Finite Model Theory Lecture 1: Introduction, Classical Model Theory

Spring 2025

Course Organization

Lectures:

- Time: MW 10 11:20
- Room: CSE2 371
- Canceled: May 26, May 28
- Makeup: TBD

Homework assignment:

- Short problems
- Submit on Canvas
- Ignore points
- Collaborations strongly encouraged
- Deadlines are flexible

Grading: Credit / No Credit If prefer a numerical grade, email me.

Course Outline

Week of 3/31 Intro, Classical Model Theory, 0/1 Laws

- Week of 4/7 Conjunctive Queries, Homomorphism Order
- Week of 4/14 EF Games, FO Types
- Week of $4/21\,$ Recursion, Datalog, Infinitary Logics, and Pebble Games
- Week of 4/28 FO2, C2, Bisimulation, Stable Coloring, GNNs
- Week of 5/5 SO: Fagin's Theorem, MSO and Regular expressions
- Week of 5/12 Descriptive Complexity
- Week of 5/19 FO over Semirings
- Week of 5/26 CANCELED

Week of 6/2 TBD

VERY tentative! We may go slower.

Resources

- Doxiadis, Papadimitriou, Logicomix.
- Libkin Finite Model Theory.
- Enderton A Mathematical Introduction to Logic.
- Course on Friendly Logics from UPenn
 Val Tannen and Scott Weinstein
 http://www.cis.upenn.edu/~val/CIS682/
- Burris, Sankappanavar, *A Course in Universal Algebra*
- Abiteboul, Hull, Vianu, Database Theory
- Some lecture may refer to additional material.

Plan

Today: basic definitions, classical theorems in model theory

Wednesday: $0/1 \mbox{ law for finite models and its suprising proof using classical theorems$

Basic Definitions

Structures

A vocabulary σ is a set of relation symbols R_1, \ldots, R_k , and function symbols f_1, \ldots, f_m , each with a fixed arity.

A structure (a.k.a. model) is
$$\mathbf{A} = (A, R_1^A, \dots, R_k^A, f_1^A, \dots, f_m^A)$$
,
where $R_i^A \subseteq (A)^{\operatorname{arity}(R_i)}$ and $f_j^A : (A)^{\operatorname{arity}(f_j)} \to A$.

The domain (a.k.a. *universe*), Dom(\mathbf{A}) $\stackrel{\text{def}}{=} A$ is is assumed $\neq \emptyset$.

Structures

A vocabulary σ is a set of relation symbols R_1, \ldots, R_k , and function symbols f_1, \ldots, f_m , each with a fixed arity.

A structure (a.k.a. model) is
$$\mathbf{A} = (A, R_1^A, \dots, R_k^A, f_1^A, \dots, f_m^A)$$
,
where $R_i^A \subseteq (A)^{\operatorname{arity}(R_i)}$ and $f_j^A : (A)^{\operatorname{arity}(f_j)} \to A$.

The **domain** (a.k.a. *universe*), $Dom(\mathbf{A}) \stackrel{\text{def}}{=} A$ is is assumed $\neq \emptyset$.

Structures

A vocabulary σ is a set of relation symbols R_1, \ldots, R_k , and function symbols f_1, \ldots, f_m , each with a fixed arity.

A structure (a.k.a. model) is
$$\mathbf{A} = (A, R_1^A, \dots, R_k^A, f_1^A, \dots, f_m^A)$$
,
where $R_i^A \subseteq (A)^{\operatorname{arity}(R_i)}$ and $f_j^A : (A)^{\operatorname{arity}(f_j)} \to A$.

The domain (a.k.a. *universe*), $Dom(\mathbf{A}) \stackrel{\text{def}}{=} A$ is is assumed $\neq \emptyset$.

Discussion

- We don't really need functions, since f : A^k → A is represented by its graph ⊆ A^{k+1}, but we keep them when convenient.
- A constant, c, is just a 0-ary function $c: A^0 \rightarrow A$.
- The structure **A** may be finite or infinite.
- Sometimes, even the vocabulary σ is infinite!

First Order Logic (FO or FOL)

Fix a vocabulary σ and a set of variables x_1, x_2, \ldots

Terms:

- Every constant *c* and every variable *x* is a term.
- If t_1, \ldots, t_k are terms and $f \in \sigma$, then $f(t_1, \ldots, t_k)$ is a term.

Formulas:

- **F** is a formula (means *false*).
- If t_1, t_2 are terms then $t_1 = t_2$ is a formula.
- If t_1, \ldots, t_k are terms and $R \in \sigma$ then $R(t_1, \ldots, t_k)$ is a formula.
- If φ, ψ are formulas, then so are $\varphi \rightarrow \psi$ and $\forall x(\varphi)$.

Discussion

We were very frugal! We used only $\boldsymbol{F}, \rightarrow, \forall$.

Sometimes it's good to be frugal. Sometimes we want more operations:

- $\neg \varphi$ is a shorthand for $\varphi \rightarrow \mathbf{F}$.
- $\varphi \lor \psi$ is a shorthand for $(\neg \varphi) \rightarrow \psi$.
- $\varphi \wedge \psi$ is a shorthand for $\neg(\neg \varphi \lor \neg \psi)$.
- $\exists x(\varphi)$ is a shorthand for $\neg(\forall x(\neg \varphi))$.
- **F** often denoted: false or \perp or 0.

Sometimes equality (=) is not included in the language.

10 / 28

Formulas, Sentences, Substitution

We say that $\forall x(\varphi)$ binds x in φ . A variable occurrence can be bound or free.

A sentence is a formula φ without free variables.

Examples:

- Formula: $\varphi(x, z) = \exists y (E(x, y) \land E(y, z))$. Free variables: x, z.
- Sentence: $\varphi = \exists x \forall z \exists y (E(x, y) \land E(y, z)).$

 $\varphi[t/x]$ is formula obtained by substituting free occurrences of x with t

Basics 000000●0000	Problems 0000	Implication Problem

Truth

Let φ be a sentence, and **A** a structure Every ground term (i.e. has no variables), t, evaluates to a constant $t^A \in A$

Definition

We say that the sentence φ is true in \boldsymbol{A} , written $|\boldsymbol{A} \vDash \varphi|$, if:

•
$$\varphi$$
 is $t_1 = t_2$ and t_1^A , t_2^A are the same value.

•
$$\varphi$$
 is $R(t_1,\ldots,t_n)$ and $(t_1^A,\ldots,t_n^A) \in R^A$.

•
$$\varphi$$
 is $\psi_1 \rightarrow \psi_2$ and $\mathbf{A} \not\models \psi_1$, or $\mathbf{A} \models \psi_1$ and $\mathbf{A} \models \psi_2$.

•
$$\varphi$$
 is $\forall y(\psi)$, and, forall $b \in A$, $\mathbf{A} \models \psi[b/y]$.

If Σ is a set of sentences then $|\mathbf{A} \models \Sigma|$ means: for every $\varphi \in \Sigma$, $\mathbf{A} \models \varphi$.

This definition is boring but important!

Vocabulary: $\sigma = (E)$; "language of graphs" A structure is a graph: $\boldsymbol{G} = (V, E^G), E^G \subseteq V \times V$.

13 / 28

Vocabulary: $\sigma = (E)$; "language of graphs" A structure is a graph: $G = (V, E^G)$, $E^G \subseteq V \times V$.

What do these sentences say about a graph?

- $\forall x \exists y E(x, y)$
- $\exists x \forall y E(x, y)$
- $\forall x \forall y_1 \forall y_2 (E(x, y_1) \land E(x, y_2) \Rightarrow y_1 = y_2)$

13 / 28

Vocabulary: $\sigma = (E)$; "language of graphs" A structure is a graph: $G = (V, E^G)$, $E^G \subseteq V \times V$.

What do these sentences say about a graph?

- $\forall x \exists y E(x, y)$ every node has an outgoing edge
- $\exists x \forall y E(x, y)$
- $\forall x \forall y_1 \forall y_2 (E(x, y_1) \land E(x, y_2) \Rightarrow y_1 = y_2)$

Vocabulary: $\sigma = (E)$; "language of graphs" A structure is a graph: $G = (V, E^G)$, $E^G \subseteq V \times V$.

What do these sentences say about a graph?

- $\forall x \exists y E(x, y)$ every node has an outgoing edge
- $\exists x \forall y E(x, y)$ some node has outgoing edges to everyone
- $\forall x \forall y_1 \forall y_2 (E(x, y_1) \land E(x, y_2) \Rightarrow y_1 = y_2)$

Vocabulary: $\sigma = (E)$; "language of graphs" A structure is a graph: $G = (V, E^G)$, $E^G \subseteq V \times V$.

What do these sentences say about a graph?

- $\forall x \exists y E(x, y)$ every node has an outgoing edge
- $\exists x \forall y E(x, y)$ some node has outgoing edges to everyone
- $\forall x \forall y_1 \forall y_2 (E(x, y_1) \land E(x, y_2) \Rightarrow y_1 = y_2)$ outdegree ≤ 1

Vocabulary: $\sigma = (E)$; "language of graphs" A structure is a graph: $G = (V, E^G)$, $E^G \subseteq V \times V$.

What do these sentences say about a graph?

- $\forall x \exists y E(x, y)$ every node has an outgoing edge
- $\exists x \forall y E(x, y)$ some node has outgoing edges to everyone
- $\forall x \forall y_1 \forall y_2 (E(x, y_1) \land E(x, y_2) \Rightarrow y_1 = y_2)$ outdegree ≤ 1

- *G* is symmetric.
- Every two nodes are connected by path of length 2
- Every two nodes are connected by a path.

Vocabulary: $\sigma = (E)$; "language of graphs" A structure is a graph: $G = (V, E^G)$, $E^G \subseteq V \times V$.

What do these sentences say about a graph?

- $\forall x \exists y E(x, y)$ every node has an outgoing edge
- $\exists x \forall y E(x, y)$ some node has outgoing edges to everyone
- $\forall x \forall y_1 \forall y_2 (E(x, y_1) \land E(x, y_2) \Rightarrow y_1 = y_2)$ outdegree ≤ 1

- G is symmetric. $\forall x \forall y (E(x,y) \Rightarrow E(y,x))$
- Every two nodes are connected by path of length 2
- Every two nodes are connected by a path.

Vocabulary: $\sigma = (E)$; "language of graphs" A structure is a graph: $G = (V, E^G)$, $E^G \subseteq V \times V$.

What do these sentences say about a graph?

- $\forall x \exists y E(x, y)$ every node has an outgoing edge
- $\exists x \forall y E(x, y)$ some node has outgoing edges to everyone
- $\forall x \forall y_1 \forall y_2 (E(x, y_1) \land E(x, y_2) \Rightarrow y_1 = y_2)$ outdegree ≤ 1

- G is symmetric. $\forall x \forall y (E(x,y) \Rightarrow E(y,x))$
- Every two nodes are connected by path of length 2
 - $\forall x \forall y \exists z (E(x,z) \land E(z,y))$
- Every two nodes are connected by a path.

Vocabulary: $\sigma = (E)$; "language of graphs" A structure is a graph: $G = (V, E^G)$, $E^G \subseteq V \times V$.

What do these sentences say about a graph?

- $\forall x \exists y E(x, y)$ every node has an outgoing edge
- $\exists x \forall y E(x, y)$ some node has outgoing edges to everyone
- $\forall x \forall y_1 \forall y_2 (E(x, y_1) \land E(x, y_2) \Rightarrow y_1 = y_2)$ outdegree ≤ 1

How do you express the following?

- G is symmetric. $\forall x \forall y (E(x,y) \Rightarrow E(y,x))$
- Every two nodes are connected by path of length 2
- Every two nodes are connected by a path.

NOT POSSIBLE!

 $\forall x \forall y \exists z (E(x,z) \land E(z,y))$

Vocabulary: $\sigma = (User, Order, Product)$ A structure is a database instance: $D = (D, User^{D}, Order^{D}, Product^{D})$

uid	name
u001	Alice
u002	Bob
u003	Alice

 \texttt{User}^D

\texttt{Order}^D	
uid	pid
u001	p555
u001	p666
u002	p555

$\mathtt{Product}^D$	
pid	color
p555	blue
p666	red
p777	blue

Basics

Vocabulary: $\sigma = (User, Order, Product)$ A structure is a database instance: $D = (D, User^{D}, Order^{D}, Product^{D})$

What do these sentences say? Which are true in D?

- $\forall u \forall n_1 \forall n_2 (\text{User}(u, n_1) \land \text{User}(u, n_2) \Rightarrow n_1 = n_2)$
- $\forall u \forall p(\texttt{Order}(u, p) \Rightarrow \exists n(\texttt{User}(u, n)))$
- $\forall u \forall n (User(u, n) \rightarrow \exists p \exists c (Order(u, p) \land Product(p, ``red'')))$

Oser	
uid	name
u001	Alice
u002	Bob
u003	Alice

-- D

\texttt{Order}^D	
uid	pid
u001	p555
u001	p666
u002	p555

$\mathtt{Product}^D$	
pid	color
p555	blue
p666	red
p777	blue

Basics

Vocabulary: $\sigma = (User, Order, Product)$ A structure is a database instance: $D = (D, User^{D}, Order^{D}, Product^{D})$

What do these sentences say? Which are true in D?

- $\forall u \forall n_1 \forall n_2 (\text{User}(u, n_1) \land \text{User}(u, n_2) \Rightarrow n_1 = n_2)$
- $\forall u \forall p(\texttt{Order}(u, p) \Rightarrow \exists n(\texttt{User}(u, n)))$
- $\forall u \forall n (User(u, n) \rightarrow \exists p \exists c (Order(u, p) \land Product(p, ``red'')))$

How do you express the following?

• Bob ordered everything that Alice ordered.

• Bob ordered fewer products than Alice.

uid	name
u001	Alice
u002	Bob
u003	Alice

Order ^D	
uid	pid
u001	p555
u001	p666
u002	p555

$\mathtt{Product}^D$	
pid	color
p555	blue
p666	red
p777	blue

Basics

Vocabulary: $\sigma = (User, Order, Product)$ A structure is a database instance: $D = (D, User^{D}, Order^{D}, Product^{D})$

What do these sentences say? Which are true in D?

- $\forall u \forall n_1 \forall n_2 (\text{User}(u, n_1) \land \text{User}(u, n_2) \Rightarrow n_1 = n_2)$
- $\forall u \forall p(\text{Order}(u, p) \Rightarrow \exists n(\text{User}(u, n)))$
- $\forall u \forall n (User(u, n) \rightarrow \exists p \exists c (Order(u, p) \land Product(p, ``red`')))$

- Bob ordered everything that Alice ordered.
 ∀p(∀u(User(u, 'Alice') ∧ Order(u, p)))
 ⇒ ∃v(User(u, 'Bob') ∧ Order(v, p)))
- Bob ordered fewer products than Alice.

uid	name
u001	Alice
u002	Bob
u003	Alice

Order ^D	
uid	pid
u001	p555
u001	p666
u002	p555

$Product^D$		
pid	color	
p555	blue	
p666	red	
p777	blue	

Vocabulary: $\sigma = (User, Order, Product)$ A structure is a database instance: $D = (D, User^{D}, Order^{D}, Product^{D})$

What do these sentences say? Which are true in D?

- $\forall u \forall n_1 \forall n_2 (\text{User}(u, n_1) \land \text{User}(u, n_2) \Rightarrow n_1 = n_2)$
- $\forall u \forall p(\text{Order}(u, p) \Rightarrow \exists n(\text{User}(u, n)))$
- $\forall u \forall n (\text{User}(u, n) \rightarrow \exists p \exists c (\text{Order}(u, p) \land \text{Product}(p, ``red'')))$

- Bob ordered everything that Alice ordered.
 ∀p(∀u(User(u, 'Alice') ∧ Order(u, p)))
 ⇒ ∃v(User(u, 'Bob') ∧ Order(v, p)))
- Bob ordered fewer products than Alice. NOT POSSIBLE!

uid	name
u001	Alice
u002	Bob
u003	Alice

Order ^D		
uid	pid	
u001	p555	
u001	p666	
u002	p555	

$\mathtt{Product}^D$		
pid	color	
p555	blue	
p666	red	
p777	blue	

Special Case: Propositional Logic

A nullary relation, P(), is the same as a propositional variable p:

- In any structure **A**, P^A can be either \emptyset or $\{()\}$.
- If $P^A = \{()\}$ then we say that p =true.
- If $P^A = \emptyset$ then we say that p = false.

Sentences over nullary relations are the same as propositional formulas:

$$P() \land (Q() \lor \neg R())$$
$$p \land (q \lor \neg r)$$

Take Away from the Basics

Make sure you have a good understanding of the basic operators: ^1 $\lor,\land,\neg,\rightarrow,\forall,\exists$

Know simple tricks of the trade:

- Propositional calculus is a very simple special case of FO.
- $\neg \varphi$ is the same as $\varphi \rightarrow F$.

•
$$\neg(\varphi \rightarrow \psi) = \varphi \land \neg \psi.$$

• Common idioms for asserting [Property of x]:

$$\exists x (R(x,...) \land [Property of x]) \\ \forall x (R(x,...) \Rightarrow [Property of x])$$

 $^{^{1}}$ \rightarrow and \Rightarrow are the same thing.

Problems in Classical, and in Finite Model Theory

Problems in Classical Model Theory

Fix a sentence φ , and a set of sentences Σ (may be infinite).

- Satisfiability: Σ is satisfiable if there exists **A** such that $\mathbf{A} \models \Sigma$.
- Implication: Σ implies φ , written $\Sigma \models \varphi$, if for every structure A: if $A \models \Sigma$ then $A \models \varphi$

Validity: φ is valid, written $\models \varphi$, if for every structure **A**, **A** $\models \varphi$.

• We write $SAT(\varphi)$, or $VAL(\varphi)$ when φ is satisfiable, or valid. $\neg SAT(\varphi)$ iff $VAL(\neg \varphi)$

Problems in Finite Model Theory

All previous problems, where the models are restricted to be finite:

- Finite satisfiability, $SAT_{fin}(\Sigma)$.
- Finite implication, finite validity: we write $\Sigma \models_{\text{fin}} \varphi$, or $\text{VAL}_{\text{fin}}(\varphi)$.

New problems that make sense only in the finite:

- Model checking: Given φ , A, determine whether $A \models \varphi$.
- Query evaluation: Given $\varphi(\mathbf{x})$, \mathbf{A} , compute $\{\mathbf{a} \mid \mathbf{A} \models \varphi[\mathbf{a}/\mathbf{x}]\}$.
- Expressibility: can we express a given property in FO?

$$\Sigma = \{\varphi_2, \varphi_3, \varphi_4, \ldots\}$$
 where:

$$\begin{aligned} \varphi_2 &= \exists x_1 \exists x_2 (x_1 \neq x_2) \\ \varphi_3 &= \exists x_1 \exists x_2 \exists x_3 (x_1 \neq x_2) \land (x_1 \neq x_3) \land (x_2 \neq x_3) \\ \varphi_4 &= \exists x_1 \exists x_2 \exists x_3 \exists x_4 (x_1 \neq x_2) \land (x_1 \neq x_3) \land \dots \land (x_3 \neq x_4) \end{aligned}$$

$$\Sigma = \{\varphi_2, \varphi_3, \varphi_4, \ldots\} \text{ where:}$$

$$\varphi_2 = \exists x_1 \exists x_2 (x_1 \neq x_2)$$

$$\varphi_3 = \exists x_1 \exists x_2 \exists x_3 (x_1 \neq x_2) \land (x_1 \neq x_3) \land (x_2 \neq x_3)$$

$$\varphi_4 = \exists x_1 \exists x_2 \exists x_3 \exists x_4 (x_1 \neq x_2) \land (x_1 \neq x_3) \land \cdots \land (x_3 \neq x_4)$$

 $SAT(\Sigma)?$

 $\texttt{SAT}_{fin}(\Sigma)?$

$$\Sigma = \{\varphi_2, \varphi_3, \varphi_4, \ldots\} \text{ where:}$$

$$\varphi_2 = \exists x_1 \exists x_2 (x_1 \neq x_2)$$

$$\varphi_3 = \exists x_1 \exists x_2 \exists x_3 (x_1 \neq x_2) \land (x_1 \neq x_3) \land (x_2 \neq x_3)$$

$$\varphi_4 = \exists x_1 \exists x_2 \exists x_3 \exists x_4 (x_1 \neq x_2) \land (x_1 \neq x_3) \land \cdots \land (x_3 \neq x_4)$$

 $SAT(\Sigma)?$

 $\texttt{SAT}_{fin}(\Sigma)?$

What does φ_n say?

$$\Sigma = \{\varphi_2, \varphi_3, \varphi_4, \ldots\}$$
 where:

. . .

$$\begin{aligned} \varphi_2 &= \exists x_1 \exists x_2 (x_1 \neq x_2) \\ \varphi_3 &= \exists x_1 \exists x_2 \exists x_3 (x_1 \neq x_2) \land (x_1 \neq x_3) \land (x_2 \neq x_3) \\ \varphi_4 &= \exists x_1 \exists x_2 \exists x_3 \exists x_4 (x_1 \neq x_2) \land (x_1 \neq x_3) \land \dots \land (x_3 \neq x_4) \end{aligned}$$

 $SAT(\Sigma)?$

 $\text{SAT}_{fin}(\Sigma)$?

What does φ_n say?

"There exists at least *n* elements"

$$\Sigma = \{\varphi_2, \varphi_3, \varphi_4, \ldots\} \text{ where:}$$

$$\varphi_2 = \exists x_1 \exists x_2 (x_1 \neq x_2)$$

$$\varphi_3 = \exists x_1 \exists x_2 \exists x_3 (x_1 \neq x_2) \land (x_1 \neq x_3) \land (x_2 \neq x_3)$$

$$\varphi_4 = \exists x_1 \exists x_2 \exists x_3 \exists x_4 (x_1 \neq x_2) \land (x_1 \neq x_3) \land \cdots \land (x_3 \neq x_4)$$

SAT(Σ)? YES

. . .

 $\texttt{SAT}_{fin}(\Sigma)?$

What does φ_n say?

"There exists at least *n* elements"

$$\Sigma = \{\varphi_2, \varphi_3, \varphi_4, \ldots\} \text{ where:}$$

$$\varphi_2 = \exists x_1 \exists x_2 (x_1 \neq x_2)$$

$$\varphi_3 = \exists x_1 \exists x_2 \exists x_3 (x_1 \neq x_2) \land (x_1 \neq x_3) \land (x_2 \neq x_3)$$

$$\varphi_4 = \exists x_1 \exists x_2 \exists x_3 \exists x_4 (x_1 \neq x_2) \land (x_1 \neq x_3) \land \cdots \land (x_3 \neq x_4)$$

$$\Sigma = \{\varphi_2, \varphi_3, \varphi_4, \ldots\} \text{ where:}$$

$$\varphi_2 = \exists x_1 \exists x_2 (x_1 \neq x_2)$$

$$\varphi_3 = \exists x_1 \exists x_2 \exists x_3 (x_1 \neq x_2) \land (x_1 \neq x_3) \land (x_2 \neq x_3)$$

$$\varphi_4 = \exists x_1 \exists x_2 \exists x_3 \exists x_4 (x_1 \neq x_2) \land (x_1 \neq x_3) \land \cdots \land (x_3 \neq x_4)$$

. . .

What does φ_n say? "There exists at least *n* elements"

In general $\operatorname{SAT}_{\operatorname{fin}}(\Sigma) \Rightarrow \operatorname{SAT}(\Sigma)$, but not conversely

The Implication Problem

The Implication Problem

Given a set of sentences Σ and a sentence φ , check whether $\Sigma \vDash \varphi$.

When $\Sigma = \emptyset$, then we ask whether $\vDash \varphi$, i.e. $VAL(\varphi)$.

The Satisfiability Problem is a special case:

 $SAT(\Sigma)$ iff $not(\Sigma \vDash \boldsymbol{F})$

22 / 28

Example: End of the Line

 $\boldsymbol{\Sigma}$ = $\{\varphi_1,\varphi_2,\varphi_3\}$, where:

$$\begin{split} \varphi_1 = &\forall x \forall y_1 \forall y_2 (E(x, y_1) \land E(x, y_2) \Rightarrow y_1 = y_2) \\ \varphi_2 = &\forall x_1 \forall x_2 \forall y (E(x_1, y) \land E(x_2, y) \Rightarrow x_1 = x_2) \\ \varphi_3 = &\exists y \forall x (\neg E(x, y)) \end{split}$$

23 / 28

Example: End of the Line

 $\boldsymbol{\Sigma}$ = $\{\varphi_1,\varphi_2,\varphi_3\}$, where:

$$\begin{aligned} \varphi_1 &= \forall x \forall y_1 \forall y_2 (E(x, y_1) \land E(x, y_2) \Rightarrow y_1 = y_2) \\ \varphi_2 &= \forall x_1 \forall x_2 \forall y (E(x_1, y) \land E(x_2, y) \Rightarrow x_1 = x_2) \\ \varphi_3 &= \exists y \forall x (\neg E(x, y)) \end{aligned}$$

Let
$$\varphi = \exists x \forall y (\neg E(x, y))$$

 $\boldsymbol{\Sigma}$ = $\{\varphi_1, \varphi_2, \varphi_3\}$, where:

$$\varphi_{1} = \forall x \forall y_{1} \forall y_{2} (E(x, y_{1}) \land E(x, y_{2}) \Rightarrow y_{1} = y_{2})$$

$$\varphi_{2} = \forall x_{1} \forall x_{2} \forall y (E(x_{1}, y) \land E(x_{2}, y) \Rightarrow x_{1} = x_{2})$$

$$\varphi_{3} = \exists y \forall x (\neg E(x, y))$$

Let $\varphi = \exists x \forall y (\neg E(x, y))$

 Σ says: all indegrees, outdegrees ≤ 1 and some node has indegree = 0 φ says: some node has outdegree = 0.

 $\boldsymbol{\Sigma}$ = $\{\varphi_1,\varphi_2,\varphi_3\}$, where:

$$\varphi_{1} = \forall x \forall y_{1} \forall y_{2} (E(x, y_{1}) \land E(x, y_{2}) \Rightarrow y_{1} = y_{2})$$

$$\varphi_{2} = \forall x_{1} \forall x_{2} \forall y (E(x_{1}, y) \land E(x_{2}, y) \Rightarrow x_{1} = x_{2})$$

$$\varphi_{3} = \exists y \forall x (\neg E(x, y))$$

Let $\varphi = \exists x \forall y (\neg E(x, y))$

 Σ says: all indegrees, outdegrees ≤ 1 and some node has indegree = 0 φ says: some node has outdegree = 0.

Will prove:
$$\Sigma \not\models \varphi$$
 but $\Sigma \vDash_{fin} \varphi$.

All nodes have indegree, outdegree ≤ 1 and some node has indegree = 0. Does this imply that some node has outdegree = 0?

All nodes have indegree, outdegree ≤ 1 and some node has indegree = 0. Does this imply that some node has outdegree = 0?

Infinite graphs: NO! Counterexample:

All nodes have indegree, outdegree ≤ 1 and some node has indegree = 0. Does this imply that some node has outdegree = 0?

All nodes have indegree, outdegree ≤ 1 and some node has indegree = 0. Does this imply that some node has outdegree = 0?

How do you define a finite set? Or an infinite set?

Finite	Model	I heory	

Review: Cardinal Numbers

Two sets A, B are *equipotent*, or *equipollent*, or *equinumerous*, If there exists a bijection $f : A \rightarrow B$. We write $A \cong B$.

Definition

The cardinal number of A is the equivalence class |A| under \cong . We write $|A| \le |B|$ if there exists an injective function $A \to B$; Equivalently, if there exists a surjective function $B \to A$.

Cantor-Schröder-Bernstein Theorem: if $|A| \le |B|$ and $|B| \le |A|$ then |A| = |B|

Consequence: \leq is a total order on cardinal numbers.

Definition

Definition

|A| is infinite if exists $f : A \rightarrow A$ injective, not bijective; otherwise, finite.

• 4 = $|\{a, b, c, d\}|$ is a finite cardinal number.

Definition

|A| is infinite if exists $f : A \rightarrow A$ injective, not bijective; otherwise, finite.

• $4 = |\{a, b, c, d\}|$ is a finite cardinal number.

• 4 < 7 by $\{a, b, c, d\} \rightarrow \{x, y, z, u, v, w, m\}$: $a \mapsto x, b \mapsto y$ etc.

26 / 28

Definition

|A| is infinite if exists $f : A \rightarrow A$ injective, not bijective; otherwise, finite.

- $4 = |\{a, b, c, d\}|$ is a finite cardinal number.
- 4 < 7 by $\{a, b, c, d\} \rightarrow \{x, y, z, u, v, w, m\}$: $a \mapsto x, b \mapsto y$ etc.

• $\aleph_0 = |\mathbb{N}|$ is the *countable cardinal*. Infinite by f(x) = x + 1.

Definition

|A| is infinite if exists $f : A \rightarrow A$ injective, not bijective; otherwise, finite.

- $4 = |\{a, b, c, d\}|$ is a finite cardinal number.
- 4 < 7 by $\{a, b, c, d\} \rightarrow \{x, y, z, u, v, w, m\}$: $a \mapsto x, b \mapsto y$ etc.

• $\aleph_0 = |\mathbb{N}|$ is the *countable cardinal*. Infinite by f(x) = x + 1.

• $\mathfrak{c} = |\mathbb{R}|$ is the cardinality of the continuum. Cantor: $\aleph_0 < \mathfrak{c}$.

Definition

|A| is infinite if exists $f : A \rightarrow A$ injective, not bijective; otherwise, finite.

- $4 = |\{a, b, c, d\}|$ is a finite cardinal number.
- 4 < 7 by $\{a, b, c, d\} \rightarrow \{x, y, z, u, v, w, m\}$: $a \mapsto x, b \mapsto y$ etc.

• $\aleph_0 = |\mathbb{N}|$ is the countable cardinal. Infinite by f(x) = x + 1.

- $\mathfrak{c} = |\mathbb{R}|$ is the cardinality of the continuum. Cantor: $\aleph_0 < \mathfrak{c}$.
- What is $|\{0, 2, 4, 6, \ldots\}|$?

Definition

|A| is infinite if exists $f : A \rightarrow A$ injective, not bijective; otherwise, finite.

- 4 = $|\{a, b, c, d\}|$ is a finite cardinal number.
- 4 < 7 by $\{a, b, c, d\} \rightarrow \{x, y, z, u, v, w, m\}$: $a \mapsto x, b \mapsto y$ etc.

• $\aleph_0 = |\mathbb{N}|$ is the countable cardinal. Infinite by f(x) = x + 1.

- $\mathfrak{c} = |\mathbb{R}|$ is the cardinality of the continuum. Cantor: $\aleph_0 < \mathfrak{c}$.
- What is $|\{0, 2, 4, 6, ...\}|$? = \aleph_0 . E.g. bijection f(x) = 2x.

Definition

- 4 = $|\{a, b, c, d\}|$ is a finite cardinal number.
- 4 < 7 by $\{a, b, c, d\} \rightarrow \{x, y, z, u, v, w, m\}$: $a \mapsto x, b \mapsto y$ etc.
- $\aleph_0 = |\mathbb{N}|$ is the countable cardinal. Infinite by f(x) = x + 1.
- $\mathfrak{c} = |\mathbb{R}|$ is the cardinality of the continuum. Cantor: $\aleph_0 < \mathfrak{c}$.
- What is $|\{0, 2, 4, 6, ...\}|$? = \aleph_0 . E.g. bijection f(x) = 2x.
- What is |(-1,1)|?

Definition

- 4 = $|\{a, b, c, d\}|$ is a finite cardinal number.
- 4 < 7 by $\{a, b, c, d\} \rightarrow \{x, y, z, u, v, w, m\}$: $a \mapsto x, b \mapsto y$ etc.
- $\aleph_0 = |\mathbb{N}|$ is the *countable cardinal*. Infinite by f(x) = x + 1.
- $\mathfrak{c} = |\mathbb{R}|$ is the cardinality of the continuum. Cantor: $\aleph_0 < \mathfrak{c}$.
- What is $|\{0, 2, 4, 6, ...\}|$? = \aleph_0 . E.g. bijection f(x) = 2x.
- What is |(-1,1)|? = c. E.g. via bijection $(-1,1) \rightarrow \mathbb{R}$, $x \mapsto \frac{2x}{1-x^2}$

Definition

|A| is infinite if exists $f : A \rightarrow A$ injective, not bijective; otherwise, finite.

- 4 = $|\{a, b, c, d\}|$ is a finite cardinal number.
- 4 < 7 by $\{a, b, c, d\} \rightarrow \{x, y, z, u, v, w, m\}$: $a \mapsto x, b \mapsto y$ etc.
- $\aleph_0 = |\mathbb{N}|$ is the *countable cardinal*. Infinite by f(x) = x + 1.
- $\mathfrak{c} = |\mathbb{R}|$ is the cardinality of the continuum. Cantor: $\aleph_0 < \mathfrak{c}$.
- What is $|\{0, 2, 4, 6, ...\}|$? = \aleph_0 . E.g. bijection f(x) = 2x.
- What is |(-1,1)|? = c. E.g. via bijection $(-1,1) \rightarrow \mathbb{R}$, $x \mapsto \frac{2x}{1-x^2}$

• What is $|\mathbb{Q}|$?

Definition

- 4 = $|\{a, b, c, d\}|$ is a finite cardinal number.
- 4 < 7 by $\{a, b, c, d\} \rightarrow \{x, y, z, u, v, w, m\}$: $a \mapsto x, b \mapsto y$ etc.
- $\aleph_0 = |\mathbb{N}|$ is the *countable cardinal*. Infinite by f(x) = x + 1.
- $\mathfrak{c} = |\mathbb{R}|$ is the cardinality of the continuum. Cantor: $\aleph_0 < \mathfrak{c}$.
- What is $|\{0, 2, 4, 6, ...\}|$? = \aleph_0 . E.g. bijection f(x) = 2x.
- What is |(-1,1)|? = c. E.g. via bijection $(-1,1) \rightarrow \mathbb{R}$, $x \mapsto \frac{2x}{1-x^2}$
- What is $|\mathbb{Q}|$? = \aleph_0 . E.g. via injection $\mathbb{Q} \to \mathbb{N}$, $\frac{m}{n} \mapsto 2^m 3^n$.

Definition

- 4 = $|\{a, b, c, d\}|$ is a finite cardinal number.
- 4 < 7 by $\{a, b, c, d\} \rightarrow \{x, y, z, u, v, w, m\}$: $a \mapsto x, b \mapsto y$ etc.
- $\aleph_0 = |\mathbb{N}|$ is the *countable cardinal*. Infinite by f(x) = x + 1.
- $\mathfrak{c} = |\mathbb{R}|$ is the cardinality of the continuum. Cantor: $\aleph_0 < \mathfrak{c}$.
- What is $|\{0, 2, 4, 6, ...\}|$? = \aleph_0 . E.g. bijection f(x) = 2x.
- What is |(-1,1)|? = c. E.g. via bijection $(-1,1) \rightarrow \mathbb{R}$, $x \mapsto \frac{2x}{1-x^2}$
- What is $|\mathbb{Q}|$? = \aleph_0 . E.g. via injection $\mathbb{Q} \to \mathbb{N}, \frac{m}{n} \mapsto 2^m 3^n$.
- Is there a cardinal number κ s.t. $\aleph_0 < \kappa < c$?

Definition

- 4 = $|\{a, b, c, d\}|$ is a finite cardinal number.
- 4 < 7 by $\{a, b, c, d\} \rightarrow \{x, y, z, u, v, w, m\}$: $a \mapsto x, b \mapsto y$ etc.
- $\aleph_0 = |\mathbb{N}|$ is the *countable cardinal*. Infinite by f(x) = x + 1.
- $\mathfrak{c} = |\mathbb{R}|$ is the cardinality of the continuum. Cantor: $\aleph_0 < \mathfrak{c}$.
- What is $|\{0, 2, 4, 6, ...\}|$? = \aleph_0 . E.g. bijection f(x) = 2x.
- What is |(-1,1)|? = c. E.g. via bijection $(-1,1) \rightarrow \mathbb{R}$, $x \mapsto \frac{2x}{1-x^2}$
- What is $|\mathbb{Q}|$? = \aleph_0 . E.g. via injection $\mathbb{Q} \to \mathbb{N}$, $\frac{m}{n} \mapsto 2^m 3^n$.
- Is there a cardinal number κ s.t. $\aleph_0 < \kappa < c$? Independent of ZFC!!!

Claim: if G = (V, E) is finite, all nodes have indegree, outdegree ≤ 1 , and some node has indegree = 0, then some node has outdegree = 0.

Claim: if G = (V, E) is finite, all nodes have indegree, outdegree ≤ 1 , and some node has indegree = 0, then some node has outdegree = 0.

Proof If every node x has outdegree = 1, then we define $f : V \rightarrow V$:

$$f(x) \stackrel{\text{def}}{=}$$
 "unique successor y of x"

Then f is injective, not surjective. Contradiction.

Discussion

• The implication problem $\Sigma \vDash \varphi$ is: check if for any structure A, if $A \vDash \Sigma$ then $A \vDash \varphi$

• Different for arbitrary structures **A** and finite structures: $\Sigma \vDash \varphi \text{ implies } \Sigma \vDash_{\mathsf{fin}} \varphi \text{ but not vice versa}$

• Classical model theory: theorems about arbitrary structures.

• They do not hold in the finite, but are useful nevertheless.