Finite Model Theory Lecture 4: Conjunctive Queries

Spring 2025

Where We Are

- Thanks for submitting HW1.
- HW2 still to be released: it covers this lecture and the next one.
- Demystifying decidability of Σ . Two problems:
 - Membership: given φ , is $\varphi \in \Sigma$?
 - Implication: given φ , does $\Sigma \vDash \varphi$ hold?
 - If membership is r.e. then implication is r.e. (Gödel's completeness).
 - Example of Σ that is not r.e.: Th $(\mathbb{N}, +, *)$ (Gödel's incompleteness).

Today: Model Checking, and Conjunctive Queries.

2/29

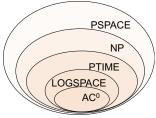
Model Checking

Model Checking

Model checking: given \boldsymbol{A} , φ , check whether $\boldsymbol{A} \vDash \varphi$.

When **A** is a database and φ a query, then this is called *query evaluation*. This is the bread-and-butter of database engines.

What is the complexity of checking $\mathbf{A} \models \varphi$?



Three Ways to Define Complexity

$$\pmb{A} \vDash \varphi$$

• Data Complexity. Fix the sentence φ , complexity is $f(|\mathbf{A}|)$.

• Expression Complexity. Fix the structure **A**, complexity is $f(|\varphi|)$.

• Combined Complexity, $f(|\varphi|, |\mathbf{A}|)$.

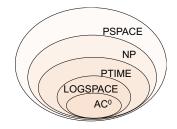
Three Ways to Define Complexity

$$\pmb{A}\vDash\varphi$$

Theorem

The Data Complexity of FO is in AC^0 (actually in uniform AC^0). The Expression- and Combined Complexity of FO is PSPACE complete.

AC⁰ is at the bottom of the hierarchy We start by proving something simpler: The Data Complexity of FO is in PTIME.



How do we evaluate this? $\varphi = \exists x (A(x) \land \forall y (B(y) \Rightarrow C(x, y)))$ Assume the domain is [N].

How do we evaluate this? $\varphi = \exists x (A(x) \land \forall y (B(y) \Rightarrow C(x, y)))$ Assume the domain is [N].

$$\begin{aligned} & \text{fx = false;} \\ & \text{for } x = 1, \text{N} \text{ do:} \\ & \text{if } A(x) \text{ then:} \\ & \text{fy = true} \\ & \text{for } y = 1, \text{N} \text{ do:} \\ & \text{if not } (B(y) => C(x,y)) \\ & \text{then: } fy = false; \\ & \text{if fy then: } fx = true; \\ & \text{return } fx \end{aligned}$$

How do we evaluate this? $\varphi = \exists x (A(x) \land \forall y (B(y) \Rightarrow C(x, y)))$ Assume the domain is [N].

$$\begin{aligned} fx &= false; \\ for x &= 1, N \ do: \\ & \text{if } A(x) \ then: \\ & fy &= true \\ & for \ y &= 1, N \ do: \\ & \text{if not} \ (B(y) &=> C(x,y)) \\ & then: \ fy &= false; \\ & \text{if fy then: } fx &= true; \\ return \ fx \end{aligned}$$

- Generalizes to any sentence in prenex normal form φ
- Runtime $O(N^k)$, where: $N = |\text{Dom}|, k = |\text{Vars}(\varphi)|$
- In PTIME (and in LOGSPACE).

How do we evaluate this? $\left| \varphi = \exists x \left(A(x) \land \forall y (B(y) \Rightarrow C(x, y)) \right) \right|$ Assume the domain is [N].

$$\begin{aligned} fx &= false; \\ for x &= 1, N \ do: \\ & \text{if } A(x) \ then: \\ & fy &= true \\ & for \ y &= 1, N \ do: \\ & \text{if not } (B(y) &=> C(x,y)) \\ & then: \ fy &= false; \\ & \text{if fy then: } fx &= true; \\ return \ fx \end{aligned}$$

- Generalizes to any sentence in prenex normal form φ
- Runtime $O(N^k)$, where: $N = |\text{Dom}|, k = |\text{Vars}(\varphi)|$
- In PTIME (and in LOGSPACE).

Many texts state that the data complexity is in LOGSPACE, or in PTIME. The correct complexity is AC^0 . Let's prove it

Definition

A problem is in AC^0 if $\forall N$, there exists a circuit of polynomial size and constant depth, consisting NOT gates and unbounded fan-in AND and OR gates, that computes the problem when the input is encoded using N bits.

Definition

A problem is in AC^0 if $\forall N$, there exists a circuit of polynomial size and constant depth, consisting NOT gates and unbounded fan-in AND and OR gates, that computes the problem when the input is encoded using N bits.

E.g. Given an undirected graph with n nodes, check if it has a triangle.

Definition

A problem is in AC^0 if $\forall N$, there exists a circuit of polynomial size and constant depth, consisting NOT gates and unbounded fan-in AND and OR gates, that computes the problem when the input is encoded using N bits.

E.g. Given an undirected graph with *n* nodes, check if it has a triangle. When n = 4 there are N = 6 possible edges, E_{ij} for $1 \le i < j \le 4$

Definition

A problem is in AC^0 if $\forall N$, there exists a circuit of polynomial size and constant depth, consisting NOT gates and unbounded fan-in AND and OR gates, that computes the problem when the input is encoded using N bits.

E.g. Given an undirected graph with *n* nodes, check if it has a triangle. When n = 4 there are N = 6 possible edges, E_{ij} for $1 \le i < j \le 4$

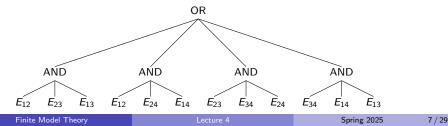
 $(E_{12} \land E_{23} \land E_{13}) \lor (E_{12} \land E_{24} \land E_{14}) \lor (E_{23} \land E_{34} \land E_{24}) \lor (E_{34} \land E_{14} \land E_{13})$

Definition

A problem is in AC^0 if $\forall N$, there exists a circuit of polynomial size and constant depth, consisting NOT gates and unbounded fan-in AND and OR gates, that computes the problem when the input is encoded using N bits.

E.g. Given an undirected graph with *n* nodes, check if it has a triangle. When n = 4 there are N = 6 possible edges, E_{ij} for $1 \le i < j \le 4$

$$(E_{12} \land E_{23} \land E_{13}) \lor (E_{12} \land E_{24} \land E_{14}) \lor (E_{23} \land E_{34} \land E_{24}) \lor (E_{34} \land E_{14} \land E_{13})$$



Fix φ in FO. Encode the input **A** using bits:

• Let $N = |\text{Dom}(\mathbf{A})|$.

- Let $N = |\text{Dom}(\mathbf{A})|$.
- Encode a relation of arity k using N^k bits.
 E.g. R(X, Y) encoded using Boolean matrix R_{ij}, with N² bits.

- Let $N = |\mathsf{Dom}(\mathbf{A})|$.
- Encode a relation of arity k using N^k bits.
 E.g. R(X, Y) encoded using Boolean matrix R_{ij}, with N² bits.
- Expand φ into a Boolean formula $F_{\varphi, A}$, called the lineage of φ on A.

- Let $N = |\mathsf{Dom}(\mathbf{A})|$.
- Encode a relation of arity k using N^k bits.
 E.g. R(X, Y) encoded using Boolean matrix R_{ij}, with N² bits.
- Expand φ into a Boolean formula $F_{\varphi, \mathbf{A}}$, called the lineage of φ on \mathbf{A} .
- Represent $F_{\varphi, A}$ using an AC⁰ circuit.

Fix φ in FO. Encode the input **A** using bits:

- Let $N = |\mathsf{Dom}(\mathbf{A})|$.
- Encode a relation of arity k using N^k bits.
 E.g. R(X, Y) encoded using Boolean matrix R_{ij}, with N² bits.
- Expand φ into a Boolean formula $F_{\varphi, \mathbf{A}}$, called the lineage of φ on \mathbf{A} .
- Represent $F_{\varphi, A}$ using an AC⁰ circuit.

Example: $\varphi = \exists x (A(x) \land \forall y (B(y) \Rightarrow C(x, y)))$

- Let $N = |\mathsf{Dom}(\mathbf{A})|$.
- Encode a relation of arity k using N^k bits.
 E.g. R(X, Y) encoded using Boolean matrix R_{ij}, with N² bits.
- Expand φ into a Boolean formula $F_{\varphi, \mathbf{A}}$, called the lineage of φ on \mathbf{A} .
- Represent $F_{\varphi, A}$ using an AC⁰ circuit.

Example:
$$\varphi = \exists x (A(x) \land \forall y (B(y) \Rightarrow C(x, y)))$$

Its lineage is:
$$F_{\varphi, \mathbf{A}} = \bigvee_{i=1, N} \left(A_i \wedge \bigwedge_{j=1, N} \left(\neg B_j \vee C_{ij} \right) \right)$$

Fix φ in FO. Encode the input **A** using bits:

- Let $N = |\mathsf{Dom}(\mathbf{A})|$.
- Encode a relation of arity k using N^k bits.
 E.g. R(X, Y) encoded using Boolean matrix R_{ij}, with N² bits.
- Expand φ into a Boolean formula $F_{\varphi, \mathbf{A}}$, called the lineage of φ on \mathbf{A} .
- Represent $F_{\varphi, A}$ using an AC⁰ circuit.

Example:
$$\varphi = \exists x (A(x) \land \forall y (B(y) \Rightarrow C(x, y)))$$

Its lineage is:
$$F_{\varphi, \mathbf{A}} = \bigvee_{i=1, N} \left(A_i \wedge \bigwedge_{j=1, N} \left(\neg B_j \vee C_{ij} \right) \right)$$

Represented by a circuit of depth 5 and size $O(N^2)$ in class

Summary

- Data complexity: AC⁰. This implies LOGSPACE, PTIME.
 - AC⁰ is the class of highly parallelizable problems.
 - "SQL is embarrassingly parallel"
- Expression complexity, combined complexity: PSPACE complete
 - Membership is straightforward WHY????
 - We will prove hardness later.

9/29

Motivation

- FO is too rich for static analysis: Trakhtenbrot's theorem is a fundamental limit.
- For some FO fragments static analysis is possible, and they still capture the most important queries in practice.
- Conjunctive Queries (CQ) and Unions of Conjunctive Queries (UCQ).

Motivation

- FO is too rich for static analysis: Trakhtenbrot's theorem is a fundamental limit.
- For some FO fragments static analysis is possible, and they still capture the most important queries in practice.
- Conjunctive Queries (CQ) and Unions of Conjunctive Queries (UCQ).

Terminologyquery=formula;database instance=structure;alertBoolean query=sentence;query evaluation=model checking

Definition

A Conjunctive Query (CQ) is a formula of the form:

$$Q(\boldsymbol{x}_0) = \exists \boldsymbol{y} \left(R_1(\boldsymbol{x}_1) \land R_2(\boldsymbol{x}_2) \land \cdots \land R_m(\boldsymbol{x}_m) \right)$$

¹Relational Algebra: $\sigma, \Pi, \bowtie, \cup, -$.

Definition

A Conjunctive Query (CQ) is a formula of the form:

 $Q(\boldsymbol{x}_0) = \exists \boldsymbol{y} \left(R_1(\boldsymbol{x}_1) \land R_2(\boldsymbol{x}_2) \land \cdots \land R_m(\boldsymbol{x}_m) \right)$

• The free variables, x_0 , are called head variables.

¹Relational Algebra: $\sigma, \Pi, \bowtie, \cup, -$.

Definition

A Conjunctive Query (CQ) is a formula of the form:

 $Q(\boldsymbol{x}_0) = \exists \boldsymbol{y} \left(R_1(\boldsymbol{x}_1) \land R_2(\boldsymbol{x}_2) \land \cdots \land R_m(\boldsymbol{x}_m) \right)$

- The free variables, x_0 , are called head variables.
- Safety Condition: every head variable must occur in some atom R_j.

¹Relational Algebra: $\sigma, \Pi, \bowtie, \cup, -$.

Definition

A Conjunctive Query (CQ) is a formula of the form:

 $Q(\boldsymbol{x}_0) = \exists \boldsymbol{y} \left(R_1(\boldsymbol{x}_1) \land R_2(\boldsymbol{x}_2) \land \cdots \land R_m(\boldsymbol{x}_m) \right)$

- The free variables, x_0 , are called head variables.
- Safety Condition: every head variable must occur in some atom R_j.
- E.g. $Q(x,y) = \exists z (E(x,z) \land E(z,y)).$

¹Relational Algebra: $\sigma, \Pi, \bowtie, \cup, -$.

Definition

A Conjunctive Query (CQ) is a formula of the form:

 $Q(\boldsymbol{x}_0) = \exists \boldsymbol{y} \left(R_1(\boldsymbol{x}_1) \land R_2(\boldsymbol{x}_2) \land \cdots \land R_m(\boldsymbol{x}_m) \right)$

- The free variables, x_0 , are called head variables.
- Safety Condition: every head variable must occur in some atom R_j .

• E.g.
$$Q(x,y) = \exists z (E(x,z) \land E(z,y)).$$

Same as FO formulas restricted to =, ∧, ∃
 Same as RA¹ restricted to σ, Π, ⋈.
 Same as SELECT-DISTINCT-FROM-WHERE

¹Relational Algebra: $\sigma, \Pi, \bowtie, \cup, -$.

Definition

A Union of Conjunctive Queries (UCQ) is a formula of the form: $Q(\mathbf{x}) = Q_1(\mathbf{x}) \lor Q_2(\mathbf{x}) \lor \cdots \lor Q_k(\mathbf{x})$ where all Q_i 's are CQs, and have the same sets of free variables.

Definition

A Union of Conjunctive Queries (UCQ) is a formula of the form: $Q(\mathbf{x}) = Q_1(\mathbf{x}) \lor Q_2(\mathbf{x}) \lor \cdots \lor Q_k(\mathbf{x})$ where all Q_i 's are CQs, and have the same sets of free variables.

• E.g.
$$Q(x,y) = E(x,y) \lor \exists z (E(x,z) \land E(z,y)).$$

13 / 29

Definition

A Union of Conjunctive Queries (UCQ) is a formula of the form: $Q(\mathbf{x}) = Q_1(\mathbf{x}) \lor Q_2(\mathbf{x}) \lor \cdots \lor Q_k(\mathbf{x})$ where all Q_i 's are CQs, and have the same sets of free variables.

• E.g.
$$Q(x,y) = E(x,y) \lor \exists z (E(x,z) \land E(z,y)).$$

Same as FO formulas restricted to =, ∧, ∃, ∨.
 Same as RA restricted to σ, Π, ⋈, ∪.

Definition

A Union of Conjunctive Queries (UCQ) is a formula of the form: $Q(\mathbf{x}) = Q_1(\mathbf{x}) \lor Q_2(\mathbf{x}) \lor \cdots \lor Q_k(\mathbf{x})$ where all Q_i 's are CQs, and have the same sets of free variables.

• E.g.
$$Q(x,y) = E(x,y) \lor \exists z (E(x,z) \land E(z,y)).$$

- Same as FO formulas restricted to =, ∧, ∃, ∨.
 Same as RA restricted to σ, Π, ⋈, ∪.
- Notice: all queries $Q_i(\mathbf{x})$ must have the same head variables \mathbf{x} .

Monotone Queries

Given two databases D, D' over the same schema, we write $D \subseteq D'$ if $R_i^D \subseteq R_i^{D'}$ for every relation R_i in the schema.

Definition

A query Q is monotone if $D \subseteq D'$ implies $Q(D) \subseteq Q(D')$.

Example: $\exists x, y, z(E(x, y) \land E(y, z))$ Non-example: $\exists xV(x) \land \forall y(V(y) \Rightarrow E(x, y))$

Monotone Queries

Given two databases D, D' over the same schema, we write $D \subseteq D'$ if $R_i^D \subseteq R_i^{D'}$ for every relation R_i in the schema.

Definition

A query Q is monotone if $D \subseteq D'$ implies $Q(D) \subseteq Q(D')$.

Example: $\exists x, y, z(E(x, y) \land E(y, z))$ Non-example: $\exists xV(x) \land \forall y(V(y) \Rightarrow E(x, y))$

All UCQ queries are monotone. Exercise

The only non-monotone operators are:

- negation \neg in FO.
- difference in RA.

Terminology

Boolean query: no head vars:

$$Q() = \exists x \exists y \exists z (E(x, y) \land E(y, z)).$$

• Full query: no existential vars: G

$$Q(x,y,z) = E(x,y) \wedge E(y,z).$$

• Without selfjoins: every relation name occurs at most once.

$$Q(x) = \exists y \exists z (R(x,y) \land S(y,z) \land T(z,x)).$$

• We often omit the existential quantifiers, and write for example:

$$Q(x) = R(x,y) \wedge S(y,z) \wedge T(z,x).$$

Discussion

• A Boolean query Q is a sentence.

"Evaluating Q on a database D" means checking $D \models Q$.

We often write Q(D) = 1 or Q(D) = 0 respectively.

Discussion

• A Boolean query Q is a sentence.

"Evaluating Q on a database D" means checking $D \models Q$.

We often write Q(D) = 1 or Q(D) = 0 respectively.

• A query $Q(\mathbf{x})$ with head variables is a formula.

The "answer of Q on D" is $\{a \mid a \in (\text{Dom}(D))^{|x|}, D \models Q[a/x]\}.$

We write $Q(\boldsymbol{D})$ for the set of answers, $Q(\boldsymbol{D}) \subseteq |\text{Dom}(\boldsymbol{D})|^{|x|}$.

Model Checking for CQ

Motivation

We already know that the data complexity is in AC^0 .

What is the expression complexity? The combined complexity?

Will answer both, and also discuss the expression/combined complexity for FO (which we left out).

Importantly: we will define query evaluation for CQ in terms of Homomorphisms

• A Conjunctive Query:

$$R(x,y,z) \wedge S(x,u) \wedge S(y,v) \wedge S(z,w) \wedge R(u,v,w)$$

- A Conjunctive Query: $R(x, y, z) \land S(x, u) \land S(y, v) \land S(z, w) \land R(u, v, w)$
- A structure A, a.k.a. a database instance:

$$\mathsf{Dom}(\mathbf{A}) = \{x, y, z, u, v, w\} \qquad R^{\mathbf{A}} = \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix} \qquad S^{\mathbf{A}} = \begin{bmatrix} x & u \\ y & v \\ z & w \end{bmatrix}$$

- A Conjunctive Query: $R(x, y, z) \land S(x, u) \land S(y, v) \land S(z, w) \land R(u, v, w)$
- A structure A, a.k.a. a database instance:

$$\mathsf{Dom}(\mathbf{A}) = \{x, y, z, u, v, w\} \qquad R^{A} = \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix} \qquad S^{A} = \begin{bmatrix} x & u \\ y & v \\ z & w \end{bmatrix}$$

• A labeled hypergraph, G = (V, E), where $V = \{x, y, z, u, v, w\}$, $E = \{\{x, y, z\}, \{u, v, w\}, \{x, u\}, \{y, v\}, \{z, w\}\}$ (hyperedges are labeled with R, S respectively).

- A Conjunctive Query: $R(x, y, z) \land S(x, u) \land S(y, v) \land S(z, w) \land R(u, v, w)$
- A structure A, a.k.a. a database instance:

$$\mathsf{Dom}(\mathbf{A}) = \{x, y, z, u, v, w\} \qquad R^{A} = \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix} \qquad S^{A} = \begin{bmatrix} x & u \\ y & v \\ z & w \end{bmatrix}$$

• A labeled hypergraph, G = (V, E), where $V = \{x, y, z, u, v, w\}$, $E = \{\{x, y, z\}, \{u, v, w\}, \{x, u\}, \{y, v\}, \{z, w\}\}$ (hyperedges are labeled with R, S respectively).

We will often switch back-and-forth between these equivalent notions

Homomorphisms

$$\boldsymbol{A} = (\text{Dom}(A), R_1^A, \dots, R_m^A); \ \boldsymbol{B} = (\text{Dom}(B), R_1^B, \dots, R_m^B).$$

Definition

A homomorphism $h : \mathbf{A} \to \mathbf{B}$ is a function $h : \text{Dom}(A) \to \text{Dom}(B)$ such that, for all $j = 1, m, h(R_i^A) \subseteq R_i^B$.

Homomorphisms

$$\boldsymbol{A} = (\text{Dom}(A), R_1^A, \dots, R_m^A); \ \boldsymbol{B} = (\text{Dom}(B), R_1^B, \dots, R_m^B).$$

Definition

A homomorphism $h : \mathbf{A} \to \mathbf{B}$ is a function $h : \text{Dom}(A) \to \text{Dom}(B)$ such that, for all $j = 1, m, h(R_i^A) \subseteq R_i^B$.

Graph homomorphism $h: G \to G'$ is $h: V \to V'$ s.t. $\forall e \in E, h(e) \in E'$.

Homomorphisms

$$\boldsymbol{A} = (\text{Dom}(A), R_1^A, \dots, R_m^A); \ \boldsymbol{B} = (\text{Dom}(B), R_1^B, \dots, R_m^B).$$

Definition

A homomorphism $h : \mathbf{A} \to \mathbf{B}$ is a function $h : \text{Dom}(A) \to \text{Dom}(B)$ such that, for all $j = 1, m, h(R_i^A) \subseteq R_i^B$.

Graph homomorphism $h: G \to G'$ is $h: V \to V'$ s.t. $\forall e \in E, h(e) \in E'$.

For query homomorphisms $h: Q(\mathbf{x}) \to Q'(\mathbf{x}')$ we also require h to map head variables to head variables and constants to constants.

If Q is Boolean, then $D \models Q$ iff $\exists h : Q \rightarrow D$. If $Q(\mathbf{x})$ has head variables, then $Q(D) = \{h(\mathbf{x}) \mid h : Q \rightarrow D\}$.

If Q is Boolean, then $D \models Q$ iff $\exists h : Q \rightarrow D$. If $Q(\mathbf{x})$ has head variables, then $Q(D) = \{h(\mathbf{x}) \mid h : Q \rightarrow D\}$.

 $Q(x) = R(x) \wedge S(x, y) \wedge T(y, 'a')$

If Q is Boolean, then $D \models Q$ iff $\exists h : Q \rightarrow D$. If $Q(\mathbf{x})$ has head variables, then $Q(D) = \{h(\mathbf{x}) \mid h : Q \rightarrow D\}$.

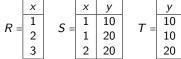
$$Q(x) = R(x) \land S(x, y) \land T(y, 'a')$$

If Q is Boolean, then $D \models Q$ iff $\exists h : Q \rightarrow D$. If $Q(\mathbf{x})$ has head variables, then $Q(D) = \{h(\mathbf{x}) \mid h : Q \rightarrow D\}$.

We list all homomorphisms $h: \{x, y\} \rightarrow \{1, 2, 10, 20, a'\}$:

If Q is Boolean, then $D \models Q$ iff $\exists h : Q \rightarrow D$. If $Q(\mathbf{x})$ has head variables, then $Q(\mathbf{D}) = \{h(\mathbf{x}) \mid h : Q \to \mathbf{D}\}$.

$$Q(x) = R(x) \land S(x, y) \land T(y, 'a')$$



We list all homomorphisms $h: \{x, y\} \rightarrow \{1, 2, 10, 20, a'\}$:

h =	$x(= \operatorname{Head}(Q))$	у	а
	1	10	а

If Q is Boolean, then $D \models Q$ iff $\exists h : Q \rightarrow D$. If $Q(\mathbf{x})$ has head variables, then $Q(\mathbf{D}) = \{h(\mathbf{x}) \mid h : Q \to \mathbf{D}\}$.

$$Q(x) = R(x) \land S(x, y) \land T(y, 'a')$$

We list all homomorphisms $h: \{x, y\} \rightarrow \{1, 2, 10, 20, a'\}$:

h =	$x(= \operatorname{Head}(Q))$	у	а
	1	10	а
	1	20	а

If Q is Boolean, then $D \models Q$ iff $\exists h : Q \rightarrow D$. If $Q(\mathbf{x})$ has head variables, then $Q(\mathbf{D}) = \{h(\mathbf{x}) \mid h : Q \to \mathbf{D}\}$.

$$Q(x) = R(x) \land S(x,y) \land T(y, 'a')$$

We list all homomorphisms $h: \{x, y\} \rightarrow \{1, 2, 10, 20, a'\}$:

h =	$x(= \operatorname{Head}(Q))$	у	а
	1	10	а
	1	20	а
	2	20	а

If Q is Boolean, then $D \models Q$ iff $\exists h : Q \rightarrow D$. If $Q(\mathbf{x})$ has head variables, then $Q(\mathbf{D}) = \{h(\mathbf{x}) \mid h : Q \rightarrow \mathbf{D}\}$.

$$Q(x) = R(x) \wedge S(x, y) \wedge T(y, 'a')$$

We list all homomorphisms $h: \{x, y\} \rightarrow \{1, 2, 10, 20, a'\}$:

h =	$x(= \operatorname{Head}(Q))$	у	а
	1	10	а
	1	20	а
	2	20	а

Final answer after duplicate elimination: $Q(\mathbf{D}) = \{1, 2\}$.

The Combined Complexity for UCQ is in NP

Theorem

The combined complexity of Boolean UCQ is in NP.

Proof: Fix a UCQ $Q = Q_1 \lor Q_2 \lor \cdots$ and a database **D**.

To check $\boldsymbol{D} \vDash Q$:

- "guess" a CQ Q_i , and
- "guess" a homomorphism $h: Q_i \rightarrow D$

The Expression Complexity for CQ is NP-hard

Theorem

There exists a database D for which the expression complexity of CQ queries is NP complete.

Thus, both expression and combined complexities are NP-complete.

Proof Many proofs are possible (will explain shortly why). We will use reduction from 3SAT, because we will reuse it a few times.

The Expression Complexity for CQ is NP-hard

Theorem

There exists a database D for which the expression complexity of CQ queries is NP complete.

Thus, both expression and combined complexities are NP-complete.

Proof Many proofs are possible (will explain shortly why). We will use reduction from 3SAT, because we will reuse it a few times.

Given a 3CNF formula Φ we construct Q_{Φ} , *D* such that:

The Expression Complexity for CQ is NP-hard

Theorem

There exists a database D for which the expression complexity of CQ queries is NP complete.

Thus, both expression and combined complexities are NP-complete.

Proof Many proofs are possible (will explain shortly why). We will use reduction from 3SAT, because we will reuse it a few times.

Given a 3CNF formula Φ we construct Q_{Φ} , *D* such that:

 Φ is satisfiable iff $\exists h: Q_{\Phi} \rightarrow \boldsymbol{D}$.

Notice that \boldsymbol{D} is independent of $\boldsymbol{\Phi}$.

Details next.

Reduction from 3SAT to CQ Evaluation

Given a 3CNF formula Φ we construct Q_{Φ} , *D* such that:

 Φ is satisfiable iff $\exists h: Q_{\Phi} \rightarrow \boldsymbol{D}$.

 Q_{Φ} has one atom for each clause C in Φ :

• If $C = (X_i \lor X_j \lor X_k)$ then Q_{Φ} contains $A(x_i, x_j, x_k)$.

Reduction from 3SAT to CQ Evaluation

Given a 3CNF formula Φ we construct Q_{Φ} , *D* such that:

 Φ is satisfiable iff $\exists h : Q_{\Phi} \rightarrow \boldsymbol{D}$.

 Q_{Φ} has one atom for each clause C in Φ :

- If $C = (X_i \lor X_j \lor X_k)$ then Q_{Φ} contains $A(x_i, x_j, x_k)$.
- If $C = (X_i \lor X_j \lor \neg X_k)$ then Q_{Φ} contains $B(x_i, x_j, x_k)$.

Reduction from 3SAT to CQ Evaluation

Given a 3CNF formula Φ we construct Q_{Φ} , **D** such that:

 Φ is satisfiable iff $\exists h: Q_{\Phi} \rightarrow \boldsymbol{D}$.

 Q_{Φ} has one atom for each clause C in Φ :

- If $C = (X_i \lor X_j \lor X_k)$ then Q_{Φ} contains $A(x_i, x_j, x_k)$.
- If $C = (X_i \lor X_j \lor \neg X_k)$ then Q_{Φ} contains $B(x_i, x_j, x_k)$.
- If $C = (X_i \lor \neg X_j \lor \neg X_k)$ then Q_{Φ} contains $C(x_i, x_j, x_k)$.
- If $C = (\neg X_i \lor \neg X_j \lor \neg X_k)$ then Q_{Φ} contains $D(x_i, x_j, x_k)$.

Model Checking

Reduction from 3SAT to CQ Evaluation

Given a 3CNF formula Φ we construct Q_{Φ} , *D* such that:

 Φ is satisfiable iff $\exists h : Q_{\Phi} \rightarrow \boldsymbol{D}$.

 Q_{Φ} has one atom for each clause C in Φ :

- If $C = (X_i \lor X_j \lor X_k)$ then Q_{Φ} contains $A(x_i, x_j, x_k)$.
- If $C = (X_i \lor X_j \lor \neg X_k)$ then Q_{Φ} contains $B(x_i, x_j, x_k)$.
- If $C = (X_i \vee \neg X_j \vee \neg X_k)$ then Q_{Φ} contains $C(x_i, x_j, x_k)$.
- If $C = (\neg X_i \lor \neg X_j \lor \neg X_k)$ then Q_{Φ} contains $D(x_i, x_j, x_k)$.
- **D** has 4 tables with 7 tuples each which tuple is missing?

$$A = \begin{bmatrix} 0 & 0 & 1 \\ \vdots & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ \vdots & \\ 1 & 1 & 1 \end{bmatrix}$$

Model Checking

Reduction from 3SAT to CQ Evaluation

Given a 3CNF formula Φ we construct Q_{Φ} , *D* such that:

 Φ is satisfiable iff $\exists h: Q_{\Phi} \rightarrow \boldsymbol{D}$.

 Q_{Φ} has one atom for each clause C in Φ :

- If $C = (X_i \lor X_j \lor X_k)$ then Q_{Φ} contains $A(x_i, x_j, x_k)$.
- If $C = (X_i \lor X_j \lor \neg X_k)$ then Q_{Φ} contains $B(x_i, x_j, x_k)$.
- If $C = (X_i \vee \neg X_j \vee \neg X_k)$ then Q_{Φ} contains $C(x_i, x_j, x_k)$.
- If $C = (\neg X_i \lor \neg X_j \lor \neg X_k)$ then Q_{Φ} contains $D(x_i, x_j, x_k)$.

D has 4 tables with 7 tuples each which tuple is missing?

$$A = \begin{bmatrix} 0 & 0 & 1 \\ \vdots & \\ 1 & 1 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ \vdots & \\ 1 & 1 & 1 \end{bmatrix}$$

In class: Φ is satisfiable iff $\exists h : Q \rightarrow D$.

Example of 3SAT Reduction

Check if it is satisfiable: $\Phi = (X \lor \neg Y \lor Z) \land (\neg X \lor Y \lor \neg Z) \land (X \lor Y \lor Z) \land (\neg X \lor \neg Y \lor Z).$

Example of 3SAT Reduction

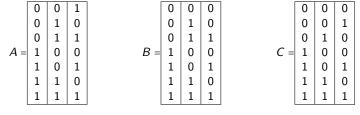
Check if it is satisfiable: $\Phi = (X \lor \neg Y \lor Z) \land (\neg X \lor Y \lor \neg Z) \land (X \lor Y \lor Z) \land (\neg X \lor \neg Y \lor Z).$

 $Q = B(x, z, y) \land C(y, x, z) \land A(x, y, z) \land C(z, x, y)$

Example of 3SAT Reduction

Check if it is satisfiable: $\Phi = (X \lor \neg Y \lor Z) \land (\neg X \lor Y \lor \neg Z) \land (X \lor Y \lor Z) \land (\neg X \lor \neg Y \lor Z).$

 $Q = B(x, z, y) \land C(y, x, z) \land A(x, y, z) \land C(z, x, y)$



(no need for D)

Combined Complexity for FO

Recall that the combined complexity of FO is in PSPACE.

Theorem

There exists a database D for which the expression complexity of FO queries is PSPACE complete.

Thus, both expression and combined complexities are PSPACE-complete.

Combined Complexity for FO

Recall that the combined complexity of FO is in PSPACE.

Theorem

There exists a database D for which the expression complexity of FO queries is PSPACE complete.

Thus, both expression and combined complexities are PSPACE-complete.

Proof: Reduction from the Quantified Boolean Formula Satfiability:

 $Q_1X_1 \ Q_2X_2 \cdots Q_nX_n \ \Phi$

where Φ is 3CNF.

Combined Complexity for FO

Recall that the combined complexity of FO is in PSPACE.

Theorem

There exists a database D for which the expression complexity of FO queries is PSPACE complete.

Thus, both expression and combined complexities are PSPACE-complete.

Proof: Reduction from the Quantified Boolean Formula Satfiability:

 $Q_1X_1 \ Q_2X_2 \cdots Q_nX_n \ \Phi$

where Φ is 3CNF.

Use the same Q_{Φ} , **D** before, but add appropriate quantifiers to Q_{Φ} : $\boxed{Qx_1 \ Qx_2 \cdots Q_n x_n \ Q_{\Phi}(x_1, \dots, x_n)}$

Example of QBE Reduction

Check if it is true: $\Phi =$ $\forall X \exists Y \forall Z ((X \lor \neg Y \lor Z) \land (\neg X \lor Y \lor \neg Z) \land (X \lor Y \lor Z) \land (\neg X \lor \neg Y \lor Z))$

Example of QBE Reduction

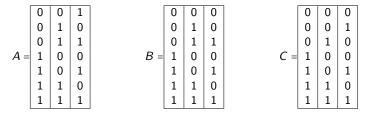
Check if it is true: $\Phi =$ $\forall X \exists Y \forall Z ((X \lor \neg Y \lor Z) \land (\neg X \lor Y \lor \neg Z) \land (X \lor Y \lor Z) \land (\neg X \lor \neg Y \lor Z))$

 $Q = \forall x \exists y \forall z \left(B(x, z, y) \land C(y, x, z) \land A(x, y, z) \land C(z, x, y) \right)$

Example of QBE Reduction

Check if it is true: $\Phi = \\ \forall X \exists Y \forall Z ((X \lor \neg Y \lor Z) \land (\neg X \lor Y \lor \neg Z) \land (X \lor Y \lor Z) \land (\neg X \lor \neg Y \lor Z))$

 $Q = \forall x \exists y \forall z \left(B(x, z, y) \land C(y, x, z) \land A(x, y, z) \land C(z, x, y) \right)$



(no need for D)

Discussion: CQ and CSP

The generalized Constraint Satisfaction Problem is:

Definition (Kolaitis&Vardi)

Given two classes of finite structures \mathcal{A}, \mathcal{B} , the $CSP(\mathcal{A}, \mathcal{B})$ problem is: Given $A \in \mathcal{A}, B \in \mathcal{B}$, is there a homomorphism $h : A \rightarrow B$?

Discussion: CQ and CSP

The generalized Constraint Satisfaction Problem is:

Definition (Kolaitis&Vardi)

Given two classes of finite structures \mathcal{A}, \mathcal{B} , the $CSP(\mathcal{A}, \mathcal{B})$ problem is: Given $A \in \mathcal{A}, B \in \mathcal{B}$, is there a homomorphism $h : A \rightarrow B$?

Standard CSP restricts the right-hand side, CSP(-, B). What is *B* for 3SAT? For 3-colorability? For Hamiltonean cycle?

Discussion: CQ and CSP

The generalized Constraint Satisfaction Problem is:

Definition (Kolaitis&Vardi)

Given two classes of finite structures \mathcal{A}, \mathcal{B} , the $CSP(\mathcal{A}, \mathcal{B})$ problem is: Given $A \in \mathcal{A}, B \in \mathcal{B}$, is there a homomorphism $h : A \rightarrow B$?

Standard CSP restricts the right-hand side, CSP(-, B). What is *B* for 3SAT? For 3-colorability? For Hamiltonean cycle?

Query evaluation restricts the left-hand side, CSP(Q, -)

"Query evaluation is CSP from the other side."

Summary

• Evaluating $Q(\mathbf{D})$ consists of finding homomorphisms $h: Q \to \mathbf{D}$.

• This problem is in NP, in fact it is the very definition of NP.

• If Q is fixed, then the problem is in PTIME in |D|. Data complexity

• If Q is part of the input (i.e. can be huge) then NP-complete. Expression complexity