Finite Model Theory Lecture 2: Zero-One Law for FO

Spring 2025

Announcement: Grading

By default, the course is Credit/No-credit.

If you want this course for a $\mathsf{PhD}/\mathsf{BSMS}$ requirement, you need a grade:

• Send me an email

• I will ask you to submit all the homework assignments

Review: Basic Concepts

Vocabulary σ , structure **A**

Formula, sentence φ , set of sentences Σ

Definition of Truth: $\mathbf{A} \models \varphi$

Implication, Validity: $\Sigma \vDash \varphi$, $\vDash \varphi$, VAL (φ)

Satisfiability: SAT(φ), SAT(Σ)

$$\exists x \exists y \exists z (x \neq y) \land (x \neq z) \land (y \neq z)$$

$$\exists x \exists y \exists z \forall u(u = x) \lor (u = y) \lor (u = z)$$

$$\exists x \exists y \exists z (x \neq y) \land (x \neq z) \land (y \neq z)$$

$$\land \forall u(u = x) \lor (u = y) \lor (u = z)$$

$$\land \neg E(x, x) \land E(x, y) \land \neg E(x, z)$$

$$\land \neg E(y, x) \land \neg E(y, y) \land E(y, z)$$

$$\land \neg E(z, x) \land E(z, y) \land \neg E(z, z)$$

$$\exists x \exists y \exists z (x \neq y) \land (x \neq z) \land (y \neq z)$$

There are at least 3 elements

$$\exists x \exists y \exists z \forall u(u = x) \lor (u = y) \lor (u = z)$$

$$\exists x \exists y \exists z (x \neq y) \land (x \neq z) \land (y \neq z)$$

$$\land \forall u(u = x) \lor (u = y) \lor (u = z)$$

$$\land \neg E(x, x) \land E(x, y) \land \neg E(x, z)$$

$$\land \neg E(y, x) \land \neg E(y, y) \land E(y, z)$$

$$\land \neg E(z, x) \land E(z, y) \land \neg E(z, z)$$

$$\exists x \exists y \exists z (x \neq y) \land (x \neq z) \land (y \neq z)$$

There are at least 3 elements

$$\exists x \exists y \exists z \forall u(u = x) \lor (u = y) \lor (u = z)$$

There are at most 3 elements

$$\exists x \exists y \exists z (x \neq y) \land (x \neq z) \land (y \neq z)$$

$$\land \forall u (u = x) \lor (u = y) \lor (u = z)$$

$$\land \neg E(x, x) \land E(x, y) \land \neg E(x, z)$$

$$\land \neg E(y, x) \land \neg E(y, y) \land E(y, z)$$

$$\land \neg E(z, x) \land E(z, y) \land \neg E(z, z)$$

$$\exists x \exists y \exists z (x \neq y) \land (x \neq z) \land (y \neq z)$$

$$\exists x \exists y \exists z \forall u(u = x) \lor (u = y) \lor (u = z)$$

 $\exists x \exists y \exists z (x \neq y) \land (x \neq z) \land (y \neq z)$

 $\wedge \forall u(u = x) \lor (u = y) \lor (u = z)$ $\wedge \neg E(x, x) \land E(x, y) \land \neg E(x, z)$ $\wedge \neg E(y, x) \land \neg E(y, y) \land E(y, z)$ $\wedge \neg E(z, x) \land E(z, y) \land \neg E(z, z)$ There are at least 3 elements

The graph is isomorphic to:

Infinity Axioms

We have seen examples where SAT(Σ) is true SAT_{fin}(Σ) is false. E.g. $\Sigma = \{\varphi_2, \varphi_3, \ldots\}$ where φ_n says "there are $\ge n$ elements"

Infinity Axioms

We have seen examples where $SAT(\Sigma)$ is true $SAT_{fin}(\Sigma)$ is false. E.g. $\Sigma = \{\varphi_2, \varphi_3, \ldots\}$ where φ_n says "there are $\ge n$ elements"

An infinity axiom is a single sentence s.t. $SAT(\varphi)$ and $\neg SAT_{fin}(\varphi)$.

Infinity Axioms

We have seen examples where $SAT(\Sigma)$ is true $SAT_{fin}(\Sigma)$ is false. E.g. $\Sigma = \{\varphi_2, \varphi_3, \ldots\}$ where φ_n says "there are $\ge n$ elements"

An infinity axiom is a single sentence s.t. $SAT(\varphi)$ and $\neg SAT_{fin}(\varphi)$.

Examples:

- From the End-of-the-line example: $\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge \neg \varphi$.
- \leq is a total order (3 axioms) and it is dense (1 axiom).
- A very short infinity axiom: $\forall x(\neg E(x,x) \land \exists u(E(x,u) \land \forall y(E(y,x) \Rightarrow E(y,u))))$

Löwenheim-Skolem-Tarsk

0/1 Law:	Statement
00000	0

Completenes

Undecidability 0000000

Statement of the 0/1 Law

• Some sentences are neither true (in all structures) nor false.

- The Zero-One Law says this: over *finite* structures, every sentence is true or false *with high probability*.
- Proven by Fagin in 1976 (part of his PhD thesis).

Vocabulary σ has only relation symbols (no functions, no constants)

Recall: $[n] = \{1, 2, ..., n\}$ and T = "true".

Vocabulary σ has only relation symbols (no functions, no constants)

Recall: $[n] = \{1, 2, ..., n\}$ and T = "true".

$$\#_n \varphi \stackrel{\mathsf{def}}{=} |\{ \boldsymbol{D} \mid D = [n], \boldsymbol{D} \vDash \varphi \}|$$

9/39

Vocabulary σ has only relation symbols (no functions, no constants)

Recall: $[n] = \{1, 2, ..., n\}$ and T = "true".

$$\#_{n}\varphi \stackrel{\text{def}}{=} |\{\boldsymbol{D} \mid D = [n], \boldsymbol{D} \models \varphi\}|$$
$$\#_{n}\boldsymbol{T} \stackrel{\text{def}}{=} \text{number of models with universe } [n]$$

9/39

Vocabulary σ has only relation symbols (no functions, no constants)

Recall: $[n] = \{1, 2, ..., n\}$ and T = "true".

$$\#_n \varphi \stackrel{\text{def}}{=} |\{ \boldsymbol{D} \mid D = [n], \boldsymbol{D} \models \varphi \}|$$
$$\#_n \boldsymbol{T} \stackrel{\text{def}}{=} \text{number of models with universe } [n]$$
$$\mu_n(\varphi) \stackrel{\text{def}}{=} \frac{\#_n \varphi}{\#_n \boldsymbol{T}}$$

Vocabulary σ has only relation symbols (no functions, no constants)

Recall: $[n] = \{1, 2, ..., n\}$ and T = "true".

$$\#_n \varphi \stackrel{\text{def}}{=} |\{ \boldsymbol{D} \mid D = [n], \boldsymbol{D} \models \varphi \}|$$
$$\#_n \boldsymbol{T} \stackrel{\text{def}}{=} \text{number of models with universe } [n]$$
$$\mu_n(\varphi) \stackrel{\text{def}}{=} \frac{\#_n \varphi}{\#_n \boldsymbol{T}}$$

Theorem (Fagin'1976)

For every sentence φ , either $\lim_{n\to\infty} \mu_n(\varphi) = 0$ or $\lim_{n\to\infty} \mu_n(\varphi) = 1$.

Review 0000	0/1 Law: Statement	Completeness 0000000	Undecidability 0000000	Löwenheim-Skolem-Tarski 00000	
Exa	mples				

Vocabulary of graphs: $\sigma = \{E\}$. Compute these quantities:

Finite Model Theory

Vocabulary of graphs: $\sigma = \{E\}$. Compute these quantities:

 $\#_n T$ = number of graphs with *n* vertices = ???

Vocabulary of graphs: $\sigma = \{E\}$. Compute these quantities:

```
\#_n T = number of graphs with n vertices = 2^{n^2}
```


Vocabulary of graphs: $\sigma = \{E\}$. Compute these quantities:

$$\#_n \mathbf{T}$$
 = number of graphs with *n* vertices = 2^{n^2}

$$\varphi = \forall x \forall y E(x, y)$$

$$\varphi = \exists x \exists y E(x, y)$$

$$\varphi = \forall x \exists y E(x, y)$$

Vocabulary of graphs: $\sigma = \{E\}$. Compute these quantities:

 $\#_n T$ = number of graphs with *n* vertices = 2^{n^2}

$$\varphi = \forall x \forall y E(x, y) \qquad \#_n(\varphi) = 1 \qquad \qquad \mu_n = \frac{1}{2^{n^2}} \to 0$$

$$\varphi = \exists x \exists y E(x, y)$$

$$\varphi = \forall x \exists y E(x,y)$$

Vocabulary of graphs: $\sigma = \{E\}$. Compute these quantities:

 $\#_n T$ = number of graphs with *n* vertices = 2^{n^2}

$$\varphi = \forall x \forall y E(x, y) \qquad \#_n(\varphi) = 1 \qquad \qquad \mu_n = \frac{1}{2^{n^2}} \to 0$$

$$\varphi = \exists x \exists y E(x, y) \qquad \#_n(\varphi) = 2^{n^2} - 1 \qquad \mu_n = \frac{2^{n^2} - 1}{2^{n^2}} \to 1$$

$$\varphi = \forall x \exists y E(x, y)$$

-

2

Vocabulary of graphs: $\sigma = \{E\}$. Compute these quantities:

 $\#_n T$ = number of graphs with *n* vertices = 2^{n^2}

$$\varphi = \forall x \forall y E(x, y) \qquad \#_n(\varphi) = 1 \qquad \qquad \mu_n = \frac{1}{2^{n^2}} \to 0$$

$$\varphi = \exists x \exists y E(x, y) \qquad \#_n(\varphi) = 2^{n^2} - 1 \qquad \mu_n = \frac{2^{n^2} - 1}{2^{n^2}} \to 1$$

$$\varphi = \forall x \exists y E(x, y) \qquad \#_n(\varphi) = (2^n - 1)^n \qquad \mu_n = \frac{(2^n - 1)^n}{2^{n^2}} \to 1$$

- \ n

-

2

(~ n

Löwenheim-Skolem-Tarsk

The Sentence Map Revised

Attempted proof: Derive the general formula $\#_n\varphi$, then compute $\lim \#_n\varphi/2^{n^2}$ and observe it is 0 or 1.

Issue: we don't know how to compute $\#_n \varphi$ in general.

Attempted proof: Derive the general formula $\#_n\varphi$, then compute $\lim \#_n\varphi/2^{n^2}$ and observe it is 0 or 1.

Issue: we don't know how to compute $\#_n \varphi$ in general. Examples:

•
$$\#_n(\forall x \forall y(E(x,y) \rightarrow E(y,x))) = ????$$

•
$$\#_n(\exists x \exists y \exists z (E(x,y) \land E(x,z) \land E(y,z)))$$

12 / 39

Attempted proof: Derive the general formula $\#_n\varphi$, then compute $\lim \#_n\varphi/2^{n^2}$ and observe it is 0 or 1.

Issue: we don't know how to compute $\#_n \varphi$ in general. Examples:

•
$$\#_n(\forall x \forall y(E(x,y) \rightarrow E(y,x))) = 2^{\frac{n(n-1)}{2}}$$

• $\#_n(\exists x \exists y \exists z (E(x,y) \land E(x,z) \land E(y,z)))$

12 / 39

Attempted proof: Derive the general formula $\#_n\varphi$, then compute $\lim \#_n\varphi/2^{n^2}$ and observe it is 0 or 1.

Issue: we don't know how to compute $\#_n \varphi$ in general. Examples:

•
$$\#_n(\forall x \forall y(E(x,y) \rightarrow E(y,x))) = 2^{\frac{n(n-1)}{2}}$$

• $\#_n(\exists x \exists y \exists z (E(x,y) \land E(x,z) \land E(y,z))$

Complexity is open!

Attempted proof: Derive the general formula $\#_n\varphi$, then compute $\lim \#_n\varphi/2^{n^2}$ and observe it is 0 or 1.

Issue: we don't know how to compute $\#_n \varphi$ in general. Examples:

•
$$\#_n(\forall x \forall y(E(x,y) \rightarrow E(y,x))) = 2^{\frac{n(n-1)}{2}}$$

• $\#_n(\exists x \exists y \exists z (E(x,y) \land E(x,z) \land E(y,z))$ Complexity is open!

Theorem

There exists φ where computing $\#_n \varphi$ given input n is $\#P_1$ -complete.
Discussion

Attempted proof: Derive the general formula $\#_n\varphi$, then compute $\lim \#_n\varphi/2^{n^2}$ and observe it is 0 or 1.

Issue: we don't know how to compute $\#_n \varphi$ in general. Examples:

•
$$\#_n(\forall x \forall y(E(x,y) \rightarrow E(y,x))) = 2^{\frac{n(n-1)}{2}}$$

• $\#_n(\exists x \exists y \exists z (E(x,y) \land E(x,z) \land E(y,z))$ Complexity is open!

Theorem

There exists φ where computing $\#_n \varphi$ given input n is $\#P_1$ -complete.

We will prove the 0/1 law using classical model theory (following Fagin).

The Classics

- Gödel's Completeness Theorem
- Church-Turing's Undecidability Theorem
- Löwenheim-Skolem(-Tarski)
- Los-Vaught Test.
- The Compactness Theorem (maybe next time?)

The Classics

- Gödel's Completeness Theorem
- Church-Turing's Undecidability Theorem
- Löwenheim-Skolem(-Tarski) Used in the 0/1 law
- Los-Vaught Test.

Used in the 0/1 law

• The Compactness Theorem (maybe next time?) Used in the 0/1 law

Review	0/1 Law: Statement	Completeness	Undecidability	Löwenheim-Skolem-Tarski
0000	0000000	●000000	0000000	00000

Gödel's Completeness Theorem

Overview

- Gödel was motivated by Hilbert's Entscheidungsproblem.
- Part of his PhD Thesis. (We need to raise the bar at UW!)
- In essence, proves that there exists semi-decision procedure for $\Sigma \vDash \varphi$.
- We can't do better. Church-Turing's theorem: $\Sigma \vDash \varphi$ is undecidable.

Review	0/1 Law: Statement	Completeness	Undecidability	Löwenheim-Skolem-Tarski	Los-Vaught
0000	0000000	00●0000	0000000	00000	
Axio	ms				

There are dozens of choices for the axioms¹. Recall $\neg \varphi$ is $\varphi \rightarrow F$.

$$\begin{array}{ll} A_{1}:\varphi \rightarrow (\psi \rightarrow \varphi) \\ A_{2}:(\varphi \rightarrow (\psi \rightarrow \gamma)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \gamma)) \\ A_{3}:\neg \neg \varphi \rightarrow \varphi \\ A_{4}:\forall x\varphi \rightarrow \varphi[t/x] & \text{for any term } t \\ A_{5}:(\forall x(\varphi \rightarrow \psi)) \rightarrow (\forall x(\varphi) \rightarrow \forall x(\psi))) \\ A_{6}:\varphi \rightarrow \forall x(\varphi) & x \notin \text{FreeVars}(\varphi) \\ A_{7}:x = x \\ A_{8}:(x = y) \rightarrow (\varphi \rightarrow \varphi[y/x]) \end{array}$$

These are axiom schemas: each A_i defines an infinite set of formulas.

¹Fans of the Curry-Howard isomorphisms will recognize typed λ -calculus in A_1, A_2 .

Deductions (a.k.a. Proofs)

Modus Ponens: if
$$\varphi$$
 and $\varphi \rightarrow \psi$ are true, then ψ is true.

Let $\boldsymbol{\Sigma}$ be a set of formulas.

Definition (Deduction, or Proof)

A deduction $\Sigma \vdash \varphi$ is a sequence $\varphi_1, \varphi_2, \ldots, \varphi_n$ such that, for every *i*:

- φ_i is an instance of an Axiom $A_1 A_8$, or
- $\varphi_i \in \Sigma$, or
- φ_i is obtained by modus ponens from two earlier formulas, or
- $\varphi_n = \varphi$.

Löwenheim-Skolem-Tarsk

Example of a Deduction

Recall the axioms:

. . .

Prove
$$\varphi \to \varphi$$

$$A_{1}: \varphi \to (\psi \to \varphi)$$

$$A_{2}: (\varphi \to (\psi \to \gamma))$$

$$\to ((\varphi \to \psi) \to (\varphi \to \gamma))$$

$$A_{3}: \dots$$

Example of a Deduction

Recall the axioms:

. . .

Prove
$$\varphi \to \varphi$$

$$A_1:\varphi \to ((\varphi \to \varphi) \to \varphi)$$

$$A_{1}: \varphi \to (\psi \to \varphi)$$

$$A_{2}: (\varphi \to (\psi \to \gamma))$$

$$\to ((\varphi \to \psi) \to (\varphi \to \gamma))$$

$$A_{3}: \dots$$

Example of a Deduction

Recall the axioms:

. . .

$$A_{1}: \varphi \to (\psi \to \varphi)$$

$$A_{2}: (\varphi \to (\psi \to \gamma))$$

$$\to ((\varphi \to \psi) \to (\varphi \to \gamma))$$

$$A_{3}: \dots$$

Prove
$$\varphi \to \varphi$$

$$A_{1}:\varphi \to ((\varphi \to \varphi) \to \varphi)$$
$$A_{2}:(\varphi \to ((\varphi \to \varphi) \to \varphi))$$
$$\to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$$

Example of a Deduction

Recall the axioms:

. . .

$$A_{1}: \varphi \to (\psi \to \varphi)$$

$$A_{2}: (\varphi \to (\psi \to \gamma))$$

$$\to ((\varphi \to \psi) \to (\varphi \to \gamma))$$

$$A_{3}: \dots$$

Prove $\varphi \to \varphi$

$$A_{1}:\varphi \to ((\varphi \to \varphi) \to \varphi)$$

$$A_{2}:(\varphi \to ((\varphi \to \varphi) \to \varphi))$$

$$\to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$$

$$MP:(\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi)$$

Example of a Deduction

Recall the axioms:

. . .

$$A_{1}: \varphi \to (\psi \to \varphi)$$

$$A_{2}: (\varphi \to (\psi \to \gamma))$$

$$\to ((\varphi \to \psi) \to (\varphi \to \gamma))$$

$$A_{3}: \dots$$

Prove $\varphi \to \varphi$

$$A_{1}: \varphi \to ((\varphi \to \varphi) \to \varphi)$$

$$A_{2}: (\varphi \to ((\varphi \to \varphi) \to \varphi))$$

$$\to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$$

$$MP: (\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi)$$

$$A_{1}: (\varphi \to (\varphi \to \varphi))$$

18/39

Example of a Deduction

Recall the axioms:

. . .

$$A_{1}: \varphi \to (\psi \to \varphi)$$

$$A_{2}: (\varphi \to (\psi \to \gamma))$$

$$\to ((\varphi \to \psi) \to (\varphi \to \gamma))$$

$$A_{3}: \dots$$

Prove
$$\varphi \to \varphi$$

$$A_{1}:\varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi)$$

$$A_{2}:(\varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi))$$

$$\rightarrow ((\varphi \rightarrow (\varphi \rightarrow \varphi)) \rightarrow (\varphi \rightarrow \varphi))$$

$$MP:(\varphi \rightarrow (\varphi \rightarrow \varphi)) \rightarrow (\varphi \rightarrow \varphi)$$

$$A_{1}:(\varphi \rightarrow (\varphi \rightarrow \varphi))$$

$$MP:(\varphi \rightarrow \varphi)$$

18/39

Example of a Deduction

Recall the axioms:

$$A_{1}: \varphi \to (\psi \to \varphi)$$

$$A_{2}: (\varphi \to (\psi \to \gamma))$$

$$\to ((\varphi \to \psi) \to (\varphi \to \gamma))$$

$$A_{3}: \dots$$

$$\dots$$

Prove
$$\varphi \to \varphi$$

$$A_{1}: \varphi \to ((\varphi \to \varphi) \to \varphi)$$

$$A_{2}: (\varphi \to ((\varphi \to \varphi) \to \varphi))$$

$$\to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$$

$$MP: (\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi)$$

$$A_{1}: (\varphi \to (\varphi \to \varphi))$$

$$MP: (\varphi \to \varphi)$$

Prove at home $\boldsymbol{F} \to \varphi$ and $\varphi \to \psi, \psi \to \omega \vdash \varphi \to \omega$.

Soundness and Completeness

Theorem (Soundness) If $\Sigma \vdash \varphi$ then $\Sigma \models \varphi$.

Simple proof by induction.

Theorem (Gödel's Completeness Theorem) If $\Sigma \models \varphi$ then $\Sigma \vdash \varphi$.

Constructive proof, but we won't discuss it.

Discussion of Gödel's Theorem

- $\Sigma \vDash \varphi$ is semantics: it says something about truth.
- $\Sigma \vdash \varphi$ is syntactic: an application of rules.

We can decide if a deduction $\varphi_1, \varphi_2, \ldots, \varphi_n = \varphi$ is correct.

But it is undecidable if a deduction $\Sigma \vdash \varphi$ exists (Church-Turing).

	Un
	00

Undecidability Theorem

Recall: VAL(φ) means: $\models \varphi$

Theorem (Church-Turing)

VAL is undecidable.

It follows that SAT is undecidable, because $VAL(\varphi) = \neg SAT(\neg \varphi)$.

In English:

There is no algorithm to check $\vDash \varphi$ or $\vdash \varphi$. Same for $\Sigma \vDash \varphi$ or $\Sigma \vdash \varphi$.

A property P is decidable if there exists algorithm A such that:

$$A(x) = \begin{cases} 1 & \text{if } P(x) \text{ is true} \\ 0 & \text{if } P(x) \text{ is false} \end{cases}$$

A property P is decidable if there exists algorithm A such that:

$$A(x) = \begin{cases} 1 & \text{if } P(x) \text{ is true} \\ 0 & \text{if } P(x) \text{ is false} \end{cases}$$

P is recursively enumerable, r.e., (a.k.a. semi-decidable), if there exists A:

$$A(x) = \begin{cases} 1 & \text{if } P(x) \text{ is true} \\ \text{diverges} & \text{if } P(x) \text{ is false} \end{cases}$$

Equivalently, we can enumerates all positive instances x_1, x_2, x_3, \ldots

A property P is decidable if there exists algorithm A such that:

$$A(x) = \begin{cases} 1 & \text{if } P(x) \text{ is true} \\ 0 & \text{if } P(x) \text{ is false} \end{cases}$$

P is recursively enumerable, r.e., (a.k.a. semi-decidable), if there exists A:

$$A(x) = \begin{cases} 1 & \text{if } P(x) \text{ is true} \\ \text{diverges} & \text{if } P(x) \text{ is false} \end{cases}$$

Equivalently, we can enumerates all positive instances $x_1, x_2, x_3, ...$ *P* is co-recursively-enumerable, co-r.e., if $\neg P$ is r.e.

A property P is decidable if there exists algorithm A such that:

$$A(x) = \begin{cases} 1 & \text{if } P(x) \text{ is true} \\ 0 & \text{if } P(x) \text{ is false} \end{cases}$$

P is recursively enumerable, r.e., (a.k.a. semi-decidable), if there exists A:

$$A(x) = \begin{cases} 1 & \text{if } P(x) \text{ is true} \\ \text{diverges} & \text{if } P(x) \text{ is false} \end{cases}$$

Equivalently, we can enumerates all positive instances $x_1, x_2, x_3, ...$ *P* is co-recursively-enumerable, co-r.e., if $\neg P$ is r.e.

Fact

If P is both r.e. and co-r.e. then P is decidable.

Proof Enumerate both P and $\neg P$.

Validity is R.E. and Satisfiability is Co-R.E.

Assume Σ is r.e. (E.g. it may be finite.)

Then $\Sigma \vdash \varphi$ is r.e. (why???), hence $\Sigma \models \varphi$ is also r.e. It follows that validity, VAL, is r.e.

Validity is R.E. and Satisfiability is Co-R.E.

Assume Σ is r.e. (E.g. it may be finite.)

Then $\Sigma \vdash \varphi$ is r.e. (why???), hence $\Sigma \models \varphi$ is also r.e. It follows that validity, VAL, is r.e.

Immediate consequence: SAT is co-r.e., because $SAT(\varphi) = \neg VAL(\neg \varphi)$.

Finite v.s. Classical Model Theory

VAL_{fin}, SAT_{fin} differ from VAL, SAT.

Could VAL_{fin}, SAT_{fin} be decidable?

Finite v.s. Classical Model Theory

VAL_{fin}, SAT_{fin} differ from VAL, SAT.

Could VAL_{fin}, SAT_{fin} be decidable?

There is hope:

- In classical model theory SAT is co-r.e.
- In finite model theory SAT_{fin} is r.e. why?

Finite v.s. Classical Model Theory

VAL_{fin}, SAT_{fin} differ from VAL, SAT.

Could VAL_{fin}, SAT_{fin} be decidable?

There is hope:

- In classical model theory SAT is co-r.e.
- In finite model theory SAT_{fin} is r.e. why? Enumerate all finite models A, check A ⊨ φ

Trakhtenbrot's Undecidability Theorem

Theorem (Trakhtenbrot)

SAT_{fin} is undecidable. (We will prove it later.)

Trakhtenbrot's Undecidability Theorem

Theorem (Trakhtenbrot)

SAT_{fin} is undecidable. (We will prove it later.)

Classical: VAL is r.e. SAT is co-r.e. Finite: VAL_{fin} is co-r.e. SAT_{fin} is r.e.

Trakhtenbrot's Undecidability Theorem

Theorem (Trakhtenbrot)

SAT_{fin} is undecidable. (We will prove it later.)

Classical: VAL is r.e. SAT is co-r.e. Finite: VAL_{fin} is co-r.e. SAT_{fin} is r.e.

No axiomatization of the finite exists! WHY???

Discussion

• All proves of undecidability are by reduction from an undecidable problem.

• A simple proof of Church-Turing using the word problem is here http://www.cis.upenn.edu/~val/CIS682/

• I plan to give (later) a brute-force proof of Trakhtenbrot's thm by encoding a Turing Machine, since that is reused in descriptive complexity.

Review	0/1 Law: Statement	Completeness	Undecidability	Löwenheim-Skolem-Tarski	Los-Vaught
0000	0000000	0000000	0000000	●0000	0000000

Löwenheim-Skolem-Tarski Theorem

Review: Cardinal Numbers

A cardinal number is an equivalence class |A| under bijection.

 $\aleph_0 = |\mathbb{N}|$ is the smallest infinite cardinal number

 $\mathfrak{c} = |\mathbb{R}|$ is the cardinal of the continuum.

Weird arithmetic: $\aleph_0 + \mathfrak{c} = \mathfrak{c}, \ \aleph_0 \times \mathfrak{c} = \mathfrak{c}, \ \mathfrak{c} \times \mathfrak{c} = \mathfrak{c}, \ \ldots$

Much larger cardinal numbers exists: $\aleph_0 < 2^{\aleph_0} < 2^{2^{\aleph_0}} < 2^{2^{2^{\aleph_0}}} < \cdots$

Löwenheim-Skolem-Tarski Theorem

Suppose the vocabulary σ has is finite or countable.

Theorem (Löwenheim-Skolem)

If Σ admits an infinite model, then it admits a countable model.

An infinity axiom can say "the world is infinite" but cannot say which infinite.

Löwenheim-Skolem Theorem: Proof

"If $\boldsymbol{\Sigma}$ admits an infinite model, then it admits a countable model." $\boldsymbol{\mathsf{Proof}}$

Löwenheim-Skolem Theorem: Proof

"If $\boldsymbol{\Sigma}$ admits an infinite model, then it admits a countable model." $\boldsymbol{\mathsf{Proof}}$

• Write each $\varphi \in \Sigma$ in prenex-normal form: $(\forall | \exists)^* \psi$, then "Skolemize":

 $\forall x \exists y \forall z \exists u(\varphi) \mapsto \forall x \forall z (\varphi[f_1(x)/y, f_2(x, z)/u])$

Let Σ^\prime be the set of Skolemized sentences.
"If $\boldsymbol{\Sigma}$ admits an infinite model, then it admits a countable model." $\boldsymbol{\mathsf{Proof}}$

• Write each $\varphi \in \Sigma$ in prenex-normal form: $(\forall | \exists)^* \psi$, then "Skolemize":

 $\forall x \exists y \forall z \exists u(\varphi) \mapsto \forall x \forall z (\varphi[f_1(x)/y, f_2(x, z)/u])$

"If $\boldsymbol{\Sigma}$ admits an infinite model, then it admits a countable model." $\boldsymbol{\mathsf{Proof}}$

• Write each $\varphi \in \Sigma$ in prenex-normal form: $(\forall | \exists)^* \psi$, then "Skolemize":

 $\forall x \exists y \forall z \exists u(\varphi) \mapsto \forall x \forall z (\varphi[f_1(x)/y, f_2(x, z)/u])$

Let Σ^\prime be the set of Skolemized sentences.

• Σ satisfiable iff Σ' satisfiable.

"If $\boldsymbol{\Sigma}$ admits an infinite model, then it admits a countable model." $\boldsymbol{\mathsf{Proof}}$

• Write each $\varphi \in \Sigma$ in prenex-normal form: $(\forall | \exists)^* \psi$, then "Skolemize":

 $\forall x \exists y \forall z \exists u(\varphi) \mapsto \forall x \forall z (\varphi[f_1(x)/y, f_2(x, z)/u])$

- Σ satisfiable iff Σ' satisfiable.
- Let \boldsymbol{D} be an infinite model of Σ ; hence also of Σ'

"If $\boldsymbol{\Sigma}$ admits an infinite model, then it admits a countable model." $\boldsymbol{\mathsf{Proof}}$

• Write each $\varphi \in \Sigma$ in prenex-normal form: $(\forall | \exists)^* \psi$, then "Skolemize":

 $\forall x \exists y \forall z \exists u(\varphi) \mapsto \forall x \forall z (\varphi[f_1(x)/y, f_2(x, z)/u])$

- Σ satisfiable iff Σ' satisfiable.
- Let **D** be an infinite model of Σ ; hence also of Σ'
- Choose countable $S \subseteq D$, and let \overline{S} be its closure under all f's: $S \subseteq \overline{S}$, and $c_1, \ldots, c_n \in \overline{S}$ implies $f(c_1, \ldots, c_n) \in \overline{S}$

"If $\boldsymbol{\Sigma}$ admits an infinite model, then it admits a countable model." $\boldsymbol{\mathsf{Proof}}$

• Write each $\varphi \in \Sigma$ in prenex-normal form: $(\forall | \exists)^* \psi$, then "Skolemize":

 $\forall x \exists y \forall z \exists u(\varphi) \mapsto \forall x \forall z (\varphi[f_1(x)/y, f_2(x, z)/u])$

- Σ satisfiable iff Σ' satisfiable.
- Let **D** be an infinite model of Σ ; hence also of Σ'
- Choose countable $S \subseteq D$, and let \overline{S} be its closure under all f's: $S \subseteq \overline{S}$, and $c_1, \ldots, c_n \in \overline{S}$ implies $f(c_1, \ldots, c_n) \in \overline{S}$
- Then \bar{S} is a countable model of Σ .

Review	0/1 Law: Statement	Completeness	Undecidability	Löwenheim-Skolem-Tarski	Los-Vaught
0000	0000000	0000000	000000	0000●	0000000
Discus	ssion				

• We assumed $|\sigma| \leq \aleph_0$. If $|\sigma| = \kappa > \aleph_0$ then the theorem states that Σ has a model of cardinality κ (same proof).

 The upwards version is called: Löwenheim-Skolem-Tarski theorem and states that, for every κ ≥ |σ|, Σ has a model of cardinality κ. (Proof: simply increase σ by adding κ constant symbols to it.)

	Law:	

Completeness

Jndecidability

The Los-Vaught Test

Complete Theories

 Σ is complete if, for every sentence φ either $\Sigma \vDash \varphi$ or $\Sigma \vDash \neg \varphi$.

Theorem

Complete Theories

 Σ is complete if, for every sentence φ either $\Sigma \vDash \varphi$ or $\Sigma \vDash \neg \varphi$.

If Σ is r.e. and is complete, then $\Sigma \vDash \varphi$ is decidable.

Proof: To check $\Sigma \vDash \varphi$, it suffices to check $\Sigma \vdash \varphi$ (Gödel's completeness).

To check $\Sigma \vdash \varphi$, enumerate all deductions from Σ : $\varphi_1, \varphi_2, \ldots$

Either φ or $\neg \varphi$ will show up.

Call $\Sigma \approx_0$ -categorical if any two countable models of Σ are isomorphic.

Observation: if D_1, D_2 are *isomorphic* then $D_1 \vDash \varphi$ iff $D_2 \vDash \varphi$.

Call $\Sigma \approx_0$ -categorical if any two countable models of Σ are isomorphic.

Observation: if D_1, D_2 are *isomorphic* then $D_1 \vDash \varphi$ iff $D_2 \vDash \varphi$.

Theorem (Los-Vaught Test)

If Σ has no finite models and is \aleph_0 categorical then it is complete.

Call $\Sigma \approx_0$ -categorical if any two countable models of Σ are isomorphic.

Observation: if D_1, D_2 are *isomorphic* then $D_1 \vDash \varphi$ iff $D_2 \vDash \varphi$.

Theorem (Los-Vaught Test)

If Σ has no finite models and is \aleph_0 categorical then it is complete.

Proof. Suppose otherwise: there exists φ s.t. $\Sigma \not\models \neg \varphi$ and $\Sigma \not\models \varphi$.

Call $\Sigma \approx_0$ -categorical if any two countable models of Σ are isomorphic.

Observation: if D_1, D_2 are *isomorphic* then $D_1 \vDash \varphi$ iff $D_2 \vDash \varphi$.

Theorem (Los-Vaught Test)

If Σ has no finite models and is \aleph_0 categorical then it is complete.

Proof. Suppose otherwise: there exists φ s.t. $\Sigma \not\models \neg \varphi$ and $\Sigma \not\models \varphi$. Then:

- $\Sigma \cup \{\varphi\}$ has a model D_1 ; assume it is countable why can we?
- $\Sigma \cup \{\neg \varphi\}$ has a model D_2 ; assume it is countable.

Call $\Sigma \approx_0$ -categorical if any two countable models of Σ are isomorphic.

Observation: if D_1, D_2 are *isomorphic* then $D_1 \vDash \varphi$ iff $D_2 \vDash \varphi$.

Theorem (Los-Vaught Test)

If Σ has no finite models and is \aleph_0 categorical then it is complete.

Proof. Suppose otherwise: there exists φ s.t. $\Sigma \not\models \neg \varphi$ and $\Sigma \not\models \varphi$. Then:

- $\Sigma \cup \{\varphi\}$ has a model D_1 ; assume it is countable why can we?
- $\Sigma \cup \{\neg \varphi\}$ has a model D_2 ; assume it is countable.
- Then $\boldsymbol{D}_1, \boldsymbol{D}_2$ are isomorphic.
- Contradiction because $D_1 \vDash \varphi$ and $D_2 \vDash \neg \varphi$.

Application of the Los-Vaught Test

The theory of dense linear orders without endpoints is complete.

$$\forall x \forall y \neg ((x < y) \land (y < x))$$

$$\forall x \forall y ((x < y) \lor (x = y) \lor (y < x))$$

$$\forall x \forall y \forall z ((x < y) \land (y < z) \rightarrow (x < z))$$

$$\forall x \forall y (x < y \rightarrow \exists v (x < v < y))$$

$$\forall x \exists u \exists w (u < x < w)$$

Dense: W/o Endpoints:

36 / 39

Application of the Los-Vaught Test

The theory of dense linear orders without endpoints is complete.

$$\forall x \forall y \neg ((x < y) \land (y < x))$$

$$\forall x \forall y ((x < y) \lor (x = y) \lor (y < x))$$

$$\forall x \forall y \forall z ((x < y) \land (y < z) \rightarrow (x < z))$$

Dense:
$$\forall x \forall y (x < y \rightarrow \exists v (x < v < y))$$

$$W/o \text{ Endpoints:} \qquad \forall x \exists u \exists w (u < x < w)$$

(Note: linear order is not complete: e.g. it may be dense or not.)

Application of the Los-Vaught Test

The theory of dense linear orders without endpoints is complete.

$$\forall x \forall y \neg ((x < y) \land (y < x))$$

$$\forall x \forall y ((x < y) \lor (x = y) \lor (y < x))$$

$$\forall x \forall y \forall z ((x < y) \land (y < z) \rightarrow (x < z))$$

Dense:
$$\forall x \forall y (x < y \rightarrow \exists v (x < v < y))$$

W/o Endpoints:
$$\forall x \exists u \exists w (u < x < w)$$

(Note: linear order is not complete: e.g. it may be dense or not.)

Proof: we apply the Los-Vaught test. Let A, B be countable models. We prove isomorphism, $A \cong B$, using the Back and Forth argument.

 $\boldsymbol{A} = (\{a_1, a_2, \ldots\}, <), \ \boldsymbol{B} = (\{b_1, b_2, \ldots\}, <) \text{ are total orders } w/o \text{ endpoints.}$ Construct inductively A_i, B_i s.t. $(A_i, <) \cong (B_i, <).$

• Add a_i and matching $b \in B$ s.t. $(A_{i-1} \cup \{a_i\}, <) \cong (B_{i-1} \cup \{b\}, <)$.

 $\boldsymbol{A} = (\{a_1, a_2, \ldots\}, <), \ \boldsymbol{B} = (\{b_1, b_2, \ldots\}, <) \text{ are total orders } w/o \text{ endpoints.}$ Construct inductively A_i, B_i s.t. $(A_i, <) \cong (B_i, <).$

• Add a_i and matching $b \in B$ s.t. $(A_{i-1} \cup \{a_i\}, <) \cong (B_{i-1} \cup \{b\}, <)$.

 $\boldsymbol{A} = (\{a_1, a_2, \ldots\}, <), \ \boldsymbol{B} = (\{b_1, b_2, \ldots\}, <) \text{ are total orders } w/o \text{ endpoints.}$ Construct inductively A_i, B_i s.t. $(A_i, <) \cong (B_i, <).$

• Add a_i and matching $b \in B$ s.t. $(A_{i-1} \cup \{a_i\}, <) \cong (B_{i-1} \cup \{b\}, <)$.

 $\boldsymbol{A} = (\{a_1, a_2, \ldots\}, <), \ \boldsymbol{B} = (\{b_1, b_2, \ldots\}, <) \text{ are total orders } w/o \text{ endpoints.}$ Construct inductively A_i, B_i s.t. $(A_i, <) \cong (B_i, <).$

• Add a_i and matching $b \in B$ s.t. $(A_{i-1} \cup \{a_i\}, <) \cong (B_{i-1} \cup \{b\}, <)$.

 $B_1 = \{b_{79}\}$

 $\boldsymbol{A} = (\{a_1, a_2, \ldots\}, <), \ \boldsymbol{B} = (\{b_1, b_2, \ldots\}, <) \text{ are total orders } w/o \text{ endpoints.}$ Construct inductively A_i, B_i s.t. $(A_i, <) \cong (B_i, <).$

• Add a_i and matching $b \in B$ s.t. $(A_{i-1} \cup \{a_i\}, <) \cong (B_{i-1} \cup \{b\}, <)$.

 $B_2 = \{b_{79}, b_1\}$

 $\boldsymbol{A} = (\{a_1, a_2, \ldots\}, <), \ \boldsymbol{B} = (\{b_1, b_2, \ldots\}, <) \text{ are total orders } w/o \text{ endpoints.}$ Construct inductively A_i, B_i s.t. $(A_i, <) \cong (B_i, <).$

• Add a_i and matching $b \in B$ s.t. $(A_{i-1} \cup \{a_i\}, <) \cong (B_{i-1} \cup \{b\}, <)$.

 $B_2 = \{b_{79}, b_1\}$

 $\boldsymbol{A} = (\{a_1, a_2, \ldots\}, <), \ \boldsymbol{B} = (\{b_1, b_2, \ldots\}, <) \text{ are total orders } w/o \text{ endpoints.}$ Construct inductively A_i, B_i s.t. $(A_i, <) \cong (B_i, <).$

• Add a_i and matching $b \in B$ s.t. $(A_{i-1} \cup \{a_i\}, <) \cong (B_{i-1} \cup \{b\}, <)$.

 $B_3 = \{b_{79}, b_1, b_{57}\}$

 $\boldsymbol{A} = (\{a_1, a_2, \ldots\}, <), \ \boldsymbol{B} = (\{b_1, b_2, \ldots\}, <) \text{ are total orders } w/o \text{ endpoints.}$ Construct inductively A_i, B_i s.t. $(A_i, <) \cong (B_i, <).$

• Add a_i and matching $b \in B$ s.t. $(A_{i-1} \cup \{a_i\}, <) \cong (B_{i-1} \cup \{b\}, <)$.

 $B_3 = \{b_{79}, b_1, b_{57}\}$

 $\boldsymbol{A} = (\{a_1, a_2, \ldots\}, <), \ \boldsymbol{B} = (\{b_1, b_2, \ldots\}, <) \text{ are total orders } w/o \text{ endpoints.}$ Construct inductively A_i, B_i s.t. $(A_i, <) \cong (B_i, <).$

• Add a_i and matching $b \in B$ s.t. $(A_{i-1} \cup \{a_i\}, <) \cong (B_{i-1} \cup \{b\}, <)$.

 $B_n = \{b_{79}, b_1, b_{57}, \dots, \}$

 $\boldsymbol{A} = (\{a_1, a_2, \ldots\}, <), \ \boldsymbol{B} = (\{b_1, b_2, \ldots\}, <) \text{ are total orders } w/o \text{ endpoints.}$ Construct inductively A_i, B_i s.t. $(A_i, <) \cong (B_i, <).$

• Add a_i and matching $b \in B$ s.t. $(A_{i-1} \cup \{a_i\}, <) \cong (B_{i-1} \cup \{b\}, <)$.

 $B_n \!\!=\!\! \{\!b_{79},\!b_1,\!b_{57},\ldots\ldots\!\}$

• Add b_i and any matching $a \in A$.

Then $A = \bigcup A_i$, $B = \bigcup B_i$ and $(A, <) \cong (B, <)$.

Discussion

The Los-Vaught test applies to any cardinal number, as follows:

 If Σ has no finite models and is categorical in some infinite cardinal κ (meaning: any two models of cardinality κ are isomorphic) then Σ is complete.

Useful for your homework.

The Classics

We discussed.

- Gödel's Completeness Theorem
- Church-Turing's Undecidability Theorem
- Löwenheim-Skolem(-Tarski) Used in the 0/1 law
- Los-Vaught Test.
- Used in the 0/1 law
- The Compactness Theorem (maybe next time?) Used in the 0/1 law

Next lecture: we will use these to prove the 0/1 law