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Course Organization

Lectures:

Time: MW 10 - 11:20

Room: CSE2 371

Canceled: May 26, May 28

Makeup: TBD

Homework assignment:

Short problems

Submit on Canvas

Ignore points

Collaborations strongly
encouraged

Deadlines are flexible

Grading: Credit / No Credit
If prefer a numerical grade, email me.
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Course Outline

Week of 3/31 Intro, Classical Model Theory, 0/1 Laws

Week of 4/7 Conjunctive Queries, Homomorphism Order

Week of 4/14 EF Games, FO Types

Week of 4/21 Recursion, Datalog, Infinitary Logics, and Pebble Games

Week of 4/28 FO2, C2, Bisimulation, Stable Coloring, GNNs

Week of 5/5 SO: Fagin’s Theorem, MSO and Regular expressions

Week of 5/12 Descriptive Complexity

Week of 5/19 FO over Semirings

Week of 5/26 CANCELED

Week of 6/2 TBD

VERY tentative! We may go slower.
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Resources
Doxiadis, Papadimitriou, Logicomix.

Libkin Finite Model Theory.

Enderton A Mathematical Introduction to Logic.

Course on Friendly Logics from UPenn
Val Tannen and Scott Weinstein
http://www.cis.upenn.edu/~val/CIS682/

Burris, Sankappanavar, A Course in Universal
Algebra

Abiteboul, Hull, Vianu, Database Theory

Some lecture may refer to additional material.
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Plan

Today: basic definitions, classical theorems in model theory

Wednesday: 0/1 law for finite models and its suprising proof using
classical theorems
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Basic Definitions
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Structures

A vocabulary σ is a set of relation symbols R1, . . . ,Rk ,
and function symbols f1, . . . , fm, each with a fixed arity.

A structure (a.k.a. model) is A = (A,RA
1 , . . . ,R

A
k , f

A
1 , . . . , f

A
m ),

where RA
i ⊆ (A)

arity(Ri) and f Aj ∶ (A)arity(fj) → A.

The domain (a.k.a. universe), Dom(A) def= A is is assumed ≠ ∅.
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Discussion

We don’t really need functions, since f ∶ Ak → A is represented by its
graph ⊆ Ak+1, but we keep them when convenient.

A constant, c , is just a 0-ary function c ∶ A0 → A.

The structure A may be finite or infinite.

Sometimes, even the vocabulary σ is infinite!

Finite Model Theory Lecture 1 Spring 2025 8 / 28



Basics Problems Implication Problem

First Order Logic (FO or FOL)

Fix a vocabulary σ and a set of variables x1, x2, . . .

Terms:

Every constant c and every variable x is a term.

If t1, . . . , tk are terms and f ∈ σ, then f (t1, . . . , tk) is a term.

Formulas:

F is a formula (means false).

If t1, t2 are terms then t1 = t2 is a formula.

If t1, . . . , tk are terms and R ∈ σ then R(t1, . . . , tk) is a formula.

If φ,ψ are formulas, then so are φ→ ψ and ∀x(φ).
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Discussion

We were very frugal! We used only F ,→,∀.

Sometimes it’s good to be frugal. Sometimes we want more operations:

¬φ is a shorthand for φ→ F .

φ ∨ ψ is a shorthand for (¬φ) → ψ.

φ ∧ ψ is a shorthand for ¬(¬φ ∨ ¬ψ).

∃x(φ) is a shorthand for ¬(∀x(¬φ)).

F often denoted: false or � or 0.

Sometimes equality (=) is not included in the language.
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Formulas, Sentences, Substitution

We say that ∀x(φ) binds x in φ.
A variable occurrence can be bound or free.

A sentence is a formula φ without free variables.

Examples:

Formula: φ(x , z) = ∃y(E(x , y) ∧ E(y , z)). Free variables: x , z .

Sentence: φ = ∃x∀z∃y(E(x , y) ∧ E(y , z)).

φ[t/x] is formula obtained by substituting free occurrences of x with t
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Truth

Let φ be a sentence, and A a structure
Every ground term (i.e. has no variables), t, evaluates to a constant tA ∈ A

Definition

We say that the sentence φ is true in A, written A ⊧ φ , if:

φ is t1 = t2 and tA1 , t
A
2 are the same value.

φ is R(t1, . . . , tn) and (t
A
1 , . . . , t

A
n ) ∈ R

A.

φ is ψ1 → ψ2 and A /⊧ ψ1, or A ⊧ ψ1 and A ⊧ ψ2.

φ is ∀y(ψ), and, forall b ∈ A, A ⊧ ψ[b/y].

If Σ is a set of sentences then A ⊧ Σ means: for every φ ∈ Σ, A ⊧ φ.

This definition is boring but important!
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Example 1: Graphs

Vocabulary: σ = (E); “language of graphs”
A structure is a graph: G = (V ,EG), EG ⊆ V ×V .

1 5

3

2

4

What do these sentences say about a graph?

∀x∃yE(x , y)

every node has an outgoing edge

∃x∀yE(x , y)

some node has outgoing edges to everyone

∀x∀y1∀y2(E(x , y1) ∧ E(x , y2) ⇒ y1 = y2)

outdegree ≤ 1

How do you express the following?

G is symmetric.

∀x∀y(E(x , y) ⇒ E(y , x))

Every two nodes are connected by path of length 2

∀x∀y∃z(E(x , z) ∧ E(z , y))

Every two nodes are connected by a path.

NOT POSSIBLE!
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Example 2: Relational Databases

Vocabulary: σ = (User,Order,Product)
A structure is a database instance: D = (D,UserD ,OrderD ,ProductD)

What do these sentences say? Which are true in D?

∀u∀n1∀n2(User(u,n1) ∧ User(u,n2) ⇒ n1 = n2)

∀u∀p(Order(u,p) ⇒ ∃n(User(u,n)))

∀u∀n(User(u,n) →
∃p∃c(Order(u,p) ∧ Product(p,‘‘red’’)))

How do you express the following?

Bob ordered everything that Alice ordered.

∀p(∀u(User(u,‘‘Alice’’) ∧ Order(u,p))
⇒ ∃v(User(u,‘‘Bob’’) ∧ Order(v ,p)))

Bob ordered fewer products than Alice.

NOT POSSIBLE!

UserD

uid name

u001 Alice

u002 Bob

u003 Alice

OrderD

uid pid

u001 p555

u001 p666

u002 p555

ProductD

pid color

p555 blue

p666 red

p777 blue
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Special Case: Propositional Logic

A nullary relation, P(), is the same as a propositional variable p:

In any structure A, PA can be either ∅ or {()}.

If PA = {()} then we say that p = true.

If PA = ∅ then we say that p = false.

Sentences over nullary relations are the same as propositional formulas:

P() ∧ (Q() ∨ ¬R())

p ∧ (q ∨ ¬r)

Finite Model Theory Lecture 1 Spring 2025 15 / 28



Basics Problems Implication Problem

Take Away from the Basics

Make sure you have a good understanding of the basic operators:1

∨,∧,¬,→,∀,∃

Know simple tricks of the trade:

Propositional calculus is a very simple special case of FO.

¬φ is the same as φ→ F .

¬(φ→ ψ) = φ ∧ ¬ψ.

Common idioms for asserting [Property of x]:

∃x(R(x , . . .) ∧ [Property of x])
∀x(R(x , . . .) ⇒ [Property of x])

1
→ and ⇒ are the same thing.
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Problems in Classical,
and in Finite Model Theory
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Problems in Classical Model Theory

Fix a sentence φ, and a set of sentences Σ (may be infinite).

Satisfiability: Σ is satisfiable if there exists A such that A ⊧ Σ.

Implication: Σ implies φ, written Σ ⊧ φ, if for every structure A:
if A ⊧ Σ then A ⊧ φ

Validity: φ is valid, written ⊧ φ, if for every structure A, A ⊧ φ.

We write SAT(φ), or VAL(φ) when φ is satisfiable, or valid.

¬SAT(φ) iff VAL(¬φ)
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Problems in Finite Model Theory

All previous problems, where the models are restricted to be finite:

Finite satisfiability, SATfin(Σ).

Finite implication, finite validity: we write Σ ⊧fin φ, or VALfin(φ).

New problems that make sense only in the finite:

Model checking: Given φ, A, determine whether A ⊧ φ.

Query evaluation: Given φ(x), A, compute {a ∣ A ⊧ φ[a/x]}.

Expressibility: can we express a given property in FO?
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An Example

Σ = {φ2, φ3, φ4, . . .} where:

φ2 =∃x1∃x2(x1 ≠ x2)

φ3 =∃x1∃x2∃x3(x1 ≠ x2) ∧ (x1 ≠ x3) ∧ (x2 ≠ x3)

φ4 =∃x1∃x2∃x3∃x4(x1 ≠ x2) ∧ (x1 ≠ x3) ∧⋯ ∧ (x3 ≠ x4)

. . .

SAT(Σ)? YES

SATfin(Σ)? NO

What does φn say? “There exists at least n elements”

In general SATfin(Σ) ⇒ SAT(Σ) , but not conversely
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The Implication Problem
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Basics Problems Implication Problem

The Implication Problem

Given a set of sentences Σ and a sentence φ, check whether Σ ⊧ φ.

When Σ = ∅, then we ask whether ⊧ φ, i.e. VAL(φ).

The Satisfiability Problem is a special case:

SAT(Σ) iff not(Σ ⊧ F)
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Basics Problems Implication Problem

Example: End of the Line

Σ = {φ1, φ2, φ3}, where:

φ1 =∀x∀y1∀y2(E(x , y1) ∧ E(x , y2) ⇒ y1 = y2)

φ2 =∀x1∀x2∀y(E(x1, y) ∧ E(x2, y) ⇒ x1 = x2)

φ3 =∃y∀x(¬E(x , y))

Let φ = ∃x∀y(¬E(x , y))

Σ says: all indegrees, outdegrees ≤ 1 and some node has indegree = 0
φ says: some node has outdegree = 0.

Will prove: Σ /⊧ φ but Σ ⊧fin φ .
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Basics Problems Implication Problem

Example: Proof for End of the Line

All nodes have indegree, outdegree ≤ 1 and some node has indegree = 0.
Does this imply that some node has outdegree = 0?

Infinite graphs: NO! Counterexample: . . .

Finite graphs: YES
To prove, we need to define finiteness.

How do you define a finite set? Or an infinite set?
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Basics Problems Implication Problem

Review: Cardinal Numbers

Two sets A,B are equipotent, or equipollent, or equinumerous, If there
exists a bijection f ∶ A→ B. We write A ≅ B.

Definition

The cardinal number of A is the equivalence class ∣A∣ under ≅.
We write ∣A∣ ≤ ∣B ∣ if there exists an injective function A→ B;
Equivalently, if there exists a surjective function B → A.

Cantor-Schröder-Bernstein Theorem: if ∣A∣ ≤ ∣B ∣ and ∣B ∣ ≤ ∣A∣ then ∣A∣ = ∣B ∣

Consequence: ≤ is a total order on cardinal numbers.
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Basics Problems Implication Problem

Review: Definition of Infinity

Definition

∣A∣ is infinite if exists f ∶ A→ A injective, not bijective; otherwise, finite.

4 = ∣{a,b, c ,d}∣ is a finite cardinal number.

4 < 7 by {a,b, c,d} → {x , y , z ,u, v ,w ,m}: a ↦ x , b ↦ y etc.

ℵ0 = ∣N∣ is the countable cardinal. Infinite by f (x) = x + 1.

c = ∣R∣ is the cardinality of the continuum. Cantor: ℵ0 < c.

What is ∣{0,2,4,6, . . .}∣? = ℵ0. E.g. bijection f (x) = 2x .

What is ∣(−1,1)∣? = c. E.g. via bijection (−1,1) → R, x ↦ 2x
1−x2

What is ∣Q∣? = ℵ0. E.g. via injection Q→ N, m
n ↦ 2m3n.

Is there a cardinal number κ s.t. ℵ0 < κ < c? Independent of ZFC!!!
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Basics Problems Implication Problem

Example: Proof for End of the Line

Claim: if G = (V ,E) is finite, all nodes have indegree, outdegree ≤ 1, and
some node has indegree = 0, then some node has outdegree = 0.

Proof If every node x has outdegree = 1,
then we define f ∶ V → V :

f (x)
def
= “unique successor y of x”

Then f is injective, not surjective. Contradiction.
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Basics Problems Implication Problem

Discussion

The implication problem Σ ⊧ φ is: check if for any structure A,
if A ⊧ Σ then A ⊧ φ

Different for arbitrary structures A and finite structures:
Σ ⊧ φ implies Σ ⊧fin φ but not vice versa

Classical model theory: theorems about arbitrary structures.

They do not hold in the finite, but are useful nevertheless.
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