Finite Model Theory
Lecture 5: Query Containment

Spring 2025
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Announcements

@ Good job on homework 1!

@ Homework 2 is posted and due next Friday, 4/25.
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Containment CQs

Where We Are
o Finite models: we may write ¢ = to mean ¢ =g, .
@ Trakhtenbrot: SATg, () is undecidable.

@ Model checking Ak ¢

» FO: data complexity AC?, expression complexity PSPACE-complete
» CQ: data complexity AC?, expression complexity NP-complete

o We often use “database”, “query” instead of “structure”, “formula”.

Today: Query Containment/Equivalence
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The Problems
©0000

Problem Definition
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The Problems
00000

Query Equivalence

Definition (Equivalence)
Q1, @ are equivalent if VD, Q1(D) = Q(D). Notation: Q1 = Q. J
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The Problems

[e] lele]e}

Query Equivalence

Definition (Equivalence)
Q1, @ are equivalent if VD, Q1(D) = Q(D). Notation: Q1 = Q. J

Example: Q1 = Q> where,

Q1(x) =3y3zFu(E(x,y) A E(y,x) A E(y,u))
Q2(x) =3y3z3Av(E(x,y) A E(y,x) A E(x,Vv))
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The Problems

[e] lele]e}

Query Equivalence

Definition (Equivalence)
Q1, @ are equivalent if VD, Q1(D) = Q(D). Notation: Q1 = Q. J

Example: Q1 = Q> where,

Q1(x) =3y3zFu(E(x,y) A E(y,x) A E(y,u))
Q2(x) =3y3z3Av(E(x,y) A E(y,x) A E(x,Vv))

It suffices to study equivalence of Boolean queries, because:
Q1(x) = Q2(y) iff (x| = |y|) and for constants ¢, Qi[c/x] = Q[c/y].
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The Problems
00000

Query Containment

Definition (Containment)

Q1 is contained in @, if VD, Q1(D) € @(D). Notation: Q1 € @ J

Again, suffices if Q1, @ are Boolean. Then @1 € @, same as @1 = Q».
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The Problems

[e]e] lele}

Query Containment

Definition (Containment)

Q1 is contained in @, if VD, Q1(D) € @(D). Notation: Q1 € @ J

Again, suffices if Q1, Q> are Boolean. Then Q1 € @, same as Q; = Q».

Example:
Q1 =3x3y3zIu(E(x,y) AE(y,z) N E(z,u))
Q2 =3x3y3Iz(E(x,y) A E(y, 2))
Q1S
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The Problems Containment for CQs Inequalitie

00000

Containment v.s. Equivalence

Fact
Equivalence and containment are (almost) the same problem: J

Q1= Q|iff [Qic @ and Qc Q]

Qe Qiff | Q= QiAQ

!Language must be closed under A.
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The Problems
00000

Containment for FO is Undecidable

Theorem

The problem Given Q1, Q> in FO check whether Q1 € Q> is undecidable. J
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The Problems

[e]e]ele] J

Containment for FO is Undecidable

Theorem
The problem Given Q1, Q> in FO check whether Q1 € Q> is undecidable. J

Proof By reduction from SATg,.

Let  be any sentence. (We want to check SATf,(P).)

Define Q %" ® and Q, " FALSE. Then Q1 € Q, iff ~SATfin ().
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Containment for CQs
@®000000000000

Containment for CQs
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The Problems

Containment for CQs
0@00000000000

Inequalitie

Containment for CQs

The containment problem for CQs is decidable; More precisely,
NP-complete.

This is one of the oldest, most celebrated result in database theory. It is
due to Chandra and Merlin, 1977.
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Containment for CQs
[e]e] lelelelelelelele]e]e]

Review: Equivalent Concepts

@ Boolean Conjunctive Query:
Q= R(X,%Z) A 5(X7 U) A 5()/, V) A 5(27 W) A R(ua v, W)
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Containment for CQs

00@0000000000

Review: Equivalent Concepts

@ Boolean Conjunctive Query:
Q=R(x,y,z) AS(x,u) AS(y,v) AS(z,w) A R(u,v,w)

@ A Database A with domain Vars(Q):

x| u
_ AX|Y|Z A_
Dom(A) ={x,y,z,u,v,w} R = slvlw ) )Z/ %
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Containment for CQs

00@0000000000

Review: Equivalent Concepts

@ Boolean Conjunctive Query:
Q=R(x,y,z) AS(x,u) AS(y,v) AS(z,w) A R(u,v,w)

@ A Database A with domain Vars(Q):

x| u
_ AX|Y|Z A_
Dom(A) ={x,y,z,u,v,w} R = slvlw ) )Z/ %

If Q(x) has head variables x, then we add named constants x* to A.
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Containment for CQs

00@0000000000

Review: Equivalent Concepts

@ Boolean Conjunctive Query:
Q=R(x,y,z) AS(x,u) AS(y,v) AS(z,w) A R(u,v,w)

@ A Database A with domain Vars(Q):

x| u
_ AX|Y|Z A_
Dom(A) ={x,y,z,u,v,w} R = slvlw ) )Z/ %

If Q(x) has head variables x, then we add named constants x* to A.

We call A the Canonical Database of @, denoted
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The Problems Containment for CQs

Inequalitie
000@000000000 00

Review: Homomorphisms

A homomorphisms between two structures h: A - B
is a function h: Dom(A) - Dom(B) s.t.

h(RA) c h(RB) for all relation names R, and
h(c?) = ¢ for all constant names c.

Notice that A or B can be a CQ @, or a database D.
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Containment for CQs

000@000000000

Review: Homomorphisms

A homomorphisms between two structures h: A - B
is a function h: Dom(A) - Dom(B) s.t.

h(RA) c h(RB) for all relation names R, and
h(c?) = ¢ for all constant names c.

Notice that A or B can be a CQ @, or a database D.

Main property: ‘DhQ‘iff‘Elh:QeD‘
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Containment for CQs

000@000000000

Review: Homomorphisms

A homomorphisms between two structures h: A - B
is a function h: Dom(A) - Dom(B) s.t.
h(RA) c h(RB) for all relation names R, and
h(c?) = ¢ for all constant names c.

Notice that A or B can be a CQ @, or a database D.

Main property: ‘DhQ‘iff‘Elh:QeD‘

Example:
Qz(E(va)AE(yaZ)/\E(sz) D = 3
3)
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Containment for CQs

000@000000000

Review: Homomorphisms

A homomorphisms between two structures h: A - B
is a function h: Dom(A) - Dom(B) s.t.
h(RA) c h(RB) for all relation names R, and
h(c?) = ¢ for all constant names c.

Notice that A or B can be a CQ @, or a database D.

Main property: ‘DhQ‘iff‘Elh:QeD‘

Example:

Q= (E(x,y) AE(y,2) AE(x,2) D- ‘
X=>2;y—3;z~4 9
©,
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Containment for CQs

0O000@00000000

The Canonical Database

D is just the query Q viewed as a database.

Main property:

Proof: the identity function Q@ - D¢ is a homomorphism.
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Containment for CQs

[e]e]e]ele] leleelele]e]e]

Containment Theorem for Boolean CQs
Theorem (Chandra and Merlin, 1977)

The following are equivalent:
(1) Containment holds: Q1 € Q. (if D= Q1 then D= Q)
( 2 ) DQ1 = Qz.
(3) There exists a homomorphism h: Q> — @y
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The Problems

Containment for CQs

[e]e]e]ele] leleelele]e]e]

Containment Theorem for Boolean CQs
Theorem (Chandra and Merlin, 1977)
The following are equivalent:

(1) Containment holds: Q1 € Q. (if D= Q1 then D= Q)
(2) DQl F Q.

(3) There exists a homomorphism h: Q> — @y

Proof
(1) =(2)
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Containment for CQs

[e]e]e]ele] leleelele]e]e]

Containment Theorem for Boolean CQs

Theorem (Chandra and Merlin, 1977)
The following are equivalent:

(1) Containment holds: Q1 € Q.
(2) DQl F Q.

(if D& Q) then DE Q)

(3) There exists a homomorphism h: Q> — @y

Proof

(1) = (2) If Do, = Q1 and Q1 € Q> then D@, = Q>

Finite Model Theory Lecture 5

Spring 2025 14 /31



Containment for CQs

[e]e]e]ele] leleelele]e]e]

Containment Theorem for Boolean CQs

Theorem (Chandra and Merlin, 1977)
The following are equivalent:

(1) Containment holds: Q1 € Q.
(2) DQl F Q.

(if D& Q) then DE Q)

(3) There exists a homomorphism h: Q> — @y

Proof

(1) = (2) If Do, = Q1 and Q1 € Q> then D@, = Q>

(2) =)
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Containment for CQs

[e]e]e]ele] leleelele]e]e]

Containment Theorem for Boolean CQs
Theorem (Chandra and Merlin, 1977)

The following are equivalent:

(1) Containment holds: Q1 € Q. (if D= Q1 then D= Q)
(2) Dq, F Q.
(3) There exists a homomorphism h: Q> — @y

Proof

(1) = (2) If Do, = Q1 and Q1 € Q> then D@, = Q>
(2) = (3) If Do, E @ then 3h: Q> » Dg,, hence 3h: Q> - Q1.
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Containment for CQs

[e]e]e]ele] leleelele]e]e]

Containment Theorem for Boolean CQs
Theorem (Chandra and Merlin, 1977)

The following are equivalent:

(1) Containment holds: Q1 € Q. (if D= Q1 then D= Q)
(2) Dq, F Q.
(3) There exists a homomorphism h: Q> — @y

Proof

) (2) If DQ1 E Q1 and Q1 € Q> then DQ1 E Qo

(1
(2) = (3) If Do, E @ then 3h: Q> » Dg,, hence 3h: Q> - Q1.
(3) = (1)
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Containment for CQs

[e]e]e]ele] leleelele]e]e]

Containment Theorem for Boolean CQs
Theorem (Chandra and Merlin, 1977)

The following are equivalent:

(1) Containment holds: Q1 € Q. (if D= Q1 then D= Q)
(2) Dq, F Q.
(3) There exists a homomorphism h: Q> — @y

Proof

(1) = (2) If Do, F Q1 and @1 € @ then Do, = @2
(2) = (3) If D@, = @ then 3h: Q2 — Dg,, hence 3h: Q> — Q1.
(3) = (1) If DE @y, then 3g: Q; — D;
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Containment for CQs

[e]e]e]ele] leleelele]e]e]

Containment Theorem for Boolean CQs
Theorem (Chandra and Merlin, 1977)

The following are equivalent:

(1) Containment holds: Q1 € Q. (if D= Q1 then D= Q)
(2) Dq, F Q.
(3) There exists a homomorphism h: Q> — @y

Proof

( ) (2) If DQ1 E Q1 and Q1 € Q> then DQ1 E Qo

( ) ( ) If DQ1 E @ then 3h: Q — DQI' hence 3h: Q@ — Q.

(3)= (1) If DE @1, then 3g: Q1 —> D; goh: Q> — D implies D £ Q.

h
Q@—>
\\ g
goh \Q l/
D
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Example: Containment
Recall: | Q1 € Q|iff|3h: Q; ~ Q1 |

Ql ZE(X,y)/\E(y,Z)/\E(Z,U)
Q2 =E(X,y)/\E(y7Z)

Q1 € Q> why??7?
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Containment for CQs

[e]e]e]ele]e] leelele]e]e)]

Example: Containment
Recall: | Q1 ¢ Q| iff|3h: Q2 —> Q1|

Ql ZE(X,y)/\E(y,Z)/\E(Z,U)
Q2 ZE(X,y)/\E(y,Z)

Q1 € Q> because of the homomorphism x — x;y + y;z — z.
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Containment for CQs

Example: Containment
Recall: | Q1 ¢ Q| iff|3h: Q2 —> Q1|

Ql ZE(X,y)/\E(y,Z)/\E(Z,U)
Q2 ZE(X,y)/\E(y,Z)

Q1 € Q> because of the homomorphism x — x;y + y;z — z.

Notice: h must preserve head variables when present.

Qu(x) =E(x,y) A E(y,2) A E(z,u)

Ql g QI

/ 1 2
Q2(X) :E(Xay) A E(y,Z)

Spring 2025
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Containment for CQs

Example: Containment
Recall: | Q1 ¢ Q| iff|3h: Q2 —> Q1|

Qu=E(x,y) NE(y,z) NE(z,u)
Q2 :E(Xay)/\E(yvz)

Q1 € Q> because of the homomorphism x — x;y + y;z — z.

Notice: h must preserve head variables when present.

Qu(x) =E(x,y) A E(y,2) A E(z,u)

! Q’ g QI
Q5 (x) =E(x,y) NE(y, 2) 1€ @
Q{’ u)=E(x,y)NE(y,z) A E(z,u) Q{,;t_Qé’
@' (v) =E(x,y) NE(y,2) Yy U xe oz, ze 2777
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Containment for CQs
0O000000e00000

Example: Equivalence

Recall: ‘ Q1= Qo ‘ iff‘ @c@and @ c @ ‘

Qu(x) =E(x.¥) A E(y.x) AE(y,u) & ly—@

@Q(x) =E(x,y) AE(y,x) A E(x,Vv) @
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Containment for CQs
0O000000e00000

Example: Equivalence

Recall: ‘ Q1= Qo ‘ iff‘ @c@and @ c @ ‘

Qu(x) =E(x.¥) A E(y.x) AE(y,u) & ly—@

@Q(x) =E(x,y) AE(y,x) A E(x,Vv) @

hi:Q— Q1 hy: Q1 — @
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Containment for CQs
0O000000e00000

Example: Equivalence

Recall: ‘ Q1= Qo ‘ iff‘ @c@and @ c @ ‘

Qu(x) =E(x.¥) A E(y.x) AE(y,u) & ly—@

Q(x) =E(x,y) A E(y,x) A E(x,V) @\@
h1: Q- @ hy: Q1 —> @

XX,y y, vy
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Containment for CQs

0O000000@00000

Example: Equivalence

Recall: ‘ Q1= Qo ‘ iff‘ @c@and @ c @ ‘

Qu(x) =E(x.¥) A E(y.x) AE(y,u) & ly—@

@Q(x) =E(x,y) AE(y,x) A E(x,Vv) @

hi:Q— Q1 hy: Q1 — @

X=X, y=y, vy XX, y=Yy, u—~Xx
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Containment for CQs
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More Examples

Which pairs of queries are contained? Equivalent?

Qi(x) = E(x,y) NE(y,z) A E(x,w) X,
@Q2(x) = E(x,u) A E(u,v) X
Q3(x) = E(x,u1) A E(u1,up) A= N E(ua, us) X

Qa(x) = E(x,y) AE(y;x) XD
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The Problems

Containment for CQs
0000000080000

More Examples

Which pairs of queries are contained? Equivalent?

Qu(x) = ECe,y) A E(y,2) n E(x, w) <
Qa(x) = E(x, u) A E(u, v) X
Q@s(x) = E(x, t1) A E(un, u2) A -+ A E(ua, us) x

Qa(x) = E(x,y) n E(y,x) xX_

Qe QKB EQ=@
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Containment for CQs
0000000008000

Complexity

What is the complexity of this problem?
Given Boolean @1, @», check if Q1 € Qo
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The Problems

0 Containment for CQs
) 0000000008000

Inequalit

Complexity

What is the complexity of this problem?
Given Boolean @1, @», check if Q1 € Qo

NP-complete!

Proof: same as the model checking for CQs: Q1 € Q2 iff Dg, E Q.
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Containment for CQs

0000000000800

Containment Theorem for CQs — Revised

Theorem (Chandra and Merlin, 1977)
Let Qi1(x1), @2(x2) be CQ’s with |x1| = |x2|. The following are equivalent:

(1) Q1 @ (VD,Q:1(D) < Q(D))

(2) fol € Q(Dg,) (Q2(Dg,) returns the canonical tuple x1)

(3) 3h: Qa(x2) — Q1(x1). (must map xa = x1) |
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Containment of UCQs
Q(x) = Qu(x) v Qa(x) v -+ Q'(x") = Q1(x") v Qy(x") v ---
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Containment for CQs

0000000000080

Containment of UCQs

Q(x) = Qu(x) v Qa(x) v - Q'(x") = QI(x") v Q3 (x") v -~
Theorem
The following are equivalent:
e Qc Q@ (Containment holds)
o Vidj, Qi cQ; (every Q; is contained in some Q;)

Proof Assume w.l.o.g. @, Q" are Boolean UCQs.

o<a]
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Containment for CQs

0000000000080

Containment of UCQs

Q(x) = Qu(x) v Qa(x) v - Q'(x") = QI(x") v Q3 (x") v -~
Theorem
The following are equivalent:
e Qc Q@ (Containment holds)
o Vidj, Qi cQ; (every Q; is contained in some Q;)

Proof Assume w.l.o.g. @, Q" are Boolean UCQs.
: then for every it Dg, = Q' (because D¢, = Q;, since Do, E Q)
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Containment for CQs

0000000000080

Containment of UCQs

Q(x) = Qu(x) v Qa(x) v - Q'(x") = QI(x") v Q3 (x") v -~
Theorem
The following are equivalent:
e Qc Q@ (Containment holds)
o Vidj, Qi cQ; (every Q; is contained in some Q;)

Proof Assume w.l.o.g. @, Q" are Boolean UCQs.
: then for every it Dg, = Q' (because D¢, = Q;, since Do, E Q)
Then 3j, Dg, F Q.

Finite Model Theory Lecture 5 Spring 2025 20/31



Containment for CQs

0000000000080

Containment of UCQs

Q(x) = Qu(x) v Qa(x) v - Q'(x") = QI(x") v Q3 (x") v -~
Theorem
The following are equivalent:
e Qc Q@ (Containment holds)
o Vidj, Qi cQ; (every Q; is contained in some Q;)

Proof Assume w.l.o.g. @, Q" are Boolean UCQs.
: then for every it Dg, = Q' (because D¢, = Q;, since Do, E Q)
Then 3j, Do, = QJf. We have shown | Q; € QJ{
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Containment for CQs

0000000000080

Containment of UCQs

Q(x) = Qu(x) v Qa(x) v - Q'(x") = QI(x") v Q3 (x") v -~
Theorem
The following are equivalent:
e Qc Q@ (Containment holds)
o Vidj, Qi cQ; (every Q; is contained in some Q;)

Proof Assume w.l.o.g. @, Q" are Boolean UCQs.
: then for every it Dg, = Q' (because D¢, = Q;, since Do, E Q)
Then 3j, Do, = QJf. We have shown | Q; € QJ{

¥idj, Qi Q)
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The Problems Containment for CQs

o) 0000000000080

Containment of UCQs
Q(x) = Qu(x) v Qa(x) v -+ Q'(x") = Q1(x") v Qy(x") v ---

Theorem

The following are equivalent:
e Qc Q@ (Containment holds)
e Vidj,Q; c QJ{ (every Q; is contained in some QJ’)

Proof Assume w.l.o.g. @, Q" are Boolean UCQs.

: then for every it Dg, = Q' (because D¢, = Q;, since Do, E Q)
Then 3j, Do, = QJf. We have shown | Q; € QJ{

Vidj, Qi ¢ Qj{ : Assume D E Q. Then 3i, DE Q;.
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The Problems Containment for CQs
00000 0000000000000

Inequal

Containment of UCQs
Q(x) = Qu(x) v Qa(x) v -+ Q'(x") = Q1(x") v Qy(x") v ---

Theorem
The following are equivalent:

e Qe (Containment holds)
o Vidj, Qi cQ; (every Q; is contained in some Q;)

Proof Assume w.l.o.g. @, Q" are Boolean UCQs.

: then for every it Dg, = Q' (because D¢, = Q;, since Do, E Q)
Then 3j, Do, = QJf. We have shown | Q; € QJ{

Vidj, Qi ¢ Qj{ : Assume D E Q. Then 3i, DE Q;.
Let j be such that Q; ¢ Q/. Then D = Q;. We have shown
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Containment for CQs

000000000000 e

Discussion

@ Homomorphism criterion for checking containment of CQs/UCQs

@ A simple, little known consequence: the same criterion can be
adapted to implication of positive CNF:2
p1=VxVyVz(E(x,y) v E(y,z))
w2 = VxVyVzVu(E(x,y) Vv E(y,z) v E(z,u))
then 1 = @2

@ The problem given CQs Q1, @, does @1 € Q> hold? is NP-complete.

2h must go in the opposite direction: h: @1 — .
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Inequalities
©000000000

Adding Inequalities: <, <, #
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Inequalities
0000000000

Inequalities

Extend CQ with <,<,#. E.g. Q(x,y,z) = R(x,y) AR(x,z) Ay # z.

The extend languages is denoted CQ<, or CQ**, or CQ(X, #).

We assume Dom(D) is densely ordered, e.g. Q.

Problems: containment.
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Homomorphism is Sufficient

Idea: treat x < y as another relational predicate R(x,y)

A homomorphism h: Q" - Q must map x < y to h(x) < h(y)
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Homomorphism is Sufficient

Idea: treat x < y as another relational predicate R(x,y)
A homomorphism h: Q" - Q must map x < y to h(x) < h(y)

Fact

If there exists a homomorphism Q" — @ then Q ¢ Q’.

Inequalities
00®0000000
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Inequalities
00®0000000

Homomorphism is Sufficient

Idea: treat x < y as another relational predicate R(x,y)
A homomorphism h: Q" - Q must map x < y to h(x) < h(y)

Fact
If there exists a homomorphism Q" — @ then Q ¢ Q’. J

The predicate h(x) < h(y) need not appear in Q, just implied by Q. E.g.

Q=R(x,y,z)A(x<y)A(y<2) Q" =R(u,v,w) A (u<w)
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Inequalities
00®0000000

Homomorphism is Sufficient

Idea: treat x < y as another relational predicate R(x,y)
A homomorphism h: Q" - Q must map x <y to h(x) < h(y)

Fact
If there exists a homomorphism Q" — @ then Q ¢ Q’. J

The predicate h(x) < h(y) need not appear in Q, just implied by Q. E.g.

Q=R(x,y,z)A(x<y)A(y<2) Q" =R(u,v,w) A (u<w)

h:(u,v,w)~ (x,y,z) maps|u<w|to|x< z|
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Inequalities

00@0000000

Homomorphism is Sufficient

Idea: treat x < y as another relational predicate R(x,y)

A homomorphism h: Q" - Q must map x <y to h(x) < h(y)

Fact
If there exists a homomorphism Q" — @ then Q ¢ Q’. J

The predicate h(x) < h(y) need not appear in Q, just implied by Q. E.g.

Q=R(x,y,z)A(x<y)A(y<2) Q" =R(u,v,w) A (u<w)

h:(u,v,w)~ (x,y,z) maps|u<w|to|x< z|

does not appear in @, but is implied:
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00@0000000

Homomorphism is Sufficient

Idea: treat x < y as another relational predicate R(x,y)

A homomorphism h: Q" - Q must map x <y to h(x) < h(y)

Fact
If there exists a homomorphism Q" — @ then Q ¢ Q’. J

The predicate h(x) < h(y) need not appear in Q, just implied by Q. E.g.

Q=R(x,y,z)A(x<y)A(y<2) Q" =R(u,v,w) A (u<w)

h:(u,v,w)~ (x,y,z) maps|u<w|to|x< z|

does not appear in @, but is implied: Thus, Qc Q'
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Homomorphism is Not Necessary

Fact
h: Q" — @ is a sufficient, but not a necessary condition for Q € Q’. J
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Homomorphism is Not Necessary
Fact
h: Q" — @ is a sufficient, but not a necessary condition for Q € Q’. J

Example: (Boolean queries):

Q=5(x,y)AS(y,z) A(x<z) Q' =S(u,v)A(u<v)
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Homomorphism is Not Necessary

Fact

h: Q" — @ is a sufficient, but not a necessary condition for Q € Q’. J

Example: (Boolean queries):
Q=5(x,y)AS(y,z) A(x<z) Q' =S(u,v)A(u<v)
Q € Q". Why?, but there is no homomorphism Q' - Q,

Finite Model Theory Lecture 5
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Review: Preorder

Definition
A relation < on a set V is called a preorder if:
o It is reflexive: x < x.

o It is transitive: x <y, y < z implies x < z.

Write fora<band bxa.

The preorder is total if Va,be V, eithera<bor b<aora=b.
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Extending @ with a Total Preorder <

Fix a total preorder < on Vars(Q) u Const(Q),

Q< denotes the extension of @ with <. J

Note Q< may be inconsistent, i.e. = False.
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Extending @ with a Total Preorder <

Fix a total preorder < on Vars(Q) u Const(Q),

Q< denotes the extension of @ with <.

)

Note Q< may be inconsistent, i.e. = False.

Example: Q = R(x,y,3) AS(y,z,u,9) A (u < x)
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Extending @ with a Total Preorder <

Fix a total preorder < on Vars(Q) u Const(Q),

Q< denotes the extension of @ with <.

Note Q< may be inconsistent, i.e. = False.

Example: Q = R(x,y,3) AS(y,z,u,9) A (u < x)

Xr—73
y < x = u < 3 = z < 9 y/(ﬂ)\9
u. 'z
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Extending @ with a Total Preorder <

Fix a total preorder < on Vars(Q) u Const(Q),

Q< denotes the extension of @ with <.

Note Q< may be inconsistent, i.e. = False.

Example: Q = R(x,y,3) AS(y,z,u,9) A (u < x)

Xr—73
y < x = u < 3 = z < 9 y/(ﬂ)\9
u. 'z

Q< =R(x,y,3)AS(y,z,u, DA (y<x)A(x=u)A(x<3)A(3=2) A
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A Necessary and Sufficient Condition

Theorem

Let Q, Q" be CQ<>% queries. The following conditions are equivalent:
(1) Qc Q' (VD, if D= Q then DE Q')
(2) For any consistent total preorder < on Q, 3h: Q" - Q.

Finite Model Theory Lecture 5 Spring 2025 28/31



The Problems Co ent for CQs Inequalities

o 0000000¢ 0000008000

A Necessary and Sufficient Condition

Theorem

Let Q, Q" be CQ<>% queries. The following conditions are equivalent:
(1) Qc Q' (VD, if D= Q then DE Q')
(2) For any consistent total preorder < on Q, 3h: Q" - Q.

Proof:

(2) = (1) If D e Q, then there exists a homomorphism:
ho : Q - D

This induces a total preorder < on Q. Let h be a homomorphism:
h:Q — Q<

Their composition is a homomorphism Q" — D, proving Q' (D) = true.
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A Necessary and Sufficient Condition

Theorem

Let Q, Q" be CQ<>% queries. The following conditions are equivalent:
(1) Qc Q' (VD, if D= Q then DE Q')
(2) For any consistent total preorder < on Q, 3h: Q" - Q.

Proof:

(2) = (1) If D e Q, then there exists a homomorphism:
ho : Q - D

This induces a total preorder < on Q. Let h be a homomorphism:
h:Q — Q<

Their composition is a homomorphism Q" — D, proving Q' (D) = true.

(1) = (2) follows from Dg._ = Q, hence Dg_ E @', and 3h: Q" - Q.
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Example

QR=S(x,y)AS(y,z) A(x<2) Q' =S(u,v)A(u<v)

Lets prove that .
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Example

QR=S(x,y)AS(y,z) A(x<2) ‘Q’:S(u,v)/\(u<v)

Lets prove that .

5 consistent total preorders on @Q:

Qu=S(x,y)AS(y,z) A(y <x) A (y<2)
Q@ =5(x,y)nS(y,z) A(x=y) A (y<2)
Q3 =5(x,y)AS(y,z) A(x<y) A (y<2)
Qa=5(x,y)nS(y,z) A(x<y) A (y=2)
Qs =S(x,y)AS(y,z) A(x<y)n(z<y)
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Example

Q=5(xy)rS5(y,2) A (x<2)

Lets prove that .

5 consistent total preorders on @Q:

[e]e]e]e]e]ele] Jele)

‘Q'zS(u,v)/\(u<v)

Qu=S(x,y)AS(y,z) A(y <x) A (y<2)
Q@ =5(x,y)nS(y,z) A(x=y) A (y<2)
Q3 =5(x,y)AS(y,z) A(x<y) A (y<2)
Qa=5(x,y)nS(y,z) A(x<y) A (y=2)
Qs =S(x,y)AS(y,z) A(x<y)n(z<y)

In each case, either (u,v) — (x,y) or (u,v) ~ (y, z) is a homomorphism.
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Complexity

Assume @, Q" are CQ’s that may contain <, <, #

Theorem

The problem given Q, Q" determine whether Q ¢ Q" is N5-complete. J

Finite Model Theory Lecture 5 Spring 2025 30/31



Inequalities
0000000080

Complexity

Assume @, Q' are CQ's that may contain <, <, #.
Theorem

The problem given Q, Q" determine whether Q ¢ Q" is N5-complete. J

Review: there exists Q s.t. Given Q’, check Q ¢ Q' is NP-complete.
Reduction from 3CNF ©¢.

¢=(XV—\Y\/Z)/\(—|XV YV—\Z)/\(—|XV—\YVZ)/\"'.
Q<,D = B(X,Z,y)/\ C(y,X,Z)/\C(Z,X,y)/\"'

Q =A(0,0,1),A(0,1,0),... (all tuples except A(0,0,0); similarly B, C, D)
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Inequalities

Complexity

Assume @, Q" are CQ’s that may contain <, <, #.

Theorem

The problem given Q, Q" determine whether Q ¢ Q" is N5-complete. J

Proof: Membership in I'I’2J follows from:

Q c Q' iff for all extensions Q<, there exists a homomorphisms Q' — Q<
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Complexity

Assume @, Q" are CQ’s that may contain <, <, #.

Theorem

The problem given Q, Q" determine whether Q ¢ Q" is N5-complete. J
Proof:

Reduction from Y33CNF: | W = V.X1-+Y X 3Xps1- 31X, P |
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Complexity

Assume @, Q' are CQ's that may contain <, <, #.

Theorem

The problem given Q, Q" determine whether Q ¢ Q" is N5-complete. J
Proof:

Reduction from Y33CNF: | W = V.X1-+Y X 3Xps1- 31X, P |
@ @ has 4 relations A, B, C, D each with 7 tuples.

@ Qg has one atom/clause; e.g. (XjVv -X;Vv Xi) becomes B(x;, xk, xj).
@ So far: 3Xi---3X,® iff Ih: Qp — Q.
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Complexity

Assume @, Q' are CQ's that may contain <, <, #.

Theorem

The problem given Q, Q" determine whether Q ¢ Q" is N5-complete. J
Proof:

Reduction from Y33CNF: | W = V.X1-+Y X 3Xps1- 31X, P |
@ @ has 4 relations A, B, C, D each with 7 tuples.

@ Qg has one atom/clause; e.g. (XjVv -X;Vv Xi) becomes B(x;, xk, xj).
@ So far: 3Xi---3X,® iff Ih: Qp — Q.
For each universal variable X;, add the following atoms:
e Add S(0,uj,vi) AS(1,vi,w;) A (uj < w;) to Q.
e Add S(xi,aj, bi) A (aj < b;) to Qg.
Q< Qq

holds iff both x; — 0, x; — 1 lead to a homomorphisms.
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Summary

@ The big question: what other extensions of CQ can we allow and still
be able to decide containment?

@ The following have been studied: inequalities, safe negation -, certain
aggregates sum, min, max, count.

e Containment/equivalence for pure CQ/UCQ is very elegant.
Extensions add significant difficulties.
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