Finite Model Theory
Lecture 6: Conjunctive Queries

Spring 2025

Finite Model Theory Lecture 6 Spring 2025 1/33

CQ Query Containment
©00000000

Query Containment for CQ — Wrapup

Finite Model Theory Lecture 6 Spring 2025 2/33

CQ Query Containment Vinimization ecomposition

0O@0000000

Review: Problem Definition

Q1 is contained in Q2 if VD, Q1(D) € Q(D). Notation: Q1 € Q>

Q1is equivalent to @, if VD, Q1(D) = Q(D). Notation: Q; = Q».

Q1= Q|iff [Qe @ and Qc Q]

Finite Model Theory Lecture 6 Spring 2025 3/33

Review: The Homomorphism Criterion

[Q1c Qiff[3h: Q> Qu]iff[Dg, F @

Finite Model Theory Lecture 6 Spring 2025 4/33

ecomposition

CQ Query Containment Query Minimization

[e]e] lele]ele]e]e]

Review: The Homomorphism Criterion

[Quc Q]iff[3h: Q> Qui]iff[Do, F Q2

Qi(x) = E(x,y) NE(y,z) A E(x,w)

@2(x) = E(x,u) A E(u,v)

Q3(x) = E(x,u1) A E(uy,up) A+ A E(ug, us)

Qa(x) = E(x,y) AE(y,x)

(QucQcQi=Q|

i
X\

X_J

Spring 2025 4/33

Review: Query Containment for CQ(<, <, #)
Homomorphism is a sufficient condition for containment of CQ(<, <, #)

Q=R(x,y,z)A(x<y)A(y<z) Q" =R(u,v,w) A (u<w)

Finite Model Theory Lecture 6

Spring 2025 5/33

CQ Query Containment

Vlinimization
[e]e]e] le]ele]ele] OC 0

ecomposition

Review: Query Containment for CQ(<, <, #)
Homomorphism is a sufficient condition for containment of CQ(<, <, #)
Q=R(xy.2)A(x<y)aly<z) Q=R(uv,w)n(usw)

h:(u,v,w)~ (x,y,z) maps u<w to x<z, and QF x < z.

QcQ

Finite Model Theory Lecture 6

Spring 2025 5/33

CQ Query Containment
000000000

ecomposition

Review: Query Containment for CQ(<, <, #)

Homomorphism is not necessary for containment of CQ(<,<,#)

Q=S(x,y)AS(y,z) A(x< 2) Q' =S(u,v)A(u<v)
but there is no homomorphism Q' - @

Finite Model Theory Lecture 6 Spring 2025 6/33

CQ Query Containment g / Minimization

: s y ecomposition
000008000 00000 3 5 oY

Review: Query Containment for CQ(<, <, #)

Q< is the extension of Q with a total preorder on Vars(Q) u Const(Q)

Theorem (Necessary and Sufficient Condition)

Let Q, Q" be CQ>>* queries. The following conditions are equivalent:

(1) Qc Q' (YD, if DE Q then D= Q')

(2) For any consistent total preorder < on Q, 3h: Q" - Q-.

Proof: please see the slides of the previous lecture.

Finite Model Theory Lecture 6 Spring 2025

7/33

CQ Query Containment
000000000

Example

QR=S(x,y)AS(y,z) A(x<2) Q' =S(u,v)A(u<v)

Let's prove that .

Finite Model Theory Lecture 6 Spring 2025 8/33

CQ Query Containment

Decomposition
000000800 s

Example

QR=S(x,y)AS(y,z) A(x<2) ‘Q’:S(u,v)/\(u<v)

Let's prove that .

5 consistent total preorders on @Q:

Qu=S(x,y)AS(y,z) A(y <x) A (y<2)
Q@ =5(x,y)nS(y,z) A(x=y) A (y<2)
Q3 =5(x,y)AS(y,z) A(x<y) A (y<2)
Qa=5(x,y)nS(y,z) A(x<y) A (y=2)
Qs =S(x,y)AS(y,z) A(x<y)n(z<y)

Finite Model Theory Lecture 6 Spring 2025 8/33

CQ Query Containment

[e]e]e]ele]e] lele]

Example

QR=S(x,y)AS(y,z) A(x<2) ‘Q’:S(u,v)/\(u<v)

Let's prove that .

5 consistent total preorders on @Q:

Qu=S(x,y)AS(y,z) A(y <x) A (y<2)
Q@ =5(x,y)nS(y,z) A(x=y) A (y<2)
Q3 =5(x,y)AS(y,z) A(x<y) A (y<2)
Qa=5(x,y)nS(y,z) A(x<y) A (y=2)
Qs =S(x,y)AS(y,z) A(x<y)n(z<y)

In each case, either (u,v) — (x,y) or (u,v) ~ (y, z) is a homomorphism.

Finite Model Theory Lecture 6 Spring 2025

8/33

CQ Query Containment

[e]e]e]ele]e] lele]

Example

QR=S(x,y)AS(y,z) A(x<2) ‘Q’:S(u,v)/\(u<v)

Let's prove that .

5 consistent total preorders on @Q:

Qu=S(x,y)AS(y,z) A(y <x) A (y<2)
Q@ =5(x,y)nS(y,z) A(x=y) A (y<2)
Q3 =5(x,y)AS(y,z) A(x<y) A (y<2)
Qa=5(x,y)nS(y,z) A(x<y) A (y=2)
Qs =S(x,y)AS(y,z) A(x<y)n(z<y)

In each case, either (u,v) — (x,y) or (u,v) ~ (y, z) is a homomorphism.

Finite Model Theory Lecture 6 Spring 2025

8/33

CQ Query Containment

Decomposition
000000800 s

Example

QR=S(x,y)AS(y,z) A(x<2) ‘Q’:S(u,v)/\(u<v)

Let's prove that .

5 consistent total preorders on @Q:

Qu=S(x,y)AS(y,z) Ay <x) A (y<2z)
Q@ =5(x,y)AS(y,z) A(x=y) A (y<2z)
Qs =5S(x,y)AS(y,z) A(x<y) A (y<2z)
Qu=5(x,y)AS(y,z) A (x<y)n(y=2)
Qs =S(x,y)AS(y,z) A(x<y)n(z<y)

In each case, either (u,v) — (x,y) or (u,v) ~ (y, z) is a homomorphism.

Finite Model Theory Lecture 6 Spring 2025 8/33

CQ Query Containment
000000080

Complexity of Query Containment for CQ(<, <, #)

Theorem

The problem given Q, Q" € CQ(<,<,#), check Q ¢ Q" is M5-complete. J

Finite Model Theory Lecture 6 Spring 2025 9/33

CQ Query Containment Query Minimization
000000080 YoYolee)

Complexity of Query Containment for CQ(<, <, #)
Theorem
The problem given Q, Q" € CQ(<,<,#), check Q ¢ Q" is M5-complete. J

Review: query containment for CQ is NP-complete.

Finite Model Theory Lecture 6 Spring 2025 9/33

CQ Query Containment Query Minimization
000000080

Complexity of Query Containment for CQ(<, <, #)

Theorem

The problem given Q, Q" € CQ(<,<,#), check Q < Q' is M5-complete J

Review: query containment for CQ is NP-complete.
Reduction from 3CNF &. Example:

q):(—\X\/—\Y\/Z)/\(—!XV Y\/ﬂZ)/\(X\/UVW).

Finite Model Theory Lecture 6 Spring 2025 9/33

CQ Query Containment Query Minimization C es H
000000080 00000

es o] Jecomposition

Complexity of Query Containment for CQ(<, <, #)

Theorem

The problem given Q, Q" € CQ(<,<,#), check Q ¢ Q" is M5-complete.

Review: query containment for CQ is NP-complete.
Reduction from 3CNF &. Example:

d):(—\X\/—\Y\/Z)/\(—!XV Y\/ﬂZ)/\(X\/UVW).

Qo =C(z,x,y) A C(y,x,2) AA(x,u,w)
Q =A(0,0,1)A...AD(1,1,0) in class: describe @

Finite Model Theory Lecture 6

Spring 2025

9/33

CQ Query Containment Query
000000080 00000

Complexity of Query Containment for CQ(<, <, #)

Theorem

The problem given Q, Q" € CQ(<,<,#), check Q ¢ Q" is M5-complete.

Jecomposition

Review: query containment for CQ is NP-complete.
Reduction from 3CNF &. Example:

d):(—\X\/—\Y\/Z)/\(—!XV Y\/ﬂZ)/\(X\/UVW).

Qo =C(z,x,y) A C(y,x,2) AA(X, u, w)

Q =A(0,0,1)A...AD(1,1,0) in class: describe @

h: Qg — Q|is a homomorphism iff | h(®) = True

Finite Model Theory Lecture 6

Spring 2025

9/33

CQ Query Containment Quer
000000080 00«

Complexity of Query Containment for CQ(<, <, #)
Theorem
The problem given Q, Q" € CQ(<,<,#), check Q ¢ Q" is M5-complete. J

Proof: Membership in M5 follows from:

Q c Q' iff for all extensions Q, there exists a homomorphisms Q' — Q.

This is in M5 by definition.
It remains to prove M5-hardness.

Finite Model Theory Lecture 6 Spring 2025 9/33

CQ Query Containment Query Minimization
000000080

Complexity of Query Containment for CQ(<, <, #)
Theorem

The problem given Q, Q" € CQ(<,<,#), check Q ¢ Q" is M5-complete. J
Proof:

Reduction from Y33CNF: | W = V.Xy-+Y X3 Xs1-3X, P |

Finite Model Theory Lecture 6 Spring 2025 9/33

CQ Query Containment
000000080

Complexity of Query Containment for CQ(<, <, #)

Theorem

The problem given Q, Q" € CQ(<,<,#), check Q ¢ Q" is M5-complete.

ee Decomposition

Proof: Reduction from Y33CNF: ‘\Il = VX1 VXA Xpy1---3X, P

Start with Q, Qg as before: h: Qg — Q

iff | A(®) = True

Finite Model Theory Lecture 6

Spring 2025

9/33

CQ Query Containment Query
000000080

Complexity of Query Containment for

Theorem

The problem given Q, Q" € CQ(<,<,#), check Q ¢ Q" is M5-complete.

Queries Hype

CQ(<, <, #)

Jecomposition

Proof: Reduction from Y33CNF: ‘\Il = VX1 VXA Xpy1---3X, P

Start with Q, Qg as before:

For each universal variable X;:

h: Qg —~ @

iff | A(®) = True

@ add S(0,u;,vi) AS(1,vi,w;) A (uj <w;) to Q.
@ add S(X,',S;, t,') A (S,' < t,') to Q<,1>

Finite Model Theory Lecture 6

Spring 2025

9/33

CQ Query Containment

Query cy Queries Hype Decomposition
0000000080

Complexity of Query Containment for CQ(<, <, #)

Theorem

The problem given Q, Q" € CQ(<,<,#), check Q ¢ Q" is M5-complete.

Proof: Reduction from Y33CNF: ‘\Il = VX1 VXA Xpy1---3X, P
Start with Q, Q as before: h: QG —~ Q|iff | A(®) = True

For each universal variable X;:
@ add S(0,u;,vi) AS(1,vi,w;) A (uj <w;) to Q.
@ add S(X,',S;, t,') A (S,' < t,') to Q<,1>

Q ¢ Qg | iff | for every extension Q<, 3h: Qp — Q<

Finite Model Theory Lecture 6 Spring 2025

9/33

CQ Query Containment Query Acy Queries Hype ecomposition
000000080 00000

Complexity of Query Containment for CQ(<, <, #)

Theorem

The problem given Q, Q" € CQ(<,<,#), check Q ¢ Q" is M5-complete. J

Proof: Reduction from Y33CNF: ‘\Il = VX1 VXA Xpy1---3X, P
Start with Q, Q as before: h: QG —~ Q|iff | A(®) = True

For each universal variable X;:
@ add S(0,u;,vi) AS(1,vi,w;) A (uj <w;) to Q.
@ add S(X,',S;, t,') A (S,- < t,') to Q('D

Q ¢ Qg | iff | for every extension Q<, 3h: Qp — Q<

h h
For some Qx, (X,‘,S,', t,') = (0, uj, V,'), for others (X,',S,', t,') — (1, Vi, W,')

Q< Qg | iff |V is True

Finite Model Theory Lecture 6 Spring 2025 9/33

CQ Query Containment € Minimization

0O0000000e

Summary

@ A few extensions of CQ still have decidable containment: inequalities,
safe negation —, certain aggregates sum, min, max, count.

@ But while containment/equivalence for pure CQ/UCQ is very elegant,
extensions add significant difficulties.

Finite Model Theory Lecture 6 Spring 2025 10/33

Query Minimization
[JeJelele)

Query Minimization

Finite Model Theory Lecture 6 Spring 2025 11/33

ecomposition

Query Minimization

0@000

Query Minimization for CQ

Definition (Minimal Query)

Q is minimal if, VQ', Q = Q" implies |[Atoms(Q)| < [Atoms(Q")|.
The minimization problem is: given Q, find Qmin = @ s.t. Qmin is minimal.

A minimal query is also called a core.
Q=E(x,y)NE(y,z) NE(x,u) NE(u,v) A E(v,w)
y—@

(x]
W—V—Ww

Finite Model Theory Lecture 6 Spring 2025 12/33

Containment Query Minimization C e es ecomposition

0@000

Query Minimization for CQ

Definition (Minimal Query)

Q is minimal if, VQ', Q = Q" implies |[Atoms(Q)| < [Atoms(Q")|.
The minimization problem is: given Q, find Qmin = @ s.t. Qmin is minimal.

A minimal query is also called a core.
Q=E(x,y)NE(y,z) NE(x,u) NE(u,v) A E(v,w)
y—@

Qmin = E(x,u) ANE(u,v) AE(v,w)]
Ww—w—w

Finite Model Theory Lecture 6 Spring 2025 12/33

Query Minimization
[e]e] le]e)

Properties of Minimal CQs

Let h: @ - Q be a homomorphism; then | Q = Im(h) | why??777

Finite Model Theory Lecture 6 Spring 2025 13/33

Query Minimization
[e]e] le]e)

Properties of Minimal CQs

Let h: @ - Q be a homomorphism; then | Q = Im(h) | why??777
If @ is minimal, then h is an isomorphism.

Finite Model Theory Lecture 6 Spring 2025 13/33

ontainment Query Minimization

[o]e] Je]e]

Properties of Minimal CQs

Let h: @ - Q be a homomorphism; then | Q = Im(h)

why?7?77

ecomposition

If @ is minimal, then h is an isomorphism.

Theorem

If Q = Q" and both are minimal, then they are isomorphic.

Proof: Since Q=Q', 3h: Q- Q', I : Q" - Q.

Finite Model Theory Lecture 6

Spring 2025

13/33

ontainment Query Minimization

s ecomposition
[o]e] Je]e] O [e]e

Properties of Minimal CQs

Let h: @ - Q be a homomorphism; then | Q = Im(h) | why??777

If @ is minimal, then h is an isomorphism.

Theorem

If Q = Q" and both are minimal, then they are isomorphic. J

Proof: Since Q=Q', 3h: Q- Q', I : Q" - Q.

Since Q is minimal, K" o h: Q@ - Q is an isomorphism.

Finite Model Theory Lecture 6 Spring 2025 13/33

ontainment Query Minimization

ecomposition
[o]e] Je]e]

Properties of Minimal CQs

Let h: @ - Q be a homomorphism; then | Q = Im(h) | why??777

If @ is minimal, then h is an isomorphism.

Theorem

If Q = Q" and both are minimal, then they are isomorphic. J

Proof: Since Q=Q', 3h: Q- Q', I : Q" - Q.
Since Q is minimal, K" o h: Q@ - Q is an isomorphism.

Then both h, h" are isomorphisms.

Finite Model Theory Lecture 6 Spring 2025 13/33

Query Minimization
[e]e]e] o]

Query Minimization Procedure
Let Q be a CQ with m atoms. We compute Qmin = Q.

@ Remove some atom A from Q.
Call Q' the resulting query (with m—1 atoms).

Finite Model Theory Lecture 6 Spring 2025 14 /33

uery Containment Query Minimization

[o]e]e] Je]

Query Minimization Procedure
Let Q be a CQ with m atoms. We compute Qmin = Q.

@ Remove some atom A from Q.
Call Q' the resulting query (with m—1 atoms).

o Observe that 3h: Q' - Q.

Finite Model Theory Lecture 6 Spring 2025 14 /33

ontainment Query Minimization A s ecomposition

[o]e]e] Je]

Query Minimization Procedure
Let Q be a CQ with m atoms. We compute Qmin = Q.

@ Remove some atom A from Q.
Call Q' the resulting query (with m—1 atoms).

o Observe that 3h: Q' - Q.

o If 3h: Q — @', then Q = Q': replace Q with Q" and repeat.

Finite Model Theory Lecture 6 Spring 2025 14 /33

CQ Query Containment Query Minimization

[o]e]e] Je]

Query Minimization Procedure
Let Q be a CQ with m atoms. We compute Qmin = Q.

@ Remove some atom A from Q.
Call Q' the resulting query (with m—1 atoms).

@ Observe that 3h: Q' — Q.
o If 3h: Q — @', then Q = Q': replace Q with Q" and repeat.

@ Otherwise, try another atom A.

Finite Model Theory Lecture 6 Spring 2025 14 /33

Jecomposition

CQ Query Containment Query Minimization

[o]e]e] Je]

Query Minimization Procedure
Let Q be a CQ with m atoms. We compute Qmin = Q.

@ Remove some atom A from Q.
Call Q' the resulting query (with m—1 atoms).

@ Observe that 3h: Q' - Q.
o If 3h: Q — @', then Q = Q': replace Q with Q" and repeat.
@ Otherwise, try another atom A.

When no more change, stop and return Q: this is the minimal query
equivalent to the original.

Finite Model Theory Lecture 6 Spring 2025 14 /33

Query Minimization

0000e

Discussion

For each CQ @ there exists a minimized query equivalent to @,

The mimal subquery is unique up to isomorphism.

@ It can be found as subquery of Q, using the minimization procedure.

@ Statements above fail once we add # or < or <. See HW?2.

Finite Model Theory Lecture 6 Spring 2025 15/33

Acyclic Queries
©000000000

Acyclic Queries

Finite Model Theory Lecture 6 Spring 2025 16 /33

Acyclic Queries
0800000000

Background: Natural Joins, Semi-Joins

The join of A, B returns all variables:| (Ax B)(x,y,z) = A(x,y) A B(y, z)

We can compute® A B in time O(|A| + |B| +|Awx B|)

1® means a log-factor, in order to sort A, B.

Finite Model Theory Lecture 6 Spring 2025 17 /33

Acyclic Queries pe ecomposition

O@00000000

Background: Natural Joins, Semi-Joins

The join of A, B returns all variables:| (Ax B)(x,y,z) = A(x,y) A B(y, z)

We can compute® A B in time O(|A| + |B| +|Awx B|)

The semi-join returns only A’s vars: (Ax B)(x,y) =A(x,y) A B(y, z)

We can compute Ax B in time O(|A|) and [Ax B|<|Ax B].

1O means a log-factor, in order to sort A, B.
Finite Model Theory Lecture 6 Spring 2025 17 /33

uery Containment Query Minimization Acyclic Queries

00@0000000

Problem Statement

Compute Q(D), where Q is a Boolean CQ or a Full® CQ:

Qbool() :Al(Xl) /\AZ(XZ) A e
or qull(x) :Al(xl)/\Az(Xg)/\---

2Full CQ: means all variables are head variables

Finite Model Theory Lecture 6 Spring 2025 18/33

ontainment Acyclic Queries ecomposition

00@0000000

Problem Statement

Compute Q(D), where Q is a Boolean CQ or a Full® CQ:

Qbool() :Al(Xl) /\AZ(XZ) A e
or qull(x) :Al(xl)/\Az(Xg)/\---

Approach 1: loop over each variable. Time = O(|Dom(D)|[Vars(@)).

2Full CQ: means all variables are head variables

Finite Model Theory Lecture 6 Spring 2025 18/33

Containment Query Minimization Acyclic Queries ecomposition

YO000 00@0000000

Problem Statement

Compute Q(D), where Q is a Boolean CQ or a Full® CQ:

Qbool() :Al(Xl) A AZ(XZ) A e
or qull(x) :Al(xl)/\Az(Xg)/\---

Approach 1: loop over each variable. Time = O(|Dom(D)|[Vars(@)).

Approach 2: ((Apm Ay) x A3) m Ag.... Time = O(Z; |Ail + ;AL x ---Ail)

2Full CQ: means all variables are head variables
Finite Model Theory Lecture 6 Spring 2025 18/33

Containment Query Acyclic Queries y ecomposition

00@0000000

Problem Statement

Compute Q(D), where Q is a Boolean CQ or a Full® CQ:

Qbool() :Al(Xl) A AZ(XZ) A e
or qull(x) :Al(xl)/\Az(Xg)/\---

Approach 1: loop over each variable. Time = O(|Dom(D)|[Vars(@)).

Approach 2: ((Apm Ay) x A3) m Ag.... Time = O(Z; |Ail + ;AL x ---Ail)

When Q is acyclic, then we can compute Q(D) in time | O(|D| + |Q(D)|)

2Full CQ: means all variables are head variables
Finite Model Theory Lecture 6 Spring 2025 18/33

Acyclic Queries
000000000

Why Linear Time is Difficult

Example: Q(x0,X1,---,Xm) = E1(x0,x1) A Ea(x1,x2) A+ A Epy(Xm-1, Xm)

Finite Model Theory Lecture 6 Spring 2025 19/33

CQ ontainment Acyclic Queries ecomposition

00000 [e]e]e] lelele]e]e]e)

Why Linear Time is Difficult
Example: Q(x0,X1,---,Xm) = E1(x0,x1) A Ea(x1,x2) A+ A Epy(Xm-1, Xm)

|Ea| =4, |Bo| = = |Em-1| = 8, [Em| = 4. E)E,) E.fE)

Finite Model Theory Lecture 6 Spring 2025 19/33

Acyclic Queries
00000 000@000000

Why Linear Time is Difficult

Example: Q(x0,X1,---,Xm) = E1(x0,x1) A Ea(x1,x2) A+ A Epy(Xm-1, Xm)

|Ea| =4, |Bo| = = |Em-1| = 8, [Em| = 4. E)E,) E.fE)

|D[=O(m), Q(D) =2 ']X.

|E1 M oeee M m—1| — 2m+1 +0om Y

Finite Model Theory Lecture 6 Spring 2025 19/33

CQ Query Containment Query Acyclic Queries
00000 000@000000

Why Linear Time is Difficult
Example: Q(x0,X1,---,Xm) = E1(x0,x1) A Ea(x1,x2) A+ A Epy(Xm-1, Xm)

|Ea| =4, |Bo| = = |Em-1| = 8, [Em| = 4. E)E,) E.fE)

|ID|=0(m), Q(D) =2 ' '.X.

|E1 M oeee M m—1| — 2m+1 +0om Y

Any join order will exceed the time O(|D| + |Q(D)|)

Finite Model Theory Lecture 6 Spring 2025 19/33

tainment

Vlinimization

Acyclic Queries omposition
0000800000

Acyclic CQ

A join tree is a tree T whose nodes are the atoms of Q, which satisfies the

running intersection property: for any variable x, the set of nodes that
contain x forms a connected component.

Definition
Q is acyclic if it admits a join tree T. J
A(X‘,y)
Acyclic: Q@ =A(x,y) A B(y,z) A C(y,u) B(y,z)
AD(z,v,w) A E(w,s) Chym Dv.w)
\
E(w,s)

Spring 2025 20/33

Acyclic CQ

tainment Query Minimization Acyclic Queries
O [e]e O [e]e]ele] Telele]e]e]

omposition

A join tree is a tree T whose nodes are the atoms of Q, which satisfies the
running intersection property: for any variable x, the set of nodes that

contain x forms a connected component.

Definition

Q is acyclic if it admits a join tree T.

Acyclic: Q =A(x,y) AB(y,z) A C(y,u)
AD(z,v,w) A E(w,s)

E.g. running intersection for y

Finite Model Theory Lecture 6

A(X‘,y)
B(y,z)
C(y,u) D(z,v,w)

E(m‘/,s)

Spring 2025

20/33

CQ Query Containment ¢ Vlinimization Acyclic Queries ype ecomposition

[e]e]e]e] elee]e]e)

Acyclic CQ

A join tree is a tree T whose nodes are the atoms of Q, which satisfies the
running intersection property: for any variable x, the set of nodes that
contain x forms a connected component.

Definition
Q is acyclic if it admits a join tree T. J
A(X‘,y)
Acyclic: Q@ =A(x,y) A B(y,z) A C(y,u) B(y,z)

AD(z,v,w) A E(w,s) Cym) DGv.w)
E.g. running intersection for y E(vu‘/,s)
Not acyclic: A(x,y) A B(y,z) A C(z,x). why?

Finite Model Theory Lecture 6 Spring 2025 20/33

Yannakakis' Algorithm for Acyclic CQ @ (Boolean or Full)

Step 1: Bottom-up Semi-join Reduction

D:=DxE
B:=Bx C
B:=Bx D
A:=Ax B if Q is Boolean, return A
——

00000 [e]e]e]e]o] Iee]e]e)

CQ Query Containment Acyclic Queries

Yannakakis' Algorithm for Acyclic CQ @ (Boolean or Full)

Step 1: Bottom-up Semi-join Reduction

D:=DxE
B:=Bx C
A(x,y)
B:=Bx D
A:=Ax B if Q is Boolean, return A B(y,z)
Step 2: Top-down Join Computation: Cly.u) D(z,v,w)
T]_ =Ax B E(M‘/,S)
Tg = T1 X C
T3 = T2 x D
Ta:=Tz3x E if Q is Full, return T4

Finite Model Theory Lecture 6 Spring 2025 21/33

00000 [e]e]e]e]o] Iee]e]e)

CQ Query Containment Acyclic Queries

Yannakakis' Algorithm for Acyclic CQ @ (Boolean or Full)

Step 1: Bottom-up Semi-join Reduction

D:=Dx E
B:=Bx C
Alx,y)
B:=Bx D
A:=Ax B if Q is Boolean, return A B(y,z)
Step 2: Top-down Join Computation: Cly.u) D(z,v,w)

T::=Ax B E(M‘/,S)
To:=T1xC

Ts3:=Tax D

Ty:=Tz3x E if Q is Full, return T,

Time=0O(|Input| + |Output|)

Finite Model Theory Lecture 6 Spring 2025 21/33

Proof of the Algorithm Using Four Identities
(Ax B)(x,y,z) = A(x,y) AB(y,2) | | (Ax B)(x,y) = A(x,y) A B(y, 2)

(1) AxB=(AxB)xB. Step 1 does not change Q's output.

Finite Model Theory Lecture 6 Spring 2025 22/33

Containment

Acyclic Queries
0000008000

Proof of the Algorithm Using Four Identities

Decomposition

(Awu B)(x,y,2) = A(x,y) A B(y, 2)

| (Ax B)(x,y) = A(x,y) A B(y, 2)

(1) AxB=(AxB)xB.

Proof: follows from Q1 = @, where:

Ql(Xayvz) :A(Xay) A B(y,Z)
Q2(Xayaz) :A(Xay) A B(ya u) A B(yvz)

In class: find homomorphisms Q> - Q1 and Q1 - Q».

Finite Model Theory Lecture 6 Spring 2025

Step 1 does not change @'s output.

22/33

Containment Query Acyclic Queries p ecomposition

Proof of the Algorithm Using Four Identities
(Ax B)(x,y,z) = A(x,y) AB(y,2) | | (Ax B)(x,y) = A(x,y) A B(y, 2)

(1) AxB=(AxB)xB. Step 1 does not change Q's output.

(2) AxB=T1,,(AxB). Step 1 returns correct answer for Boolean Q
AxB=g iff Ax B=g.

Finite Model Theory Lecture 6 Spring 2025 22/33

Containment

Acyclic Queries p Decomposition
0000008000 00C 6

Proof of the Algorithm Using Four Identities

(AxB)(x,y,2) =A(x,y) AB(y,2) |, | (Ax B)(x,y) = A(x,y) A B(y, 2)

(1) AxB=(AxB)xB. Step 1 does not change Q's output.

(2) AxB=T1,,(AxB). Step 1 returns correct answer for Boolean Q
AxB=g iff Ax B=g.

Proof: immediate from the definition

Finite Model Theory Lecture 6 Spring 2025 22/33

Containment

y Minimization Acyclic Queries
00 0000008000

Jecomposition

Proof of the Algorithm Using Four Identities
(AxB)(x,y,z) = A(x,y) A B(y, 2)

| (Ax B)(x,y) = A(x,y) A B(y, 2)

(1) AxB=(AxB)xB. Step 1 does not change Q's output.

(2) AxB=T1,,(AxB). Step 1 returns correct answer for Boolean Q

AxB=giff Ax B=g.

(3) Ax (Bx C)=Ax (Bw C), when Vars(A) nVars(C) = @:
Step 1 fully reduces each relation: A:= Ax (Bx Cwx--)

Finite Model Theory Lecture 6 Spring 2025 22/33

Containment

y Minimization Acyclic Queries

ecomposition
0000008000 O

Proof of the Algorithm Using Four Identities

(AxB)(x,y,2) =A(x,y) AB(y,2) |, | (Ax B)(x,y) = A(x,y) A B(y, 2)

(1) AxB=(AxB)xB. Step 1 does not change Q's output.

(2) AxB=T1,,(AxB). Step 1 returns correct answer for Boolean Q
AxB=g iff Ax B=g.

(3) Ax (Bx C)=Ax (Bw C), when Vars(A) nVars(C) = @:
Step 1 fully reduces each relation: A:= Ax (Bx Cwx--)
Proof: both sides are the same query

Ql(x7y) :A(X7y) A B(yvz) A C(Z, u)
Q2(X7y) =A(X7y) A B(yaz) A C(Za u)

Finite Model Theory Lecture 6 Spring 2025 22/33

Containment Query Minimization Acyclic Queries yp ecomposition

0000008000

Proof of the Algorithm Using Four Identities

(AxB)(x,y,2) =A(x,y) AB(y,2) |, | (Ax B)(x,y) = A(x,y) A B(y, 2)

(1) AxB=(AxB)xB. Step 1 does not change Q's output.

(2) AxB=T1,,(AxB). Step 1 returns correct answer for Boolean Q
AxB=g iff Ax B=g.

(3) Ax (Bx C)=Ax (Bw C), when Vars(A) nVars(C) = @:
Step 1 fully reduces each relation: A:= Ax (Bx Cwx--)

(4) Ax(BxC)=(AxB)x C Step 2 never exceed final output size:
A (B x C)| = (A B) x C| < |Ax B C|

Proof: both sides are the same query (as before)

Finite Model Theory Lecture 6 Spring 2025 22/33

00000 [e]e]e]e]o]ele] Tele)

CQ Query Containment Acyclic Queries

Yannakakis Algorithm for General CQ

Q(Xl, . ,Xp) = E|Xp+1'-~E|Xk(A1 VAERIVAN Am)

Definition

Q is acyclic free-connex if it is acyclic after we add atom Out(xq, ...

If Q is acyclic free-connex, it can be computed in time
O(|Input| + |Output|).
Otherwise, it cannot®

3Based on fined-grained complexity assumptions.

Finite Model Theory Lecture 6 Spring 2025

23/33

Acyclic Queries
0000000000

Example of a Free-Connex Query

Q(z,v) =
A(x,y)

|
B(y,2)
C(y,u) D(z,v,w)

E(w,s)

Where do we place
Out(z,v)?

Finite Model Theory Lecture 6 Spring 2025 24/33

Acyclic Queries
0000000000

Example of a Free-Connex Query

Q(z,v) =
A(x,y)

|
B(y,2)
C(y,u) Out(z,v)
D(z,v,w)

E(ml/,s)

Where do we place
Out(z,v)?

Finite Model Theory Lecture 6 Spring 2025 24/33

Acyclic Queries
0000000000

Example of a Free-Connex Query

Q(z,v) =
A(x,y)

|
B(y,z)
C(y,u) Out(lz, v)
D(z,v,w)

E(vnl/,s)

Semijoin Reduction

As before.
Finite Model Theory Lecture 6

Spring 2025 24/33

CQ Query Containment

Acyclic Queries
0000000000

Example of a Free-Connex Query

Join Computation

Q(z,v) =
A(x,y) Ti(y) =A(x,y)
\ Ta(y,z) :=Ti(y) » B(y, z)
B.2) Ta(y) =C(y.u)
Cly.u) Outlz,v) Ta(z) :=T2(y,z) » T3(y)

| Ts(w) :=E(w,s)
D(z,v,w) Te(z,v) :=Ts(w) x D(z,v,w)
E(VI‘/, s) T:(z,v) :=Te(z,v) x Ta(z)

Return T7(z,v).

Semijoin Reduction

As before. The last node in the join is the leaf Out(z, v), which we
don’t need to join.

Spring 2025 24/33

ainment Q Vlinimization Acyclic Queries

000000000 e

Summary

@ Yannakakis' algorithm: Semijoin reduction (up, then down), then
joins.

> Requires the query to be acyclic.
» Works for full CQs, for Boolean CQs, and for “free-connext” CQs.

» Related to the Junction-tree Algorithm in graphical models.
@ Most SQL queries in practice are acyclic.

@ Discussion in class Do database engines run Yannakakis algorithm? If
not, why not?

Finite Model Theory Lecture 6 Spring 2025 25/33

Hypertree Decomposition
©0000000

Hypertree Decomposition

Finite Model Theory Lecture 6 Spring 2025 26/33

tainment

Minimization

Hypertree Decomposition
0®000000

Outline

We the query is cyclic, then we compute a tree decomposition and (1)

evaluate each node of the tree into a temporary table, (2) run Yannakakis'
algorithm on the temporary results.

Finite Model Theory Lecture 6 Spring 2025 27/33

Background: Tree Decomposition

Fix an undirected graph G = (V,E).

Finite Model Theory Lecture 6 Spring 2025 28/33

>ntainment Vlinimization es Hypertree Decomposition

[e]e] lele]elele)

Background: Tree Decomposition
Fix an undirected graph G = (V,E).

A tree decomposition is (T,x), where T is a tree, x : Nodes(T) —2V:

@ Running intersection: Vx €V, {neNodes(T) |xex(n)}is
connected.

@ For every edge (x,y) € E, 3ne Nodes(T) s.t. x,y € x(n).

Finite Model Theory Lecture 6 Spring 2025 28/33

Hypertree Decomposition
00@00000

Background: Tree Decomposition
Fix an undirected graph G = (V,E).

A tree decomposition is (T,x), where T is a tree, x : Nodes(T) —2V:

@ Running intersection: Vx €V, {neNodes(T) |xex(n)}is
connected.

@ For every edge (x,y) € E, 3ne Nodes(T) s.t. x,y € x(n).

Tree width: tw(T) % max, [x(n)| -1 tw(G) “ miny tw(T).

Finite Model Theory Lecture 6 Spring 2025 28/33

Containment Query Minimization

y € 0 es Hypertree Decomposition
) 0000 00 00 00000000

Background: Tree Decomposition
Fix an undirected graph G = (V,E).

A tree decomposition is (T,x), where T is a tree, x : Nodes(T) —2V:

@ Running intersection: Vx €V, {neNodes(T) |xex(n)}is
connected.

@ For every edge (x,y) € E, 3ne Nodes(T) s.t. x,y € x(n).

Tree width: tw(T) %€ max, [x(n)| - 1 tw(G) “ miny tw(T).

G=/x\ T= x\y G=/X\y T= XTZ
ANVAN N

v Xuv

w(G) =1 tw(G) = 2

Finite Model Theory Lecture 6 Spring 2025 28/33

ontainment Query Minimization S Hypertree Decomposition

[e]e]e] le]elele)

Discussion

@ Tree decomposition of graphs is widely used in graph theory.

@ x(n) is called a bag.

o If G is a tree, then tw(G) = 1.

e If K, is the clique with n nodes, then tw(Kj,) = n.

o If Ky n is the complete bipartite graph with m, n nodes, then

tw(Km.n) = min(m, n).

o HW2: compute tree-width of an m x n grid.

Finite Model Theory Lecture 6 Spring 2025 29/33

Containment

Hypertree Decomposition
0000@000

Hypertree Decomposition

Definition
A hypertree decomposition of a query (hypergraph) Q is (T,x) where T
is a tree and y : Nodes(T) — 2V25(Q) sych that:

@ Running intersection property: Vx € Vars(Q), the set
{neNodes(T) | xex(n)} is connected.

o Every atom R;(x;) is covered: 3n e Nodes(T) s.t. x; < x(n)

Q=R(x,y)AS(y,z) AT(z,u) A K(u,x)

T= Xyz
xXuz
Finite Model Theory Lecture 6

Spring 2025 30/33

Hypertree Decomposition
00000000

Edge Cover

In a graph, an edge cover is a set of edges that includes all nodes.

Finite Model Theory Lecture 6 Spring 2025 31/33

CQ Query Containment cyc s Hypertree Decomposition

ey 00 00000800

Edge Cover
In a graph, an edge cover is a set of edges that includes all nodes.

An edge cover of a query @ is a set of atoms C that includes all variables.
Its edge cover number is p(Q) = min¢|C|.

Compute @ (1) join relations in C (2) semi-join the rest. Time O(|D|*(?))

Finite Model Theory Lecture 6 Spring 2025 31/33

Containment Query Ac g es Hypertree Decomposition
00 00 00000800

Edge Cover

In a graph, an edge cover is a set of edges that includes all nodes.

An edge cover of a query @ is a set of atoms C that includes all variables.
Its edge cover number is p(Q) = min¢|C|.

Compute @ (1) join relations in C (2) semi-join the rest. Time O(|D|*(?))

Eg Q(x,y,z) = R(x,y)AS(y,z) A T(z,x) edge cover C = {R,S}.
Compute: J(x,y,z) = R(x,y) x5(y,z) Q(x,y,2) = J(x,y,2) x T(z,x)

Finite Model Theory Lecture 6 Spring 2025 31/33

Hypertree Decomposition
00000000

Hypertree Width

For a subset of variables z € Vars(Q) is p(z) is the edge cover number of
Q restricted to z.

*Warning: sometimes called generalized hypertree width.

Finite Model Theory Lecture 6 Spring 2025 32/33

ontainment

,,,,, A 5 Hypertree Decomposition

00000080

Hypertree Width

For a subset of variables z € Vars(Q) is p(z) is the edge cover number of
Q restricted to z.

Hypertree width:* HTW(T) 4 max, p(x(n)) HTW(Q) * mint HTW(T)

What is HTW(Q)?
Q=R(x,y)AS(y,z) AT(z,u) A K(u,x) Xyz

Xuz

*Warning: sometimes called generalized hypertree width.

Finite Model Theory Lecture 6 Spring 2025 32/33

ontainment A 5 Hypertree Decomposition

[e]e]e]ele]ele])

Summary: Computing @ Using Tree Decomposition

Assume @ is a full conjunctive query:

e Find a tree decomposition with minimum HTW(T).

e Compute every bag using a left-deep join plan (Ry x Ry) x -+ and
materialize it.

@ Run Yannakakis' algorithm on the result.

o Runtime: O(|D|"™ (@),

Finite Model Theory Lecture 6 Spring 2025 33/33

	CQ Query Containment
	Query Minimization
	Acyclic Queries
	Hypertree Decomposition

