Finite Model Theory Lecture 5: Query Containment

Spring 2025

2/31

Announcements

• Good job on homework 1!

• Homework 2 is posted and due next Friday, 4/25.

Where We Are

- Finite models: we may write $\varphi \equiv \psi$ to mean $\varphi \equiv_{\text{fin}} \psi$.
- Trakhtenbrot: $SAT_{fin}(\varphi)$ is undecidable.
- Model checking $\mathbf{A} \models \varphi$
 - ► FO: data complexity AC⁰, expression complexity PSPACE-complete
 - ► CQ: data complexity AC⁰, expression complexity NP-complete
- We often use "database", "query" instead of "structure", "formula".

Today: Query Containment/Equivalence

Problem Definition

Query Equivalence

Definition (Equivalence)

 Q_1 , Q_2 are equivalent if $\forall \mathbf{D}$, $Q_1(\mathbf{D}) = Q_2(\mathbf{D})$. Notation: $Q_1 \equiv Q_2$.

5/31

Query Equivalence

Definition (Equivalence)

 Q_1 , Q_2 are equivalent if $\forall \mathbf{D}$, $Q_1(\mathbf{D}) = Q_2(\mathbf{D})$. Notation: $Q_1 \equiv Q_2$.

Example: $Q_1 \equiv Q_2$ where,

$$Q_1(x) = \exists y \exists z \exists u (E(x,y) \land E(y,x) \land E(y,u))$$

$$Q_2(x) = \exists y \exists z \exists v (E(x,y) \land E(y,x) \land E(x,v))$$

Spring 2025

Query Equivalence

Definition (Equivalence)

 Q_1 , Q_2 are equivalent if $\forall \mathbf{D}$, $Q_1(\mathbf{D}) = Q_2(\mathbf{D})$. Notation: $Q_1 \equiv Q_2$.

Example: $Q_1 \equiv Q_2$ where,

$$Q_1(x) = \exists y \exists z \exists u (E(x,y) \land E(y,x) \land E(y,u))$$

$$Q_2(x) = \exists y \exists z \exists v (E(x,y) \land E(y,x) \land E(x,v))$$

It suffices to study equivalence of Boolean queries, because: $Q_1(\mathbf{x}) \equiv Q_2(\mathbf{y})$ iff $(|\mathbf{x}| = |\mathbf{y}|)$ and for constants \mathbf{c} , $Q_1[\mathbf{c}/\mathbf{x}] \equiv Q_2[\mathbf{c}/\mathbf{y}]$.

Finite Model Theory Lecture 5 Spring 2025 5 / 31

Query Containment

Definition (Containment)

 Q_1 is contained in Q_2 if $\forall \mathbf{D}$, $Q_1(\mathbf{D}) \subseteq Q_2(\mathbf{D})$. Notation: $Q_1 \subseteq Q_2$

Again, suffices if Q_1, Q_2 are Boolean. Then $Q_1 \subseteq Q_2$ same as $Q_1 \Rightarrow Q_2$.

Query Containment

Definition (Containment)

 Q_1 is contained in Q_2 if $\forall \mathbf{D}$, $Q_1(\mathbf{D}) \subseteq Q_2(\mathbf{D})$. Notation: $Q_1 \subseteq Q_2$

Again, suffices if Q_1, Q_2 are Boolean. Then $Q_1 \subseteq Q_2$ same as $Q_1 \Rightarrow Q_2$.

Example:

$$Q_1 = \exists x \exists y \exists z \exists u (E(x,y) \land E(y,z) \land E(z,u))$$

$$Q_2 = \exists x \exists y \exists z (E(x,y) \land E(y,z))$$

$$Q_1 \subseteq Q_2$$

7/31

Containment v.s. Equivalence

Fact

Equivalence and containment are (almost) the same problem:

$$Q_1 \equiv Q_2$$
 iff $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$

$$Q_1 \subseteq Q_2$$
 iff¹ $Q_1 \equiv Q_1 \land Q_2$

¹Language must be closed under ∧.

Containment for FO is Undecidable

Theorem

The problem Given Q_1, Q_2 in FO check whether $Q_1 \subseteq Q_2$ is undecidable.

Containment for FO is Undecidable

Theorem

The problem Given Q_1, Q_2 in FO check whether $Q_1 \subseteq Q_2$ is undecidable.

Proof By reduction from SAT_{fin} .

Let Φ be any sentence. (We want to check $SAT_{fin}(\Phi)$.)

Define $Q_1 \stackrel{\text{def}}{=} \Phi$ and $Q_2 \stackrel{\text{def}}{=} \text{FALSE}$. Then $Q_1 \subseteq Q_2$ iff $\neg \text{SAT}_{\text{fin}}(\Phi)$.

Finite Model Theory Lecture 5 Spring 2025 8 / 31

Containment for CQs

Containment for CQs

The containment problem for CQs is decidable; More precisely, NP-complete.

This is one of the oldest, most celebrated result in database theory. It is due to Chandra and Merlin, 1977.

Review: Equivalent Concepts

• Boolean Conjunctive Query:

$$Q = R(x, y, z) \wedge S(x, u) \wedge S(y, v) \wedge S(z, w) \wedge R(u, v, w)$$

11/31

Review: Equivalent Concepts

Boolean Conjunctive Query:

$$Q = R(x, y, z) \wedge S(x, u) \wedge S(y, v) \wedge S(z, w) \wedge R(u, v, w)$$

A Database A with domain Vars(Q):

$$Dom(\mathbf{A}) = \{x, y, z, u, v, w\} \qquad R^A = \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix} \qquad S^A = \begin{bmatrix} x & u \\ y & v \\ z & w \end{bmatrix}$$

Review: Equivalent Concepts

Boolean Conjunctive Query:

$$Q = R(x, y, z) \wedge S(x, u) \wedge S(y, v) \wedge S(z, w) \wedge R(u, v, w)$$

A Database A with domain Vars(Q):

$$Dom(\mathbf{A}) = \{x, y, z, u, v, w\} \qquad R^A = \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix} \qquad S^A = \begin{bmatrix} x & u \\ y & v \\ z & w \end{bmatrix}$$

If Q(x) has head variables x, then we add named constants x^A to A.

Review: Equivalent Concepts

• Boolean Conjunctive Query:

$$Q = R(x, y, z) \wedge S(x, u) \wedge S(y, v) \wedge S(z, w) \wedge R(u, v, w)$$

• A Database **A** with domain Vars(Q):

$$Dom(\mathbf{A}) = \{x, y, z, u, v, w\} \qquad R^A = \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix} \qquad S^A = \begin{bmatrix} x & u \\ y & v \\ z & w \end{bmatrix}$$

If Q(x) has head variables x, then we add named constants x^A to A.

We call \boldsymbol{A} the Canonical Database of Q, denoted \boldsymbol{D}_Q

Finite Model Theory Lecture 5 Spring 2025 11/31

Review: Homomorphisms

A homomorphisms between two structures $h: \mathbf{A} \to \mathbf{B}$ is a function $h: \mathsf{Dom}(\mathbf{A}) \to \mathsf{Dom}(\mathbf{B})$ s.t. $h(R^A) \subseteq h(R^B)$ for all relation names R, and $h(c^A) = c^B$ for all constant names c.

Notice that \boldsymbol{A} or \boldsymbol{B} can be a CQ Q, or a database \boldsymbol{D} .

12 / 31

A homomorphisms between two structures $h: \mathbf{A} \to \mathbf{B}$ is a function $h: \mathsf{Dom}(\mathbf{A}) \to \mathsf{Dom}(\mathbf{B})$ s.t. $h(R^A) \subseteq h(R^B)$ for all relation names R, and $h(c^A) = c^B$ for all constant names c.

Notice that \boldsymbol{A} or \boldsymbol{B} can be a CQ Q, or a database \boldsymbol{D} .

Main property:

$$D \vDash Q$$
 iff $\exists h : Q \to D$

Review: Homomorphisms

A homomorphisms between two structures $h: \mathbf{A} \to \mathbf{B}$ is a function $h: \mathsf{Dom}(\mathbf{A}) \to \mathsf{Dom}(\mathbf{B})$ s.t. $h(R^A) \subseteq h(R^B)$ for all relation names R, and $h(c^A) = c^B$ for all constant names c.

Notice that \boldsymbol{A} or \boldsymbol{B} can be a CQ Q, or a database \boldsymbol{D} .

Main property:

$$D \vDash Q$$
 iff $\exists h : Q \to D$

Example:

$$Q = (E(x, y) \wedge E(y, z) \wedge E(x, z))$$

Review: Homomorphisms

A homomorphisms between two structures $h: \mathbf{A} \to \mathbf{B}$ is a function $h: \mathsf{Dom}(\mathbf{A}) \to \mathsf{Dom}(\mathbf{B})$ s.t. $h(R^A) \subseteq h(R^B)$ for all relation names R, and $h(c^A) = c^B$ for all constant names c.

Notice that \boldsymbol{A} or \boldsymbol{B} can be a CQ Q, or a database \boldsymbol{D} .

Main property:

$$D \vDash Q$$
 iff $\exists h : Q \to D$

Example:

$$Q = (E(x,y) \land E(y,z) \land E(x,z)$$
$$x \mapsto 2; y \mapsto 3; z \mapsto 4$$

13 / 31

The Canonical Database

 D_Q is just the query Q viewed as a database.

Main property:

$$D_Q \vDash Q$$

Proof: the identity function $Q \rightarrow \mathbf{D}_Q$ is a homomorphism.

Theorem (Chandra and Merlin, 1977)

The following are equivalent:

- (1) Containment holds: $Q_1 \subseteq Q_2$. (if $\mathbf{D} \models Q_1$ then $\mathbf{D} \models Q_2$)
- (2) $\mathbf{D}_{Q_1} \vDash Q_2$.
- (3) There exists a homomorphism $h: Q_2 \rightarrow Q_1$

Theorem (Chandra and Merlin, 1977)

The following are equivalent:

- (1) Containment holds: $Q_1 \subseteq Q_2$. (if $\mathbf{D} \models Q_1$ then $\mathbf{D} \models Q_2$)
- (2) $\mathbf{D}_{Q_1} \vDash Q_2$.
- (3) There exists a homomorphism $h: Q_2 \rightarrow Q_1$

$$(1) \Rightarrow (2)$$

Theorem (Chandra and Merlin, 1977)

The following are equivalent:

- (1) Containment holds: $Q_1 \subseteq Q_2$. (if $\mathbf{D} \models Q_1$ then $\mathbf{D} \models Q_2$)
- (2) $\mathbf{D}_{Q_1} \vDash Q_2$.
- (3) There exists a homomorphism $h: Q_2 \rightarrow Q_1$

(1)
$$\Rightarrow$$
 (2) If $\boldsymbol{D}_{Q_1} \vDash Q_1$ and $Q_1 \subseteq Q_2$ then $\boldsymbol{D}_{Q_1} \vDash Q_2$

Theorem (Chandra and Merlin, 1977)

The following are equivalent:

- (1) Containment holds: $Q_1 \subseteq Q_2$. (if $\mathbf{D} \models Q_1$ then $\mathbf{D} \models Q_2$)
- (2) $\mathbf{D}_{Q_1} \vDash Q_2$.
- (3) There exists a homomorphism $h: Q_2 \rightarrow Q_1$

(1)
$$\Rightarrow$$
 (2) If $\boldsymbol{D}_{Q_1} \vDash Q_1$ and $Q_1 \subseteq Q_2$ then $\boldsymbol{D}_{Q_1} \vDash Q_2$

$$(2) \Rightarrow (3)$$

Theorem (Chandra and Merlin, 1977)

The following are equivalent:

- (1) Containment holds: $Q_1 \subseteq Q_2$. (if $\mathbf{D} \models Q_1$ then $\mathbf{D} \models Q_2$)
- (2) $\mathbf{D}_{Q_1} = Q_2$.
- (3) There exists a homomorphism $h: Q_2 \rightarrow Q_1$

$$(1) \Rightarrow (2)$$
 If $\mathbf{D}_{Q_1} \models Q_1$ and $Q_1 \subseteq Q_2$ then $\mathbf{D}_{Q_1} \models Q_2$

(2)
$$\Rightarrow$$
 (3) If $\mathbf{D}_{Q_1} \models Q_2$ then $\exists h : Q_2 \rightarrow \mathbf{D}_{Q_1}$, hence $\exists h : Q_2 \rightarrow Q_1$.

Theorem (Chandra and Merlin, 1977)

The following are equivalent:

- (1) Containment holds: $Q_1 \subseteq Q_2$. (if $\mathbf{D} \models Q_1$ then $\mathbf{D} \models Q_2$)
- (2) $\mathbf{D}_{Q_1} = Q_2$.
- (3) There exists a homomorphism $h: Q_2 \rightarrow Q_1$

$$(1) \Rightarrow (2)$$
 If $\mathbf{D}_{Q_1} \vDash Q_1$ and $Q_1 \subseteq Q_2$ then $\mathbf{D}_{Q_1} \vDash Q_2$

(2)
$$\Rightarrow$$
 (3) If $\mathbf{D}_{Q_1} \models Q_2$ then $\exists h : Q_2 \rightarrow \mathbf{D}_{Q_1}$, hence $\exists h : Q_2 \rightarrow Q_1$.

$$(3) \Rightarrow (1)$$

Theorem (Chandra and Merlin, 1977)

The following are equivalent:

- (1) Containment holds: $Q_1 \subseteq Q_2$. (if $\mathbf{D} \models Q_1$ then $\mathbf{D} \models Q_2$)
- (2) $\mathbf{D}_{Q_1} \vDash Q_2$.
- (3) There exists a homomorphism $h: Q_2 \rightarrow Q_1$

$$(1) \Rightarrow (2)$$
 If $\mathbf{D}_{Q_1} \vDash Q_1$ and $Q_1 \subseteq Q_2$ then $\mathbf{D}_{Q_1} \vDash Q_2$

(2)
$$\Rightarrow$$
 (3) If $\mathbf{D}_{Q_1} \models Q_2$ then $\exists h : Q_2 \rightarrow \mathbf{D}_{Q_1}$, hence $\exists h : Q_2 \rightarrow Q_1$.

$$(3) \Rightarrow (1)$$
 If $\mathbf{D} \models Q_1$, then $\exists g : Q_1 \rightarrow \mathbf{D}$;

Theorem (Chandra and Merlin, 1977)

The following are equivalent:

- (1) Containment holds: $Q_1 \subseteq Q_2$. (if $\mathbf{D} \models Q_1$ then $\mathbf{D} \models Q_2$)
- (2) $\mathbf{D}_{Q_1} = Q_2$.
- (3) There exists a homomorphism $h: Q_2 \rightarrow Q_1$

$$(1) \Rightarrow (2)$$
 If $\mathbf{D}_{Q_1} \vDash Q_1$ and $Q_1 \subseteq Q_2$ then $\mathbf{D}_{Q_1} \vDash Q_2$

(2)
$$\Rightarrow$$
 (3) If $\mathbf{D}_{Q_1} \models Q_2$ then $\exists h : Q_2 \rightarrow \mathbf{D}_{Q_1}$, hence $\exists h : Q_2 \rightarrow Q_1$.

(3)
$$\Rightarrow$$
 (1) If $\mathbf{D} \models Q_1$, then $\exists g : Q_1 \rightarrow \mathbf{D}$; $g \circ h : Q_2 \rightarrow \mathbf{D}$ implies $\mathbf{D} \models Q_2$.

$$Q_2 \xrightarrow{h} Q_1$$
 $g \circ h \searrow g$
 D

Recall:
$$Q_1 \subseteq Q_2$$
 iff $\exists h: Q_2 \rightarrow Q_1$

$$Q_1 = E(x, y) \land E(y, z) \land E(z, u)$$

$$Q_2 = E(x, y) \land E(y, z)$$

$$Q_1 \subseteq Q_2$$
 why???

Recall: $Q_1 \subseteq Q_2$ iff $\exists h: Q_2 \rightarrow Q_1$

$$Q_1 = E(x, y) \land E(y, z) \land E(z, u)$$

$$Q_2 = E(x, y) \land E(y, z)$$

 $Q_1 \subseteq Q_2$ because of the homomorphism $x \mapsto x$; $y \mapsto y$; $z \mapsto z$.

Recall: $Q_1 \subseteq Q_2$ iff $\exists h: Q_2 \rightarrow Q_1$

$$Q_1 = E(x, y) \land E(y, z) \land E(z, u)$$

$$Q_2 = E(x, y) \land E(y, z)$$

 $Q_1 \subseteq Q_2$ because of the homomorphism $x \mapsto x$; $y \mapsto y$; $z \mapsto z$.

Notice: h must preserve head variables when present.

$$Q_1'(x) = E(x, y) \land E(y, z) \land E(z, u)$$

$$Q_2'(x) = E(x, y) \land E(y, z)$$

$$Q_1' \subseteq Q_2'$$

Recall: $Q_1 \subseteq Q_2$ iff $\exists h: Q_2 \rightarrow Q_1$

$$Q_1 = E(x, y) \land E(y, z) \land E(z, u)$$

$$Q_2 = E(x, y) \land E(y, z)$$

 $Q_1 \subseteq Q_2$ because of the homomorphism $x \mapsto x$; $y \mapsto y$; $z \mapsto z$.

Notice: h must preserve head variables when present.

$$Q'_1(x) = E(x, y) \land E(y, z) \land E(z, u)$$

$$Q'_2(x) = E(x, y) \land E(y, z)$$

$$Q'_1 \subseteq Q'_2$$

$$Q_1''(u) = E(x,y) \land E(y,z) \land E(z,u) \qquad Q_1'' \notin Q_2''$$

$$Q_2''(y) = E(x,y) \land E(y,z) \qquad y \mapsto u; \quad x \mapsto z; \quad z \mapsto ?????$$

16 / 31

Example: Equivalence

Recall:
$$Q_1 \equiv Q_2$$
 iff $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$

$$Q_1(\mathbf{x}) = E(\mathbf{x}, \mathbf{y}) \wedge E(\mathbf{y}, \mathbf{x}) \wedge E(\mathbf{y}, \mathbf{u})$$

$$(\mathbf{x})$$
 (\mathbf{y}) (\mathbf{u})

$$Q_2(\mathbf{x}) = E(\mathbf{x}, y) \wedge E(y, \mathbf{x}) \wedge E(\mathbf{x}, v)$$

Example: Equivalence

Recall:
$$Q_1 \equiv Q_2$$
 iff $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$

$$Q_1(\mathbf{x}) = E(\mathbf{x}, \mathbf{y}) \wedge E(\mathbf{y}, \mathbf{x}) \wedge E(\mathbf{y}, \mathbf{u})$$

$$x$$
 y u

$$Q_2(\mathbf{x}) = E(\mathbf{x}, y) \wedge E(y, \mathbf{x}) \wedge E(\mathbf{x}, v)$$

$$h_1: Q_2 \rightarrow Q_1$$

 $h_2: Q_1 \rightarrow Q_2$

Example: Equivalence

Recall:
$$Q_1 \equiv Q_2$$
 iff $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$

$$Q_1(\mathbf{x}) = E(\mathbf{x}, \mathbf{y}) \wedge E(\mathbf{y}, \mathbf{x}) \wedge E(\mathbf{y}, \mathbf{u})$$

$$x$$
 y u

$$Q_2(\mathbf{x}) = E(\mathbf{x}, \mathbf{y}) \wedge E(\mathbf{y}, \mathbf{x}) \wedge E(\mathbf{x}, \mathbf{v})$$

$$h_1: Q_2 \to Q_1$$
 $h_2: Q_1 \to Q_2$
 $\times \mapsto \times, \ y \mapsto y, \ v \mapsto y$

16 / 31

Example: Equivalence

Recall:
$$Q_1 \equiv Q_2$$
 iff $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$

$$Q_1(\mathbf{x}) = E(\mathbf{x}, \mathbf{y}) \wedge E(\mathbf{y}, \mathbf{x}) \wedge E(\mathbf{y}, \mathbf{u})$$

$$Q_2(\mathbf{x}) = E(\mathbf{x}, \mathbf{y}) \wedge E(\mathbf{y}, \mathbf{x}) \wedge E(\mathbf{x}, \mathbf{v})$$

$$h_1: Q_2 \to Q_1$$

 $\mathbf{x} \mapsto \mathbf{x}, \ y \mapsto y, \ v \mapsto y$

$$h_2: Q_1 \to Q_2$$

 $x \mapsto x, y \mapsto y, u \mapsto x$

More Examples

Which pairs of queries are contained? Equivalent?

$$Q_1(\mathbf{x}) = E(\mathbf{x}, \mathbf{y}) \wedge E(\mathbf{y}, \mathbf{z}) \wedge E(\mathbf{x}, \mathbf{w})$$

$$Q_2(\mathbf{x}) = E(\mathbf{x}, u) \wedge E(u, v)$$

$$Q_3(\mathbf{x}) = E(\mathbf{x}, u_1) \wedge E(u_1, u_2) \wedge \cdots \wedge E(u_4, u_5)$$

$$Q_4(\mathbf{x}) = E(\mathbf{x}, y) \wedge E(y, \mathbf{x})$$

17 / 31

More Examples

Which pairs of queries are contained? Equivalent?

$$Q_1(x) = E(x, y) \wedge E(y, z) \wedge E(x, w)$$

$$Q_2(\mathbf{x}) = E(\mathbf{x}, u) \wedge E(u, v)$$

$$Q_3(\mathbf{x}) = E(\mathbf{x}, u_1) \wedge E(u_1, u_2) \wedge \cdots \wedge E(u_4, u_5)$$

$$\cdot \wedge E(u_4, u_5)$$

$$Q_4(\mathbf{x}) = E(\mathbf{x}, \mathbf{y}) \wedge E(\mathbf{y}, \mathbf{x})$$

$$Q_4 \subseteq Q_3 \subsetneq Q_1 \equiv Q_2$$

What is the complexity of this problem? Given Boolean Q_1, Q_2 , check if $Q_1 \subseteq Q_2$

What is the complexity of this problem? Given Boolean Q_1, Q_2 , check if $Q_1 \subseteq Q_2$

NP-complete!

Proof: same as the model checking for CQs: $Q_1 \subseteq Q_2$ iff $\mathbf{D}_{Q_1} \models Q_2$.

Containment Theorem for CQs - Revised

Theorem (Chandra and Merlin, 1977)

Let $Q_1(\mathbf{x}_1)$, $Q_2(\mathbf{x}_2)$ be CQ's with $|\mathbf{x}_1| = |\mathbf{x}_2|$. The following are equivalent:

(1)
$$Q_1 \subseteq Q_2$$

$$(\forall \boldsymbol{D}, Q_1(\boldsymbol{D}) \subseteq Q_2(\boldsymbol{D}))$$

(2)
$$\mathbf{x}_{1}^{\mathbf{D}_{Q_{1}}} \in Q_{2}(\mathbf{D}_{Q_{1}})$$

 $(Q_2(oldsymbol{D}_{Q_1})$ returns the canonical tuple $oldsymbol{x}_1)$

(3)
$$\exists h: Q_2(\mathbf{x}_2) \to Q_1(\mathbf{x}_1).$$

(must map $\mathbf{x}_2 \mapsto \mathbf{x}_1$)

$$Q(\mathbf{x}) = Q_1(\mathbf{x}) \vee Q_2(\mathbf{x}) \vee \cdots$$

$$Q'(\boldsymbol{x}') = Q_1'(\boldsymbol{x}') \vee Q_2'(\boldsymbol{x}') \vee \cdots$$

$$Q(\mathbf{x}) = Q_1(\mathbf{x}) \vee Q_2(\mathbf{x}) \vee \cdots$$

$$Q'(\boldsymbol{x}') = Q_1'(\boldsymbol{x}') \vee Q_2'(\boldsymbol{x}') \vee \cdots$$

Theorem

The following are equivalent:

- Q ⊆ Q'
- $\forall i \exists j, Q_i \subseteq Q'_i$

(Containment holds)

(every Q_i is contained in some Q'_i)

Proof Assume w.l.o.g. Q, Q' are Boolean UCQs.

$$Q\subseteq Q'$$
:

$$Q(\mathbf{x}) = Q_1(\mathbf{x}) \vee Q_2(\mathbf{x}) \vee \cdots$$

$$Q'(\boldsymbol{x}') = Q_1'(\boldsymbol{x}') \vee Q_2'(\boldsymbol{x}') \vee \cdots$$

Theorem

The following are equivalent:

- Q ⊆ Q'
- $\forall i \exists j, Q_i \subseteq Q_i'$

(Containment holds)

(every Q_i is contained in some Q'_i)

Proof Assume w.l.o.g. Q, Q' are Boolean UCQs.

 $Q \subseteq Q'$: then for every $i: \mathbf{D}_{Q_i} \models Q'$ (because $\mathbf{D}_{Q_i} \models Q_i$, since $\mathbf{D}_{Q_i} \models Q$)

Finite Model Theory Lecture 5 Spring 2025 20 / 31

$$Q(\mathbf{x}) = Q_1(\mathbf{x}) \vee Q_2(\mathbf{x}) \vee \cdots$$

$$Q'(\boldsymbol{x}') = Q_1'(\boldsymbol{x}') \vee Q_2'(\boldsymbol{x}') \vee \cdots$$

Theorem

The following are equivalent:

- Q ⊆ Q'
- $\forall i \exists j, Q_i \subseteq Q_i'$

(Containment holds)

(every Q_i is contained in some Q'_i)

Proof Assume w.l.o.g. Q, Q' are Boolean UCQs.

$$Q \subseteq Q'$$
: then for every $i: \mathbf{D}_{Q_i} \models Q'$ (because $\mathbf{D}_{Q_i} \models Q_i$, since $\mathbf{D}_{Q_i} \models Q$)

Then $\exists j$, $\mathbf{D}_{Q_i} \models Q'_i$.

$$Q(\mathbf{x}) = Q_1(\mathbf{x}) \vee Q_2(\mathbf{x}) \vee \cdots$$

$$Q'(\boldsymbol{x}') = Q_1'(\boldsymbol{x}') \vee Q_2'(\boldsymbol{x}') \vee \cdots$$

Theorem

The following are equivalent:

- Q ⊆ Q'
- $\forall i \exists j, Q_i \subseteq Q_i'$

(Containment holds)

(every Q_i is contained in some Q'_i)

Proof Assume w.l.o.g. Q, Q' are Boolean UCQs.

 $Q \subseteq Q'$: then for every $i: \mathbf{D}_{Q_i} \models Q'$ (because $\mathbf{D}_{Q_i} \models Q_i$, since $\mathbf{D}_{Q_i} \models Q$)

Then $\exists j, \; \boldsymbol{D}_{Q_i} \vDash Q'_j$. We have shown $Q_i \subseteq Q'_j$

$$Q(\mathbf{x}) = Q_1(\mathbf{x}) \vee Q_2(\mathbf{x}) \vee \cdots$$

$$Q'(\mathbf{x}') = Q_1'(\mathbf{x}') \vee Q_2'(\mathbf{x}') \vee \cdots$$

Theorem

The following are equivalent:

- Q ⊆ Q'
- $\forall i \exists j, Q_i \subseteq Q_i'$

(Containment holds)

(every Q_i is contained in some Q'_i)

Proof Assume w.l.o.g. Q, Q' are Boolean UCQs.

 $Q \subseteq Q'$: then for every $i: \mathbf{D}_{Q_i} \models Q'$ (because $\mathbf{D}_{Q_i} \models Q_i$, since $\mathbf{D}_{Q_i} \models Q$)

Then $\exists j$, $\boldsymbol{D}_{Q_i} \vDash Q'_j$. We have shown $Q_i \subseteq Q'_j$

$$\forall i \exists j, Q_i \subseteq Q'_j$$
:

$$Q(\mathbf{x}) = Q_1(\mathbf{x}) \vee Q_2(\mathbf{x}) \vee \cdots$$

$$Q'(\mathbf{x}') = Q_1'(\mathbf{x}') \vee Q_2'(\mathbf{x}') \vee \cdots$$

Theorem

The following are equivalent:

- Q ⊆ Q'
- $\forall i \exists j, Q_i \subseteq Q_i'$

(Containment holds)

(every Q_i is contained in some Q'_i)

Proof Assume w.l.o.g. Q, Q' are Boolean UCQs.

 $Q \subseteq Q'$: then for every $i: \mathbf{D}_{Q_i} \models Q'$ (because $\mathbf{D}_{Q_i} \models Q_i$, since $\mathbf{D}_{Q_i} \models Q$)

Then $\exists j, \; \boldsymbol{D}_{Q_i} \vDash Q_j'$. We have shown $Q_i \subseteq Q_j'$

 $\forall i \exists j, Q_i \subseteq Q'_j$: Assume $\mathbf{D} \models Q$. Then $\exists i, \mathbf{D} \models Q_i$.

$$Q(\mathbf{x}) = Q_1(\mathbf{x}) \vee Q_2(\mathbf{x}) \vee \cdots$$

$$Q'(\mathbf{x}') = Q_1'(\mathbf{x}') \vee Q_2'(\mathbf{x}') \vee \cdots$$

Theorem

The following are equivalent:

- $Q \subseteq Q'$
- $\forall i \exists j, Q_i \subseteq Q_i'$

(Containment holds)

(every Q_i is contained in some Q'_i)

Proof Assume w.l.o.g. Q, Q' are Boolean UCQs.

 $Q \subseteq Q'$: then for every $i: \mathbf{D}_{Q_i} \models Q'$ (because $\mathbf{D}_{Q_i} \models Q_i$, since $\mathbf{D}_{Q_i} \models Q$)

Then $\exists j$, $\mathbf{D}_{Q_i} \vDash Q'_j$. We have shown $Q_i \subseteq Q'_j$

 $\forall i \exists j, Q_i \subseteq Q'_j$: Assume $\mathbf{D} \models Q$. Then $\exists i, \mathbf{D} \models Q_i$.

Let j be such that $Q_i \subseteq Q'_j$. Then $\mathbf{D} \models Q'_j$. We have shown $\mathbf{D} \models Q'$

Discussion

Homomorphism criterion for checking containment of CQs/UCQs

 A simple, little known consequence: the same criterion can be adapted to implication of positive CNF:²

$$\varphi_1 = \forall x \forall y \forall z (E(x,y) \lor E(y,z))$$

$$\varphi_2 = \forall x \forall y \forall z \forall u (E(x,y) \lor E(y,z) \lor E(z,u))$$
then $\varphi_1 \Rightarrow \varphi_2$

• The problem given CQs Q_1, Q_2 , does $Q_1 \subseteq Q_2$ hold? is NP-complete.

Finite Model Theory Lecture 5 Spring 2025 21/31

²h must go in the opposite direction: $h: \varphi_1 \to \varphi_2$.

Adding Inequalities: $<, \le, \ne$

Inequalities

Extend CQ with $<, \le, \ne$. E.g. $Q(x, y, z) = R(x, y) \land R(x, z) \land y \ne z$.

The extend languages is denoted $CQ^{<}$, or $CQ^{\leq,\pm}$, or $CQ(\leq,\pm)$.

We assume $Dom(\mathbf{D})$ is densely ordered, e.g. \mathbb{Q} .

Problems: containment.

Idea: treat x < y as another relational predicate R(x, y)

A homomorphism $h: Q' \to Q$ must map x < y to h(x) < h(y)

Idea: treat x < y as another relational predicate R(x, y)

A homomorphism $h: Q' \to Q$ must map x < y to h(x) < h(y)

Fact

If there exists a homomorphism $Q' \rightarrow Q$ then $Q \subseteq Q'$.

Idea: treat x < y as another relational predicate R(x, y)

A homomorphism $h: Q' \to Q$ must map x < y to h(x) < h(y)

Fact

If there exists a homomorphism $Q' \rightarrow Q$ then $Q \subseteq Q'$.

The predicate h(x) < h(y) need not appear in Q, just implied by Q. E.g.

$$Q = R(x, y, z) \land (x < y) \land (y < z)$$

$$Q' = R(u, v, w) \land (u \le w)$$

Idea: treat x < y as another relational predicate R(x, y)

A homomorphism $h: Q' \to Q$ must map x < y to h(x) < h(y)

Fact

If there exists a homomorphism $Q' \rightarrow Q$ then $Q \subseteq Q'$.

The predicate h(x) < h(y) need not appear in Q, just implied by Q. E.g.

$$Q = R(x, y, z) \land (x < y) \land (y < z)$$

$$Q' = R(u, v, w) \land (u \le w)$$

$$h: (u, v, w) \mapsto (x, y, z)$$
 maps $u \le w$ to $x \le z$

Idea: treat x < y as another relational predicate R(x, y)

A homomorphism $h: Q' \to Q$ must map x < y to h(x) < h(y)

Fact

If there exists a homomorphism $Q' \rightarrow Q$ then $Q \subseteq Q'$.

The predicate h(x) < h(y) need not appear in Q, just implied by Q. E.g.

$$Q = R(x, y, z) \land (x < y) \land (y < z) \qquad Q' = R(u, v, w) \land (u \le w)$$

$$h: (u, v, w) \mapsto (x, y, z)$$
 maps $u \le w$ to $x \le z$
 $x \le z$ does not appear in Q , but is implied: $Q \models x \le z$

Finite Model Theory Lecture 5 Spring 2025 24 / 31

Idea: treat x < y as another relational predicate R(x, y)

A homomorphism $h: Q' \to Q$ must map x < y to h(x) < h(y)

Fact

If there exists a homomorphism $Q' \rightarrow Q$ then $Q \subseteq Q'$.

The predicate h(x) < h(y) need not appear in Q, just implied by Q. E.g.

$$Q = R(x, y, z) \land (x < y) \land (y < z) \qquad Q' = R(u, v, w) \land (u \le w)$$

$$h: (u, v, w) \mapsto (x, y, z) \text{ maps } \underline{u \le w} \text{ to } \underline{x \le z}$$

 $x \le z$ does not appear in Q, but is implied: $Q \models x \le z$ Thus, $Q \subseteq Q'$

Finite Model Theory Lecture 5 Spring 2025 24 / 31

Homomorphism is Not Necessary

Fact

 $h: Q' \to Q$ is a sufficient, but not a necessary condition for $Q \subseteq Q'$.

Homomorphism is Not Necessary

Fact

 $h: Q' \to Q$ is a sufficient, but not a necessary condition for $Q \subseteq Q'$.

Example: (Boolean queries):

$$Q = S(x, y) \wedge S(y, z) \wedge (x < z)$$

$$Q' = S(u, v) \wedge (u < v)$$

Homomorphism is Not Necessary

Fact

 $h: Q' \to Q$ is a sufficient, but not a necessary condition for $Q \subseteq Q'$.

Example: (Boolean queries):

$$Q = S(x, y) \wedge S(y, z) \wedge (x < z)$$

$$Q' = S(x, y) \wedge S(y, z) \wedge (x < z)$$

$$Q' = S(u, v) \wedge (u < v)$$

 $Q \subseteq Q'$. Why?, but there is no homomorphism $Q' \to Q$,

Review: Preorder

Definition

A relation \leq on a set V is called a preorder if:

- It is reflexive: x < x.
- It is transitive: $x \le y$, $y \le z$ implies $x \le z$.

Write $a \equiv b$ for $a \le b$ and $b \le a$.

The preorder is total if $\forall a, b \in V$, either $a \leq b$ or $b \leq a$ or $a \equiv b$.

Extending Q with a Total Preorder \leq

Fix a total preorder \leq on $Vars(Q) \cup Const(Q)$,

 $Q_{<}$ denotes the extension of Q with \leq .

Note $Q_{<}$ may be inconsistent, i.e. \equiv False.

27 / 31

Extending Q with a Total Preorder \leq

Fix a total preorder \leq on $Vars(Q) \cup Const(Q)$,

 $Q_{<}$ denotes the extension of Q with \leq .

Note Q_{\leq} may be inconsistent, i.e. \equiv False.

Example: $Q = R(x, y, 3) \wedge S(y, z, u, 9) \wedge (u \le x)$

Extending Q with a Total Preorder \leq

Fix a total preorder \leq on $Vars(Q) \cup Const(Q)$,

 $Q_{<}$ denotes the extension of Q with \leq .

Note $Q_{<}$ may be inconsistent, i.e. \equiv False.

Example:
$$Q = R(x, y, 3) \wedge S(y, z, u, 9) \wedge (u \le x)$$

$$v < x \equiv u < 3 \equiv z < 9$$

$$y = \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} 3 \\ z \end{pmatrix} = 9$$

Extending Q with a Total Preorder \leq

Fix a total preorder \leq on $Vars(Q) \cup Const(Q)$,

 $Q_{<}$ denotes the extension of Q with \leq .

Note $Q_{<}$ may be inconsistent, i.e. \equiv False.

Example:
$$Q = R(x, y, 3) \wedge S(y, z, u, 9) \wedge (u \le x)$$

$$y < x \equiv u < 3 \equiv z < 9$$

$$y = \begin{pmatrix} x \\ u \end{pmatrix} \begin{pmatrix} 3 \\ z \end{pmatrix} = 9$$

$$Q_{\leq} = R(x, y, 3) \land S(y, z, u, 9) \land (y < x) \land (x = u) \land (x < 3) \land (3 = z) \land \cdots$$

A Necessary and Sufficient Condition

Theorem

Let Q, Q' be $CQ^{<,\leq,\neq}$ queries. The following conditions are equivalent:

(1)
$$Q \subseteq Q'$$
 $(\forall \mathbf{D}, \text{ if } \mathbf{D} \models Q \text{ then } \mathbf{D} \models Q')$

(2) For any consistent total preorder \leq on Q, $\exists h: Q' \rightarrow Q_{<}$.

Finite Model Theory Lecture 5 Spring 2025 28 / 31

A Necessary and Sufficient Condition

Theorem

Let Q, Q' be $CQ^{<,\leq,\neq}$ queries. The following conditions are equivalent:

(1)
$$Q \subseteq Q'$$

$$(\forall \mathbf{D}, \text{ if } \mathbf{D} \models Q \text{ then } \mathbf{D} \models Q')$$

(2) For any consistent total preorder \leq on Q, $\exists h: Q' \rightarrow Q_{<}$.

Proof:

(2) \Rightarrow (1) If $\mathbf{D} \models Q$, then there exists a homomorphism:

$$h_0: Q \rightarrow \mathbf{D}$$

This induces a total preorder \leq on Q. Let h be a homomorphism:

$$h\colon Q'\to Q_{\leq}$$

Their composition is a homomorphism $Q' \to \mathbf{D}$, proving $Q'(\mathbf{D}) = \text{true}$.

Finite Model Theory Lecture 5 Spring 2025 28 / 31

A Necessary and Sufficient Condition

Theorem

Let Q, Q' be $CQ^{<,\leq,\neq}$ queries. The following conditions are equivalent:

(1)
$$Q \subseteq Q'$$

$$(\forall \mathbf{D}, \text{ if } \mathbf{D} \vDash Q \text{ then } \mathbf{D} \vDash Q')$$

(2) For any consistent total preorder \leq on Q, $\exists h: Q' \rightarrow Q_{\leq}$.

Proof:

(2) \Rightarrow (1) If $\mathbf{D} \models Q$, then there exists a homomorphism:

$$h_0: Q \rightarrow \mathbf{D}$$

This induces a total preorder \leq on Q. Let h be a homomorphism:

$$h: Q' \to Q_{\prec}$$

Their composition is a homomorphism $Q' \to \mathbf{D}$, proving $Q'(\mathbf{D}) = \text{true}$.

(1)
$$\Rightarrow$$
 (2) follows from $\mathbf{D}_{Q_{\leq}} \models Q$, hence $\mathbf{D}_{Q_{\leq}} \models Q'$, and $\exists h : Q' \to Q_{\leq}$.

Finite Model Theory Lecture 5 Spring 2025 28 / 31

29 / 31

Example

$$Q = S(x, y) \wedge S(y, z) \wedge (x < z)$$

$$Q' = S(u, v) \wedge (u < v)$$

Lets prove that $Q \subseteq Q'$.

Example

$$Q = S(x,y) \wedge S(y,z) \wedge (x < z)$$

$$Q' = S(u, v) \wedge (u < v)$$

Lets prove that $Q \subseteq Q'$.

5 consistent total preorders on Q:

$$Q_1 = S(x, y) \land S(y, z) \land (y < x) \land (y < z)$$

$$Q_2 = S(x, y) \land S(y, z) \land (x = y) \land (y < z)$$

$$Q_3 = S(x, y) \land S(y, z) \land (x < y) \land (y < z)$$

$$Q_4 = S(x, y) \wedge S(y, z) \wedge (x < y) \wedge (y = z)$$

$$Q_5 = S(x,y) \land S(y,z) \land (x < y) \land (z < y)$$

Example

$$Q = S(x,y) \wedge S(y,z) \wedge (x < z)$$

$$Q' = S(u, v) \wedge (u < v)$$

Lets prove that $Q \subseteq Q'$.

5 consistent total preorders on Q:

$$Q_1 = S(x, y) \land S(y, z) \land (y < x) \land (y < z)$$

$$Q_2 = S(x, y) \land S(y, z) \land (x = y) \land (y < z)$$

$$Q_3 = S(x, y) \land S(y, z) \land (x < y) \land (y < z)$$

$$Q_4 = S(x, y) \land S(y, z) \land (x < y) \land (y = z)$$

$$Q_5 = S(x, y) \land S(y, z) \land (x < y) \land (z < y)$$

In each case, either $(u, v) \mapsto (x, y)$ or $(u, v) \mapsto (y, z)$ is a homomorphism.

Assume Q, Q' are CQ's that may contain $<, \le, \ne$.

Theorem

The problem given Q, Q' determine whether $Q \subseteq Q'$ is Π_2^p -complete.

Assume Q, Q' are CQ's that may contain $<, \le, \ne$.

Theorem

The problem given Q, Q' determine whether $Q \subseteq Q'$ is Π_2^p -complete.

Review: there exists Q s.t. Given Q', check $Q \subseteq Q'$ is NP-complete. Reduction from 3CNF Φ .

$$\Phi = (X \vee \neg Y \vee Z) \wedge (\neg X \vee Y \vee \neg Z) \wedge (\neg X \vee \neg Y \vee Z) \wedge \cdots$$

$$Q'_{\Phi} = B(x, z, y) \wedge C(y, x, z) \wedge C(z, x, y) \wedge \cdots$$

$$Q = A(0,0,1), A(0,1,0),...$$
 (all tuples except $A(0,0,0)$; similarly B, C, D)

Assume Q, Q' are CQ's that may contain $<, \le, \ne$.

Theorem

The problem given Q, Q' determine whether $Q \subseteq Q'$ is Π_2^p -complete.

Proof: Membership in Π_2^p follows from:

 $Q \subseteq Q'$ iff for all extensions Q_{\leq} , there exists a homomorphisms $Q' \to Q_{\leq}$.

Assume Q, Q' are CQ's that may contain $<, \le, \ne$.

Theorem

The problem given Q, Q' determine whether $Q \subseteq Q'$ is Π_2^p -complete.

Proof: Reduction from $\forall \exists 3CNF: \boxed{\Psi = \forall X_1 \cdots \forall X_k \exists X_{k+1} \cdots \exists X_n \Phi}$

Assume Q, Q' are CQ's that may contain $<, \le, \ne$.

Theorem

The problem given Q, Q' determine whether $Q \subseteq Q'$ is Π_2^p -complete.

Proof: Reduction from $\forall \exists 3CNF$: $\Psi = \forall X_1 \cdots \forall X_k \exists X_{k+1} \cdots \exists X_n \Phi$

- Q has 4 relations A, B, C, D each with 7 tuples.
- Q'_{Φ} has one atom/clause; e.g. $(X_i \vee \neg X_j \vee X_k)$ becomes $B(x_i, x_k, x_j)$.
- So far: $\exists X_1 \cdots \exists X_n \Phi \text{ iff } \exists h : Q'_{\Phi} \rightarrow Q.$

Assume Q, Q' are CQ's that may contain $<, \le, \ne$.

Theorem

The problem given Q, Q' determine whether $Q \subseteq Q'$ is Π_2^p -complete.

Proof: Reduction from $\forall \exists 3CNF$: $\Psi = \forall X_1 \cdots \forall X_k \exists X_{k+1} \cdots \exists X_n \Phi$

- Q has 4 relations A, B, C, D each with 7 tuples.
- Q'_{Φ} has one atom/clause; e.g. $(X_i \vee \neg X_j \vee X_k)$ becomes $B(x_i, x_k, x_j)$.
- So far: $\exists X_1 \cdots \exists X_n \Phi \text{ iff } \exists h : Q'_{\Phi} \rightarrow Q.$

For each universal variable X_i , add the following atoms:

- Add $S(0, u_i, v_i) \wedge S(1, v_i, w_i) \wedge (u_i < w_i)$ to Q.
- Add $S(x_i, a_i, b_i) \wedge (a_i < b_i)$ to Q'_{Φ} .

 $Q \subseteq Q'_{\Phi}$ holds iff both $x_i \mapsto 0$, $x_i \mapsto 1$ lead to a homomorphisms.

Summary

• The big question: what other extensions of CQ can we allow and still be able to decide containment?

 The following have been studied: inequalities, safe negation ¬, certain aggregates sum, min, max, count.

Containment/equivalence for pure CQ/UCQ is very elegant.
 Extensions add significant difficulties.