Finite Model Theory
Lecture 1: Introduction, Classical Model Theory

Spring 2025
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1 Problem

Course Organization

Lectures: Homework assignment:
@ Time: MW 10 - 11:20 @ Short problems
@ Room: CSE2 371 @ Submit on Canvas
@ Canceled: May 26, May 28 @ Ignore points
o Makeup: TBD @ Collaborations strongly
encouraged

@ Deadlines are flexible

Grading: Credit / No Credit
If prefer a numerical grade, email me.
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Problems n Problem

Course Outline

Week of 3/31 Intro, Classical Model Theory, 0/1 Laws

Week of 4/7 Conjunctive Queries, Homomorphism Order

Week of 4/14 EF Games, FO Types

Week of 4/21 Recursion, Datalog, Infinitary Logics, and Pebble Games
Week of 4/28 FO2, C2, Bisimulation, Stable Coloring, GNNs

Week of 5/5 SO: Fagin's Theorem, MSO and Regular expressions
Week of 5/12 Descriptive Complexity

Week of 5/19 FO over Semirings

Week of 5/26 CANCELED

Week of 6/2 TBD

VERY tentative! We may go slower.
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SEEe Problems

Resources

@ Doxiadis, Papadimitriou, Logicomix.

Libkin Finite Model Theory.

Enderton A Mathematical Introduction to Logic.

@ Course on Friendly Logics from UPenn
Val Tannen and Scott Weinstein
http://www.cis.upenn.edu/~val/CIS682/

@ Burris, Sankappanavar, A Course in Universal
Algebra

@ Abiteboul, Hull, Vianu, Database Theory

@ Some lecture may refer to additional material.
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S

ANEPIC SEARCH FOR TRUTH

The Milennium Ediion

Stanley Burris
H.P. Sankappanavar

A Course in
Universal Algebra
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http://www.cis.upenn.edu/~val/CIS682/

Plan

Today: basic definitions, classical theorems in model theory

Wednesday: 0/1 law for finite models and its suprising proof using
classical theorems

Finite Model Theory Lecture 1 Spring 2025

5/28



Basics
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Basic Definitions
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Basics
00000000000

Structures

A vocabulary o is a set of relation symbols Ry, ..., Rk,
and function symbols fi,..., f,, each with a fixed arity.
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Problems

Structures

A vocabulary o is a set of relation symbols Ry, ..., Rk,
and function symbols fi,..., f,, each with a fixed arity.

A structure (a.k.a. model) is A= (A R}, .. 5 R A FD), _
where RIA c (A)arlty(Ri) and GA . (A)anty(g-) S A
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Basics
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Structures

A vocabulary o is a set of relation symbols Ry, ..., Rk,
and function symbols fi,..., f,, each with a fixed arity.

A structure (a.k.a. model) is A= (A R}, .. 5 R A FD), _
where RIA c (A)arlty(Ri) and GA . (A)anty(g-) S A

The domain (a.k.a. universe), Dom(A) % Ais is assumed # .
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Basics
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Discussion

e We don't really need functions, since f : AKX - A is represented by its

graph ¢ AK*1 but we keep them when convenient.

@ A constant, c, is just a 0-ary function c: A? - A.

@ The structure A may be finite or infinite.

@ Sometimes, even the vocabulary ¢ is infinite!
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Basics
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First Order Logic (FO or FOL)

Fix a vocabulary o and a set of variables x1, x»,. ..

Terms:
@ Every constant ¢ and every variable x is a term.

o If ty,...,tx are terms and f € o, then f(t1,...,t) is a term.

Formulas:
e F is a formula (means false).
o If t1, tp are terms then t; = t» is a formula.
o If t1,...,tx are terms and R € o then R(ty,...,tx) is a formula.
°

If v,1 are formulas, then so are ¢ - 1 and Vx(¢p).
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Basics Problems

Discussion
We were very frugal! We used only F,—, V.
Sometimes it's good to be frugal. Sometimes we want more operations:

- is a shorthand for ¢ - F.

¢ V1 is a shorthand for (—p) — 9.
@ A1 is a shorthand for =(=p v =1)).
3x(¢) is a shorthand for —=(Vx(-¢)).

F often denoted: false or L or 0.

Sometimes equality (=) is not included in the language.
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Basics
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Formulas, Sentences, Substitution

We say that Vx(¢) binds x in .
A variable occurrence can be bound or free.

A sentence is a formula ¢ without free variables.

Examples:

e Formula: ¢(x,z) =3y(E(x,y) A E(y,z)). Free variables: x, z.
@ Sentence: ¢ = IxVzIy(E(x,y) A E(y,Zz)).

@[ t/x] is formula obtained by substituting free occurrences of x with t

Finite Model Theory Lecture 1 Spring 2025 11/28



Basics Problems
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Truth

Let ¢ be a sentence, and A a structure
Every ground term (i.e. has no variables), t, evaluates to a constant t* € A

Definition

We say that the sentence ¢ is true in A, written , if:

@ pist; =ty and tlA, t2A are the same value.

o ¢is R(t1,...,ty) and (t],...,t2) e RA.

@ pis ;> and A 11, or AE Y1 and A= 1.
e pis Vy(¢), and, forall be A, A=[b/y].

If X is a set of sentences then means: for every p e 2, AE .

This definition is boring but important!
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Example 1: Graphs

Vocabulary: ¢ = (E); “language of graphs”
A structure is a graph: G = (V,E®), E¢cV x V. @
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Problems
00000008000

Example 1: Graphs

Vocabulary: ¢ = (E); “language of graphs”
A structure is a graph: G = (V,E®), E¢cV x V. @

What do these sentences say about a graph?
e Vx3IyE(x,y)
e IxVyE(x,y)

o VxVy1Vya(E(x,y1) A E(X,y2) = y1 = y2)
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Basics

Problems
0000000@000 0000

Example 1: Graphs

Vocabulary: ¢ = (E); “language of graphs”
A structure is a graph: G = (V,E®), E¢cV x V. @

What do these sentences say about a graph?
e Vx3IyE(x,y)
e IxVyE(x,y)

o VxVy1Vya(E(x,y1) A E(X,y2) = y1 = y2)

every node has an outgoing edge
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Basics Problems
0000000@000

1 Problem

Example 1: Graphs

Vocabulary: ¢ = (E); “language of graphs”
A structure is a graph: G = (V,E®), E¢cV x V. @

@

What do these sentences say about a graph?

e Vx3IyE(x,y) every node has an outgoing edge
e IxVyE(x,y) some node has outgoing edges to everyone
o VxVy1Vy2(E(x,y1) A E(x,y2) = y1 = y2)
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Basics Problems
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1 Problem

Example 1: Graphs

Vocabulary: ¢ = (E); “language of graphs”
A structure is a graph: G = (V,E®), E¢cV x V. @

@

What do these sentences say about a graph?

e Vx3IyE(x,y) every node has an outgoing edge
e IxVyE(x,y) some node has outgoing edges to everyone

o VxVy1Vy2(E(x,y1) A E(x,y2) = y1 = y2) outdegree <1
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Problems

1 Problem

Example 1: Graphs

Vocabulary: ¢ = (E); “language of graphs”
A structure is a graph: G = (V,E®), EC c V x V. @

@

What do these sentences say about a graph?

e Vx3IyE(x,y) every node has an outgoing edge
e IxVyE(x,y) some node has outgoing edges to everyone
o VxVy1Vy2(E(x,y1) A E(x,y2) = y1 = y2) outdegree <1

How do you express the following?

@ G is symmetric.

@ Every two nodes are connected by path of length 2

@ Every two nodes are connected by a path.
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Basics Problems
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Example 1: Graphs

Vocabulary: ¢ = (E); “language of graphs”
A structure is a graph: G = (V,E®), EC c V x V. @

@

What do these sentences say about a graph?
e Vx3IyE(x,y) every node has an outgoing edge
e IxVyE(x,y) some node has outgoing edges to everyone
o VxVy1Vys(E(x,y1) A E(x,y2) = y1=y2) outdegree <1
How do you express the following?

e G is symmetric. VxVy(E(x,y) = E(y,x))
@ Every two nodes are connected by path of length 2

@ Every two nodes are connected by a path.
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Basics Problems
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Example 1: Graphs

Vocabulary: ¢ = (E); “language of graphs”
A structure is a graph: G = (V,E®), EC c V x V. @

@

What do these sentences say about a graph?

e Vx3IyE(x,y) every node has an outgoing edge

e IxVyE(x,y) some node has outgoing edges to everyone

o VxVy1Vys(E(x,y1) A E(x,y2) = y1=y2) outdegree <1
How do you express the following?

e G is symmetric. VxVy(E(x,y) = E(y,x))

@ Every two nodes are connected by path of length 2

VxVy3z(E(x,z) NE(z,y))
@ Every two nodes are connected by a path.
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Basics Problems
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Example 1: Graphs

Vocabulary: ¢ = (E); “language of graphs”
A structure is a graph: G = (V,E®), EC c V x V. @

@

What do these sentences say about a graph?

e Vx3IyE(x,y) every node has an outgoing edge

e IxVyE(x,y) some node has outgoing edges to everyone

o VxVy1Vys(E(x,y1) A E(x,y2) = y1=y2) outdegree <1
How do you express the following?

e G is symmetric. VxVy(E(x,y) = E(y,x))

@ Every two nodes are connected by path of length 2

VxVy3z(E(x,z) NE(z,y))
@ Every two nodes are connected by a path. NOT POSSIBLE!
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Example 2: Relational Databases

Vocabulary: ¢ = (User, Order,Product)

A structure is a database instance: D = (D,User?, 0Order?, ProductP?)

User?
uid name
u001 | Alice
u002 | Bob
u003 | Alice
OrderP
uid pid
u001 | p555
u001 | p666
u002 | p555
Product?
pid color
p555 | blue
p666 | red
p777 | blue
Spring 2025
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Example 2: Relational Databases

Vocabulary: ¢ = (User, Order,Product)

A structure is a database instance: D = (D,User?, 0Order?, ProductP?)

User?

What do these sentences say? Which are true in D?  [wid | name
u001 | Alice
o VuVmVny(User(u,n)AUser(u,m) = ny=m) | oo
e VYuVp(Order(u,p) = In(User(u,n))) u003 | Alice
e VuVn(User(u,n) — order®
raer
dp3c(0rder(u, p) AProduct(p, ‘‘red’’))) wid | pid
u001 | p555
u001 | p666
1002 | p555
Product?
pid color
p555 | blue
p666 | red
p777 | blue
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Basics Problems
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Example 2: Relational Databases

Vocabulary: ¢ = (User, Order,Product)
A structure is a database instance: D = (D,User?,0rder?, Product?)

User?
What do these sentences say? Which are true in D? wid | name
001 | Ali
@ YuVnVny(User(u,n) AUser(u,n) = ny =ny) 2002 Bo:;ce
e VYuVp(Order(u,p) = In(User(u,n))) u003 | Alice
e VuVn(User(u,n) — brderD
rder
dp3c(0rder(u, p) AProduct(p, ‘‘red’’))) wid | pid
PR w001 | p555
How do you express the following? w001 | pece
@ Bob ordered everything that Alice ordered. u002 | p555
Product?
pid color
@ Bob ordered fewer products than Alice. p555 | blue
p666 | red
pP777 | blue
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Basics Problems n Problem
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Example 2: Relational Databases

Vocabulary: ¢ = (User, Order,Product)
A structure is a database instance: D = (D,User?,0rder?, Product?)

User?
What do these sentences say? Which are true in D? wid | name
001 | Ali
@ YuVnVny(User(u,n) AUser(u,n) = ny =ny) 2002 Bo:;ce
e VYuVp(Order(u,p) = In(User(u,n))) u003 | Alice
e VuVn(User(u,n) — b
¢ ) s Order
dp3c(0rder(u, p) AProduct(p, ‘‘red’’))) wid [ pid
PR w001 | p555
How do you express the following? w001 | pece
@ Bob ordered everything that Alice ordered. u002 | p555
Vp(Yu(User(u, ¢ ‘Alice’’) AOrder(u,p))
= Jv(User(u, ‘ ‘Bob’’) A Order(v, p))) Product”
pid color
@ Bob ordered fewer products than Alice. p555 | blue
p666 | red
pP777 | blue
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Basics Problems n Problem
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Example 2: Relational Databases

Vocabulary: ¢ = (User, Order,Product)
A structure is a database instance: D = (D,User?,0rder?, Product?)

User?
What do these sentences say? Which are true in D? wid | name
001 | Ali
@ YuVnVny(User(u,n) AUser(u,n) = ny =ny) 2002 Bo:;ce
e VYuVp(Order(u,p) = In(User(u,n))) u003 | Alice
e VuVn(User(u,n) — b
¢ ) s Order
dp3c(0rder(u, p) AProduct(p, ‘‘red’’))) wid [ pid
PR w001 | p555
How do you express the following? w001 | pece
@ Bob ordered everything that Alice ordered. u002 | p555
Vp(Yu(User(u, ¢ ‘Alice’’) AOrder(u,p))
= Jv(User(u, ‘ ‘Bob’’) A Order(v, p))) Product”
pid color
@ Bob ordered fewer products than Alice. p555 | blue
| p666 | red
NOT POSSIBLE! 2777 | biue
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Special Case: Propositional Logic

A nullary relation, P(), is the same as a propositional variable p:
o In any structure A, P” can be either @ or {()}.

o If PA=1{()} then we say that p = true.
o If PA = & then we say that p = false.

Sentences over nullary relations are the same as propositional formulas:
PO A (Q(O) v-R())

pA(qv-r)
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Basics Problems n Problem
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Take Away from the Basics

Make sure you have a good understanding of the basic operators:
Vi Ay =, =, V, 3

Know simple tricks of the trade:
@ Propositional calculus is a very simple special case of FO.
@ — is the same as ¢ — F.
° ~(¢p—>v) =y
e Common idioms for asserting [Property of x|:

Ix(R(x,...) A [Property of x])
Vx(R(x,...) = [Property of x])

! and = are the same thing.
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Problems in Classical,
and in Finite Model Theory
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Problems 1 Problem
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Problems in Classical Model Theory

Fix a sentence ¢, and a set of sentences ¥ (may be infinite).

o Satisfiability: X is satisfiable if there exists A such that A X.

@ Implication: X implies ¢, written X = ¢, if for every structure A:
if AE X then AE @

Validity: ¢ is valid, written & ¢, if for every structure A, AE .

e We write SAT(y), or VAL(p) when ¢ is satisfiable, or valid.
~SAT(yp) iff VAL(~¢) \
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Problems 1 Problem
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Problems in Finite Model Theory

All previous problems, where the models are restricted to be finite:
e Finite satisfiability, SATg,(X).

@ Finite implication, finite validity: we write ¥ Eg, ¢, or VALg, ().

New problems that make sense only in the finite:

@ Model checking: Given ¢, A, determine whether A = ¢.
@ Query evaluation: Given ¢(x), A, compute {a| Ak p[a/x]}.

@ Expressibility: can we express a given property in FO?
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An Example

Y ={p2,93,pa,...} where:

w2 =3x13x(x1 £ x2)
w3 =3x1Ix0Ixz(x1 # x2) A (x1 #x3) A (X2 # X3)
w4 =3x1Ix0Ixz3Ixa(x1 # x2) A (X1 £ X3) Ao A (X3 % Xa)
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An Example

Y ={p2,93,pa,...} where:

w2 =3x13x(x1 £ x2)
w3 =3x1Ix0Ixz(x1 # x2) A (x1 #x3) A (X2 # X3)
w4 =3x1Ix0Ixz3Ixa(x1 # x2) A (X1 £ X3) Ao A (X3 % Xa)

SAT(X)?

SATfn ()7
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Problems p 1 Problem
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An Example
Y ={p2,93,pa,...} where:

w2 =3x13x(x1 £ x2)
w3 =3x1Ix0Ixz(x1 # x2) A (x1 #x3) A (X2 # X3)
w4 =3x1Ix0Ixz3Ixa(x1 # x2) A (X1 £ X3) Ao A (X3 % Xa)

SAT(X)?

SATfn ()7

What does ¢, say?
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Problems n Problem
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An Example

Y ={p2,93,pa,...} where:

w2 =3x13x(x1 £ x2)
w3 =3x1Ix0Ixz(x1 # x2) A (x1 #x3) A (X2 # X3)
w4 =3x1Ix0Ixz3Ixa(x1 # x2) A (X1 £ X3) Ao A (X3 % Xa)

SAT(X)?

SATfn ()7

What does ¢, say? “There exists at least n elements”
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An Example

Y ={p2,93,pa,...} where:

w2 =3x13x(x1 £ x2)
w3 =3x1Ix0Ixz(x1 # x2) A (x1 #x3) A (X2 # X3)
w4 =3x1Ix0Ixz3Ixa(x1 # x2) A (X1 £ X3) Ao A (X3 % Xa)

SAT(Y)? YES

SATfn ()7

What does ¢, say? “There exists at least n elements”
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An Example

Y ={p2,93,pa,...} where:

w2 =3x13x(x1 £ x2)
w3 =3x1Ix0Ixz(x1 # x2) A (x1 #x3) A (X2 # X3)
w4 =3x1Ix0Ixz3Ixa(x1 # x2) A (X1 £ X3) Ao A (X3 % Xa)

SAT(X)? YES
SATg,(X)? NO
What does ¢, say? “There exists at least n elements”
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Problems 1 Problem
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An Example

Y ={p2,93,pa,...} where:

w2 =3x13x(x1 £ x2)
w3 =3x1Ix0Ixz(x1 # x2) A (x1 #x3) A (X2 # X3)
w4 =3x1Ix0Ixz3Ixa(x1 # x2) A (X1 £ X3) Ao A (X3 % Xa)

SAT(X)? YES
SATg,(X)? NO
What does ¢, say? “There exists at least n elements”

In general | SAT¢3,(X) = SAT(X) |, but not conversely
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The Implication Problem
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Problems Implication Problem
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The Implication Problem

Given a set of sentences X and a sentence ¢, check whether ¥ & .

When ¥ = &, then we ask whether = ¢, i.e. VAL(yp).

The Satisfiability Problem is a special case:

SAT(X) iff not(X = F)
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Example: End of the Line

Y = {p1, 92,93}, where:

01 =YXV Vy2(E(x,y1) A E(X,y2) = y1 = y2)
p2 =Vx1VVy(E(xi, y) A E(xe,y) = x1 = x2)
¢3 =3yV¥x(~E(x,y))
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Implication Problem
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Example: End of the Line

Y = {p1, 92,93}, where:

01 =YXV Vy2(E(x,y1) A E(X,y2) = y1 = y2)
p2 =Vx1VVy(E(xi, y) A E(xe,y) = x1 = x2)
¢3 =3yV¥x(~E(x,y))

Let v =3IxVy(-E(x,y))
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Problems Implication Problem
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Example: End of the Line

Y = {p1, 92,93}, where:

01 =YXV Vy2(E(x,y1) A E(X,y2) = y1 = y2)
p2 =Vx1VVy(E(xi, y) A E(xe,y) = x1 = x2)
¢3 =3yV¥x(~E(x,y))

Let v =3IxVy(-E(x,y))

> says: all indegrees, outdegrees <1 and some node has indegree =0
 says: some node has outdegree = 0.
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Basics Problems Implication Problem
00000000000 0000 00800000

Example: End of the Line

Y = {p1, 92,93}, where:

01 =YXV Vy2(E(x,y1) A E(X,y2) = y1 = y2)
p2 =Vx1VVy(E(xi, y) A E(xe,y) = x1 = x2)
¢3 =3yV¥x(~E(x,y))

Let v =3IxVy(-E(x,y))

> says: all indegrees, outdegrees <1 and some node has indegree =0
 says: some node has outdegree = 0.

Will prove: ‘Z # 4,0‘ but ‘ Y Efin @ ‘
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Problems Implication Problem
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Example: Proof for End of the Line

All nodes have indegree, outdegree <1 and some node has indegree = 0.
Does this imply that some node has outdegree = 07
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Problems

Implication Problem
[e]e]e] lelele]e]

Example: Proof for End of the Line

All nodes have indegree, outdegree <1 and some node has indegree = 0.
Does this imply that some node has outdegree = 07

Infinite graphs: NO! Counterexample:

Finite Model Theory Lecture 1
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Problems

Implication Problem
[e]e]e] lelele]e]

Example: Proof for End of the Line

All nodes have indegree, outdegree <1 and some node has indegree = 0.
Does this imply that some node has outdegree = 07

Infinite graphs: NO! Counterexample:

< -~
. * ¢ ?
Finite graphs: YES £
To prove, we need to define finiteness. LA
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Problems

Implication Problem
[e]e]e] lelele]e]

Example: Proof for End of the Line

All nodes have indegree, outdegree <1 and some node has indegree = 0.
Does this imply that some node has outdegree = 07

Infinite graphs: NO! Counterexample:

< -~
. * ¢ ?
Finite graphs: YES £
To prove, we need to define finiteness. LA

How do you define a finite set? Or an infinite set?
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Problems Implication Problem
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Review: Cardinal Numbers

Two sets A, B are equipotent, or equipollent, or equinumerous, If there
exists a bijection f: A - B. We write Az B.

Definition

The cardinal number of A is the equivalence class |A| under 2.
We write |A| < |B| if there exists an injective function A — B;
Equivalently, if there exists a surjective function B - A.

Cantor-Schroder-Bernstein Theorem: if |A| < |B| and |B| < |A| then |A| = |B|

Consequence: < is a total order on cardinal numbers.
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Review: Definition of Infinity

Definition J

|A| is infinite if exists f : A - A injective, not bijective; otherwise, finite.
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Review: Definition of Infinity

Definition J

|A| is infinite if exists f : A - A injective, not bijective; otherwise, finite.

e 4=|{a,b,c,d}|is a finite cardinal number.
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Problems Implication Problem

Review: Definition of Infinity
Definition J

|A| is infinite if exists f : A - A injective, not bijective; otherwise, finite.

e 4=|{a,b,c,d}|is a finite cardinal number.

0 4<7 by {a,b,c,d} - {x,y,z,u,v,w,m}: ar x, by etc.
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Review: Definition of Infinity

Definition

|A| is infinite if exists f : A - A injective, not bijective; otherwise, finite. J
e 4=|{a,b,c,d}|is a finite cardinal number.
0 4<7 by {a,b,c,d} - {x,y,z,u,v,w,m}: ar x, by etc.
@ X¢ = |N] is the countable cardinal. Infinite by f(x) = x+ 1.
e ¢ =|R| is the cardinality of the continuum. Cantor: R <.
e What is |{0,2,4,6,...}|?
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Review: Definition of Infinity

Definition

|A| is infinite if exists f : A - A injective, not bijective; otherwise, finite. J
e 4=|{a,b,c,d}|is a finite cardinal number.
0 4<7 by {a,b,c,d} - {x,y,z,u,v,w,m}: ar x, by etc.
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e What is |{0,2,4,6,...}|7 = Ro. E.g. bijection f(x) = 2x.
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Problems

Review: Definition of Infinity

Definition

[e]e]e]e]e] Jele)

|A| is infinite if exists f : A - A injective, not bijective; otherwise, finite. J

e 4=|{a,b,c,d}|is a finite cardinal number.

0 4<7 by {a,b,c,d} - {x,y,z,u,v,w,m}: ar x, by etc.
@ X¢ = |N] is the countable cardinal. Infinite by f(x) = x+ 1.
e ¢ =|R| is the cardinality of the continuum. Cantor: R <.
e What is |{0,2,4,6,...}|7 = Ro. E.g. bijection f(x) = 2x.
e What is |[(-1,1)|? =c. E.g. via bijection (-1,1) > R, x 125
e What is |Q|?
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Review: Definition of Infinity

Definition
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|A| is infinite if exists f : A - A injective, not bijective; otherwise, finite. J

e 4=|{a,b,c,d}|is a finite cardinal number.

0 4<7 by {a,b,c,d} - {x,y,z,u,v,w,m}: ar x, by etc.

Ro = |N| is the countable cardinal.

¢ = |R| is the cardinality of the continuum.

Finite Model Theory Lecture 1

What is |(-1,1)|? =c. E.g. via bijection (-1,1) > R, x —

Infinite by f(x) = x

+1.

Cantor: ®q <c.
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What is [{0,2,4,6,...}|]? =Ro. E.g. bijection f(x) = 2x.

2x
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What is |Q|? = R¢. E.g. via injection Q -» N, 7 > 273",

26/28



Problems Implication Problem
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Review: Definition of Infinity

Definition

|A| is infinite if exists f : A - A injective, not bijective; otherwise, finite. J
e 4=|{a,b,c,d}|is a finite cardinal number.
0 4<7 by {a,b,c,d} - {x,y,z,u,v,w,m}: ar x, by etc.
@ X¢ = |N] is the countable cardinal. Infinite by f(x) = x+ 1.
e ¢ =|R| is the cardinality of the continuum. Cantor: R <.
e What is |{0,2,4,6,...}|7 = Ro. E.g. bijection f(x) = 2x.
e What is |[(-1,1)|? =c. E.g. via bijection (-1,1) > R, x 125
e What is |Q|? = Ro. E.g. via injection Q -» N, 7 > 273",
@ Is there a cardinal number k s.t. Rg <k <¢?
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Problems Implication Problem

000 [e]e]e]e]e] Jele)

Review: Definition of Infinity
Definition J

|A| is infinite if exists f : A - A injective, not bijective; otherwise, finite.

4 =|{a,b,c,d}| is a finite cardinal number.

0 4<7 by {a,b,c,d} - {x,y,z,u,v,w,m}: ar x, by etc.

Ro = |N] is the countable cardinal. Infinite by f(x) = x+ 1.

¢ = |R| is the cardinality of the continuum. Cantor: ®g <.
What is [{0,2,4,6,...}|7 = Ro. E.g. bijection f(x) = 2x.

. _ . . - 2
What is |(-1,1)]? =c. E.g. via bijection (-1,1) = R, x = =5

What is |Q|? = R¢. E.g. via injection Q -» N, 7 > 273",

Is there a cardinal number s s.t. Rg <k <¢?  Independent of ZFCI!I
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Example: Proof for End of the Line

Claim: if G = (V,E) is finite, all nodes have indegree, outdegree <1, and
some node has indegree = 0, then some node has outdegree = 0.
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Example: Proof for End of the Line

Claim: if G = (V,E) is finite, all nodes have indegree, outdegree <1, and
some node has indegree = 0, then some node has outdegree = 0.

< -~
: + L]
Proof If every node x has outdegree =1, Lt xey .
then we define f: V - V: >
def - ”
f(x) = "“unique successor y of x <o

Then f is injective, not surjective. Contradiction.
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Implication Problem

0O000000e

Discussion

@ The implication problem X = ¢ is: check if for any structure A,
if AEY then AE

o Different for arbitrary structures A and finite structures:
Y ¢ implies ¥ =g, ¢ | but not vice versa

@ Classical model theory: theorems about arbitrary structures.

@ They do not hold in the finite, but are useful nevertheless.
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