Compactness 0000	0/1 Law: Proof 00000000000	Static Analysis

Finite Model Theory Lecture 3: Zero-One Law for FO

Spring 2025

Compactness 0000	0/1 Law: Proof 00000000000	Static Analysis

Announcements

• Homework 1 is due tonight: submit on Canvas.

• Homework 2 to be posted today.

- Gödel's Completeness Theorem.
- Church-Turing's and Trakhtenbrot's Theorems.

- Löwenheim-Skolem(-Tarski).
- Los-Vaught Test.

• The Compactness Theorem: will discuss next.

Finite	Model	Theory
i inite	mouci	Theory

- Gödel's Completeness Theorem. $\Sigma \vDash \varphi$ the same as $\Sigma \vdash \varphi$.
- Church-Turing's and Trakhtenbrot's Theorems.

- Löwenheim-Skolem(-Tarski).
- Los-Vaught Test.
- The Compactness Theorem: will discuss next.

Finite	Model ⁻	Theory

- Gödel's Completeness Theorem. $\Sigma \vDash \varphi$ the same as $\Sigma \vdash \varphi$.
- Church-Turing's and Trakhtenbrot's Theorems.
 VAL is r.e.
 VAL is r.e.
 VAL fin is co-r.e.
 SAT is co-r.e.
- Löwenheim-Skolem(-Tarski).
- Los-Vaught Test.

• The Compactness Theorem: will discuss next.

Finite	Model	Theory

- Gödel's Completeness Theorem. $\Sigma \vDash \varphi$ the same as $\Sigma \vdash \varphi$.
- Church-Turing's and Trakhtenbrot's Theorems.
 VAL is r.e.
 VAL is r.e.
 VAL fin is co-r.e.
 SAT is co-r.e.
- Löwenheim-Skolem(-Tarski).
 If Σ has an infinite model then it has models of any cardinality ≥ |σ|.
- Los-Vaught Test.
- The Compactness Theorem: will discuss next.

Finite	Model ⁻	Theory

- Gödel's Completeness Theorem. $\Sigma \vDash \varphi$ the same as $\Sigma \vdash \varphi$.
- Church-Turing's and Trakhtenbrot's Theorems.
 VAL is r.e.
 VAL is r.e.
 VAL fin is co-r.e.
 SAT is co-r.e.
- Löwenheim-Skolem(-Tarski).

If Σ has an infinite model then it has models of any cardinality $\geq |\sigma|$.

- Los-Vaught Test. If Σ is κ -categorical then it is complete. If Σ is also r.e., then it is decidable.
- The Compactness Theorem: will discuss next.

Compactness ●000	0/1 Law: Proof 00000000000	Static Analysis 0000000

Theorem (Compactness Theorem)

If $\Sigma \vDash \varphi$ then there exists a finite subset $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \vDash \varphi$.

Theorem (Compactness Theorem)

If $\Sigma \vDash \varphi$ then there exists a finite subset $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \vDash \varphi$.

Proof If $\Sigma \vDash \varphi$, then $\Sigma \succ \varphi$ holds. $\Sigma \succ \varphi$ is a finite sequence $\varphi_1, \ldots, \varphi_n$. Exists finite $\Sigma_0 \subseteq \Sigma$ s.t. $\Sigma_0 \succ \varphi$. If $\Sigma_0 \vDash \varphi$ then $\Sigma_0 \vDash \varphi$ holds too.

Theorem (Compactness Theorem)

If $\Sigma \vDash \varphi$ then there exists a finite subset $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \vDash \varphi$.

Proof If $\Sigma \vDash \varphi$, then $\Sigma \succ \varphi$ holds. $\Sigma \succ \varphi$ is a finite sequence $\varphi_1, \ldots, \varphi_n$. Exists finite $\Sigma_0 \subseteq \Sigma$ s.t. $\Sigma_0 \succ \varphi$. If $\Sigma_0 \vDash \varphi$ then $\Sigma_0 \vDash \varphi$ holds too.

Theorem (Compactness Theorem (equivalent statement)) If every finite subset $\Sigma_0 \subseteq \Sigma$ is satisfiable, then Σ is satisfiable.

Theorem (Compactness Theorem)

If $\Sigma \vDash \varphi$ then there exists a finite subset $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \vDash \varphi$.

Proof If $\Sigma \vDash \varphi$, then $\Sigma \succ \varphi$ holds. $\Sigma \succ \varphi$ is a finite sequence $\varphi_1, \ldots, \varphi_n$. Exists finite $\Sigma_0 \subseteq \Sigma$ s.t. $\Sigma_0 \vDash \varphi$. If $\Sigma_0 \vDash \varphi$ then $\Sigma_0 \vDash \varphi$ holds too.

Theorem (Compactness Theorem (equivalent statement)) If every finite subset $\Sigma_0 \subseteq \Sigma$ is satisfiable, then Σ is satisfiable.

Proof Assume $not(SAT(\Sigma))$. Then $\Sigma \models \mathbf{F}$. Then $\Sigma_0 \models \mathbf{F}$ for some finite $\Sigma_0 \subseteq \Sigma$. Then $not(SAT(\Sigma_0))$, contradiction.

Compactness 00●0	0/1 Law: Proof 00000000000	Static Analysis 0000000

An Application

If every finite subgraph of an infinite graph G is 3-colorable, then so is G.

An Application

If every finite subgraph of an infinite graph G is 3-colorable, then so is G.

Proof For each node $x_i \in V(G)$, three propositional symbols r_i, g_i, b_i .

An Application

If every finite subgraph of an infinite graph G is 3-colorable, then so is G.

Proof For each node $x_i \in V(G)$, three propositional symbols r_i, g_i, b_i .

Let $\boldsymbol{\Sigma}$ consist of the following statements:

- For every *i*: exactly one of r_i, g_i, b_i is true.
- For every edge (i,j): $\neg(r_i \land r_j) \land \neg(g_i \land g_j) \land \neg(b_i \land b_j)$

Every finite subset of Σ is satisfiable, hence Σ is satisfiable.

Discussion of the Compactness Theorem

"If every finite subset of Σ is satisfiable then Σ is satisfiable."

• A deeper theorem than Gödel's completeness.

• Often proven independently, e.g. using ultraproducts.

• Some of the coolest applications: non-standard numbers, non-standard reals.

Compactness 0000	0/1 Law: Proof ●00000000000	Static Analysis

Proof of the 0/1 Law

Proof of the Zero-One Law: Plan

Zero-one Law: $\lim_{n\to\infty} \mu_n(\varphi)$ is 0 or 1, for every φ

Proof outline:

- Define the set of extension axioms, Σ ; they have $\mu_n \rightarrow 1$.
- Compactness Theorem: Σ has a model.
- Löwenheim-Skolem Theorem: Σ has a countable model.
- Back-and-forth argument: all countable models of Σ are isomorphic.
- Los-Vaught: Σ is complete: if $\Sigma \vDash \varphi$ then $\mu_n(\varphi) \rightarrow 1$, otherwise $\rightarrow 0$.

Review: Probabilities

Assume, for simplicity, the language of graphs: $\sigma = (E)$.

We defined μ_n using counting: $\mu_n(\varphi) = \frac{\#_n \varphi}{\#_n T}$.

E.g.
$$\mu_n(\forall x \exists y E(x, y)) = \frac{(2^n - 1)^n}{2^{n^2}}$$
 Equivalently:

• Let G_n be obtained by including each edge (i, j), $i, j \in [n]$, randomly and independently with probability 1/2.

• Then
$$\mu_n(\varphi) = \operatorname{Prob}(G_n \vDash \varphi)$$
.

Review: Tricks from Probability Theory

• If $\varphi_1, \varphi_2, \ldots$ are independent, then $\mu_n(\varphi_1 \land \varphi_2 \land \cdots) = \mu_n(\varphi_1) \cdot \mu_n(\varphi_2) \cdots$.

 To show that μ_n(φ₁ ∧ φ₂ ∧ ···) is "large", show that μ_n((¬φ₁) ∨ (¬φ₂) ∨ ···) is "small".

• To show that $\mu_n(\varphi_1 \lor \varphi_2 \lor \cdots)$ is "small", use the union bound: $\mu_n(\varphi_1 \lor \varphi_2 \lor \cdots) \le \mu_n(\varphi_1) + \mu_n(\varphi_2) + \cdots$

The Extension Formulas and the Extension Axioms For k > 0 denote $S_k = ([k] \times \{k\}) \cup (\{k\} \times [k])$ and $\Delta \subseteq S_k$.

The Extension Formulas and the Extension Axioms For k > 0 denote $S_k = ([k] \times \{k\}) \cup (\{k\} \times [k])$ and $\Delta \subseteq S_k$.

$$\begin{aligned} & EF_{k,\Delta}(x_1,\ldots,x_{k-1},x_k) = \bigwedge_{\substack{(i,j)\in\Delta}} E(x_i,x_j) \wedge \bigwedge_{\substack{(i,j)\in S_k-\Delta}} \neg E(x_i,x_j) \\ & EA_{k,\Delta} = \forall x_1\ldots\forall x_{k-1}(\bigwedge_{\substack{i$$

It says: we can extend x_1, \ldots, x_{k-1} with x_k as prescribed by Δ .

12 / 29

The Extension Formulas and the Extension Axioms For k > 0 denote $S_k = ([k] \times \{k\}) \cup (\{k\} \times [k])$ and $\Delta \subseteq S_k$.

$$\begin{split} & EF_{k,\Delta}(x_1,\ldots,x_{k-1},x_k) = \bigwedge_{(i,j)\in\Delta} E(x_i,x_j) \wedge \bigwedge_{(i,j)\in S_k-\Delta} \neg E(x_i,x_j) \\ & EA_{k,\Delta} = \forall x_1\ldots \forall x_{k-1} (\bigwedge_{i< j< k} (x_i \neq x_j)) \rightarrow \exists x_k (\bigwedge_{i< k} (x_k \neq x_i) \wedge EF_{k,\Delta}) \end{split}$$

It says: we can extend x_1, \ldots, x_{k-1} with x_k as prescribed by Δ .

$$E(x_1, x_5) \land \neg E(x_5, x_1) \land$$

$$E(x_2, x_5) \land E(x_5, x_2) \land$$

$$\neg E(x_3, x_5) \land \neg E(x_5, x_3) \land$$

$$\neg E(x_4, x_5) \land E(x_5, x_4) \land$$

$$E(x_5, x_5)$$

$$\begin{aligned} & EF_{k,\Delta}(x_1,\ldots,x_{k-1},\mathbf{x}_k) = \bigwedge_{(i,j)\in\Delta} E(x_i,x_j) \wedge \bigwedge_{(i,j)\in S_k-\Delta} \neg E(x_i,x_j) \\ & EA_{k,\Delta} = \forall x_1\ldots\forall x_{k-1}(\bigwedge_{i< j< k} (x_i\neq x_j)) \rightarrow \exists \mathbf{x}_k(\bigwedge_{i< k} (\mathbf{x}_k\neq x_i) \wedge EF_{k,\Delta}) \end{aligned}$$

For fixed k: how many extension axioms are there?

13/29

For fixed k: how many extension axioms are there?

$$4^{k-1} \cdot 2.$$

For fixed k: how many extension axioms are there? $4^{k-1} \cdot 2$. For $a_1, \ldots, a_{k-1}, a_k \in [n]$, what is $\mu_n(EF_{k,\Delta}(a_1, \ldots, a_{k-1}, a_k))$?

For fixed k: how many extension axioms are there? $4^{k-1} \cdot 2$. For $a_1, \ldots, a_{k-1}, a_k \in [n]$, what is $\mu_n(EF_{k,\Delta}(a_1, \ldots, a_{k-1}, a_k))$? $\frac{1}{2^{2k-1}}$

$$\begin{aligned} & EF_{k,\Delta}(x_1,\ldots,x_{k-1},\mathbf{x}_k) = \bigwedge_{(i,j)\in\Delta} E(x_i,x_j) \wedge \bigwedge_{(i,j)\in S_k-\Delta} \neg E(x_i,x_j) \\ & EA_{k,\Delta} = \forall x_1\ldots\forall x_{k-1} (\bigwedge_{i< j< k} (x_i\neq x_j)) \rightarrow \exists \mathbf{x}_k (\bigwedge_{i< k} (\mathbf{x}_k\neq x_i) \wedge EF_{k,\Delta}) \end{aligned}$$

$$EF_{k,\Delta}(x_1,\ldots,x_{k-1},\mathbf{x}_k) = \bigwedge_{(i,j)\in\Delta} E(x_i,x_j) \wedge \bigwedge_{(i,j)\in S_k-\Delta} \neg E(x_i,x_j)$$
$$EA_{k,\Delta} = \forall x_1\ldots\forall x_{k-1}(\bigwedge_{i< j< k} (x_i \neq x_j)) \rightarrow \exists \mathbf{x}_k(\bigwedge_{i< k} (\mathbf{x}_k \neq x_i) \wedge EF_{k,\Delta})$$

$$\mu_n(\neg EA_{k,\Delta}) = \mu_n(\exists x_1 \dots \exists x_{k-1} \left(\bigwedge (x_i \neq x_j) \land \forall x_k \left(\bigwedge (x_k \neq x_i) \to \neg EF_{k,\Delta} \right) \right) \right)$$

$$EF_{k,\Delta}(x_1,\ldots,x_{k-1},\mathbf{x}_k) = \bigwedge_{(i,j)\in\Delta} E(x_i,x_j) \wedge \bigwedge_{(i,j)\in S_k-\Delta} \neg E(x_i,x_j)$$
$$EA_{k,\Delta} = \forall x_1\ldots\forall x_{k-1}(\bigwedge_{i< j< k} (x_i \neq x_j)) \rightarrow \exists \mathbf{x}_k(\bigwedge_{i< k} (\mathbf{x}_k \neq x_i) \wedge EF_{k,\Delta})$$

$$\mu_n(\neg EA_{k,\Delta}) = \mu_n\left(\exists x_1 \dots \exists x_{k-1}\left(\bigwedge(x_i \neq x_j) \land \forall x_k\left(\bigwedge(x_k \neq x_i) \to \neg EF_{k,\Delta}\right)\right)\right)$$
$$\leq \sum_{a_1,\dots,a_{k-1} \in [n], a_i \neq a_j} \mu_n\left(\bigwedge_{a_k \in [n] - \{a_1,\dots,a_{k-1}\}} \neg EF_{k,\Delta}(a_1,\dots,a_{k-1},a_k)\right)$$

$$EF_{k,\Delta}(x_1,\ldots,x_{k-1},\mathbf{x}_k) = \bigwedge_{(i,j)\in\Delta} E(x_i,x_j) \wedge \bigwedge_{(i,j)\in S_k-\Delta} \neg E(x_i,x_j)$$
$$EA_{k,\Delta} = \forall x_1\ldots\forall x_{k-1}(\bigwedge_{i< j< k} (x_i \neq x_j)) \rightarrow \exists \mathbf{x}_k(\bigwedge_{i< k} (\mathbf{x}_k \neq x_i) \wedge EF_{k,\Delta})$$

$$\mu_{n}(\neg EA_{k,\Delta}) = \mu_{n}\left(\exists x_{1} \dots \exists x_{k-1}\left(\bigwedge(x_{i} \neq x_{j}) \land \forall x_{k}\left(\bigwedge(x_{k} \neq x_{i}) \rightarrow \neg EF_{k,\Delta}\right)\right)\right)$$

$$\leq \sum_{a_{1},\dots,a_{k-1} \in [n], a_{i} \neq a_{j}} \mu_{n}\left(\bigwedge_{\substack{a_{k} \in [n] - \{a_{1},\dots,a_{k-1}\}} \neg EF_{k,\Delta}(a_{1},\dots,a_{k-1},a_{k})\right)$$

$$= \sum_{a_{1},\dots,a_{k-1} \in [n], a_{i} \neq a_{j}} \prod_{\substack{a_{k} \in [n] - \{a_{1},\dots,a_{k-1}\}}} \mu_{n}(\neg EF_{k,\Delta}(a_{1},\dots,a_{k})) \quad \text{why}?$$

$$EF_{k,\Delta}(x_1,\ldots,x_{k-1},\mathbf{x}_k) = \bigwedge_{(i,j)\in\Delta} E(x_i,x_j) \wedge \bigwedge_{(i,j)\in S_k-\Delta} \neg E(x_i,x_j)$$
$$EA_{k,\Delta} = \forall x_1\ldots\forall x_{k-1}(\bigwedge_{i< j< k} (x_i \neq x_j)) \rightarrow \exists \mathbf{x}_k(\bigwedge_{i< k} (\mathbf{x}_k \neq x_i) \wedge EF_{k,\Delta})$$

$$\mu_{n}(\neg EA_{k,\Delta}) = \mu_{n}\left(\exists x_{1} \dots \exists x_{k-1}\left(\bigwedge(x_{i} \neq x_{j}) \land \forall x_{k}\left(\bigwedge(x_{k} \neq x_{i}) \rightarrow \neg EF_{k,\Delta}\right)\right)\right)$$

$$\leq \sum_{a_{1},\dots,a_{k-1} \in [n], a_{i} \neq a_{j}} \mu_{n}\left(\bigwedge_{a_{k} \in [n] - \{a_{1},\dots,a_{k-1}\}} \neg EF_{k,\Delta}(a_{1},\dots,a_{k-1},a_{k})\right)$$

$$= \sum_{a_{1},\dots,a_{k-1} \in [n], a_{i} \neq a_{j}} \prod_{a_{k} \in [n] - \{a_{1},\dots,a_{k-1}\}} \mu_{n}(\neg EF_{k,\Delta}(a_{1},\dots,a_{k})) \quad \text{why?}$$

$$= \sum_{a_{1},\dots,a_{k-1} \in [n], a_{i} \neq a_{j}} \prod_{a_{k} \in [n] - \{a_{1},\dots,a_{k-1}\}} c \quad \text{where } c = 1 - \frac{1}{2^{2k-1}} < 1$$

$$EF_{k,\Delta}(x_1,\ldots,x_{k-1},\mathbf{x}_k) = \bigwedge_{(i,j)\in\Delta} E(x_i,x_j) \wedge \bigwedge_{(i,j)\in S_k-\Delta} \neg E(x_i,x_j)$$
$$EA_{k,\Delta} = \forall x_1\ldots\forall x_{k-1}(\bigwedge_{i< j< k} (x_i \neq x_j)) \rightarrow \exists \mathbf{x}_k(\bigwedge_{i< k} (\mathbf{x}_k \neq x_i) \wedge EF_{k,\Delta})$$

$$\mu_{n}(\neg EA_{k,\Delta}) = \mu_{n}\left(\exists x_{1} \dots \exists x_{k-1}\left(\bigwedge(x_{i} \neq x_{j}) \land \forall x_{k}\left(\bigwedge(x_{k} \neq x_{i}) \rightarrow \neg EF_{k,\Delta}\right)\right)\right)$$

$$\leq \sum_{a_{1},\dots,a_{k-1} \in [n], a_{i} \neq a_{j}} \mu_{n}\left(\bigwedge_{a_{k} \in [n] - \{a_{1},\dots,a_{k-1}\}} \neg EF_{k,\Delta}(a_{1},\dots,a_{k-1},a_{k})\right)$$

$$= \sum_{a_{1},\dots,a_{k-1} \in [n], a_{i} \neq a_{j}} \prod_{a_{k} \in [n] - \{a_{1},\dots,a_{k-1}\}} \mu_{n}(\neg EF_{k,\Delta}(a_{1},\dots,a_{k})) \quad \text{why?}$$

$$= \sum_{a_{1},\dots,a_{k-1} \in [n], a_{i} \neq a_{j}} \prod_{a_{k} \in [n] - \{a_{1},\dots,a_{k-1}\}} c \quad \text{where } c = 1 - \frac{1}{2^{2k-1}} < 1$$

$$\leq n^{k-1} c^{n-k+1} \rightarrow 0$$

Claim 2: Σ has a Countable Model

 $\Sigma = \{ EA_{k,\Delta} \mid k > 0, \Delta \subseteq S_k \}$ the set of extension axioms.

Claim 2: Σ has a Countable Model

 $\Sigma = \{ EA_{k,\Delta} \mid k > 0, \Delta \subseteq S_k \}$ the set of extension axioms.

 Σ is finitely satisfiable why?
$\Sigma = \{ EA_{k,\Delta} \mid k > 0, \Delta \subseteq S_k \}$ the set of extension axioms.

 Σ is finitely satisfiable why?

Because forall $\varphi_1, \ldots, \varphi_m \in \Sigma$, $\mu_n(\varphi_1 \wedge \cdots \wedge \varphi_m) \to 1$

 $\Sigma = \{ EA_{k,\Delta} \mid k > 0, \Delta \subseteq S_k \}$ the set of extension axioms.

 Σ is finitely satisfiable why?

Because forall $\varphi_1, \ldots, \varphi_m \in \Sigma$, $\mu_n(\varphi_1 \wedge \cdots \wedge \varphi_m) \to 1$

(Surprisingly, when *n* is large, there are *many* finite models for $\varphi_1, \ldots, \varphi_m!$)

 $\Sigma = \{ EA_{k,\Delta} \mid k > 0, \Delta \subseteq S_k \}$ the set of extension axioms.

 Σ is finitely satisfiable why?

Because forall $\varphi_1, \ldots, \varphi_m \in \Sigma$, $\mu_n(\varphi_1 \wedge \cdots \wedge \varphi_m) \to 1$

(Surprisingly, when *n* is large, there are *many* finite models for $\varphi_1, \ldots, \varphi_m!$)

By compactness, Σ has a model.

 $\Sigma = \{ EA_{k,\Delta} \mid k > 0, \Delta \subseteq S_k \}$ the set of extension axioms.

 Σ is finitely satisfiable why?

Because forall $\varphi_1, \ldots, \varphi_m \in \Sigma$, $\mu_n(\varphi_1 \wedge \cdots \wedge \varphi_m) \to 1$

(Surprisingly, when *n* is large, there are *many* finite models for $\varphi_1, \ldots, \varphi_m!$)

By compactness, Σ has a model. It must be infinite why???

 $\Sigma = \{ EA_{k,\Delta} \mid k > 0, \Delta \subseteq S_k \}$ the set of extension axioms.

 Σ is finitely satisfiable why?

Because forall $\varphi_1, \ldots, \varphi_m \in \Sigma$, $\mu_n(\varphi_1 \wedge \cdots \wedge \varphi_m) \to 1$

(Surprisingly, when *n* is large, there are *many* finite models for $\varphi_1, \ldots, \varphi_m!$)

By compactness, Σ has a model. It must be infinite why???

By Löwenheim-Skolem, Σ has a countable model.

We show Σ is \aleph_0 -categorical

We show Σ is \aleph_0 -categorical

Fix two countable models **A**, **B**: $A = \{a_1, a_2, ...\}, B = \{b_1, b_2, ...\}.$

We show Σ is \aleph_0 -categorical

Fix two countable models $A, B: A = \{a_1, a_2, ...\}, B = \{b_1, b_2, ...\}.$

We show Σ is \aleph_0 -categorical

Fix two countable models **A**, **B**: $A = \{a_1, a_2, ...\}, B = \{b_1, b_2, ...\}.$

We show Σ is \aleph_0 -categorical

Fix two countable models **A**, **B**: $A = \{a_1, a_2, ...\}, B = \{b_1, b_2, ...\}.$

We show Σ is \aleph_0 -categorical

Fix two countable models **A**, **B**: $A = \{a_1, a_2, ...\}, B = \{b_1, b_2, ...\}.$

We show Σ is \aleph_0 -categorical

Fix two countable models **A**, **B**: $A = \{a_1, a_2, ...\}, B = \{b_1, b_2, ...\}.$

We show Σ is \aleph_0 -categorical

Fix two countable models $A, B: A = \{a_1, a_2, ...\}, B = \{b_1, b_2, ...\}.$

Use Back-and-forth argument to construct an isomorphism $A \cong B$:

By the Los-Vaught test, Σ is complete.

Let φ be any FO sentence

 Σ is complete, hence either $\Sigma \vDash \varphi$ or $\Sigma \vDash \neg \varphi$.

16 / 29

Let φ be any FO sentence

 Σ is complete, hence either $\Sigma \vDash \varphi$ or $\Sigma \vDash \neg \varphi$.

Case 1: $\Sigma \models \varphi$.

Let φ be any FO sentence

 Σ is complete, hence either $\Sigma \vDash \varphi$ or $\Sigma \vDash \neg \varphi$.

Case 1: $\Sigma \models \varphi$.

By compactness, then there exists a finite set $\{\varphi_1, \ldots, \varphi_m\} \vDash \varphi$

Let φ be any FO sentence

 Σ is complete, hence either $\Sigma \vDash \varphi$ or $\Sigma \vDash \neg \varphi$.

Case 1: $\Sigma \models \varphi$.

By compactness, then there exists a finite set $\{\varphi_1, \ldots, \varphi_m\} \vDash \varphi$

It follows $\vDash \varphi_1 \land \cdots \land \varphi_m \Rightarrow \varphi$.

Let φ be any FO sentence

 Σ is complete, hence either $\Sigma \vDash \varphi$ or $\Sigma \vDash \neg \varphi$.

Case 1: $\Sigma \models \varphi$.

By compactness, then there exists a finite set $\{\varphi_1, \ldots, \varphi_m\} \vDash \varphi$

It follows $\models \varphi_1 \land \dots \land \varphi_m \Rightarrow \varphi$.

It follows $\mu_n(\varphi) \ge \mu_n(\varphi_1 \land \dots \land \varphi_m) \to 1$

Let φ be any FO sentence

 Σ is complete, hence either $\Sigma \vDash \varphi$ or $\Sigma \vDash \neg \varphi$.

Case 1: $\Sigma \models \varphi$.

By compactness, then there exists a finite set $\{\varphi_1, \ldots, \varphi_m\} \vDash \varphi$

It follows $\models \varphi_1 \land \dots \land \varphi_m \Rightarrow \varphi$.

It follows $\mu_n(\varphi) \ge \mu_n(\varphi_1 \land \dots \land \varphi_m) \to 1$

Case 2: $\Sigma \vDash \neg \varphi$. Then $\mu_n(\varphi) \rightarrow 0$ similarly.

Recap of the Proof

• Set of extension axioms, Σ ; they have $\mu_n \rightarrow 1$.

- Compactness Theorem: Σ has a model.
- Löwenheim-Skolem Theorem: Σ has a countable model.
- Back-and-forth argument: all countable models of Σ are isomorphic.
- Los-Vaught: Σ is complete: if $\Sigma \models \varphi$ then $\mu_n(\varphi) \rightarrow 1$, otherwise $\rightarrow 0$.

17 / 29

Show that the property "the graph G has an even number of edges" is not expressible in FO.

Show that the property "the graph G has an even number of edges" is not expressible in FO.

Suppose φ says "|E| is even".

Show that the property "the graph G has an even number of edges" is not expressible in FO.

Suppose φ says "|E| is even".

Then, forall n, $\mu_n(\varphi) = \frac{1}{2}$ (why??), and $\mu_n(\varphi) \rightarrow \frac{1}{2}$.

18 / 29

Show that the property "the graph G has an even number of edges" is not expressible in FO.

Suppose φ says "|E| is even".

Then, forall n, $\mu_n(\varphi) = \frac{1}{2}$ (why??), and $\mu_n(\varphi) \rightarrow \frac{1}{2}$.

Contradiction! Hence "|E| is even" is not expressible in FO.

Compactness 0000	0/1 Law: Proof 0000000000●	Static Analysis 0000000

Discussion

- The 0/1 law fails when σ has constants: $\mu(E(a, b)) = \frac{1}{2}$. HW1!
- Undirected Radom Graph (Rado Graph) has explicit construction.
 - Look it up in Libkin's book, or on wikipedia.
 - Give explicit construction for directed graph.
 - Give explicit construction for arbitrary σ .
- We assumed $\mu_n(E(i,j)) = \frac{1}{2}$. Same holds for any $\mu_n(E(i,j)) = c$.
- In the Erdös-Rényi random graph G(n, p_n), p_n depends on n.
 Spencer, The Strange Logic of Random Graphs.

Compactness	0/1 Law: Proof	Finite Models	Static Analysis
0000	00000000000	●00	0000000

Finite Models

Problems over Finite Models

We will consider only finite modes \boldsymbol{A} from now on.

We may consider a fragment of FO, or an extension of FO.

- Static Analysis: does φ have a finite model? does φ → ψ hold in all finite models? Does φ ≡ ψ hold in all finite models?
- Model checking (a.k.a. query evaluation): check whether $\mathbf{A} \models \varphi$.

• Expressivity: given a property, can we express it using a sentence φ ?

Restrictions and Extensions of FO

• Conjunctive queries, unions of conjunctive queries (next lecture)

Restriction: FO ^k; extensions FO + lfp, L^ω_{∞ω}; restriction/extension: L^k_{∞ω}. (next week)

• Second order: SO, MSO, ESO, EMSO. (will discuss too)

Review	Compactness	0/1 Law: Proof	Finite Models	Static Analysis
O	0000	00000000000	000	

Static Analysis

Statics Analysis

Goal: check some property of sentence(s) based only on the syntax. Examples:

- SAT_{fin}(φ): undecidable by Trakhtenbrot's theorem.
- Finite validity: $\models_{fin} \varphi$: undecidable why???
- Finite implication: $\models_{fin} (\varphi \rightarrow \psi)$: undecidable.
- Finite equivalence: $\models_{fin} (\varphi \equiv \psi)$: undecidable.

These problems may be decidable in fragments of FO: examples next

The Finite Model Property

Let $L \subseteq FO$ be a subset of FO.

Definition

We say that *L* has the finite model property, or it is *finitely controllable* if, $\forall \varphi \in L$: if φ has any model, then φ has a finite model.

The Finite Model Property

Let $L \subseteq FO$ be a subset of FO.

Definition

We say that *L* has the finite model property, or it is *finitely controllable* if, $\forall \varphi \in L$: if φ has any model, then φ has a finite model.

Definition

We say that *L* has the small model property if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ s.t., $\forall \varphi \in L$: if φ has any model then it has a finite model of size $\leq f(|\varphi|)$.

Theorem

If L has the small model property then L is decidable.

Theorem

If L has the small model property then L is decidable.

To check $SAT(\varphi)$ enumerate all structures up to size $f(|\varphi|)$; if any is a model return YES, if none is a model return NO.

Theorem

If L has the small model property then L is decidable.

To check $SAT(\varphi)$ enumerate all structures up to size $f(|\varphi|)$; if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

Theorem

If L has the small model property then L is decidable.

To check $SAT(\varphi)$ enumerate all structures up to size $f(|\varphi|)$; if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

To check $SAT(\varphi)$ enumerate all finite structures **A** AND all proofs $\vdash \psi$:

- If SAT(φ) then some finite model will show up in the first list; YES
- If $\text{UNSAT}(\varphi)$ then $\neg \varphi$ will show up in the second list; NO
Let *L* be the set of sentences with quantifier prefix $\exists^* \forall^*$. *L* is called the Bernays-Schönfinkel class.

Theorem

The set of $\exists^* \forall^*$ sentences has the small model property, hence it is decidable.

Let *L* be the set of sentences with quantifier prefix $\exists^* \forall^*$. *L* is called the Bernays-Schönfinkel class.

Theorem

The set of $\exists^* \forall^*$ sentences has the small model property, hence it is decidable.

Proof $\varphi = \exists x_1 \cdots \exists x_m \forall y_1 \cdots \forall y_n \psi$.

27 / 29

Let *L* be the set of sentences with quantifier prefix $\exists^* \forall^*$. *L* is called the Bernays-Schönfinkel class.

Theorem

The set of $\exists^* \forall^*$ sentences has the small model property, hence it is decidable.

Proof $\varphi = \exists x_1 \cdots \exists x_m \forall y_1 \cdots \forall y_n \psi$.

Let **A** be a model of φ . Then there exists values $\mathbf{a} = (a_1, \dots, a_m)$ s.t. $\mathbf{A} \models \forall y_1 \dots \forall y_n \psi[\mathbf{a}/\mathbf{x}]$

Let *L* be the set of sentences with quantifier prefix $\exists^* \forall^*$. *L* is called the Bernays-Schönfinkel class.

Theorem

The set of $\exists^* \forall^*$ sentences has the small model property, hence it is decidable.

Proof
$$\varphi = \exists x_1 \cdots \exists x_m \forall y_1 \cdots \forall y_n \psi.$$

Let **A** be a model of φ . Then there exists values $\mathbf{a} = (a_1, \dots, a_m)$ s.t. $\mathbf{A} \models \forall y_1 \dots \forall y_n \psi[\mathbf{a}/\mathbf{x}]$

Let A_0 be the structure restricted to the value a_1, \ldots, a_m . Then: $A_0 \models \forall y_1 \cdots \forall y_n \psi[a/x]$

Let *L* be the set of sentences with quantifier prefix $\exists^* \forall^*$. *L* is called the Bernays-Schönfinkel class.

Theorem

The set of $\exists^* \forall^*$ sentences has the small model property, hence it is decidable.

Proof
$$\varphi = \exists x_1 \cdots \exists x_m \forall y_1 \cdots \forall y_n \psi.$$

Let **A** be a model of φ . Then there exists values $\mathbf{a} = (a_1, \dots, a_m)$ s.t. $\mathbf{A} \models \forall y_1 \dots \forall y_n \psi[\mathbf{a}/\mathbf{x}]$

Let A_0 be the structure restricted to the value a_1, \ldots, a_m . Then: $A_0 \models \forall y_1 \cdots \forall y_n \psi[a/x]$

What is the "small model" function $f(|\varphi|)$?

Application 2: *FO*²

 FO^2 is FO restricted to using only two variables x, y.

Application 2: FO²

 FO^2 is FO restricted to using only two variables x, y.

Notice that we can reuse the variables, like in: $\exists x \exists y (E(x,y) \land \exists x (E(y,x) \land \exists y E(x,y)))$

Application 2: FO²

 FO^2 is FO restricted to using only two variables x, y.

Notice that we can reuse the variables, like in: $\exists x \exists y (E(x,y) \land \exists x (E(y,x) \land \exists y E(x,y)))$

Theorem

 FO^2 has the small model property, with an exponential f. More precisely: for any sentence in $\varphi \in FO^2$, if φ is satisfiable then it has a model of size $2^{O(|\varphi|)}$. In particular, FO^2 is decidable.

This is a result by Grädel, Kolaitis, Vardi. We will not prove it.

Pay attention to Trakhtenbrot's proof: should require \geq 3 variables.

Summary of Static Analysis

• Basically, every static analysis question is undecidable.

- Can be decidable in special cases:
 - FO² (but not FO^k for $k \ge 3$).
 - Bernays-Schönfinkel class ∃*∀*; a.k.a. EPF. (essentially propositional formula)

29 / 29