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Announcements

Homework 1 is due tonight: submit on Canvas.

Homework 2 to be posted today.
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Review Compactness 0/1 Law: Proof Finite Models Static Analysis

The Classics

Gödel’s Completeness Theorem.

Σ ⊧ φ the same as Σ ⊢ φ.

Church-Turing’s and Trakhtenbrot’s Theorems.

VAL is r.e.
SAT is co-r.e.

VALfin is co-r.e.
SATfin is r.e.

Löwenheim-Skolem(-Tarski).

If Σ has an infinite model then it has models of any cardinality ≥ ∣σ∣.

Los-Vaught Test.

If Σ is κ-categorical then it is complete.
If Σ is also r.e., then it is decidable.

The Compactness Theorem: will discuss next.

We will use these results to prove the 0/1 law
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The Compactness Theorem
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Compactness Theorem

Theorem (Compactness Theorem)

If Σ ⊧ φ then there exists a finite subset Σ0 ⊆ Σ such that Σ0 ⊧ φ.

Proof If Σ ⊧ φ, then Σ ⊢ φ holds.
Σ ⊢ φ is a finite sequence φ1, . . . , φn. Exists finite Σ0 ⊆ Σ s.t. Σ0 ⊢ φ.
If Σ0 ⊢ φ then Σ0 ⊧ φ holds too.

Theorem (Compactness Theorem (equivalent statement))

If every finite subset Σ0 ⊆ Σ is satisfiable, then Σ is satisfiable.

Proof Assume not(SAT(Σ)). Then Σ ⊧ F .
Then Σ0 ⊧ F for some finite Σ0 ⊆ Σ. Then not(SAT(Σ0)), contradiction.
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An Application

If every finite subgraph of an infinite graph G is 3-colorable, then so is G .

Proof For each node xi ∈ V (G), three propositional symbols ri ,gi ,bi .

Let Σ consist of the following statements:

For every i : exactly one of ri ,gi ,bi is true.

For every edge (i , j): ¬(ri ∧ rj) ∧ ¬(gi ∧ gj) ∧ ¬(bi ∧ bj)

Every finite subset of Σ is satisfiable, hence Σ is satisfiable.
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Discussion of the Compactness Theorem

“If every finite subset of Σ is satisfiable then Σ is satisfiable.”

A deeper theorem than Gödel’s completeness.

Often proven independently, e.g. using ultraproducts.

Some of the coolest applications: non-standard numbers,
non-standard reals.
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Proof of the 0/1 Law
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Proof of the Zero-One Law: Plan

Zero-one Law: limn→∞ µn(φ) is 0 or 1, for every φ

Proof outline:

Define the set of extension axioms, Σ; they have µn → 1.

Compactness Theorem: Σ has a model.

Löwenheim-Skolem Theorem: Σ has a countable model.

Back-and-forth argument: all countable models of Σ are isomorphic.

Los-Vaught: Σ is complete: if Σ ⊧ φ then µn(φ) → 1, otherwise → 0.
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Review: Probabilities

Assume, for simplicity, the language of graphs: σ = (E).

We defined µn using counting: µn(φ) = #nφ
#nT .

E.g. µn(∀x∃yE(x , y)) = (2
n
−1)n

2n2
Equivalently:

Let Gn be obtained by including each edge (i , j), i , j ∈ [n], randomly
and independently with probability 1/2.

Then µn(φ) = Prob(Gn ⊧ φ).
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Review: Tricks from Probability Theory

If φ1, φ2, . . . are independent, then
µn(φ1 ∧ φ2 ∧⋯) = µn(φ1) ⋅ µn(φ2)⋯.

To show that µn(φ1 ∧ φ2 ∧⋯) is “large”,
show that µn((¬φ1) ∨ (¬φ2) ∨⋯) is “small”.

To show that µn(φ1 ∨ φ2 ∨⋯) is “small”, use the union bound:
µn(φ1 ∨ φ2 ∨⋯) ≤ µn(φ1) + µn(φ2) +⋯
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The Extension Formulas and the Extension Axioms
For k > 0 denote Sk = ([k] × {k}) ∪ ({k} × [k]) and ∆ ⊆ Sk .

EFk,∆(x1, . . . , xk−1, xk) = ⋀
(i ,j)∈∆

E(xi , xj) ∧ ⋀
(i ,j)∈Sk−∆

¬E(xi , xj)

EAk,∆ = ∀x1 . . .∀xk−1( ⋀
i<j<k

(xi ≠ xj)) → ∃xk(⋀
i<k

(xk ≠ xi) ∧ EFk,∆)

It says: we can extend x1, . . . , xk−1 with xk as prescribed by ∆.

x1 

x3 

x2 x5 

x4 

E(x1, x5) ∧ ¬E(x5, x1)∧
E(x2, x5) ∧ E(x5, x2)∧
¬E(x3, x5) ∧ ¬E(x5, x3)∧
¬E(x4, x5) ∧ E(x5, x4)∧
E(x5, x5)
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Claim 1: limn µn(EAk ,∆) = 1

EFk,∆(x1, . . . , xk−1, xk) = ⋀
(i ,j)∈∆

E(xi , xj) ∧ ⋀
(i ,j)∈Sk−∆

¬E(xi , xj)

EAk,∆ = ∀x1 . . .∀xk−1( ⋀
i<j<k

(xi ≠ xj)) → ∃xk(⋀
i<k

(xk ≠ xi) ∧ EFk,∆)
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For fixed k : how many extension axioms are there?

4k−1 ⋅ 2.
For a1, . . . , ak−1, ak ∈ [n], what is µn(EFk,∆(a1, . . . , ak−1,ak))?

1
22k−1
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Claim 1: limn µn(EAk ,∆) = 1
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i<j<k

(xi ≠ xj)) → ∃xk(⋀
i<k

(xk ≠ xi) ∧ EFk,∆)

To prove that µn(EAk,∆) is large, show that µn(¬EAk,∆) is small:

µn(¬EAk,∆) = µn (∃x1 . . .∃xk−1 (⋀(xi ≠ xj) ∧ ∀xk (⋀(xk ≠ xi) → ¬EFk,∆)))

≤ ∑
a1,...,ak−1∈[n],ai≠aj

µn
⎛
⎝ ⋀
ak∈[n]−{a1,...,ak−1}

¬EFk,∆(a1, . . . , ak−1, ak)
⎞
⎠

= ∑
a1,...,ak−1∈[n],ai≠aj

∏
ak∈[n]−{a1,...,ak−1}

µn(¬EFk,∆(a1, . . . , ak)) why?

= ∑
a1,...,ak−1∈[n],ai≠aj

∏
ak∈[n]−{a1,...,ak−1}

c where c = 1 − 1
22k−1

< 1

≤nk−1cn−k+1 → 0
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⎞
⎠
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∏
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Review Compactness 0/1 Law: Proof Finite Models Static Analysis

Claim 2: Σ has a Countable Model

Σ = {EAk,∆ ∣ k > 0,∆ ⊆ Sk} the set of extension axioms.

Σ is finitely satisfiable why?

Because forall φ1, . . . , φm ∈ Σ, µn(φ1 ∧⋯ ∧ φm) → 1

(Surprisingly, when n is large, there are many finite models for φ1, . . . , φm!)

By compactness, Σ has a model. It must be infinite why???

By Löwenheim-Skolem, Σ has a countable model.
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Review Compactness 0/1 Law: Proof Finite Models Static Analysis

Claim 3: Σ Complete

We show Σ is ℵ0-categorical

Fix two countable models A,B: A = {a1, a2, . . .}, B = {b1,b2, . . .}.

Use Back-and-forth argument to construct an isomorphism A ≅ B:

By the Los-Vaught test, Σ is complete.
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Review Compactness 0/1 Law: Proof Finite Models Static Analysis

Every µn(φ) converges to 0 or to 1

Let φ be any FO sentence

Σ is complete, hence either Σ ⊧ φ or Σ ⊧ ¬φ.

Case 1: Σ ⊧ φ.

By compactness, then there exists a finite set {φ1, . . . , φm} ⊧ φ

It follows ⊧ φ1 ∧⋯ ∧ φm ⇒ φ.

It follows µn(φ) ≥ µn(φ1 ∧⋯ ∧ φm) → 1

Case 2: Σ ⊧ ¬φ. Then µn(φ) → 0 similarly.
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Recap of the Proof

Set of extension axioms, Σ; they have µn → 1.

Compactness Theorem: Σ has a model.

Löwenheim-Skolem Theorem: Σ has a countable model.

Back-and-forth argument: all countable models of Σ are isomorphic.

Los-Vaught: Σ is complete: if Σ ⊧ φ then µn(φ) → 1, otherwise → 0.
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Application of the 0/1 Law

Show that the property “the graph G has an even number of edges” is not
expressible in FO.

Suppose φ says “∣E ∣ is even”.

Then, forall n, µn(φ) = 1
2 (why??), and µn(φ) → 1

2 .

Contradiction! Hence “∣E ∣ is even” is not expressible in FO.
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Discussion

The 0/1 law fails when σ has constants: µ(E(a,b)) = 1
2 . HW1!

Undirected Radom Graph (Rado Graph) has explicit construction.
▸ Look it up in Libkin’s book, or on wikipedia.
▸ Give explicit construction for directed graph.
▸ Give explicit construction for arbitrary σ.

We assumed µn(E(i , j)) = 1
2 . Same holds for any µn(E(i , j)) = c .

In the Erdös-Rényi random graph G(n,pn), pn depends on n.
Spencer, The Strange Logic of Random Graphs.
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Finite Models
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Problems over Finite Models

We will consider only finite modes A from now on.

We may consider a fragment of FO, or an extension of FO.

Static Analysis: does φ have a finite model? does φ→ ψ hold in all
finite models? Does φ ≡ ψ hold in all finite models?

Model checking (a.k.a. query evaluation): check whether A ⊧ φ.

Expressivity: given a property, can we express it using a sentence φ?
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Restrictions and Extensions of FO

Conjunctive queries, unions of conjunctive queries (next lecture)

Restriction: FO k ; extensions FO + lfp, Lω
∞ω;

restriction/extension: Lk
∞ω. (next week)

Second order: SO, MSO, ESO, EMSO. (will discuss too)
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Static Analysis
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Statics Analysis

Goal: check some property of sentence(s) based only on the syntax.
Examples:

SATfin(φ): undecidable by Trakhtenbrot’s theorem.

Finite validity: ⊧fin φ: undecidable why???

Finite implication: ⊧fin (φ→ ψ): undecidable.

Finite equivalence: ⊧fin (φ ≡ ψ): undecidable.

These problems may be decidable in fragments of FO: examples next
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The Finite Model Property

Let L ⊆ FO be a subset of FO.

Definition

We say that L has the finite model property, or it is finitely controllable if,
∀φ ∈ L: if φ has any model, then φ has a finite model.

Definition

We say that L has the small model property if there exists a computable
function f ∶ N→ N s.t.,
∀φ ∈ L: if φ has any model then it has a finite model of size ≤ f (∣φ∣).
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The Finite Model Property Implies Decidability

Theorem

If L has the small model property then L is decidable.

To check SAT(φ) enumerate all structures up to size f (∣φ∣);
if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

To check SAT(φ) enumerate all finite structures A AND all proofs ⊢ ψ:
If SAT(φ) then some finite model will show up in the first list; YES

If UNSAT(φ) then ¬φ will show up in the second list; NO

Finite Model Theory Lecture 3 Spring 2025 26 / 29



Review Compactness 0/1 Law: Proof Finite Models Static Analysis

The Finite Model Property Implies Decidability

Theorem

If L has the small model property then L is decidable.

To check SAT(φ) enumerate all structures up to size f (∣φ∣);
if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

To check SAT(φ) enumerate all finite structures A AND all proofs ⊢ ψ:
If SAT(φ) then some finite model will show up in the first list; YES

If UNSAT(φ) then ¬φ will show up in the second list; NO

Finite Model Theory Lecture 3 Spring 2025 26 / 29



Review Compactness 0/1 Law: Proof Finite Models Static Analysis

The Finite Model Property Implies Decidability

Theorem

If L has the small model property then L is decidable.

To check SAT(φ) enumerate all structures up to size f (∣φ∣);
if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

To check SAT(φ) enumerate all finite structures A AND all proofs ⊢ ψ:
If SAT(φ) then some finite model will show up in the first list; YES

If UNSAT(φ) then ¬φ will show up in the second list; NO

Finite Model Theory Lecture 3 Spring 2025 26 / 29



Review Compactness 0/1 Law: Proof Finite Models Static Analysis

The Finite Model Property Implies Decidability

Theorem

If L has the small model property then L is decidable.

To check SAT(φ) enumerate all structures up to size f (∣φ∣);
if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

To check SAT(φ) enumerate all finite structures A AND all proofs ⊢ ψ:
If SAT(φ) then some finite model will show up in the first list; YES

If UNSAT(φ) then ¬φ will show up in the second list; NO

Finite Model Theory Lecture 3 Spring 2025 26 / 29



Review Compactness 0/1 Law: Proof Finite Models Static Analysis

Application 1: Bernays-Schönfinkel

Let L be the set of sentences with quantifier prefix ∃∗∀∗.
L is called the Bernays-Schönfinkel class.

Theorem

The set of ∃∗∀∗ sentences has the small model property, hence it is
decidable.

Proof φ = ∃x1⋯∃xm∀y1⋯∀ynψ.

Let A be a model of φ.
Then there exists values a = (a1, . . . , am) s.t. A ⊧ ∀y1⋯∀ynψ[a/x]

Let A0 be the structure restricted to the value a1, . . . , am.
Then: A0 ⊧ ∀y1⋯∀ynψ[a/x]

What is the “small model” function f (∣φ∣)?
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Application 2: FO2

FO2 is FO restricted to using only two variables x , y .

Notice that we can reuse the variables, like in:
∃x∃y(E(x , y) ∧ ∃x(E(y , x) ∧ ∃yE(x , y)))

Theorem

FO2 has the small model property, with an exponential f . More precisely:
for any sentence in φ ∈ FO2, if φ is satisfiable then it has a model of size
2O(∣φ∣). In particular, FO2 is decidable.

This is a result by Grädel, Kolaitis, Vardi. We will not prove it.

Pay attention to Trakhtenbrot’s proof: should require ≥ 3 variables.
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Summary of Static Analysis

Basically, every static analysis question is undecidable.

Can be decidable in special cases:

▸ FO2 (but not FOk for k ≥ 3).

▸ Bernays-Schönfinkel class ∃∗∀∗; a.k.a. EPF. (essentially propositional
formula)
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