Finite Model Theory – Homework 3

May 9, 2025

1 Ehrenfeucht-Fraisse Games

1. (0 points)

(a) Let $\sigma = \{U_1, \ldots, U_m\}$ be a relational vocabulary with *m* unary predicate symbols. Prove that sentences over this vocabulary satisfy the *small model property*: if φ has any model (finite or infinite), then it also has a finite model of size $\leq f(|\varphi|)$, where *f* is some computable function *f*.

(Hint: given any number k and a structure A over the vocabulary σ , if A is "large enough", then describe a "small" finite structure B s.t. $A \sim_k B$. Here "small" means that the size of B does not depend on A, but it may depend on k and m.)

- (b) Prove that the satisfiability problem for a relational vocabulary consisting of only unary predicate symbols is decidable. (Hint: it should be easy once you solved the previous problem.)
- (c) Recall that $L_n = ([n], <)$: more precisely, the vocabulary is $\sigma = (<)$ and the structure L_n is a total order on n elements. Prove that, if $m < 2^k 1$ then $L_m \sim_k L_n$ iff m = n. In other words, if $m < 2^k 1$ then the duplicator has a winning strategy for the k-pebble game on L_m, L_n only if m = n. (Hint: we used induction on k to prove that, whenever $m, n \ge 2^k 1$ then $L_m \sim_k L_n$, and induction served us well.)
- (d) Consider the vocabulary $\sigma = (E, B)$, where E(x, y) represents an edge from x to y, and B(x) means that x is black. Find a sentence $\varphi \in FO[3]$ that separates the two trees below. In other words, φ is true in one tree, and false in the other. Notice that you can only use up to 3 nested quantifiers.

(Hint: review how we played the EF games on these two trees in the lecture)

2 Logic on Words

- 2. (0 points)
 - (a) Consider the vocabulary $(\langle P_a, P_b, P_c)$ of strings over the alphabet $\Sigma = \{a, b, c\}$.
 - i. Write each of the regular expressions below in FO or in MSO. Use succ, \leq , min, max when needed, since these are expressible using <.

$$E_1 = (a|b)^* . c^*$$
 $E_2 = (a.b)^*$ $E_3 = (a.a.a)^*$

ii. Write a regular expression describing the following language:

$$\forall S(\exists x(S(x) \land P_a(x)) \to \exists y(S(y) \land P_b(y)))$$