Finite Model Theory
Lecture 3: Zero-One Law for FO

Spring 2025
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Announcements

@ Homework 1 is due tonight: submit on Canvas.

@ Homework 2 to be posted today.
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Review Compactness ’ Finite Models
° 0000 ofe ofe 000

The Classics

@ Godel's Completeness Theorem.

Church-Turing's and Trakhtenbrot’s Theorems.

o Lowenheim-Skolem(-Tarski).

@ Los-Vaught Test.

The Compactness Theorem: will discuss next.

We will use these results to prove the 0/1 law
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° 0000 000 000

The Classics

o Godel's Completeness Theorem. ¥ & ¢ the same as X + .

@ Church-Turing's and Trakhtenbrot’s Theorems.
VAL is r.e. VAL, IS co-r.e.
SAT is co-r.e. SATg, is r.e.

o Lowenheim-Skolem(-Tarski).
If X has an infinite model then it has models of any cardinality > |o|.

@ Los-Vaught Test.

The Compactness Theorem: will discuss next.

We will use these results to prove the 0/1 law
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Review Compactness >roof Finite Models Static Analysis
° 0000 0 00 000 000

The Classics

o Godel's Completeness Theorem. ¥ & ¢ the same as X + .

@ Church-Turing's and Trakhtenbrot’s Theorems.
VAL is r.e. VAL, IS co-r.e.
SAT is co-r.e. SATg, is r.e.

o Lowenheim-Skolem(-Tarski).
If X has an infinite model then it has models of any cardinality > |o|.

@ Los-Vaught Test. If X is k-categorical then it is complete.
If X is also r.e., then it is decidable.

The Compactness Theorem: will discuss next.

We will use these results to prove the 0/1 law
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Compactness
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The Compactness Theorem
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Compactness
000

Compactness Theorem

Theorem (Compactness Theorem)
If X = ¢ then there exists a finite subset o C ¥ such that ¥ = ¢. J

Finite Model Theory Lecture 3 Spring 2025 5/29



Compactness

Finite Models
000 fole 00 000

Compactness Theorem

Theorem (Compactness Theorem)

If X = ¢ then there exists a finite subset o C ¥ such that ¥ = ¢. J

Proof If ¥ = ¢, then ¥ + ¢ holds.

> + p is a finite sequence 1, ..., p,. Exists finite 29 € ¥ s.t. Yo+ .
If o+ ¢ then X = ¢ holds too.
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Compactness 0/1 P Finite Models

Compactness Theorem

Theorem (Compactness Theorem)
If X = ¢ then there exists a finite subset o C ¥ such that ¥ = ¢. J

Proof If ¥ = ¢, then ¥ + ¢ holds.
> + p is a finite sequence 1, ..., @,. Exists finite L9 S X s.it. g+ .
If o+ ¢ then X = ¢ holds too.

Theorem (Compactness Theorem (equivalent statement)) J

If every finite subset ¥ C ¥ is satisfiable, then ¥ is satisfiable.
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Compactness 0 >ro0 Finite Models

0@00

Compactness Theorem

Theorem (Compactness Theorem)
If X = ¢ then there exists a finite subset o C ¥ such that ¥ = ¢. J

Proof If ¥ = ¢, then ¥ + ¢ holds.
Y + @ is a finite sequence 1, ..., @, Exists finite o9 € ¥ s.t. g+ .
If o+ ¢ then X = ¢ holds too.

Theorem (Compactness Theorem (equivalent statement))
If every finite subset ¥ C ¥ is satisfiable, then ¥ is satisfiable. J

Proof Assume not(SAT(X)). Then X = F.
Then X = F for some finite X9 € . Then not(SAT(Xg)), contradiction.
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Compactness
0000

An Application

If every finite subgraph of an infinite graph G is 3-colorable, then so is G.

Finite Model Theory Lecture 3 Spring 2025 6/29



Revie Compactness 0 ’ Finite Models
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An Application
If every finite subgraph of an infinite graph G is 3-colorable, then so is G.

Proof For each node x; € V(G), three propositional symbols r;, g;, b;.
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Review Compactness 0 Finite Models
0000 000 000

An Application
If every finite subgraph of an infinite graph G is 3-colorable, then so is G.
Proof For each node x; € V(G), three propositional symbols r;, g;, b;.

Let ¥ consist of the following statements:
o For every i: exactly one of r;, gj, b; is true.

o For every edge (i,j): —~(ri A rj) A=(gi A gj) A—=(bi A b))

Every finite subset of X is satisfiable, hence X is satisfiable.
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Compactness 0/1 . Finite Models
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Discussion of the Compactness Theorem

“If every finite subset of ¥ is satisfiable then ¥ is satisfiable.”

@ A deeper theorem than Godel's completeness.

e Often proven independently, e.g. using ultraproducts.

@ Some of the coolest applications: non-standard numbers,
non-standard reals.

Finite Model Theory Lecture 3 Spring 2025 7/29



0/1 Law: Proof
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Proof of the 0/1 Law
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Compactness 0/1 Law: Proof Finite Models

O@0000000000

Proof of the Zero-One Law: Plan

Zero-one Law: lim,_o in(®) is 0 or 1, for every ¢

Proof outline:
@ Define the set of extension axioms, X; they have u, — 1.
@ Compactness Theorem: ¥ has a model.
@ Lowenheim-Skolem Theorem: ¥ has a countable model.
@ Back-and-forth argument: all countable models of ¥ are isomorphic.
o

Los-Vaught: X is complete: if ¥ E ¢ then u,(¢) — 1, otherwise — 0.
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Compactness 0/1 Law: Proof Finite Models

O0@000000000

Review: Probabilities
Assume, for simplicity, the language of graphs: o = (E).

We defined p,, using counting: p,(p) = iﬁ'

E.g. un(Vx3IyE(x,y)) = % Equivalently:

o Let G, be obtained by including each edge (i,j), i,j € [n], randomly
and independently with probability 1/2.

@ Then pn(p) = Prob(G, = ¢).
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Revie Compactness 0/1 Law: Proof Finite Models
[e]e]e]e] 000800000000 000

Review: Tricks from Probability Theory

o If v1,¢2,... are independent, then
pn(p1 Apa A-e) = pn(p1) - pin(p2)

@ To show that p,(p1 Ao A=) is “large”,
show that 1,((=¢1) Vv (=¢2) Vv --+) is “small”.

@ To show that p,(p1 Vo Vv--)is “small”, use the union bound:
(1 V 92 Vo) < pin(p1) + pn(p2) + -
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The Extension Formulas and the Extension Axioms
For k >0 denote Sy = ([k] x {k}) u ({k} x [k]) and A c 5.
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Compactness 0/1 Law: Proof Finite Models

O000@0000000

The Extension Formulas and the Extension Axioms
For k >0 denote Sy = ([k] x {k}) u ({k} x [k]) and A c 5.

EFin(xt,..,xi-1,x) = N\ E(xioxp)an N\ =E(xi,x)

(ij)el (ij)eSk-A
EAk’A = VX1 .. VXk_l( /\ (X,' * XJ)) - HXk(/\(Xk * X,') A EFk7A)
i<j<k i<k

It says: we can extend xi,...,X,_1 With x, as prescribed by A.
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Compactness 0/1 Law: Proof Finite Models
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The Extension Formulas and the Extension Axioms
For k >0 denote Sy = ([k] x {k}) u ({k} x [k]) and A c 5.

EFin(xt,..,xi-1,x) = N\ E(xioxp)an N\ =E(xi,x)

(ij)el (ij)eSk-A
EAk’A = VX1 .. VXk_l( /\ (X,' * XJ)) - HXk(/\(Xk * X,') A EF;(7A)
i<j<k i<k

It says: we can extend xi,...,X,_1 With x, as prescribed by A.

E(Xl,X5) N —|E(X5,X1)/\

X4
% E(x2,x5) A E(x5,x2)A
X5 X

5 -E(x3,x5) A ~E(x5,Xx3)A
—E(xq,x5) N E(x5,X4)A
%4 E(xs,x5)
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0/1 Law: Proof
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Claim 1: lim, up(EAka) =1

EFen(xt,--oxe-1,x) = /N E(xinx)n N\ —E(xi,x)

(ij)eds (i)eSi-A
EAk,A =Vxg... VXk_l( /\ (X,' * XJ)) - ka(/\(xk * X,') A EF;QA)
i<j<k i<k
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Claim 1: lim, up(EAka) =1

EFen(xt,--oxe-1,x) = /N E(xinx)n N\ —E(xi,x)

(ij)eds (i)eSi-A
EAk,A =Vxg... VXk_l( /\ (X,' * XJ)) - ka(/\(xk * X,') A EF;QA)
i<j<k i<k

For fixed k: how many extension axioms are there?
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0/1 Law: Proof
000008000000

Claim 1: lim, up(EAka) =1

EFen(xt,--oxe-1,x) = /N E(xinx)n N\ —E(xi,x)
(ij)eA (ij)eSk-A

EAk,A = VXl e VXk_l( /\ (X,' * XJ)) — ka(/\(xk * X,') A EF;QA)

i<j<k i<k

For fixed k: how many extension axioms are there? 4k-1.2,
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[e]e]e]e] [e]e]e]e]e] lelelele]e]e] 000

Claim 1: lim, up(EAka) =1

EFen(xt,--oxe-1,x) = /N E(xinx)n N\ —E(xi,x)
(ij)eA (ij)eSk-A

EAk,A = VXl e VXk_l( /\ (X,' * XJ)) — ka(/\(xk * X,') A EF;QA)

i<j<k i<k

For fixed k: how many extension axioms are there? 4k-1.2,
For a1,...,ak-1,ax € [n], what is un(EFi a(a1,...,ak-1,3k))?
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Revie Compactness 0/1 Law: Proof Finite Models
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Claim 1: lim, up(EAka) =1

EFen(xty o ooxk-1.6) = N\ EGxix) A N\ —E(xi,x))
(i)eA (ij)eSk-A
EAk,A = VXl e VXk_l( /\ (X,' * XJ)) — ka(/\(xk * X,') A EF;QA)
i<j<k i<k
For fixed k: how many extension axioms are there? 4k-1.2,
For a1,...,ak-1,ax € [n], what is un(EFi a(a1,...,ak-1,3k))? 221_1
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0/1 Law: Proof
000008000000

Claim 1: lim, up(EAka) =1

EFen(xt,--oxe-1,x) = /N E(xinx)n N\ —E(xi,x)

(ij)eds (i)eSi-A
EAk,A =Vxg... VXk_l( /\ (X,' * XJ)) - ka(/\(xk * X,') A EF;QA)
i<j<k i<k

To prove that p,(EAk ) is large, show that 11,(=EAk A) is small:
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Claim 1: lim, up(EAka) =1

EFen(xt,--oxe-1,x) = /N E(xinx)n N\ —E(xi,x)

(ij)eds (i)eSi-A
EAk,A =Vxg... VXk_l( /\ (X,' * XJ)) - ka(/\(xk * X,') A EF;QA)
i<j<k i<k

To prove that p,(EAk ) is large, show that 11,(=EAk A) is small:

y,n(—‘EAk,A) = ln (E|X1 e Ele_l (/\(X,‘ * XJ) A VXk (/\(Xk * X,') - ﬁEFk,A)))
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Claim 1: lim, up(EAka) =1

EFen(xt,--oxe-1,x) = /N E(xinx)n N\ —E(xi,x)

(ij)eds (i)eSi-A
EAk,A =Vxg... VXk_l( /\ (X,' * XJ)) - HXk(/\(Xk * X,') A EF;QA)
i<j<k i<k

To prove that p,(EAk ) is large, show that 11,(=EAk A) is small:

y,n(—‘EAk,A) = ln (E|X1 oo IXko (/\(X,‘ * XJ) A Y Xy (/\(Xk * X,') - ﬁEFk,A)))

< > un( N —'EFk,A(317~--7ak—laak))
n],a;#aj ake[n]

ay,..,ak-1€[ —{a1,..,ak-1}
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Claim 1: lim, up(EAka) =1

EFen(xt,--oxe-1,x) = /N E(xinx)n N\ —E(xi,x)

(ij)eds (i)eSi-A
EAk,A =Vxg... VXk_l( /\ (X,' * XJ)) - HXk(/\(Xk * X,') A EF;QA)
i<j<k i<k

To prove that p,(EAk ) is large, show that 11,(=EAk A) is small:

y,n(—‘EAk,A) = ln (E|X1 oo IXko (/\(X,‘ * XJ) A Y Xy (/\(Xk * X,') - ﬁEFk,A)))

< > un( N —'EFk,A(317~--7ak—laak))
n],a;#aj ake[n]

at,...,ak-1€[ —{a1,...,ak-1}

= Z H ,u,n(—|EFk7A(a]_,...,ak)) Why?

a1,...,ak-1€[n],a;i#a; ae[n]—{a1,...,ak_1}
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Claim 1: lim, up(EAka) =1

EFen(xt,--oxe-1,x) = /N E(xinx)n N\ —E(xi,x)

(ij)eds (i)eSi-A
EAk,A =Vxg... VXk_l( /\ (X,' * XJ)) - HXk(/\(Xk * X,') A EF;QA)
i<j<k i<k

To prove that p,(EAk ) is large, show that 11,(=EAk A) is small:

y,n(—‘EAk,A) = ln (E|X1 oo IXko (/\(X,‘ * XJ) A Y Xy (/\(Xk * X,') - ﬁEFk,A)))

< > un( N —'EFk,A(317~--7ak—laak))
n],a;#aj ake[n]

a1,...,ak_16[ —{317‘“’3/«1}
= Z H Mn(—.EFk7A(al,...,ak)) why?
a1,...,ak-1€[n],a;i#a; ae[n]—{a1,...,ax_1}
= Z H c wherec=1—22k%1<1

a1,...,ak-1€[n],a;i#a; age[n]-{a1,...,ax-1}
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Claim 1: lim, up(EAka) =1

EFen(xt,--oxe-1,x) = /N E(xinx)n N\ —E(xi,x)

(ij)eds (i)eSi-A
EAk,A =Vxg... VXk_l( /\ (X,' * XJ)) - HXk(/\(Xk * X,') A EF/QA)
i<j<k i<k

To prove that p,(EAk ) is large, show that 11,(=EAk A) is small:

y,n(—‘EAk,A) = ln (E|X1 oo IXko (/\(X,‘ * XJ) A Y Xy (/\(Xk * X,') - —|EFk7A)))

< > un( N —'EFk,A(317~--7ak—laak))
n],a;#aj ake[n]

a1,...,ak_16[ —{317‘“’3/«1}
= Z H Mn(—.EFk7A(al,...,ak)) why?
a1,...,ak-1€[n],a;i#a; ae[n]—{a1,...,ax_1}
= Z H c Wherec=1—22k%1<1

a1,...,ak-1€[n],a;i#a; age[n]-{a1,...,ax-1}
Snk—].Cn—k+]. N 0
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Claim 2: ¥ has a Countable Model

Y ={EAca | k>0,A c S} the set of extension axioms.
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Claim 2: ¥ has a Countable Model

Y ={EAca | k>0,A c S} the set of extension axioms.

Y is finitely satisfiable why?

Because forall ¢1,...,om€X, pin(p1 A Apm) =1
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Finite Models
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Claim 2: ¥ has a Countable Model

Y ={EAca | k>0,A c S} the set of extension axioms.

Y is finitely satisfiable why?

Because forall ¢1,...,om€X, pin(p1 A Apm) =1

(Surprisingly, when n is large, there are many finite models for 1, .
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Claim 2: ¥ has a Countable Model

Y ={EAca | k>0,A c S} the set of extension axioms.

Y is finitely satisfiable why?

Because forall ¢1,...,om€X, pin(p1 A Apm) =1

(Surprisingly, when n is large, there are many finite models for 1, .

By compactness, 2 has a model.
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Claim 2: ¥ has a Countable Model

Y ={EAca | k>0,A c S} the set of extension axioms.

Y is finitely satisfiable why?

Because forall ¢1,...,om€X, pin(p1 A Apm) =1

(Surprisingly, when n is large, there are many finite models for 1, .

By compactness, ¥ has a model. It must be infinite why?77?
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Review Compactness 0/1 Law: Proof

Finite Models
000000800000 000

Claim 2: ¥ has a Countable Model

Y ={EAca | k>0,A c S} the set of extension axioms.

Y is finitely satisfiable why?

Because forall ¢1,...,om€X, pin(p1 A Apm) =1

(Surprisingly, when n is large, there are many finite models for 1, .

By compactness, ¥ has a model. It must be infinite why?77?

By Lowenheim-Skolem, ¥ has a countable model.
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0/1 Law: Proof
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Claim 3: ¥ Complete

We show ¥ is Rg-categorical
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0/1 Law: Proof
000000080000

Claim 3: ¥ Complete

We show ¥ is Rg-categorical

Fix two countable models A,B: A= {a;j,as,...}, B={b1,bo,...}.
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Compactness

0/1 Law: Proof

) Finite Models
000000080000 000

Claim 3: ¥ Complete

We show ¥ is Rg-categorical
Fix two countable models A, B: A = {ay, az,

Use Back-and-forth argument to construct an isomorphism A =~ B:
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..}, B={by,bs,...}.

15/29



Claim 3: ¥ Complete

We show ¥ is Rg-categorical

0/1 Law: Proof

000000080000

Finite Models

Fix two countable models A, B: A={aj,as,...}, B={b1, by,

Use Back-and-forth argument to construct an isomorphism A =~ B:
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Claim 3: ¥ Complete

We show ¥ is Rg-categorical
Fix two countable models A, B: A={aj,as,...}, B={b1, by,

Use Back-and-forth argument to construct an isomorphism A =~ B:

a a »
¥ o
ag a,*
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0/1 Law: Proof

000000080000

Claim 3: ¥ Complete

We show ¥ is Rg-categorical
Fix two countable models A, B: A={aj,as,...}, B={b1, by,

Use Back-and-forth argument to construct an isomorphism A =~ B:

TN
a a »
( X \ ~a,
ag -
-~
H
b, by v
( 5 \ > by
b, b,
-~
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0/1 Law: Proof

) Finite Models
000000080000 000

Claim 3: ¥ Complete

We show ¥ is Rg-categorical
Fix two countable models A, B: A={aj,as,...}, B={b1, by,

Use Back-and-forth argument to construct an isomorphism A =~ B:

TN
a a
( . \ %
ag EW
-~
H
AL v
L\ b
by “b,*
-~

By the Los-Vaught test, > is complete.
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0/1 Law: Proof
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Every 1,(p) converges to 0 or to 1

Let ¢ be any FO sentence

> is complete, hence either X = ¢ or X E —¢.
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Every 1,(p) converges to 0 or to 1

Let ¢ be any FO sentence

> is complete, hence either X = ¢ or X E —¢.

Case 1: ¥ = .
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Compactness 0/1 Law: Proof Finite Models

Every 1,(p) converges to 0 or to 1
Let ¢ be any FO sentence

> is complete, hence either X = ¢ or X E —¢.

Case 1: ¥ = .

By compactness, then there exists a finite set {1,
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Compactness 0/1 Law: Proof Finite Models

Every 1,(p) converges to 0 or to 1
Let ¢ be any FO sentence
> is complete, hence either X = ¢ or X E —¢.

Case 1: ¥ = .

By compactness, then there exists a finite set {¢1,...,¢om} E ¢

It follows E w1 A Aoy = .
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Compactness 0/1 Law: Proof Finite Models
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Every 1,(p) converges to 0 or to 1

Let ¢ be any FO sentence

> is complete, hence either X = ¢ or X E —¢.

Case 1: ¥ = .

By compactness, then there exists a finite set {¢1,...,¢om} E ¢

It follows E w1 A Aoy = .

It follows 1n() > (1 A= Am) = 1
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0/1 Law: Proof Finite Models
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Every 1,(p) converges to 0 or to 1

Let ¢ be any FO sentence

> is complete, hence either X = ¢ or X E —¢.

Case 1: ¥ = .

By compactness, then there exists a finite set {¢1,...,¢om} E ¢
It follows = @1 A Aoy = .

It follows 1n() > (1 A= Am) = 1

Case 2: ¥ = —p. Then u,(p) — 0 similarly.
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Review

Compactness 0/1 Law: Proof Finite Models
000000000800 000

Recap of the Proof

Set of extension axioms, X; they have u, - 1.

Compactness Theorem: ¥ has a model.

Lowenheim-Skolem Theorem: ¥ has a countable model.

Back-and-forth argument: all countable models of ¥ are isomorphic.

Los-Vaught: X is complete: if ¥ = ¢ then () — 1, otherwise — 0.
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Application of the 0/1 Law

Show that the property “the graph G has an even number of edges” is not
expressible in FO.
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Application of the 0/1 Law

Show that the property “the graph G has an even number of edges” is not
expressible in FO.

Suppose ¢ says “|E| is even”.
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Application of the 0/1 Law

Show that the property “the graph G has an even number of edges” is not
expressible in FO.

Suppose ¢ says “|E| is even”.

Then, forall n, ps(p) = % (why??), and pn(p) — %
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Application of the 0/1 Law

Show that the property “the graph G has an even number of edges” is not
expressible in FO.

Suppose ¢ says “|E| is even”.
Then, forall n, pa(¢) = 3 (why??), and ps(p) > 1.

Contradiction! Hence “|E| is even” is not expressible in FO.
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Discussion

@ The 0/1 law fails when o has constants: pu(E(a, b)) = % HW1!

e Undirected Radom Graph (Rado Graph) has explicit construction.
» Look it up in Libkin's book, or on wikipedia.
» Give explicit construction for directed graph.
» Give explicit construction for arbitrary o.

o We assumed pun(E(i,j)) = % Same holds for any p,(E(i,j)) = c.

@ In the Erdds-Rényi random graph G(n, p,), p, depends on n.
Spencer, The Strange Logic of Random Graphs.
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Problems over Finite Models

We will consider only finite modes A from now on.

We may consider a fragment of FO, or an extension of FO.

e Static Analysis: does ¢ have a finite model? does ¢ — 1 hold in all
finite models? Does ¢ =% hold in all finite models?

@ Model checking (a.k.a. query evaluation): check whether A & ¢.

@ Expressivity: given a property, can we express it using a sentence ¢?
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Restrictions and Extensions of FO

e Conjunctive queries, unions of conjunctive queries (next lecture)

@ Restriction: FO *: extensions FO + Ifp, LY. ;

ocow'!

restriction /extension: L% . (next week)

@ Second order: SO, MSO, ESO, EMSO. (will discuss too)
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Statics Analysis

Goal: check some property of sentence(s) based only on the syntax.
Examples:

@ SATsin(v): undecidable by Trakhtenbrot's theorem.
o Finite validity: kg, ¢ undecidable why?77

e Finite implication: kg, (¢ = ¥): undecidable.

e Finite equivalence: =, (¢ =): undecidable.

These problems may be decidable in fragments of FO: examples next
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The Finite Model Property

Let L ¢ FO be a subset of FO.

Definition
We say that L has the finite model property, or it is finitely controllable if,
Vo € L: if ¢ has any model, then ¢ has a finite model.
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Compactness
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The Finite Model Property

Let L ¢ FO be a subset of FO.

Definition
We say that L has the finite model property, or it is finitely controllable if,
Vo € L: if ¢ has any model, then ¢ has a finite model.

Definition
We say that L has the small model property if there exists a computable

function f : N - N s.t.,
Vi € L: if ¢ has any model then it has a finite model of size < f(|g|).
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The Finite Model Property Implies Decidability

Theorem
If L has the small model property then L is decidable. J
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Finite Models

The Finite Model Property Implies Decidability

Theorem
If L has the small model property then L is decidable.

Static Analysis
000@000

To check SAT (¢) enumerate all structures up to size f(|¢|);
if any is a model return YES, if none is a model return NO.
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The Finite Model Property Implies Decidability

Theorem
If L has the small model property then L is decidable.

Static Analysis
000@000

To check SAT (¢) enumerate all structures up to size f(|¢|);
if any is a model return YES, if none is a model return NO.

Theorem
If L has the finite model property then L is decidable.
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The Finite Model Property Implies Decidability

Theorem
If L has the small model property then L is decidable. J

To check SAT (¢) enumerate all structures up to size f(|¢|);
if any is a model return YES, if none is a model return NO.

Theorem
If L has the finite model property then L is decidable. J

To check SAT (¢) enumerate all finite structures A AND all proofs + :
o If SAT(y) then some finite model will show up in the first list; YES
o If UNSAT(¢) then —¢ will show up in the second list; NO
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Application 1: Bernays-Schonfinkel

Let L be the set of sentences with quantifier prefix 3*V*.
L is called the Bernays-Schonfinkel class.

Theorem

The set of 3*V* sentences has the small model property, hence it is
decidable.
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Application 1: Bernays-Schonfinkel

Let L be the set of sentences with quantifier prefix 3*V*.
L is called the Bernays-Schonfinkel class.

Theorem

The set of 3*V* sentences has the small model property, hence it is
decidable.

Proof ¢ = 3xq3---IxmVy1---Vynt).
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Application 1: Bernays-Schonfinkel

Let L be the set of sentences with quantifier prefix 3*V*.
L is called the Bernays-Schonfinkel class.

Theorem

The set of 3*V* sentences has the small model property, hence it is
decidable.

Proof ¢ = 3xq3---IxmVy1---Vynt).

Let A be a model of ¢.
Then there exists values a = (a1,...,am) s.t. AE Vy1---Vy,[a/x]
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Application 1: Bernays-Schonfinkel

Let L be the set of sentences with quantifier prefix 3*V*.
L is called the Bernays-Schonfinkel class.

Theorem

The set of 3*V* sentences has the small model property, hence it is
decidable.

Proof ¢ = 3xq3---IxmVy1---Vynt).

Let A be a model of ¢.
Then there exists values a = (a1,...,am) s.t. AE Vy1---Vy,[a/x]

Let Ag be the structure restricted to the value a1, ..., an.
Then: Ag = Vy;---Vypla/x]
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Application 1: Bernays-Schonfinkel

Let L be the set of sentences with quantifier prefix 3*V*.
L is called the Bernays-Schonfinkel class.

Theorem

The set of 3*V* sentences has the small model property, hence it is
decidable.

Proof ¢ = 3xq3---IxmVy1---Vynt).

Let A be a model of ¢.
Then there exists values a = (a1,...,am) s.t. AE Vy1---Vy,[a/x]

Let Ag be the structure restricted to the value a1, ..., an.
Then: Ag = Vy;---Vypla/x]

What is the “small model” function f(|p|)?
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FO? is FO restricted to using only two variables x, y.
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Application 2: FO?
FO? is FO restricted to using only two variables x, y.

Notice that we can reuse the variables, like in:
Ix3y (E(x,y) A 3x(E(y,x) A 3yE(x,y)))

Finite Model Theory Lecture 3 Spring 2025 28/29



Review Compactness 0 f Finite Models Static Analysis
o 0000 000 Yolo) 000 0000080

Application 2: FO?
FO? is FO restricted to using only two variables x, y.

Notice that we can reuse the variables, like in:
Ix3y (E(x,y) A 3x(E(y,x) A 3yE(x,y)))

Theorem

FO? has the small model property, with an exponential f. More precisely:
for any sentence in p € FO?, if o is satisfiable then it has a model of size
2002D I particular, FO? is decidable.

This is a result by Gradel, Kolaitis, Vardi. We will not prove it.

Pay attention to Trakhtenbrot’s proof: should require > 3 variables.
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Summary of Static Analysis

o Basically, every static analysis question is undecidable.

@ Can be decidable in special cases:

» FO? (but not FOX for k > 3).

» Bernays-Schonfinkel class 3*V*; a.k.a. EPF. (essentially propositional
formula)
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