1, \ldots, c_m).$$

- **A** is a substructure of **B**, $A \subseteq B$ if:
 - $A \subseteq B$, where A = Dom(A), B = Dom(B)• $R_i^A \subseteq R_i^B$, i = 1, k. • $c_j^A = c_j^B$, j = 1, m.

Which are induced subgraphs of **B**?

$$\boldsymbol{A} = \boldsymbol{B}|_{A} \text{ if, in addition:}$$

$$\boldsymbol{R}_{i}^{B} \cap A^{\operatorname{arity}(R_{i})} \subseteq R_{i}^{A}, i = 1, k.$$

induced

$$\sigma = (R_1, \ldots, R_k, c_1, \ldots, c_m).$$

- **A** is a substructure of **B**, $A \subseteq B$ if:
 - $A \subseteq B$, where A = Dom(A), B = Dom(B)• $R_i^A \subseteq R_i^B$, i = 1, k. • $c_j^A = c_j^B$, j = 1, m.

Which are induced subgraphs of **B**?

$$\boldsymbol{A} = \boldsymbol{B}|_{A} \text{ if, in addition:}$$

$$\boldsymbol{R}_{i}^{B} \cap A^{\operatorname{arity}(R_{i})} \subseteq R_{i}^{A}, i = 1, k.$$

induced

substructure

$$\sigma = (R_1, \ldots, R_k, c_1, \ldots, c_m).$$

- **A** is a substructure of **B**, $A \subseteq B$ if:
 - $A \subseteq B$, where A = Dom(A), B = Dom(B)• $R_i^A \subseteq R_i^B$, i = 1, k. • $c_j^A = c_j^B$, j = 1, m.

Which are induced subgraphs of **B**?

$$\boldsymbol{A} = \boldsymbol{B}|_{A} \text{ if, in addition:}$$

$$\boldsymbol{R}_{i}^{B} \cap A^{\operatorname{arity}(R_{i})} \subseteq R_{i}^{A}, i = 1, k.$$

induced

substructure

Finite Model Theory

Lecture 7

$$\sigma = (R_1, \ldots, R_k, c_1, \ldots, c_m).$$

- **A** is a substructure of **B**, $A \subseteq B$ if:
 - $A \subseteq B$, where A = Dom(A), B = Dom(B)• $R_i^A \subseteq R_i^B$, i = 1, k. • $c_j^A = c_j^B$, j = 1, m.

Which are induced subgraphs of **B**?

A₁=

substructure

 $A_2 =$

Finite Model Theory

Lecture 7

3

Partial Isomorphism

Let $\boldsymbol{A}, \boldsymbol{B}$ be two σ -structures, $\boldsymbol{a} = (a_1, \dots, a_k) \in A^k$, $\boldsymbol{b} = (b_1, \dots, b_k) \in B^k$.

11/24

Partial Isomorphism

Let $\boldsymbol{A}, \boldsymbol{B}$ be two σ -structures, $\boldsymbol{a} = (a_1, \dots, a_k) \in A^k$, $\boldsymbol{b} = (b_1, \dots, b_k) \in B^k$.

Definition

The pair $\boldsymbol{a}, \boldsymbol{b}$ is a partial isomorphism from \boldsymbol{A} to \boldsymbol{B} if the function $a_i \mapsto b_i$, i = 1, k (maps \boldsymbol{a} to \boldsymbol{b}), and $c_i^A \mapsto c_i^B$ (maps named constants to named constants) is an isomorphism between the substructures induced by $\boldsymbol{a}, \boldsymbol{b}$.

We write $\boldsymbol{a} \simeq \boldsymbol{b}$.

Partial Isomorphism

Let $\boldsymbol{A}, \boldsymbol{B}$ be two σ -structures, $\boldsymbol{a} = (a_1, \dots, a_k) \in A^k$, $\boldsymbol{b} = (b_1, \dots, b_k) \in B^k$.

Definition

The pair $\boldsymbol{a}, \boldsymbol{b}$ is a partial isomorphism from \boldsymbol{A} to \boldsymbol{B} if the function $a_i \mapsto b_i$, i = 1, k (maps \boldsymbol{a} to \boldsymbol{b}), and $c_i^A \mapsto c_i^B$ (maps named constants to named constants) is an isomorphism between the substructures induced by $\boldsymbol{a}, \boldsymbol{b}$.

We write $\boldsymbol{a} \simeq \boldsymbol{b}$.

In words:

- Forall $i, j, a_i = a_j$ iff $b_i = b_j$. (Equality is preserved.)
- Forall $i, j, a_i = c_j^A$ iff $b_i = c_j^B$. (Constants are preserved.)
- $(t_{i_1}, \ldots, t_{i_n}) \in R_j^A$ iff $(t'_{i_1}, \ldots, t'_{i_n}) \in R_j^B$, when the partial isomorphism maps $t_{i_1} \mapsto t'_{i_1}, t_{i_2} \mapsto t'_{i_2}$, etc.

There are two players, spoiler and duplicator. They play on two structures A, B in k rounds

There are two players, spoiler and duplicator. They play on two structures A, B in k rounds

Round i (i = 1, k):

• Spoiler places his pebble *i* on an element $a_i \in A$ or $b_i \in B$.

12/24

There are two players, spoiler and duplicator. They play on two structures A, B in k rounds

Round i (i = 1, k):

- Spoiler places his pebble *i* on an element $a_i \in A$ or $b_i \in B$.
- Duplicator places her pebble *i* on an element $b_i \in B$ or $a_i \in A$.

12/24

There are two players, spoiler and duplicator. They play on two structures A, B in k rounds

Round i (i = 1, k):

- Spoiler places his pebble *i* on an element $a_i \in A$ or $b_i \in B$.
- Duplicator places her pebble *i* on an element $b_i \in B$ or $a_i \in A$.

Let $\boldsymbol{a} = (a_1, \dots, a_k)$, $\boldsymbol{b} = (b_1, \dots, b_k)$ be the pebbles at the game end. Duplicator wins if $\boldsymbol{a}, \boldsymbol{b}$ forms a partial isomorphism; otherwise Spoiler wins.

There are two players, spoiler and duplicator. They play on two structures A, B in k rounds

Round i (i = 1, k):

- Spoiler places his pebble *i* on an element $a_i \in A$ or $b_i \in B$.
- Duplicator places her pebble *i* on an element $b_i \in B$ or $a_i \in A$.

Let $\boldsymbol{a} = (a_1, \dots, a_k)$, $\boldsymbol{b} = (b_1, \dots, b_k)$ be the pebbles at the game end. Duplicator wins if $\boldsymbol{a}, \boldsymbol{b}$ forms a partial isomorphism; otherwise Spoiler wins.

Definition

We write $\mathbf{A} \sim_k \mathbf{B}$ if the duplicator has a winning strategy for k rounds.

12 / 24
Example

Example

Duplicator wins in 2 rounds: $\mathbf{A} \sim_2 \mathbf{B}$.

But in 3 or more rounds, spoiler wins: $\mathbf{A} \neq_3 \mathbf{B}$

Example

Duplicator wins in 2 rounds: $\mathbf{A} \sim_2 \mathbf{B}$.

But in 3 or more rounds, spoiler wins: $A \not \sim_3 B$

Example

Duplicator wins in 2 rounds: $\mathbf{A} \sim_2 \mathbf{B}$.

But in 3 or more rounds, spoiler wins: $A \not\downarrow_3 B$

Example

Duplicator wins in 2 rounds: $\mathbf{A} \sim_2 \mathbf{B}$.

But in 3 or more rounds, spoiler wins: $A \not \sim_3 B$

Example

Duplicator wins in 2 rounds: $\mathbf{A} \sim_2 \mathbf{B}$.

But in 3 or more rounds, spoiler wins: $A \not \sim_3 B$

The *quantifier rank* of a formula φ is defined inductively¹:

$$qr(\mathbf{F}) = qr(t_1 = t_2) = qr(R(t_1, \dots, t_m)) = 0$$
$$qr(\varphi \to \psi) = \max(qr(\varphi), qr(\psi))$$
$$qr(\forall x(\varphi)) = 1 + qr(\varphi)$$

 $FO[k] \stackrel{\text{def}}{=} FO$ restricted to formulas with $qr \leq k$.

¹The *number* of quantifiers can be exponentially larger than $qr(\varphi)$ why?

The *quantifier rank* of a formula φ is defined inductively¹:

$$qr(\mathbf{F}) = qr(t_1 = t_2) = qr(R(t_1, \dots, t_m)) = 0$$
$$qr(\varphi \to \psi) = \max(qr(\varphi), qr(\psi))$$
$$qr(\forall x(\varphi)) = 1 + qr(\varphi)$$

 $FO[k] \stackrel{\text{def}}{=} FO$ restricted to formulas with $qr \leq k$.

Examples: $\varphi = (\exists x \forall y E(x, y)) \land (\forall u \exists v \neg (E(v, u))). \qquad qr(\varphi) = ???$

¹The *number* of quantifiers can be exponentially larger than $qr(\varphi)$ why?

The *quantifier rank* of a formula φ is defined inductively¹:

$$qr(\mathbf{F}) = qr(t_1 = t_2) = qr(R(t_1, \dots, t_m)) = 0$$
$$qr(\varphi \to \psi) = \max(qr(\varphi), qr(\psi))$$
$$qr(\forall x(\varphi)) = 1 + qr(\varphi)$$

 $FO[k] \stackrel{\text{def}}{=} FO$ restricted to formulas with $qr \le k$.

Examples: $\varphi = (\exists x \forall y E(x, y)) \land (\forall u \exists v \neg (E(v, u))). \qquad qr(\varphi) = 2$

¹The *number* of quantifiers can be exponentially larger than $qr(\varphi)$ why?

The *quantifier rank* of a formula φ is defined inductively¹:

$$qr(\mathbf{F}) = qr(t_1 = t_2) = qr(R(t_1, \dots, t_m)) = 0$$
$$qr(\varphi \to \psi) = \max(qr(\varphi), qr(\psi))$$
$$qr(\forall x(\varphi)) = 1 + qr(\varphi)$$

 $FO[k] \stackrel{\text{def}}{=} FO$ restricted to formulas with $qr \leq k$.

Examples:
$$\varphi = (\exists x \forall y E(x, y)) \land (\forall u \exists v \neg (E(v, u))). \qquad qr(\varphi) = 2$$

Definition

 $\mathbf{A} \equiv_k \mathbf{B}$ if every sentence $\varphi \in FO[k]$ has the same truth value in \mathbf{A} and \mathbf{B} .

¹The *number* of quantifiers can be exponentially larger than $qr(\varphi)$ why?

Finite	N/loc	heon
1 111100	10100	neory

Lecture 7

Ehrenfeucht-Fraisse Games: Main Result

Theorem (Ehrenfeucht-Fraisse)

 $\mathbf{A} \equiv_k \mathbf{B}$ iff $\mathbf{A} \sim_k \mathbf{B}$.

Example

Since $\mathbf{A} \not\models_3 \mathbf{B}$, we have $\mathbf{A} \not\equiv_3 \mathbf{B}$.

Example

Since $\mathbf{A} \neq_3 \mathbf{B}$, we have $\mathbf{A} \not\equiv_3 \mathbf{B}$.

Give example of $\varphi \in FO[3]$ s.t. $\boldsymbol{A} \notin \varphi$, $\boldsymbol{B} \models \varphi$.

Example

Since $\mathbf{A} \neq_3 \mathbf{B}$, we have $\mathbf{A} \not\equiv_3 \mathbf{B}$.

Give example of $\varphi \in FO[3]$ s.t. $\boldsymbol{A} \neq \varphi$, $\boldsymbol{B} \models \varphi$.

 $\exists x_1 \exists x_2 \exists x_3 ((x_1 \neq x_2) \land (x_1 \neq x_3) \land (x_2 \neq x_3) \land \neg E(x_1, x_2) \land \neg E(x_2, x_3) \land \neg E(x_1, x_3))$

16 / 24

Part 1: If $A \sim_k B$ then $A \equiv_k B$.

Induction on k.

Part 1: If
$$A \sim_k B$$
 then $A \equiv_k B$. Induction on k .

Assume $\mathbf{A} \sim_k \mathbf{B}$, and let $\varphi \in FO[k]$. Assume wlog $\varphi = \exists x \psi(x)$.

Part 1: If
$$A \sim_k B$$
 then $A \equiv_k B$. Induction on k.

Assume $\mathbf{A} \sim_k \mathbf{B}$, and let $\varphi \in FO[k]$. Assume wlog $\varphi = \exists x \psi(x)$.

Assume $|\mathbf{A} \models \varphi|$.

Part 1: If $A \sim_k B$ then $A \equiv_k B$. Induction on k.

Assume $\mathbf{A} \sim_k \mathbf{B}$, and let $\varphi \in FO[k]$. Assume wlog $\varphi = \exists x \psi(x)$.

Assume $| \mathbf{A} \models \varphi |$. Then $\exists a_1 \in \text{Dom}(\mathbf{A}), \mathbf{A} \models \psi(a_1)$.

Part 1: If $A \sim_k B$ then $A \equiv_k B$. Induction on k.

Assume $\mathbf{A} \sim_k \mathbf{B}$, and let $\varphi \in FO[k]$. Assume wlog $\varphi = \exists x \psi(x)$.

Assume
$$|\mathbf{A} \models \varphi|$$
. Then $\exists a_1 \in \text{Dom}(\mathbf{A}), \mathbf{A} \models \psi(a_1)$.

Start an EF game with spoiler choosing a_1 . Duplicator replies $b_1 \in \text{Dom}(B)$, and $(A, a_1) \sim_{k-1} (B, b_1)$.

Part 1: If $A \sim_k B$ then $A \equiv_k B$. Induction on k.

Assume $\mathbf{A} \sim_k \mathbf{B}$, and let $\varphi \in FO[k]$. Assume wlog $\varphi = \exists x \psi(x)$.

Assume
$$|\mathbf{A} \models \varphi|$$
. Then $\exists a_1 \in \text{Dom}(\mathbf{A})$, $\mathbf{A} \models \psi(a_1)$.

Start an EF game with spoiler choosing a_1 . Duplicator replies $b_1 \in \text{Dom}(B)$, and² $(A, a_1) \sim_{k-1} (B, b_1)$.

By induction, $(\mathbf{A}, \mathbf{a}_1) \equiv_{k-1} (\mathbf{B}, \mathbf{b}_1)$, hence $\mathbf{B} \models \psi(\mathbf{b}_1)$.

Part 1: If $A \sim_k B$ then $A \equiv_k B$. Induction on k.

Assume $\mathbf{A} \sim_k \mathbf{B}$, and let $\varphi \in FO[k]$. Assume wlog $\varphi = \exists x \psi(x)$.

Assume
$$|\mathbf{A} \models \varphi|$$
. Then $\exists a_1 \in \text{Dom}(\mathbf{A})$, $\mathbf{A} \models \psi(a_1)$.

Start an EF game with spoiler choosing a_1 . Duplicator replies $b_1 \in \text{Dom}(B)$, and $(A, a_1) \sim_{k-1} (B, b_1)$.

By induction, $(\boldsymbol{A}, a_1) \equiv_{k-1} (\boldsymbol{B}, b_1)$, hence $\boldsymbol{B} \models \psi(b_1)$. $|\boldsymbol{B} \models \varphi|$

Part 1: If $A \sim_k B$ then $A \equiv_k B$. Induction on k.

Assume $\mathbf{A} \sim_k \mathbf{B}$, and let $\varphi \in FO[k]$. Assume wlog $\varphi = \exists x \psi(x)$.

Assume
$$|\mathbf{A} \models \varphi|$$
. Then $\exists a_1 \in \text{Dom}(\mathbf{A}), \mathbf{A} \models \psi(a_1)$.

Start an EF game with spoiler choosing a_1 . Duplicator replies $b_1 \in \text{Dom}(B)$, and $(A, a_1) \sim_{k-1} (B, b_1)$.

By induction, $(\boldsymbol{A}, \boldsymbol{a_1}) \equiv_{k-1} (\boldsymbol{B}, \boldsymbol{b_1})$, hence $\boldsymbol{B} \models \psi(\boldsymbol{b_1})$. $\boldsymbol{B} \models \varphi$

If
$$\mathbf{B} \models \varphi$$
, then, similarly, $\mathbf{A} \models \varphi$ (duplicator plays on \mathbf{B}).

Part 1: If $A \sim_k B$ then $A \equiv_k B$. Induction on k.

Assume $\mathbf{A} \sim_k \mathbf{B}$, and let $\varphi \in FO[k]$. Assume wlog $\varphi = \exists x \psi(x)$.

Assume
$$|\mathbf{A} \models \varphi|$$
. Then $\exists a_1 \in \text{Dom}(\mathbf{A}), \mathbf{A} \models \psi(a_1)$.

Start an EF game with spoiler choosing a_1 . Duplicator replies $b_1 \in \text{Dom}(B)$, and $(A, a_1) \sim_{k-1} (B, b_1)$.

By induction,
$$(\mathbf{A}, \mathbf{a_1}) \equiv_{k-1} (\mathbf{B}, \mathbf{b_1})$$
, hence $\mathbf{B} \vDash \psi(\mathbf{b_1})$. $\mathbf{B} \vDash \varphi$

If
$$\mathbf{B} \models \varphi$$
, then, similarly, $\mathbf{A} \models \varphi$ (duplicator plays on \mathbf{B}).

Next lecture: **Part 2:** If $A \equiv_k B$ then $A \sim_k B$

²Meaning: extend σ with new a constant symbol c, and set $c^{A} \stackrel{\text{def}}{=} a_{1}$, $c^{B} \stackrel{\text{def}}{=} b_{1}$.

EVEN of a Linear Order is Not Expressible in FO

EVEN of Linear Order

Linear Order

A finite, linear orders, over $\sigma = (<)$, is $\boldsymbol{L}_n \stackrel{\text{def}}{=} ([n], <)$

19/24

A finite, linear orders, over $\sigma = (<)$, is $\boldsymbol{L}_n \stackrel{\text{def}}{=} ([n], <)$

What we can say about L_n :

• Check if x is the smallest element: $isMin(x) = \forall y(\neg y < x)$.

A finite, linear orders, over $\sigma = (<)$, is $L_n \stackrel{\text{def}}{=} ([n], <)$

What we can say about L_n :

- Check if x is the smallest element: $isMin(x) = \forall y(\neg y < x)$.
- Check if y is the successor of x: $succ(x, y) = x < y \land \neg \exists z(x < z \land z < y).$

A finite, linear orders, over $\sigma = (<)$, is $\boldsymbol{L}_n \stackrel{\text{def}}{=} ([n], <)$

What we can say about L_n :

- Check if x is the smallest element: $isMin(x) = \forall y(\neg y < x)$.
- Check if y is the successor of x: $succ(x, y) = x < y \land \neg \exists z(x < z \land z < y).$

Can we check if n is EVEN?

A finite, linear orders, over $\sigma = (<)$, is $\boldsymbol{L}_n \stackrel{\text{def}}{=} ([n], <)$

What we can say about L_n :

- Check if x is the smallest element: $isMin(x) = \forall y(\neg y < x)$.
- Check if y is the successor of x: $succ(x, y) = x < y \land \neg \exists z (x < z \land z < y).$

Can we check if n is EVEN?

Will show: there is no sentence φ s.t. $L_n \vDash \varphi$ iff *n* is even.

EF Games on Linear Orders

Show that $L_6 \sim_2 L_7$.

Show that $L_6 \sim_2 L_7$. Show that $L_6 \not\sim_3 L_7$.

Show that $L_6 \sim_2 L_7$. Show that $L_6 \not\sim_3 L_7$.

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise $\mathbf{L}_m \not \sim_k \mathbf{L}_n$.

21 / 24

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise $\mathbf{L}_m \neq_k \mathbf{L}_n$.

Corollary

EVEN is not expressible over linear orders.

Proof Suppose φ is s.t. $\boldsymbol{L}_n \vDash \varphi$ iff *n* is even.

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise $\mathbf{L}_m \not \sim_k \mathbf{L}_n$.

Corollary

EVEN is not expressible over linear orders.

Proof Suppose φ is s.t. $L_n \vDash \varphi$ iff *n* is even. Let $k = qr(\varphi)$.

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise $\mathbf{L}_m \not \sim_k \mathbf{L}_n$.

Corollary

EVEN is not expressible over linear orders.

Proof Suppose φ is s.t. $\boldsymbol{L}_n \vDash \varphi$ iff *n* is even. Let $k = qr(\varphi)$. Choose $m \stackrel{\text{def}}{=} 2^k - 1$ and $n \stackrel{\text{def}}{=} 2^k$.

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise $\mathbf{L}_m \neq_k \mathbf{L}_n$.

Corollary

EVEN is not expressible over linear orders.

Proof Suppose φ is s.t. $\boldsymbol{L}_n \vDash \varphi$ iff *n* is even. Let $k = qr(\varphi)$. Choose $m \stackrel{\text{def}}{=} 2^k - 1$ and $n \stackrel{\text{def}}{=} 2^k$.

 $L_n \vDash \varphi$ because *n* is even;

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise $\mathbf{L}_m \not \sim_k \mathbf{L}_n$.

Corollary

EVEN is not expressible over linear orders.

Proof Suppose φ is s.t. $L_n \vDash \varphi$ iff *n* is even. Let $k = qr(\varphi)$. Choose $m \stackrel{\text{def}}{=} 2^k - 1$ and $n \stackrel{\text{def}}{=} 2^k$.

 $L_n \vDash \varphi$ because *n* is even; $L_m \sim_k L_n$ by the Theorem;

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise $\mathbf{L}_m \not \sim_k \mathbf{L}_n$.

Corollary

EVEN is not expressible over linear orders.

Proof Suppose φ is s.t. $L_n \vDash \varphi$ iff *n* is even. Let $k = qr(\varphi)$. Choose $m \stackrel{\text{def}}{=} 2^k - 1$ and $n \stackrel{\text{def}}{=} 2^k$.

 $L_n \vDash \varphi$ because *n* is even; $L_m \sim_k L_n$ by the Theorem; then $L_m \vDash \varphi$ Contradiction!

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise $\mathbf{L}_m \neq_k \mathbf{L}_n$.

Corollary

EVEN is not expressible over linear orders.

Proof Suppose φ is s.t. $\boldsymbol{L}_n \vDash \varphi$ iff *n* is even. Let $k = qr(\varphi)$. Choose $m \stackrel{\text{def}}{=} 2^k - 1$ and $n \stackrel{\text{def}}{=} 2^k$.

 $L_n \vDash \varphi$ because *n* is even; $L_m \sim_k L_n$ by the Theorem; then $L_m \vDash \varphi$ Contradiction!

It remains to prove the theorem

Let $L_m = ([m], <)$. Denote:³

$$L_m^{a} \stackrel{\text{def}}{=} \{ x \in L_m \mid x > a \}$$

Let $L_m = ([m], <)$. Denote:³

$$L_m^{a} \stackrel{\text{def}}{=} \{ x \in L_m \mid x > a \}$$

Lemma

If
$$L_m^{ and $L_m^{>a} \sim_k L_n^{>b}$, then $L_m \sim_k L_n$.$$

Let $L_m = ([m], <)$. Denote:³

$$L_m^{a} \stackrel{\text{def}}{=} \{ x \in L_m \mid x > a \}$$

Lemma

If
$$L_m^{ and $L_m^{>a} \sim_k L_n^{>b}$, then $L_m \sim_k L_n$.$$

Proof.

• If spoiler plays on $L_m^{<a}$ then duplicator answers in $L_n^{<b}$.

³Isomorphic to linear orders: $\boldsymbol{L}_m^{<a} \simeq \boldsymbol{L}_{a-1}$, $\boldsymbol{L}_m^{>a} \simeq \boldsymbol{L}_{m-a}$.

Let $L_m = ([m], <)$. Denote:³

$$L_m^{a} \stackrel{\text{def}}{=} \{ x \in L_m \mid x > a \}$$

Lemma

If
$$L_m^{ and $L_m^{>a} \sim_k L_n^{>b}$, then $L_m \sim_k L_n$.$$

Proof.

- If spoiler plays on $L_m^{<a}$ then duplicator answers in $L_n^{<b}$.
- If spoiler plays on $L_m^{>a}$ then duplicator answers in $L_n^{>b}$.

Let $L_m = ([m], <)$. Denote:³

$$L_m^{a} \stackrel{\text{def}}{=} \{ x \in L_m \mid x > a \}$$

Lemma

If
$$L_m^{ and $L_m^{>a} \sim_k L_n^{>b}$, then $L_m \sim_k L_n$.$$

Proof.

- If spoiler plays on $L_m^{<a}$ then duplicator answers in $L_n^{<b}$.
- If spoiler plays on $L_m^{>a}$ then duplicator answers in $L_n^{>b}$.
- If spoiler plays on *a* then duplicator answers on *b*.

Let $L_m = ([m], <)$. Denote:³

$$L_m^{a} \stackrel{\text{def}}{=} \{ x \in L_m \mid x > a \}$$

Lemma

If
$$L_m^{ and $L_m^{>a} \sim_k L_n^{>b}$, then $L_m \sim_k L_n$.$$

Proof.

- If spoiler plays on $L_m^{<a}$ then duplicator answers in $L_n^{<b}$.
- If spoiler plays on $L_m^{>a}$ then duplicator answers in $L_n^{>b}$.
- If spoiler plays on *a* then duplicator answers on *b*.
- If spoiler plays on the other structure, duplicator answers similarly.

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise, $\mathbf{L}_m \neq_k \mathbf{L}_n$.

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise, $\mathbf{L}_m \neq_k \mathbf{L}_n$.

Proof. Induction on *k*. Assume $m, n \ge 2^k - 1$. Spoiler plays $a \in L_m$. **Case 1**: $|L_m^{\leq a}| < 2^{k-1} - 1$ What does duplicator do?

23 / 24

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise, $\mathbf{L}_m \not \downarrow_k \mathbf{L}_n$.

Proof. Induction on k. Assume $m, n \ge 2^k - 1$. Spoiler plays $a \in L_m$. **Case 1**: $|L_m^{< a}| < 2^{k-1} - 1$ Choose b = a, thus $L_m^{< a} \sim_{k-1} L_n^{< b}$

23 / 24

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise, $\mathbf{L}_m \not \downarrow_k \mathbf{L}_n$.

Proof. Induction on k. Assume $m, n \ge 2^k - 1$. Spoiler plays $a \in L_m$. **Case 1**: $|L_m^{<a}| < 2^{k-1} - 1$ Choose b = a, thus $L_m^{<a} \sim_{k-1} L_n^{<b}$

Since
$$|L_m^{>a}|, |L_n^{>b}| > 2^{k-1} - 1, \ L_m^{>a} \sim_{k-1} L_n^{>b};$$

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise, $\mathbf{L}_m \not \downarrow_k \mathbf{L}_n$.

Proof. Induction on k. Assume $m, n \ge 2^k - 1$. Spoiler plays $a \in L_m$. **Case 1**: $|L_m^{<a}| < 2^{k-1} - 1$ Choose b = a, thus $\boxed{L_m^{<a} \sim_{k-1} L_n^{<b}}$

Since
$$|\boldsymbol{L}_m^{>a}|, |\boldsymbol{L}_n^{>b}| > 2^{k-1} - 1, |\boldsymbol{L}_m^{>a} \sim_{k-1} \boldsymbol{L}_n^{>b}|$$
; Lemma implies: $|\boldsymbol{L}_m \sim_k \boldsymbol{L}_n|$

23 / 24

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise, $\mathbf{L}_m \not \sim_k \mathbf{L}_n$.

Proof. Induction on k. Assume $m, n \ge 2^k - 1$. Spoiler plays $a \in L_m$. **Case 1**: $|L_m^{<a}| < 2^{k-1} - 1$ Choose b = a, thus $L_m^{<a} \sim_{k-1} L_n^{<b}$

Since
$$|\boldsymbol{L}_m^{>a}|, |\boldsymbol{L}_n^{>b}| > 2^{k-1} - 1, |\boldsymbol{L}_m^{>a} \sim_{k-1} \boldsymbol{L}_n^{>b}|$$
; Lemma implies: $|\boldsymbol{L}_m \sim_k \boldsymbol{L}_n|$

Case 2: $|\boldsymbol{L}_m^{>a}| < 2^{k-1} - 1$ Symmetric: choose *b* s.t. $\boldsymbol{L}_m^{>a} \simeq \boldsymbol{L}_m^{>b}$, etc.

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise, $\mathbf{L}_m \not \downarrow_k \mathbf{L}_n$.

Proof. Induction on k. Assume $m, n \ge 2^k - 1$. Spoiler plays $a \in L_m$. **Case 1**: $|L_m^{<a}| < 2^{k-1} - 1$ Choose b = a, thus $L_m^{<a} \sim_{k-1} L_n^{<b}$

Since
$$|\boldsymbol{L}_m^{>a}|, |\boldsymbol{L}_n^{>b}| > 2^{k-1} - 1, |\boldsymbol{L}_m^{>a} \sim_{k-1} \boldsymbol{L}_n^{>b}|$$
; Lemma implies: $\boldsymbol{L}_m \sim_k \boldsymbol{L}_n$

Case 2: $|\boldsymbol{L}_m^{>a}| < 2^{k-1} - 1$ Symmetric: choose *b* s.t. $\boldsymbol{L}_m^{>a} \simeq \boldsymbol{L}_m^{>b}$, etc.

Case 3: both $|\boldsymbol{L}_m^{\boldsymbol{<}a}|, |\boldsymbol{L}_m^{\boldsymbol{>}a}| \ge 2^{k-1} - 1$ (Is this possible?)

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise, $\mathbf{L}_m \not \sim_k \mathbf{L}_n$.

Proof. Induction on k. Assume $m, n \ge 2^k - 1$. Spoiler plays $a \in L_m$. **Case 1**: $|L_m^{<a}| < 2^{k-1} - 1$ Choose b = a, thus $L_m^{<a} \sim_{k-1} L_n^{<b}$

Since
$$|\boldsymbol{L}_m^{>a}|, |\boldsymbol{L}_n^{>b}| > 2^{k-1} - 1, \quad \boldsymbol{L}_m^{>a} \sim_{k-1} \boldsymbol{L}_n^{>b}$$
; Lemma implies: $\boldsymbol{L}_m \sim_k \boldsymbol{L}_n$

Case 2: $|\boldsymbol{L}_m^{>a}| < 2^{k-1} - 1$ Symmetric: choose *b* s.t. $\boldsymbol{L}_m^{>a} \simeq \boldsymbol{L}_m^{>b}$, etc.

Case 3: both $|\boldsymbol{L}_{m}^{<a}|, |\boldsymbol{L}_{m}^{>a}| \ge 2^{k-1} - 1$ (Is this possible?) Choose any *b* s.t. $|\boldsymbol{L}_{n}^{<b}|, |\boldsymbol{L}_{n}^{>b}| \ge 2^{k-1} - 1$:

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise, $\mathbf{L}_m \neq_k \mathbf{L}_n$.

Proof. Induction on k. Assume $m, n \ge 2^k - 1$. Spoiler plays $a \in L_m$. **Case 1**: $|L_m^{<a}| < 2^{k-1} - 1$ Choose b = a, thus $L_m^{<a} \sim_{k-1} L_n^{<b}$

Since
$$|\boldsymbol{L}_m^{>a}|, |\boldsymbol{L}_n^{>b}| > 2^{k-1} - 1, \quad \boldsymbol{L}_m^{>a} \sim_{k-1} \boldsymbol{L}_n^{>b}$$
; Lemma implies: $\boldsymbol{L}_m \sim_k \boldsymbol{L}_n$

Case 2: $|\boldsymbol{L}_m^{>a}| < 2^{k-1} - 1$ Symmetric: choose *b* s.t. $\boldsymbol{L}_m^{>a} \simeq \boldsymbol{L}_m^{>b}$, etc.

Case 3: both $|\boldsymbol{L}_m^{<a}|, |\boldsymbol{L}_m^{>a}| \ge 2^{k-1} - 1$ (Is this possible?) Choose any *b* s.t. $|\boldsymbol{L}_n^{<b}|, |\boldsymbol{L}_n^{>b}| \ge 2^{k-1} - 1$: $\boldsymbol{L}_m^{<a} \sim_{k-1} \boldsymbol{L}_n^{<b}$ and $\boldsymbol{L}_m^{>a} \sim_{k-1} \boldsymbol{L}_n^{>b}$;

Theorem

Let $m \neq n$. If $m, n \geq 2^k - 1$, then $\mathbf{L}_m \sim_k \mathbf{L}_n$; otherwise, $\mathbf{L}_m \not \sim_k \mathbf{L}_n$.

Proof. Induction on k. Assume $m, n \ge 2^k - 1$. Spoiler plays $a \in L_m$. **Case 1**: $|L_m^{<a}| < 2^{k-1} - 1$ Choose b = a, thus $L_m^{<a} \sim_{k-1} L_n^{<b}$

Since
$$|\boldsymbol{L}_m^{>a}|, |\boldsymbol{L}_n^{>b}| > 2^{k-1} - 1, \quad \boldsymbol{L}_m^{>a} \sim_{k-1} \boldsymbol{L}_n^{>b}$$
; Lemma implies: $\boldsymbol{L}_m \sim_k \boldsymbol{L}_n$

Case 2: $|\boldsymbol{L}_m^{>a}| < 2^{k-1} - 1$ Symmetric: choose *b* s.t. $\boldsymbol{L}_m^{>a} \simeq \boldsymbol{L}_m^{>b}$, etc.

Case 3: both $|\boldsymbol{L}_{m}^{<a}|, |\boldsymbol{L}_{m}^{>a}| \ge 2^{k-1} - 1$ (Is this possible?) Choose any *b* s.t. $|\boldsymbol{L}_{n}^{<b}|, |\boldsymbol{L}_{n}^{>b}| \ge 2^{k-1} - 1$: $\boldsymbol{L}_{m}^{<a} \sim_{k-1} \boldsymbol{L}_{n}^{<b}$ and $\boldsymbol{L}_{m}^{>a} \sim_{k-1} \boldsymbol{L}_{n}^{>b}$; Lemma implies: $\boldsymbol{L}_{m} \sim_{k} \boldsymbol{L}_{n}$.

Discussion

- Prove the converse at home: if m < 2^k − 1 and m ≠ n, then duplicator has a winning strategy.
- More precisely: there exists a sentence φ ∈ FO[k] s.t. L_m ⊨ φ and L_n ∉ φ. What is φ?
- The *Ehrenfeucht-Fraisse method* for showing inexpressibility in FO is this. For each k > 0 construct two structures A_k, B_k then:
 - Prove: $\boldsymbol{A}_k \sim_k \boldsymbol{B}_k$.
 - Prove: \boldsymbol{A}_k has the property, \boldsymbol{B}_k does not.
- Proving ~_k: difficult in general. We will discuss a sufficient condition: Hanf's lemma.