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Announcement: Grading

By default, the course is Credit/No-credit.

If you want this course for a PhD/BSMS requirement, you need a grade:

@ Send me an email

o | will ask you to submit all the homework assignments
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Review 0 aw: Statement

Review: Basic Concepts
Vocabulary o, structure A

Formula, sentence ¢, set of sentences
Definition of Truth: AE ¢

Implication, Validity: ¥ E ¢, E ¢, VAL(p)

Satisfiability: SAT(y), SAT(X)
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Review

Review: What do these Sentences Say?
IxAydz(x#y)A(x#2) A (y # 2)

IxJyIzVu(u=x)v (u=y) Vv (u=2z)

IxJydz(x#y)A(x+2) A (y + 2)
ANu(lu=x)v(u=y)Vv(u=2z)
A=E(x,x) NE(x,y) N=E(x,Zz)
A=E(y,x) n=E(y,y) AE(y,z)
A-E(z,x) NE(z,y) A=E(z,2)
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Review: What do these Sentences Say?

IxAydz(x#y)A(x#2) A (y # 2) There are at least 3 elements

IxJyIzVu(u=x)v (u=y) Vv (u=2z)

IxJydz(x#y)A(x+2) A (y + 2)
ANu(lu=x)v(u=y)Vv(u=2z)
A=E(x,x) NE(x,y) N=E(x,Zz)
A=E(y,x) n=E(y,y) AE(y,z)
A-E(z,x) NE(z,y) A=E(z,2)
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Review
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Review: What do these Sentences Say?

IxAydz(x#y)A(x#2) A (y # 2) There are at least 3 elements

IxJyIzVu(u=x)v(u=y) Vv (u=2) There are at most 3 elements

IxJydz(x#y)A(x+2) A (y + 2)
ANu(lu=x)v(u=y)Vv(u=2z)
A=E(x,x) NE(x,y) N=E(x,Zz)
A=E(y,x) n=E(y,y) AE(y,z)
A-E(z,x) NE(z,y) A=E(z,2)
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Review: What do these Sentences Say?

IxAydz(x#y)A(x#2) A (y # 2) There are at least 3 elements
IxJyIzVu(u=x)v(u=y) Vv (u=2) There are at most 3 elements
IAyFz(x £ y) A (x £ 2) A (y % 2) The graph is isomorphic

to:
ANu(u=x)v(u=y)v(u=2z)

A=E(x,x) NE(x,y) N=E(x,Zz)
/\_'E(yvx)/\ﬁE(.)Gy) /\E(y,Z)
A-E(z,x) NE(z,y) A=E(z,2)
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Infinity Axioms

We have seen examples where SAT(X) is true SATg,(X) is false. E.g.
Y = {¢2,¥3,...} where ¢, says “there are > n elements”
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Review 0/1 La
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Infinity Axioms

We have seen examples where SAT(X) is true SATg,(X) is false. E.g.
Y = {¢2,¥3,...} where ¢, says “there are > n elements”

An infinity axiom is a single sentence s.t. SAT(¢) and —=SATn ().
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Infinity Axioms

We have seen examples where SAT(X) is true SATg,(X) is false. E.g.
Y = {¢2,¥3,...} where ¢, says “there are > n elements”

An infinity axiom is a single sentence s.t. SAT(¢) and —=SATn ().

Examples:

@ From the End-of-the-line example: ©1 A 2 A 3 A —p.
@ < is a total order (3 axioms) and it is dense (1 axiom).

@ A very short infinity axiom:
Vx(=E(x,x) A Ju(E(x,u) AVy(E(y,x) = E(y,u))))
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The Sentence Map

FO sentences

Finitely .
valid Valid
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The Sentence Map

FO sentences
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The Sentence Map

FO sentences

Any infinity
axiom
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The Sentence Map

FO sentences

Any infinity
axiom
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The Sentence Map

FO sentences

End-of-the-line

Any infinity
axiom
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The Sentence Map

FO sentences

End-of-the-line

Any infinity
axiom
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Statement of the 0/1 Law
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Revie 0/1 Law: Statement
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The Zero-One Law for FO

@ Some sentences are neither true (in all structures) nor false.

@ The Zero-One Law says this: over finite structures, every sentence is
true or false with high probability.

@ Proven by Fagin in 1976 (part of his PhD thesis).
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The Zero-One Law for FO

Vocabulary o has only relation symbols (no functions, no constants)

Recall: [n]={1,2,...,n} and T = “true”.
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The Zero-One Law for FO

Vocabulary o has only relation symbols (no functions, no constants)

Recall: [n]={1,2,...,n} and T = “true”.

#ap CH{D | D =[n],DE p}]
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The Zero-One Law for FO

Vocabulary o has only relation symbols (no functions, no constants)

Recall: [n]={1,2,...,n} and T = “true”.

#ap CH{D | D =[n],DE p}]

#, T %" number of models with universe [n]
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The Zero-One Law for FO

Vocabulary o has only relation symbols (no functions, no constants)

Recall: [n]={1,2,...,n} and T = “true”.

wp €D | D =[n], Dk ¢}

#, T %" number of models with universe [n]

n( ) def #n(P
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The Zero-One Law for FO

Vocabulary o has only relation symbols (no functions, no constants)

Recall: [n]={1,2,...,n} and T = “true”.

def,

H#np =

#, T %" number of models with universe [n]

n( ) def #n(P

{D|D=[n],Dk e}

For every sentence , either lim,_, oo pin(©) =0 or limp_oo pin(p) = 1.

Theorem (Fagin'1976) J

Finite Model Theory Lecture 2 Spring 2025 9/39



0/1 Law: Statement
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Examples

Vocabulary of graphs: o = {E}. Compute these quantities:
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0/1 Law: Statement
000@000

Examples

Vocabulary of graphs: o = {E}. Compute these quantities:

#n, T = number of graphs with n vertices = 777
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0/1 Law: Statement
000@000

Examples

Vocabulary of graphs: o = {E}. Compute these quantities:

#n, T = number of graphs with n vertices = on’
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0/1 Law: Statement
000@000

Examples

Vocabulary of graphs: o = {E}. Compute these quantities:

#n, T = number of graphs with n vertices = on’

@ =YxVyE(x,y)

@ =3x3yE(x,y)

© =Yx3yE(x,y)
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Examples

Vocabulary of graphs: o = {E}. Compute these quantities:

#n, T = number of graphs with n vertices = on’

@ =VxXVyE(x,y)  #a(p)=1 fin =55 =0

© =3x3yE(x,y)

© =Yx3yE(x,y)
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0/1 Law: Statement
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Examples

Vocabulary of graphs: o = {E}. Compute these quantities:

#n, T = number of graphs with n vertices = on’

=VxVyE(x,y)  #n(p) =1 fin =57 >0
2 2" _1
@ =IxAYE(x,y)  #alp)=2" -1 P = 1

© =Yx3yE(x,y)
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[e]e]e] le]ele)

Examples

Vocabulary of graphs: o = {E}. Compute these quantities:

#n, T = number of graphs with n vertices = on’

1
=VxVyE(x,y)  #n(p) =1 fin =57 >0
2 2" 1
@ =IxAYE(x,y)  #alp)=2" -1 P = 1
=V x3yE( =(2"-1)" G YU
@ YE(x,y) #n() =( ) Hn ="~
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The Sentence Map Revised

FO sentences

Unsat w.h.p.

Finitel Finitel
Y vai | Valid
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Discussion

Attempted proof: Derive the general formula #,¢, then compute
. 2 .

lim #,¢/2™ and observe it is 0 or 1.

Issue: we don't know how to compute #,p in general.
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Discussion

Attempted 2proof: Derive the general formula #,p, then compute
lim #,¢/2™ and observe it is 0 or 1.

Issue: we don't know how to compute #,¢ in general. Examples:
o #n(VxVy(E(x,y) > E(y,x))) = 7777
o #n(3x3y3z(E(x,y) A E(x,z) AE(y,2))

Finite Model Theory Lecture 2
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Discussion

Attempted 2proof: Derive the general formula #,p, then compute
lim #,¢/2™ and observe it is 0 or 1.

Issue: we don't know how to compute #,¢ in general. Examples:
n(n-1)

o #,(YxVy(E(x,y) > E(y,x)))=2"2
o #,(3IxIyIz(E(x,y) NE(x,2) AN E(y,2))

Finite Model Theory Lecture 2

Spring 2025 12 /39



0/1 Law: Statement

ess ty m-Skolem-Tarski
0000080 OC o] [e O

Discussion

Attempted 2proof: Derive the general formula #,p, then compute
lim #,¢/2™ and observe it is 0 or 1.

Issue: we don't know how to compute #,¢ in general. Examples:
n(n-1)

o #n(VxVy(E(x,y) > E(y,x)))=2"7"

o #,(3IxIyIz(E(x,y) NE(x,2) AN E(y,2)) Complexity is open!
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Discussion

Attempted 2proof: Derive the general formula #,p, then compute
lim #,¢/2™ and observe it is 0 or 1.

Issue: we don't know how to compute #,¢ in general. Examples:
n(n-1)

o #n(VXVy(E(x,y) = E(y,x))) =272
o #,(IxIyIz(E(x,y) NE(x,2z) NE(y,z)) Complexity is open!

Theorem

There exists ¢ where computing #,p given input n is #Py-complete. J
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Discussion

Attempted 2proof: Derive the general formula #,p, then compute
lim #,¢/2™ and observe it is 0 or 1.

Issue: we don't know how to compute #,¢ in general. Examples:

n(n-1)
° #n(vxvy(E(Xay) - E(_y,X))) = 2 2
o #,(IxIyIz(E(x,y) NE(x,2z) NE(y,z)) Complexity is open!
Theorem
There exists ¢ where computing #,p given input n is #Py-complete. J

We will prove the 0/1 law using classical model theory (following Fagin).
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The Classics

Godel's Completeness Theorem

@ Church-Turing's Undecidability Theorem

@ Lowenheim-Skolem(-Tarski)

Los-Vaught Test.

The Compactness Theorem (maybe next time?)
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heim-Skolem-Tarski

Spring 2025

13/39



Revie

0/1 Law: Statement C ess bility Swenheim-Skolem-Tarski
0000000 0000000 oC

The Classics

Godel's Completeness Theorem

Church-Turing’s Undecidability Theorem

Léwenheim-Skolem(-Tarski) Used in the 0/1 law

Los-Vaught Test. Used in the 0/1 law

The Compactness Theorem (maybe next time?) Used in the 0/1 law
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Godel's Completeness Theorem
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0®00000

Overview

@ Godel was motivated by Hilbert's Entscheidungsproblem.

o Part of his PhD Thesis. (We need to raise the bar at UW!)

@ In essence, proves that there exists semi-decision procedure for ¥ E ¢.

@ We can't do better. Church-Turing’s theorem: ¥ & ¢ is undecidable.
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Axioms

There are dozens of choices for the axioms®. Recall = is ¢ — F.

Arip = (¥ = ¢)

Ari(p = (Y =) = ((p=>¢) = (¢ =7))

Az immp =

Ay Vxp > p[t/x] for any term t
As (Vx(io > 1)) — (¥x(2) = ¥x(1))

Ag :p = Vx(p) x ¢ FreeVars(y)
A7:x=x

Ag:(x=y) = (v = oly/x])

These are axiom schemas: each A; defines an infinite set of formulas.

'Fans of the Curry-Howard isomorphisms will recognize typed A-calculus in A;, As.
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Deductions (a.k.a. Proofs)

Modus Ponens: if and are true, then is true.

Let X be a set of formulas.

Definition (Deduction, or Proof)

A deduction X - ¢ is a sequence 1, @2, ..., ¥, such that, for every i:
@ ; is an instance of an Axiom Aj; — Ag, or
@ pjeX, or
@ (; is obtained by modus ponens from two earlier formulas, or

Q@ Yn =Y.
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Example of a Deduction

Recall the axioms: Prove

A1 = (Y= )
Ax (o= (Y =)

> ((p=>¢) > (p=>7))
Az:...
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Completeness
0000000

Example of a Deduction

Recall the axioms: Prove

AL = ((p = 9) > )
A1 = (Y= )
Ax (o= (Y =)
> ((p=>¢) > (p=>7))
Az:...
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Completeness
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Example of a Deduction

Recall the axioms: Prove

A1 = ((p = 9) > )

AL = (Y — @) Az (o= ((g = 9) > )

Ay i(p = (=) > ((p=(p=9) = (¢=9))
= (=)= (¢—=7))

A3Z...
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Example of a Deduction

Recall the axioms: Prove
Arip = ((p > p) ~ @)
Avip = (U~ 9) Axi(p = (> 9) > )
Ar:(p = (¥ > 7)) = ((p= (=)= (p—=9))
> (¢~ ¥) > (p~17)) MP:(p > (v = ©)) = (¢ > ¢)
A3

Finite Model Theory Lecture 2 Spring 2025 18 /39
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Example of a Deduction

Recall the axioms: Prove
Ar:p = ((p=>9) > 0)
Arip = (V=) Az (o= ((p = 9) > )
Az (o= (¥ =) = ((p=(p=9) > (p—>9)
= ((p=vY) > (0=17)) MP:(¢ = (p = ) = (¢ =)
Ag:... Ar:(p = (=)
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Example of a Deduction

Recall the axioms: Prove
Ar:p = ((p=>9) > 0)
Arip = (V=) Az (o= ((p = 9) > )
Az (o= (¥ =) = ((p=(p=9) > (p—>9)
= ((p=vY) > (0=17)) MP:(¢ = (p = ) = (¢ =)
Ag:... Ar:(p = (=)
MP :(¢ > )
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Example of a Deduction

Recall the axioms: Prove
Ar:p = ((p=>9) > 0)
Arip = (V=) Az (o= ((p = 9) > )
Az (o= (¥ =) = ((p=(p=9) > (p—>9)
= ((p=vY) > (0=17)) MP:(¢ = (p = ) = (¢ =)
Ag:... Ar:(p = (=)
MP :(¢ > )

Prove at home F - p and ¢ - 9, » w+ ¢ - w.
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Soundness and Completeness

Theorem (Soundness)
If X+ ¢ then ¥ E .

Simple proof by induction.

Theorem (Gédel's Completeness Theorem)
If ¥ =@ then X + .

Constructive proof, but we won't discuss it.

Finite Model Theory Lecture 2
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Discussion of Godel's Theorem

@ Y E  is semantics: it says something about truth.

@ X +  is syntactic: an application of rules.

We can decide if a deduction ¢1, 2, ..., @, = @ is correct.

But it is undecidable if a deduction X + ¢ exists (Church-Turing).
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Undecidability Theorem

Finite Model Theory Lecture 2 Spring 2025 21/39



tatement Undecidability m-Skolem-Tarski

Undecidability

[e] le]ele]e]e)

Recall: VAL(p) means: = ¢

Theorem (Church-Turing)
VAL is undecidable.

It follows that SAT is undecidable, because VAL(y) = =SAT(-y).

In English:

There is no algorithm to check = ¢ or + . Same for X = ¢ or X + ¢.

Finite Model Theory Lecture 2 Spring 2025
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Review: Decidability
A property P is decidable if there exists algorithm A such that:

Alx) = 1 if P(x) is true
e 0 if P(x) is false
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Review: Decidability
A property P is decidable if there exists algorithm A such that:

Alx) = 1 if P(x) is true
e 0 if P(x) is false

P is recursively enumerable, r.e., (a.k.a. semi-decidable), if there exists A:

1 if P(x) is true
Alx) =1 . : .
diverges if P(x) is false

Equivalently, we can enumerates all positive instances xi, X2, X3, .

Finite Model Theory Lecture 2 Spring 2025 23/39
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Review: Decidability
A property P is decidable if there exists algorithm A such that:

Alx) = 1 if P(x) ?s true
0 if P(x) is false
P is recursively enumerable, r.e., (a.k.a. semi-decidable), if there exists A:

1 if P(x) is true

Alx) =1 . : .
diverges if P(x) is false

Equivalently, we can enumerates all positive instances xi, x2, X3, . ..
P is co-recursively-enumerable, co-r.e., if —=P is r.e.
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Review: Decidability
A property P is decidable if there exists algorithm A such that:

Alx) = 1 if P(x) is true
e 0 if P(x) is false

P is recursively enumerable, r.e., (a.k.a. semi-decidable), if there exists A:

1 if P(x) is true
Alx) =1 . : .
diverges if P(x) is false

Equivalently, we can enumerates all positive instances xi, x2, X3, . ..
P is co-recursively-enumerable, co-r.e., if —=P is r.e.

Fact
If P is both r.e. and co-r.e. then P is decidable. J

Proof Enumerate both P and -P.
Spring 2025 23/39



Undecidability
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Validity is R.E. and Satisfiability is Co-R.E.

Assume ¥ is r.e. (E.g. it may be finite.)

Then X+ ¢ is r.e. (why?77), hence ¥ = ¢ is also r.e.
It follows that validity, VAL, is r.e.
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Validity is R.E. and Satisfiability is Co-R.E.
Assume ¥ is r.e. (E.g. it may be finite.)

Then X+ ¢ is r.e. (why?77), hence ¥ = ¢ is also r.e.
It follows that validity, VAL, is r.e.

Immediate consequence: SAT is co-r.e., because SAT(p) = =VAL(—¢).
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Finite v.s. Classical Model Theory

VAL¢,, SATg, differ from VAL, SAT.

Could VALg,, SATg, be decidable?

Finite Model Theory Lecture 2 Spring 2025 25/39



Finite v.s. Classical Model Theory

VAL¢,, SATg, differ from VAL, SAT.
Could VALg,, SATg, be decidable?

There is hope:

@ In classical model theory SAT is co-r.e.

@ In finite model theory SATy, is r.e. why?
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Finite v.s. Classical Model Theory

VAL¢,, SATg, differ from VAL, SAT.
Could VALg,, SATg, be decidable?

There is hope:

@ In classical model theory SAT is co-r.e.

@ In finite model theory SATy, is r.e. why?
Enumerate all finite models A, check AE ¢

Finite Model Theory Lecture 2

owenheim-Skolem-Tarski

Spring 2025
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Trakhtenbrot’s Undecidability Theorem

Theorem (Trakhtenbrot)
SATfi, is undecidable. (We will prove it later.) J
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Trakhtenbrot’s Undecidability Theorem

Theorem (Trakhtenbrot)
SATfi, is undecidable. (We will prove it later.) J
Classical: Finite:

VAL is r.e. VALg, is co-r.e.

SAT is co-r.e. SATg, is r.e.
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Trakhtenbrot’s Undecidability Theorem

Theorem (Trakhtenbrot)
SATfi, is undecidable. (We will prove it later.) J
Classical: Finite:

VAL is r.e. VALg, is co-r.e.

SAT is co-r.e. SATg, is r.e.

No axiomatization of the finite exists! WHY??77?

Finite Model Theory Lecture 2 Spring 2025 26/39



0/1 Law: Statement Co ess Undecidability heim-Skolem-Tarski

[e]e]e]ele]e] )

Discussion

@ All proves of undecidability are by reduction from an undecidable
problem.

@ A simple proof of Church-Turing using the word problem is here
http://www.cis.upenn.edu/~val/CIS682/

o | plan to give (later) a brute-force proof of Trakhtenbrot's thm by
encoding a Turing Machine, since that is reused in descriptive
complexity.
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Lowenheim-Skolem-Tarski Theorem
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Review: Cardinal Numbers

A cardinal number is an equivalence class |A| under bijection.
Ro = |N| is the smallest infinite cardinal number

¢ = |R| is the cardinal of the continuum.

Weird arithmetic: Rg+c=¢, Rgxc=¢ cxc=¢, ...

. . ® 280
Much larger cardinal numbers exists: Rg < 280 < 227° < 22"~ <.
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Lowenheim-Skolem-Tarski Theorem

Suppose the vocabulary ¢ has is finite or countable.

Theorem (Léwenheim-Skolem) J

If ¥ admits an infinite model, then it admits a countable model.

An infinity axiom can say “the world is infinite” but cannot say which
infinite.
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Lowenheim-Skolem Theorem: Proof

“If ¥ admits an infinite model, then it admits a countable model.”
Proof
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Lowenheim-Skolem Theorem: Proof

“If ¥ admits an infinite model, then it admits a countable model.”
Proof

@ Write each ¢ € ¥ in prenex-normal form: (V|3)*%), then “Skolemize":

Vx3yVz3u(p) »VxVz(p[f(x)]y, fa(x,z)/u])

Let X' be the set of Skolemized sentences.
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Lowenheim-Skolem Theorem: Proof

“If ¥ admits an infinite model, then it admits a countable model.”
Proof

@ Write each ¢ € ¥ in prenex-normal form: (V|3)*%), then “Skolemize":

VxIyVz3u(p) »VxVz(plf(x) ]y, fa(x,2)[u])

Let X' be the set of Skolemized sentences.

Finite Model Theory Lecture 2 Spring 2025 31/39



tatement ess Lowenheim-Skolem-Tarski

000@0

Lowenheim-Skolem Theorem: Proof

“If ¥ admits an infinite model, then it admits a countable model.”
Proof

@ Write each ¢ € ¥ in prenex-normal form: (V|3)*%), then “Skolemize":

Vx3yVz3u(p) »VxVz(p[fi(x)]y, (x,2)[u])
Let X' be the set of Skolemized sentences.

@ Y satisfiable iff X’ satisfiable.
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Lowenheim-Skolem Theorem: Proof

“If ¥ admits an infinite model, then it admits a countable model.”
Proof

@ Write each ¢ € ¥ in prenex-normal form: (V|3)*%), then “Skolemize":

Vx3yVz3u(p) =VxVz(e[fi(x)]y, (x,z)/u])
Let X' be the set of Skolemized sentences.
@ Y satisfiable iff X’ satisfiable.

@ Let D be an infinite model of X; hence also of ¥’
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Lowenheim-Skolem Theorem: Proof

“If ¥ admits an infinite model, then it admits a countable model.”
Proof

e Write each ¢ € ¥ in prenex-normal form: (V|3)*4), then “Skolemize”:
Vx3yVz3u(p) »VxVz(e[f(x)]y, f2(x,2)[u])
Let X’ be the set of Skolemized sentences.
e Y satisfiable iff ¥’ satisfiable.
@ Let D be an infinite model of X; hence also of ¥’

@ Choose coun_table ScD, and Ie_t S be its closure under gll f's:
ScS,andcy,...,ch €S implies f(cy,...,cn) €S
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Lowenheim-Skolem Theorem: Proof

“If ¥ admits an infinite model, then it admits a countable model.”
Proof

e Write each ¢ € ¥ in prenex-normal form: (V|3)*4), then “Skolemize”:
Vx3yVz3u(p) »VxVz(e[f(x)]y, f2(x,2)[u])
Let X’ be the set of Skolemized sentences.
e Y satisfiable iff ¥’ satisfiable.
@ Let D be an infinite model of X; hence also of ¥’

@ Choose coun_table ScD, and Ie_t S be its closure under gll f's:
ScS,andcy,...,ch €S implies f(cy,...,cn) €S

@ Then S is a countable model of ¥.
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Discussion

@ We assumed |o| < Rg. If |o| = kK > Rg then the theorem states that X
has a model of cardinality x (same proof).

@ The upwards version is called: Lowenheim-Skolem-Tarski theorem and
states that, for every x > |o|, ¥ has a model of cardinality k.
(Proof: simply increase o by adding x constant symbols to it.)
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The Los-Vaught Test
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Complete Theories

> is complete if, for every sentence ¢ either X = ¢ or X £ —¢p.
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Complete Theories

> is complete if, for every sentence ¢ either X = ¢ or X £ —¢p.

Theorem

If L is r.e. and is complete, then ¥ = ¢ is decidable. J

Proof: To check X E ¢, it suffices to check ¥ + ¢ (Godel's completeness).
To check X + ¢, enumerate all deductions from ¥: ¢1,p2,...

Either ¢ or = will show up.
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The Los-Vaught Test

Call X Rg-categorical if any two countable models of ¥ are isomorphic.

Observation: if D1, Dy are isomorphic then D1 E ¢ iff Dy E .
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The Los-Vaught Test
Call X Rg-categorical if any two countable models of ¥ are isomorphic.

Observation: if D1, Dy are isomorphic then D1 E ¢ iff Dy E .

If X has no finite models and is Rq categorical then it is complete.

Theorem (Los-Vaught Test) J
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The Los-Vaught Test
Call X Rg-categorical if any two countable models of ¥ are isomorphic.

Observation: if D1, Dy are isomorphic then D1 E ¢ iff Dy E .

If X has no finite models and is Rq categorical then it is complete.

Theorem (Los-Vaught Test) J

Proof. Suppose otherwise: there exists ¢ s.t. ¥ ¥ -~ and X ¥ .
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The Los-Vaught Test

Call X Rg-categorical if any two countable models of ¥ are isomorphic.

Observation: if D1, Dy are isomorphic then D1 E ¢ iff Dy E .

If X has no finite models and is Rq categorical then it is complete.

Theorem (Los-Vaught Test) J

Proof. Suppose otherwise: there exists ¢ s.t. ¥ # -~ and X # ¢. Then:
@ Y U{p} has a model Dy; assume it is countable why can we?

@ Y U{-p} has a model Dy; assume it is countable.
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The Los-Vaught Test

Call X Rg-categorical if any two countable models of ¥ are isomorphic.

Observation: if D1, Dy are isomorphic then D1 E ¢ iff Dy E .

If X has no finite models and is Rq categorical then it is complete.

Theorem (Los-Vaught Test) J

Proof. Suppose otherwise: there exists ¢ s.t. ¥ # -~ and X # ¢. Then:
@ Y U{¢} has a model Dy; assume it is countable why can we?
@ Y U{-p} has a model Dy; assume it is countable.
@ Then D1, D5 are isomorphic.

o Contradiction because D1 E ¢ and D; E —p.
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Application of the Los-Vaught Test

The theory of dense linear orders without endpoints is complete.

VxVy-((x <y) A (y <x))
VxVy((x<y)v(x=y)Vv(y<x))
VxVyVz((x<y)n(y<z)—>(x<2z))
Dense: VxVy(x <y - 3Jv(x<v<y))
W /o Endpoints: Vx3udw(u<x <w)
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Application of the Los-Vaught Test

The theory of dense linear orders without endpoints is complete.

VxVy-((x <y) A (y <x))
VxVy((x<y)v(x=y)Vv(y<x))
VxVyVz((x<y)n(y<z)—>(x<2z))
Dense: VxVy(x <y - 3Jv(x<v<y))
W /o Endpoints: Vx3udw(u<x <w)

(Note: linear order is not complete: e.g. it may be dense or not.)
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Application of the Los-Vaught Test

The theory of dense linear orders without endpoints is complete.

VxVy-((x <y) A (y <x))
VxVy((x<y)v(x=y)Vv(y<x))
VxVyVz((x<y)n(y<z)—>(x<2z))
Dense: VxVy(x <y - 3Jv(x<v<y))
W /o Endpoints: Vx3udw(u<x <w)

(Note: linear order is not complete: e.g. it may be dense or not.)

Proof: we apply the Los-Vaught test. Let A, B be countable models.
We prove isomorphism, A = B, using the Back and Forth argument.
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The Back-and-Forth argument
A= ({a1,a,...},<), B=({b1,ba,...},<) are total orders w/o endpoints.
Construct inductively A;, B; s.t. (A;, <) 2 (B;,<).

o Add a; and matching be B s.t. (Ai-1u{a;},<) = (Bi-1u{b},<).

@ Add b; and any matching a € A.
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Statement

The Back-and-Forth argument
A= ({a1,a,...},<), B=({b1,ba,...},<) are total orders w/o endpoints.
Construct inductively A;, B; s.t. (A;, <) 2 (B;,<).

o Add a; and matching be B s.t. (Ai-1u{a;},<) = (Bi-1u{b},<).

Ao={}
a, a ... .. a e
- —t—
b, ... by bg by ... ...
————+— ——
Bo={}

@ Add b; and any matching a € A.
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Statement

The Back-and-Forth argument
A= ({a1,a,...},<), B=({b1,ba,...},<) are total orders w/o endpoints.
Construct inductively A;, B; s.t. (A;, <) 2 (B;,<).

o Add a; and matching be B s.t. (Ai-1u{a;},<) = (Bi-1u{b},<).

A={a;}
as a; .. .. a
1 —t—
b, ... buy by by o ...
1 —F—
B,={bo}

@ Add b; and any matching a € A.
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Statement

The Back-and-Forth argument
A= ({a1,a,...},<), B=({b1,ba,...},<) are total orders w/o endpoints.
Construct inductively A;, B; s.t. (A;, <) 2 (B;,<).

o Add a; and matching be B s.t. (Ai-1u{a;},<) = (Bi-1u{b},<).

A={a;}
as a; .. .. a, Agpeee oo
"ttt —t—
b, ... buy by by e
1 —F—
B,={bo}

@ Add b; and any matching a € A.
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Statement

The Back-and-Forth argument
A= ({a1,a,...},<), B=({b1,ba,...},<) are total orders w/o endpoints.
Construct inductively A;, B; s.t. (A;, <) 2 (B;,<).

o Add a; and matching be B s.t. (Ai-1u{a;},<) = (Bi-1u{b},<).

A={as,as}
as a; .. .. a, Agpeee oo
"ttt —t—
b, ... buy by by e
1 —F—
B,={b70,b1}

@ Add b; and any matching a € A.
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/: Statement

The Back-and-Forth argument
A=({a1,a2,...},<), B=({b1,bo,...},<) are total orders w/o endpoints.
Construct inductively A;, B; s.t. (A;, <) 2 (B;,<).

o Add a; and matching be B s.t. (Ai-1u{a;},<) = (Bi-1u{b},<).

A={as,as}
as a; .. .. a, Agpeee oo
"ttt —t—
by ... b by by by oo
1 —F—
B,={b70,b1}

@ Add b; and any matching a € A.
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/: Statement

The Back-and-Forth argument
A=({a1,a2,...},<), B=({b1,bo,...},<) are total orders w/o endpoints.
Construct inductively A;, B; s.t. (A;, <) 2 (B;,<).

o Add a; and matching be B s.t. (Ai-1u{a;},<) = (Bi-1u{b},<).

As={ay,ag;,a}

by .. by by by by oo ..
T T T T T T T T T

B3={b70,b;,bs7}

@ Add b; and any matching a € A.

Finite Model Theory Lecture 2 Spring 2025 37/39



wenheim-Skolem-Tarski Los-Vaught
O 0000e00

/: Statement

The Back-and-Forth argument
A=({a1,a2,...},<), B=({b1,bo,...},<) are total orders w/o endpoints.
Construct inductively A;, B; s.t. (A;, <) 2 (B;,<).

o Add a; and matching be B s.t. (Ai-1u{a;},<) = (Bi-1u{b},<).

As={ay,ag;,a}

by .o brg By by by ... ...
T T T T T T T T T

B3={b70,b;,bs7}

@ Add b; and any matching a € A.
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/: Statement

The Back-and-Forth argument
A=({a1,a2,...},<), B=({b1,bo,...},<) are total orders w/o endpoints.
Construct inductively A;, B; s.t. (A;, <) 2 (B;,<).

o Add a; and matching be B s.t. (Ai-1u{a;},<) = (Bi-1u{b},<).

An:{apaspaz ......... }
az a; ... .. a, Ay ...
1 T N B | L
T f T T T T T t }
b, bsg by bs; by .. ..

@ Add b; and any matching a € A.
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The Back-and-Forth argument
A= ({a1,a,...},<), B=({b1,ba,...},<) are total orders w/o endpoints.
Construct inductively A;, B; s.t. (A;, <) 2 (B;,<).

o Add a; and matching be B s.t. (Ai-1u{a;},<) = (Bi-1u{b},<).

A={ag,a3,a,,........ }
8 LSRR 3, ag... ..
I e | [
b, bsg by bs; by .. ..

e Add b; and any matching a € A.
Then A=UA;, B=UB, and (A,<) = (B,<).
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Discussion

The Los-Vaught test applies to any cardinal number, as follows:

@ If X has no finite models and is categorical in some infinite cardinal s
(meaning: any two models of cardinality x are isomorphic) then X is
complete.

Useful for your homework.
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The Classics

We discussed:

@ Godel's Completeness Theorem

@ Church-Turing's Undecidability Theorem

o Lowenheim-Skolem(-Tarski) Used in the 0/1 law
@ Los-Vaught Test. Used in the 0/1 law
@ The Compactness Theorem (maybe next time?) Used in the 0/1 law

Next lecture: we will use these to prove the 0/1 law

Finite Model Theory Lecture 2 Spring 2025 39/39



	Review
	Statement of the 0/1 Law
	Completeness
	Undecidability
	Löwenheim-Skolem-Tarski Theorem
	Los-Vaught

